

FCC TEST REPORT

REPORT NO.: RF991006E02-1 R1

MODEL NO.: TEI301W-xx, REN301W-xx, TES301W-xx

FCC ID: LDK-TEI301W

RECEIVED: Oct. 06, 2010

TESTED: Oct. 14 to 26, 2010

ISSUED: Feb. 09, 2011

APPLICANT: Cisco Systems Inc.

ADDRESS: 170 West Tasman Drive, San Jose, CA

95134-1706, USA.

ISSUED BY: Bureau Veritas Consumer Products Services

(H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory

LAB ADDRESS: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan

TEST LOCATION (1): No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan

TEST LOCATION (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan

This test report consists of 31 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

REL	EASE CONTROL RECORD	3
1	CERTIFICATION	
2	SUMMARY OF TEST RESULTS	5
2.1	MEASUREMENT UNCERTAINTY	5
3	GENERAL INFORMATION	
3.1	GENERAL DESCRIPTION OF EUT	6
3.2	DESCRIPTION OF TEST MODES	
3.2.	1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	8
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	10
3.4	DESCRIPTION OF SUPPORT UNITS	
3.5	CONFIGURATION OF SYSTEM UNDER TEST	12
4	TEST PROCEDURES AND RESULTS	
4.1	CONDUCTED EMISSION MEASUREMENT	13
4.1.1	1 LIMITS OF CONDUCTED EMISSION MEASUREMENT	13
4.1.2	2 TEST INSTRUMENTS	13
4.1.3		14
4.1.4	4 DEVIATION FROM TEST STANDARD	14
4.1.5		
4.1.6	6 EUT OPERATING CONDITIONS	15
4.1.7	7 TEST RESULTS-MODE 1	16
4.1.8	B TEST RESULTS-MODE 2	18
4.2	RADIATED EMISSION MEASUREMENT	20
4.2.1	1 LIMITS OF RADIATED EMISSION MEASUREMENT	20
4.2.2		
4.2.3	3 TEST PROCEDURES	23
4.2.4	4 DEVIATION FROM TEST STANDARD	23
4.2.5		24
4.2.6		24
4.2.7	7 TEST RESULTS	25
4.3	CONDUCTED - OUT BAND MEASUREMENT	28
4.3.		
4.3.2	2 TEST INSTRUMENTS	28
4.3.3	3 TEST PROCEDURE	28
4.3.4	4 DEVIATION FROM TEST STANDARD	28
4.3.5	5 EUT OPERATING CONDITION	28
4.3.6		
5	INFORMATION ON THE TESTING LABORATORIES	
6	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING	
	CHANGES TO THE EUT BY THE LAB	31

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
Original release	NA	Jan. 18, 2011
RF991006E02-1 R1	Modified the product name of the EUT	Feb. 09, 2011

Report No.: RF991006E02-1 R1 3
Cancels and replaces the report No.: RF991006E02-1 dated Jan. 18, 2011

1 CERTIFICATION

PRODUCT: IP Managed Services Home Gateway

BRAND NAME: Cisco

MODEL NO.: TEI301W-xx, REN301W-xx, TES301W-xx

TESTED: Oct. 14 to 26, 2010

TEST SAMPLE: MASS-PRODUCTION

APPLICANT: Cisco Systems Inc.

STANDARDS: FCC Part 15, Subpart C (Section 15.249)

ANSI C63.4-2003

The above equipment (Model: TEI301W-NA) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY: Midel | Midel Feb. 09, 2011

(Midoli Peng, Specia<mark>l</mark>ist)

TECHNICAL

ACCEPTANCE: / Jakehoff , DATE: Feb. 09, 2011

(Hank Chung, Deputy Manager)

APPROVED BY : , **DATE**: Feb. 09, 2011

(May Chen, Deputy Manager)

Report Format Version 3.0.1

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C							
Standard Paragraph	Test Type	Result	Remark				
15.207	Conducted Emission Test	PASS	Meet the requirement of limit. Minimum passing margin is -14.70dB at 0.181MHz				
15.249	Radiated Emission Test	PASS	Meet the requirement of limit. Minimum passing margin is -2.4dB at 937.47MHz				
15.249	Conducted - Out Band Measurement	PASS	Meet the requirement of limit				

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions	2.45 dB
Radiated emissions (30MHz-1GHz) - Chamber H	3.76 dB
Radiated emissions (30MHz-1GHz) - Chamber G	3.30 dB
Radiated emissions (1GHz -18GHz) - Chamber G	2.19 dB
Radiated emissions (18GHz -40GHz) - Chamber G	2.56 dB

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	IP Managed Services Home Gateway		
MODEL NO.	TEI301W-xx, REN301W-xx, TES301W-xx		
FCC ID	LDK-TEI301W		
POWER SUPPLY	DC 12V from power adapter		
MODULATION TYPE	FSK		
OPERATING FREQUENCY	908.42MHz		
NUMBER OF CHANNEL	1		
ANTENNA TYPE	Please refer note 3		
DATA CABLE	NA		
I/O PORTS	For models: TEI301W-xx, TES301W-xx USB port x 2 (USB 2.0) Ethernet port x 4 (Ethernet (10,100,1000Mbps)) Internet port x 1 (Internet (10,100,1000Mbps)) PHONE port x 2		
	For model: REN301W-xx USB port x 2 (USB 2.0) Ethernet port x 4 (Ethernet (10,100,1000Mbps)) Internet port x 1 (Internet (10,100,1000Mbps))		
ASSOCIATED DEVICES	Adapter x 1		

NOTE:

1. There are Zwave technology and WLAN technology used for the EUT. <the WLAN test data please refer "RF991006E02">

2. The EUT has below model names as the following table:

Model No.	Basic Function	Add Function-1	Add Function-2	Add Function-3	
Model No.	Basic Fullction	FXS x 2ch	SIM controller	Internal Zwave	
REN301W-xx	Yes	-	-	Yes	
TES301W-xx	Yes	Yes	-	Yes	
TEI301W-xx	Yes	Yes	Yes		
Note: The "xx" of Model Names could be 0~9, A~Z, a~z or blank.					

The EUT was pre-tested with above models, the worse case was found in the model: **TEI301W-NA**. Therefore only the test data of the model was recorded in this report.

3. There are three antennas provided to this EUT, please refer to the following table:

	· 1						
For WLAN							
No.	Antenna Type	Antenna Connector	Antenna Gain (dBi)	Cable loss(dB)	Net Gain (dBi)	Cable Length (cm)	Frequency range (GHz)
1	PIFA	I-PEX	3	1	2	26	2.4~2.5
2	PIFA	I-PEX	3	1	2	21	2.4~2.5
For Zwave							
No.	Anten	na Type	Antenna Connector		Antenna Gain (dBi)		Frequency range (MHz)
3	C	hip	NA		-4		902~928

4. The EUT must be supplied with a power adapter and following two different model names could be chosen:

Adapter	Brand	Model No.	Spec.
			AC Input: 100-240V, 50/60Hz, 1A
Adapter 1	DELTA	EADP-30RB A	AC input cable(Unshielded, 0.3m)
Adapter			DC Output: 12V, 2.5A
			DC Output cable(Unshielded, 1.5m)
		ONG PSA24A-120	AC Input: 100-240V, 50-60Hz, 0.6A
Adapter 2	PHIHONG		DC Output: 12V, 2.0A
			DC Output cable(Unshielded, 1.5m)

5. The EUT was pre-tested under the following modes:

	9
Test Mode	Description
Mode A	Level-set + adapter 1
Mode B	Tower-set + adapter 1
Mode C	Level-set + adapter 2

For radiated test the worst case was found in **Mode C**. Therefore only the test data of the modes were recorded in this report.

6. The above EUT information was declared by manufacturer and for more detailed feature descriptions, please refer to the manufacturer's specifications or User's Manual.

Report No.: RF991006E02-1 R1 7
Cancels and replaces the report No.: RF991006E02-1 dated Jan. 18, 2011

3.2 DESCRIPTION OF TEST MODES

One channel is provided to this EUT.

Channel	Freq. (MHz)	
1	908.42	

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT		APPLICA	ABLE TO		DESCRIPTION	
CONFIGURE MODE	PLC	RE < 1G	RE≥1G	BE		
MODE 1	√	-	-	-	With adapter 1	
MODE 2	√ √	√ √	√	√ √	With adapter 2	

Where **PLC**: Power Line Conducted Emission

RE < 1G: Radiated Emission below 1GHz

RE ≥ **1G**: Radiated Emission above 1GHz

BE: Conducted Out-Band Emission Measurement

POWER LINE CONDUCTED EMISSION TEST:

between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION
CHANNEL	CHANNEL	TYPE
1	1	FSK

RADIATED EMISSION TEST (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION
CHANNEL	CHANNEL	TYPE
1	1	FSK

Report No.: RF991006E02-1 R1

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION
CHANNEL	CHANNEL	TYPE
1	1	FSK

CONDUCTED OUT-BAND EMISSION MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION
CHANNEL	CHANNEL	TYPE
1	1	FSK

TEST CONDITION:

APPLICABLE TO	E ENVIRONMENTAL CONDITIONS INPUT POWER		TESTED BY
RE≥1G	25deg. C, 70%RH, 1013 hPa	120Vac, 60Hz	Rex Huang
RE<1G	21deg. C, 70%RH, 1013 hPa	120Vac, 60Hz	Eric Lee
PLC	28deg. C, 60%RH, 1013 hPa	120Vac, 60Hz	Timmy Hu
BE	25deg. C, 70%RH, 1013 hPa	120Vac, 60Hz	Rex Huang

Report Format Version 3.0.1

Report Format Version 3.0.1

3.3 **GENERAL DESCRIPTION OF APPLIED STANDARDS**

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (Section 15.249) ANSI C63.4: 2003

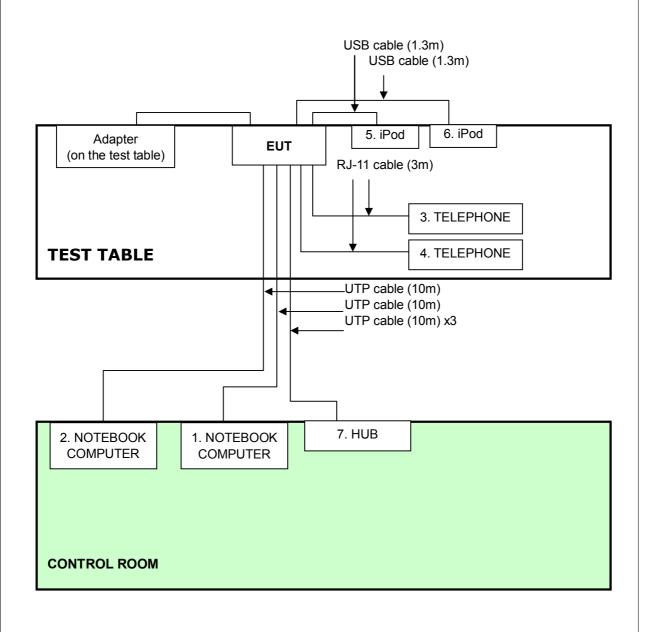
All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

Report No.: RF991006E02-1 R1

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


No.	Product	Brand	Model No.	Serial No.	FCC ID
1	NOTEBOOK COMPUTER	DELL	PP32LA	FSLB32S	FCC DoC
2	NOTEBOOK COMPUTER	DELL	PP32LA	GSLB32S	FCC DoC
3	TELEPHONE	WONDER	WD-303	6C17FA00515	NA
4	TELEPHONE	WONDER	WD-303	6C17FA00774	NA
5	iPod	Apple	A1137	6U6078FMUPR	FCC DoC
6	iPod	Apple	A1137	5K7170JBUPR	FCC DoC
7	HUB	ZyXEL	ES-116P	S060H02000215	FCC DoC

No.	Signal cable description
1	10m UTP cable.
2	10m UTP cable.
3	3m RJ-11 cable.
4	3m RJ-11 cable.
5	1.3m USB cable.
6	1.3m USB cable.
7	10m UTP cable.

Note: The power cords of the above support units were unshielded (1.8m).

3.5 CONFIGURATION OF SYSTEM UNDER TEST

4 TEST PROCEDURES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTE	ED LIMIT (dBµV)
0.15-0.5	Quasi-peak	Average
0.15-0.5 0.5-5 5-30	66 to 56 56 60	56 to 46 46 50

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. All emanations from a class B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST INSTRUMENTS

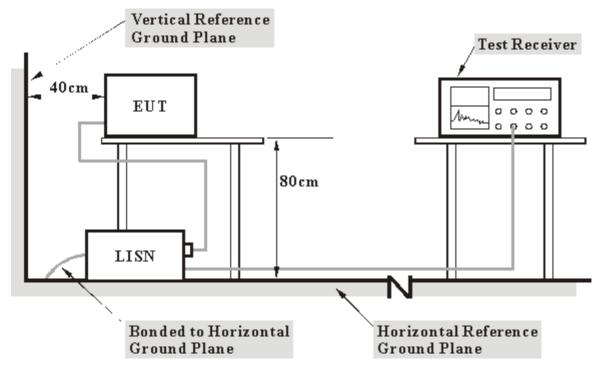
Test date: Oct. 14, 2010

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver	ESCS 30	100375	Mar. 09, 2010	Mar. 08, 2011
Line-Impedance Stabilization Network (for EUT)	NSLK 8127	8127-522	Sep. 08, 2010	Sep. 07, 2011
Line-Impedance Stabilization Network (for Peripheral)	ESH3-Z5	848773/004	Oct. 26, 2009	Oct. 25, 2010
RF Cable (JYEBAO)	5DFB	COBCAB-001	Nov. 24, 2009	Nov. 23, 2010
50 ohms Terminator	50	3	Oct. 28, 2009	Oct. 27, 2010
Software	BV ADT_Cond_V7.3.7	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Shielded Room No. C.
- 3 The VCCI Con C Registration No. is C-3611.

4.1.3 TEST PROCEDURES


- a. The EUT/HOST was placed 0.4 meters from the conducting wall of the shielded room with EUT/HOST being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT/HOST were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits could not be reported.

414	DF\/IATI	ON FR	OM TEST	STAND	ARD
T. I.T				UITID	\neg

No deviation

4.1.5 TEST SETUP

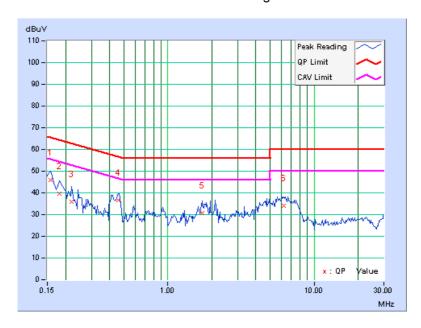
Note: 1. Support units were connected to second LISN.

Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITIONS

- 1. Turned on the power of all equipment.
- 2. Prepared other computer systems (support units 1~2) to act as communication partners and placed them outside of testing area.
- The communication partners ran test program "Zwave Telent command" to enable EUT under transmission/receiving condition continuously via UTP cables.

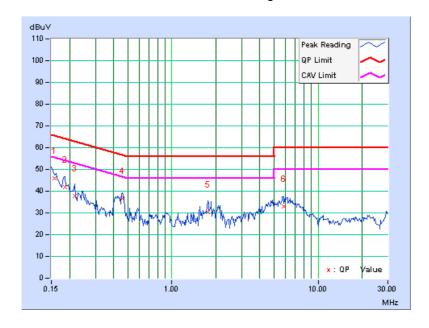


4.1.7 TEST RESULTS-MODE 1

	Freq.	Corr.	Readin	g Value		sion vel	Lir	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dl	В)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.158	9.72	36.19	-	45.91	-	65.58	55.58	-19.67	-
2	0.181	9.73	29.75	-	39.48	-	64.43	54.43	-24.95	-
3	0.220	9.74	26.31	-	36.05	-	62.81	52.81	-26.76	-
4	0.459	9.75	26.80	-	36.55	-	56.72	46.72	-20.17	-
5	1.715	9.77	20.87	-	30.64	-	56.00	46.00	-25.36	-
6	6.234	9.86	24.09	-	33.95	-	60.00	50.00	-26.05	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

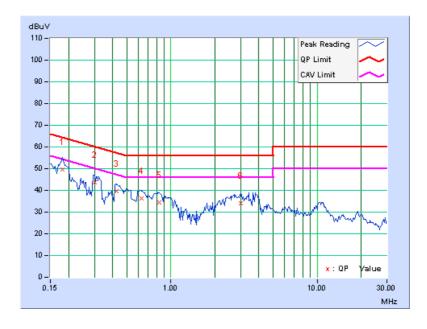


PHASE	Neutral (N)	6dB BANDWIDTH	9 kHz
-------	-------------	---------------	-------

	Freq.	Corr.	Readin	g Value		sion vel	Lir	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.159	9.72	36.35	-	46.07	-	65.54	55.54	-19.47	-
2	0.185	9.73	32.24	-	41.97	-	64.25	54.25	-22.28	-
3	0.216	9.74	28.14	-	37.88	-	62.96	52.96	-25.07	-
4	0.459	9.75	26.94	-	36.69	-	56.72	46.72	-20.03	-
5	1.762	9.77	20.72	-	30.49	-	56.00	46.00	-25.51	-
6	5.805	9.87	22.96	-	32.83	-	60.00	50.00	-27.17	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

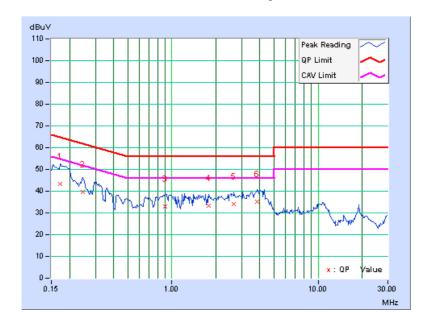

4.1.8 TEST RESULTS-MODE 2

PHASE	Line (L)	6dB BANDWIDTH	9 kHz
-------	----------	---------------	-------

	Freq.	Corr.	Readin	g Value		sion vel	Lir	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dl	В)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.181	9.73	40.00	-	49.73	-	64.43	54.43	-14.70	-
2	0.302	9.75	33.96	-	43.71	ı	60.18	50.18	-16.47	-
3	0.423	9.75	29.81	-	39.56	ı	57.38	47.38	-17.82	-
4	0.634	9.75	26.38	-	36.13	ı	56.00	46.00	-19.87	-
5	0.830	9.76	24.59	-	34.35	-	56.00	46.00	-21.65	-
6	2.996	9.78	24.26	-	34.04	-	56.00	46.00	-21.96	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



PHASE	Neutral (N)	6dB BANDWIDTH	9 kHz
-------	-------------	---------------	-------

	Freq.	Corr.	Reading	g Value		sion vel	Lir	nit	Mar	gin
No		Factor	[dB ((uV)]	[dB ((uV)]	[dB	(uV)]	(dl	В)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.173	9.73	33.69	-	43.42	-	64.79	54.79	-21.38	-
2	0.248	9.74	29.96	-	39.70	-	61.84	51.84	-22.13	-
3	0.904	9.76	23.28	-	33.04	-	56.00	46.00	-22.96	-
4	1.797	9.77	23.68	-	33.45	-	56.00	46.00	-22.55	-
5	2.660	9.78	24.40	-	34.18	-	56.00	46.00	-21.82	-
6	3.813	9.81	25.27	-	35.08	-	56.00	46.00	-20.92	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

Report No.: RF991006E02-1 R1 19
Cancels and replaces the report No.: RF991006E02-1 dated Jan. 18, 2011

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

According to 15.249 the field strength of emissions from intentional radiators operated under these frequencies bands shall not exceed the following:

Fundamental Frequency	Field Strength of Fun	damental (dBuV/m)
(MHz)	Peak	Average
	114	94
902 ~ 928	Field Strength of Ha	rmonics (dBuV/m)
	74	54

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

- 1. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- 2. Section 15.205 restricted bands of operation shall compliance with the limits in Section 15.209.

4.2.2 TEST INSTRUMENTS

For below 1GHz test: Test date: Oct. 26, 2010

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL	
			DATE	UNTIL	
Agilent	E4446A	MY48250253	Aug. 23, 2010	Aug. 22, 2011	
Spectrum Analyzer					
Agilent Pre-Selector	N9039A	MY46520310	Aug. 23, 2010	Aug. 22, 2011	
Agilent					
Signal Generator	N5181A	MY49060347	July 30, 2010	July 29, 2011	
LIG NEX1					
Test Receiver	ER-265	L09068005	Oct. 25, 2010	Oct. 24, 2011	
Mini-Circuits	751 4000 (1105	AND 751 04	No. 40 0000	No. 47 0040	
Pre-Amplifier	ZFL-1000VH2B	AMP-ZFL-04	Nov. 18, 2009	Nov. 17, 2010	
Agilent Pre-Amplifier	8449B	3008A02465	Mar. 01, 2010	Feb. 28, 2011	
Miteq	AFS33-1800265	881786	NA	NA	
Pre-Amplifier	0-30-8P-44	001700	INA	INA	
SCHWARZBECK	VULB 9168	9168-361	Apr. 28, 2010	Apr. 27, 2011	
Trilog Broadband Antenna	VOLD 3 100	3100-301	Apr. 20, 2010		
AISI	AIH.8018	0000220091110	Nov. 16, 2009	Nov. 15, 2010	
Horn_Antenna	All 1.00 10	0000220031110	1101. 10, 2000	1101. 10, 2010	
SCHWARZBECK	BBHA 9170	9170-424	Oct. 08, 2010	Oct. 07, 2011	
Horn_Antenna	22.11.01.10				
		RF104-205			
RF CABLE	NA	RF104-207	Dec. 24, 2009	Dec. 23, 2010	
		RF104-208			
RF Cable	NA	CHHCAB_001	NA	NA	
Software	ADT_Radiated_	NA	NA	NA	
	V8.7.05			INA	
CT Antenna Tower &	NA	NA	NA	NA	
Turn Table					

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
 The test was performed in 966 Chamber No. H.
 The FCC Site Registration No. is 797305.
 The CANADA Site Registration No. is IC 7450H-3.

For above 1GHz test:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Spectrum Analyzer	E4446A	MY48250254	July 14, 2010	July 13, 2011
Agilent Pre-Selector	N9039A	MY46520311	July 14, 2010	July 13, 2011
Agilent Signal Generator	N5181A	MY49060517	July 14, 2010	July 13, 2011
Mini-Circuits Pre-Amplifier	ZFL-1000VH2B	AMP-ZFL-03	Nov. 18, 2009	Nov. 17, 2010
Agilent Pre-Amplifier	8449B	3008A02578	July 05, 2010	July 04, 2011
Miteq Pre-Amplifier	AFS33-1800265 0-30-8P-44	881786	NA	NA
SCHWARZBECK Trilog Broadband Antenna	VULB 9168	9168-360	Apr. 29, 2010	Apr. 28, 2011
AISI Horn_Antenna	AIH.8018	000032009111 0	Nov. 16, 2009	Nov. 15, 2010
SCHWARZBECK Horn_Antenna	BBHA 9170	9170-424	Oct. 08, 2010	Oct. 07, 2011
RF CABLE	NA	RF104-201 RF104-203 RF104-204	Dec. 24, 2009	Dec. 23, 2010
RF Cable	NA	CHGCAB_001	NA	NA
Software	ADT_Radiated_ V8.7.05	NA	NA	NA
CT Antenna Tower & Turn Table	NA	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

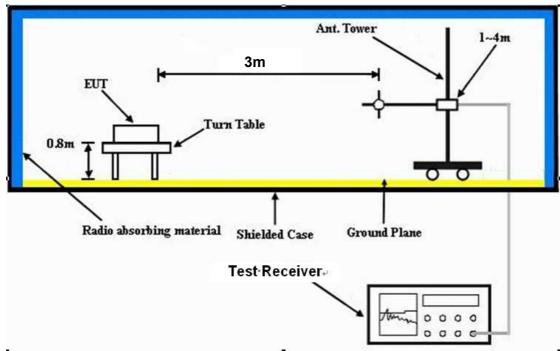
- traceable to NML/ROC and NIST/OSA.
 The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
 The test was performed in 966 Chamber No. G.
 The FCC Site Registration No. is 966073.
 The VCCI Site Registration No. is G-137.
 The CANADA Site Registration No. is IC 7450H-2.

4.2.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak detection at frequency above 1GHz.


4.2.4 DEVIATION FROM TEST STANDARD

No deviation

Report No.: RF991006E02-1 R1 23
Cancels and replaces the report No.: RF991006E02-1 dated Jan. 18, 2011

4.2.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

Same as 4.1.6.

4.2.7 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

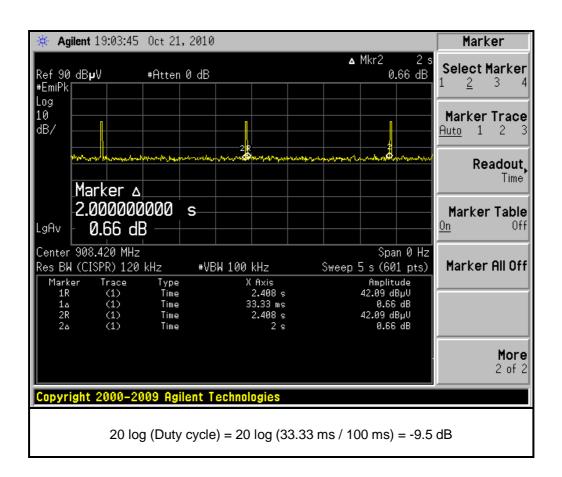
EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 1	FREQUENCY RANGE	Below 1000MHz	
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Quasi-Peak	
ENVIRONMENTAL CONDITIONS	21deg. C, 70%RH 1013 hPa	TESTED BY	Eric Lee	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	107.33	32.4 QP	43.5	-11.1	2.00 H	83	21.45	10.99	
2	124.97	36.3 QP	43.5	-7.2	1.50 H	96	23.21	13.13	
3	197.33	39.0 QP	43.5	-4.5	1.25 H	307	27.61	11.41	
4	250.03	40.6 QP	46.0	-5.5	1.50 H	73	27.60	12.95	
5	480.12	36.3 QP	46.0	-9.7	2.00 H	35	16.63	19.69	
6	515.53	37.4 QP	46.0	-8.6	1.50 H	222	16.89	20.49	
7	937.47	43.6 QP	46.0	-2.4	1.50 H	212	16.65	26.91	
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	40.78	33.6 QP	40.0	-6.5	1.25 V	104	18.86	14.69	
2	85.90	30.3 QP	40.0	-9.7	1.50 V	159	20.58	9.72	
3	106.97	30.8 QP	43.5	-12.7	1.00 V	0	19.83	10.94	
4	150.79	31.2 QP	43.5	-12.3	1.00 V	227	16.87	14.30	
5	184.66	33.6 QP	43.5	-9.9	1.25 V	360	21.22	12.36	
6	198.75	32.5 QP	43.5	-11.0	2.00 V	356	21.21	11.30	
7	374.97	34.1 QP	46.0	-11.9	1.25 V	360	16.94	17.18	
8	468.76	35.7 QP	46.0	-10.3	1.25 V	317	16.21	19.45	

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

ABOVE 1GHz DATA


EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL	Channel 1	FREQUENCY RANGE	902MHz ~ 928MHz ,		
CHANNEL	Chamilei	PREQUENCT RANGE	1GHz ~ 10GHz		
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK)		
ENVIRONMENTAL CONDITIONS	22deg. C, 74%RH 1013 hPa	TESTED BY	Rex Huang		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*908.42	66.20 PK	114.00	-47.80	1.00 H	144	39.89	26.31			
2	*908.42	56.70 AV	94.00	-37.30	1.00 H	144	30.39	26.31			
3	2725.26	41.7 PK	74.0	-32.3	1.09 H	221	9.21	32.49			
4	2725.26	32.2 AV	54.0	-21.8	1.09 H	221	-0.29	32.49			
5	3633.68	43.6 PK	74.0	-30.4	1.00 H	339	8.75	34.85			
6	3633.68	34.1 AV	54.0	-19.9	1.00 H	339	-0.75	34.85			
7	4542.10	46.1 PK	74.0	-27.9	1.00 H	9	8.04	38.06			
8	4542.10	36.6 AV	54.0	-17.4	1.00 H	9	-1.46	38.06			
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*908.42	64.30 PK	114.00	-49.70	1.20 H	284	37.99	26.31			
2	*908.42	54.80 AV	94.00	-39.20	1.20 H	284	28.49	26.31			
3	2725.26	40.8 PK	74.0	-33.2	1.28 V	106	8.31	32.49			
4	2725.26	31.3 AV	54.0	-22.7	1.28 V	106	-1.19	32.49			
5	3633.68	44.1 PK	74.0	-29.9	1.35 V	94	9.25	34.85			
6	3633.68	34.6 AV	54.0	-19.4	1.35 V	94	-0.25	34.85			
7	4542.10	45.7 PK	74.0	-28.3	1.27 V	86	7.64	38.06			
8	4542.10	36.2 AV	54.0	-17.8	1.27 V	86	-1.86	38.06			

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency
- 6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula: 20 log (Duty cycle) = 20 log (33.33 ms / 100 ms) = -9.5 dB Please see page 27 for plotted duty.

4.3 CONDUCTED - OUT BAND MEASUREMENT

4.3.1 LIMITS OF CONDUCTED - OUT BAND MEASUREMENT

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 18, 2009	Dec. 17, 2010

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST PROCEDURE

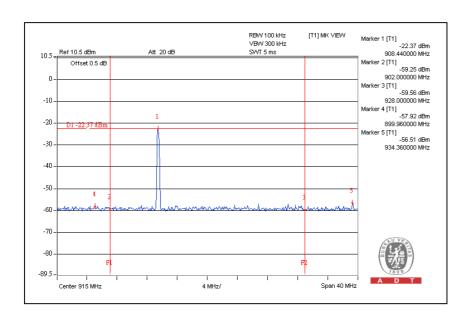
The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz with suitable frequency span including 100 kHz bandwidth from band edge. The band edges was measured and recorded.

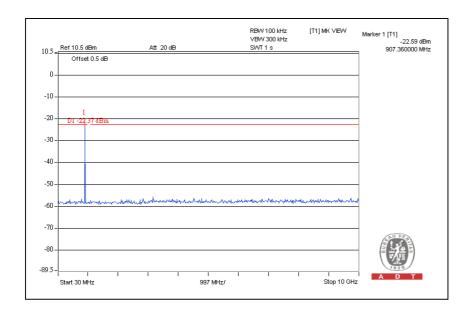
4.3.4 DEVIATION FROM TEST STANDARD

No deviation

4.3.5 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.


Report No.: RF991006E02-1 R1 28
Cancels and replaces the report No.: RF991006E02-1 dated Jan. 18, 2011



4.3.6 TEST RESULTS

Emissions radiated outside of the specified frequency bands, please refer following page for met the requirement of the general radiated emission limits in § 15.209.

CH1

5 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26052943 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Email: service@adt.com.tw
Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

Report No.: RF991006E02-1 R1 30 Cancels and replaces the report No.: RF991006E02-1 dated Jan. 18, 2011

6 APPENDIX A - MODIFICATIONS RECORDERS FOR

ENGINEERING CHANGES TO THE EUT BY THE LAB	
No any modifications are made to the EUT by the lab during the test.	
END	

31 Report No.: RF991006E02-1 R1 Cancels and replaces the report No.: RF991006E02-1 dated Jan. 18, 2011