902-928 MHz Radio Test Report FHSS/HYBRID

For IR530SB-OFD-FCC/K9 FSK/OQPSK/OFDM 802.15.4g/e

FCC ID: LDK-IR5300FDM IC ID: 2461N-IR5300FDM Against the following Specifications: 47 CFR 15.247 47 CFR 15.209 47 CFR 15.205 47 CFR 15.207 RSS 247 Issue 2

> **Cisco Systems** EMC Laboratory 170 West Tasman Drive San Jose, CA 95134

Author: Ronak Patel Approved By: Adam Walb Title: See EDCS Revision: See EDCS

11 11 11

This report replaces any previously entered test report under EDCS # **12707892.** This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 11377496

Page No: 1 of 121

diada cisco

SECTIO	ON 1: OVERVIEW	5
1.1	TEST SUMMARY	5
SECTIO	DN 2: ASSESSMENT INFORMATION	6
2.1	GENERAL	6
2.2	UNITS OF MEASUREMENT	
2.3	DATE OF TESTING (INITIAL SAMPLE RECEIPT DATE TO LAST DATE OF TESTING)	8
2.4	REPORT ISSUE DATE	8
2.5	TESTING FACILITIES	8
2.6	EQUIPMENT ASSESSED (EUT)	9
2.7	EUT DESCRIPTION	9
SECTIO	DN 3: RESULT SUMMARY	10
3.1	RESULTS SUMMARY TABLE	10
SECTIO	DN 4: SAMPLE DETAILS	12
4.1	SAMPLE DETAILS	12
4.2	System Details	12
4.3	ANTENNA INFORMATION	12
4.3	MODE OF OPERATION DETAILS	
4.4	TEST MODE, MODULATION AND DATA PACKET TYPE DESCRIPTION	
4.5	TRANSMIT POWER VERSUS CHANNEL	14
APPEN	DIX A: CONDUCTED TEST RESULTS	15
DUTY	CYCLE	15
DUTY	CYCLE TEST METHOD	15
DUTY	CYCLE PLOTS	16
A.1	20DB BANDWIDTH (2FSK AND O-QPSK MODES)	18
A.1.1	LIMITS	18
A.1.2	Test Procedure	18
A.1.3	20dB Occupied Bandwidth Data Table	19
A.1.4	20DB OCCUPIED BANDWIDTH GRAPHICAL TEST RESULTS (2FSK AND OQPSK MODES)	20
A.1.5	6DB AND 99% OCCUPIED BANDWIDTH (OFDM MODES)	23
A.1.5	.1 LIMIT	23
A.1.5	.2 TEST PROCEDURE	23
A.1.5	.3 6DB & 99% Occupied Bandwidth Data Table	24
A.1.5	.4 6DB & 99% OCCUPIED BANDWIDTH GRAPHICAL TEST RESULTS (OFDM MODES)	25
A.2	MAXIMUM PEAK CONDUCTED OUTPUT POWER (2FSK AND OQPSK MODES)	28
A.2.1	LIMITS	
A.2.3	Test Procedure	
A.2.4	MAXIMUM PEAK CONDUCTED OUTPUT POWER DATA TABLE (2FSK AND OQPSK MODES)	28
A.2.5	MAXIMUM PEAK CONDUCTED OUTPUT POWER GRAPHICAL TEST RESULTS	32
A.2.6	MAXIMUM CONDUCTED OUTPUT POWER (OFDM MODES)	35

Page No: 2 of 121

cisco

A.2.6.1	LIMITS	
A.2.6.2	Test Procedure	35
A.2.6.3		
A.2.6.4	MAXIMUM CONDUCTED OUTPUT POWER GRAPHICAL TEST RESULTS (OFDM MODES)	
A.3 F	OWER SPECTRAL DENSITY (OFDM MODES)	42
A.3.1	LIMITS	
A.3.2	Test Procedure	
A.3.3	POWER SPECTRAL DENSITY DATA TABLE.	
A.3.4	POWER SPECTRAL DENSITY GRAPHICAL TEST RESULTS (OFDM MODES)	
A.4 (CARRIER FREQUENCY SEPARATION	47
A.4.1	LIMITS	47
A.4.2	TEST PROCEDURE	
A.4.3	CARRIER FREQUENCY SEPARATION DATA TABLE	
A.4.4	CARRIER FREQUENCY SEPARATION GRAPHICAL RESULTS	
A.5 N	NUMBER OF HOPPING FREQUENCIES	51
A.5.1	LIMITS	51
A.5.2	TEST PROCEDURES	
A.5.3	NUMBER OF HOPPING FREQUENCIES DATA TABLE.	
A.4.3	NUMBER OF HOPPING FREQUENCIES GRAPHICAL TEST RESULTS	
A.5 A	VERAGE TIME OF OCCUPANCY (2FSK AND OQPSK MODES)	54
A.5.1	LIMITS	54
A.5.2	TEST PROCEDURE	
A.5.3	AVERAGE TIME OF OCCUPANCY AND DWELL TIME DATA TABLE	
A.5.4	AVERAGE TIME OF OCCUPANCY AND DWELL TIME GRAPHICAL TEST RESULTS	
A.5.5	AVERAGE TIME OF OCCUPANCY (OFDM MODES)	62
A.5.5.1		
A.5.5.2		
A.5.5.3		
A.5.5.4		
A.6 (CONDUCTED BAND EDGE MEASUREMENTS	70
A.6.1	LIMITS	70
A.6.2	TEST PROCEDURE	
A.6.3	CONDUCTED BAND EDGE GRAPHICAL TEST RESULTS (2FSK AND OQPSK 20DBC)	
A.6.4	CONDUCTED BAND EDGE GRAPHICAL TEST RESULTS (OFDM MODES 30DBC)	
A.7 I	EMISSIONS IN NON-RESTRICTED BANDS	74
A.7.1	LIMITS	
A.7.2	TEST PROCEDURE	
A.7.3	EMISSIONS IN NON-RESTRICTED BANDS RESULTS (2FSK AND OQPSK MODES 20DBC)	
A.7.4	EMISSIONS IN NON-RESTRICTED BANDS TEST RESULTS (2FSK AND OQPSK MODES 20DBC)	
A.7.5	EMISSIONS IN NON - RESTRICTED BANDS GRAPHICAL TEST RESULTS (OFDM MODES 30DBC)	80

Page No: 3 of 121

diala cisco

A.8	EMISSIO	NS IN RESTRICTED BANDS	83
A.8.1	LIMITS		83
A.8.2	TEST PR	ROCEDURE	83
A.8.3	EMISSIC	ONS IN RESTRICTED BANDS RESULTS (2FSK AND OQPSK)	84
A.8.4	- EMISSIC	ONS IN RESTRICTED BANDS GRAPHICAL TEST RESULTS (2FSK AND OQPSK)	86
A.8.4		ONS IN RESTRICTED BANDS GRAPHICAL TEST RESULTS (OFDM MODES)	
APPEN	DIX B:	RADIATED TEST RESULTS	91
B.1	RADIAT	ED SPURIOUS EMISSIONS & RESTRICTED BANDS	91
B.1.1	LIMITS		91
B.1.2		ROCEDURE	
B.1.3	TRANSM	MITTER RADIATED SPURIOUS EMISSIONS GRAPHICAL DATA RESULTS	92
APPEN	DIX C:	AC POWER LINE CONDUCTED EMISSIONS	
APPEN	DIX D:	LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	
APPEN	DIX E:	ABBREVIATION KEY AND DEFINITIONS	117
APPEN	DIX F:	SOFTWARE USED TO PERFORM TESTING	118
APPEN	DIX G:	TEST PROCEDURES	119
APPEN	DIX H:	SCOPE OF ACCREDITATION (A2LA CERTIFICATE NUMBER 1178-01)	
APPEN	DIX I:	WORST CASE JUSTIFICATION	

Page No: 4 of 121

Section 1: Overview

1.1 Test Summary

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Specifications	
FCC 15.247	
RSS 247 Issue 2	
RSS Gen Issue 4	

ակակո

CISCO

Notes: Measurements were made in accordance with FCC Public Notice #: DA 00-0705 & ANSI C63.10:2013.

Page No: 5 of 121

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Radio Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

 Temperature
 10°C to 40°C (50°F to 104°F)

 Atmospheric Pressure
 860mbar to 1060mbar (25.4" to 31.3")

 Humidity
 10% to 90%

e) All AC testing was performed at one or more of the following supply voltages: 110V 60 Hz (+/-20%)

2.2 Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

 $\label{eq:embedded} Emission \ level \ [dBuV] = Indicated \ voltage \ level \ [dBuV] + Cable \ Loss \ [dB] + Other \ correction \ factors \ [dB]$

The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss..

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Measurement Uncertainty Values

Page No: 6 of 121

voltage and power measurements $\pm 2 \text{ dB}$ conducted EIRP measurements $\pm 1.4 \text{ dB}$ radiated measurements $\pm 3.2 \text{ dB}$ frequency measurements $\pm 2.4 \text{ 10-7}$ temperature measurements $\pm 0.54^{\circ}$.humidity measurements $\pm 2.3\%$ DC and low frequency measurements $\pm 2.5\%$.

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

30 MHz – 40GHz	+/- 0.38 dB

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

Page No: 7 of 121

2.3 Date of testing (initial sample receipt date to last date of testing)

1st January 2018 to 28 January 2018

2.4 **Report Issue Date**

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the DOC Central document control system. The actual report issue date is embedded into the original file in DOC Central. Any copies of this report, either electronic or paper, that are not on DOC Central must be considered uncontrolled

2.5 Testing facilities

This assessment was performed by:

Testing Laboratories

Cisco Systems, Inc. 125 West Tasman Drive (Building P) San Jose, CA 95134 USA

Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134 USA

Registration Numbers for Industry Canada

Cisco System Site	Address	Site Identifier
Building P, 5m Chamber	125 West Tasman Drive	Company #: 2461N-1
	San Jose, CA 95134	

Test Engineer Ronak Patel

Page No: 8 of 121

2.6 Equipment Assessed (EUT)

IR530SB-OFD-FCC/K9

2.7 EUT Description

The Cisco® IR500 range extender provides unlicensed 902-928MHz, ISM-band IEEE 802.15.4g/e/v wireless personal-area network (WPAN) communications to diverse Internet of things (IoT) applications. It extends the range of the RF wireless mesh network, providing longer reach between WPAN endpoints and other WPAN networks. There are two products in the family: The IR529 and IR530. IR530 represents a high performance, new generation of the Cisco RF Mesh range extender.

The IR530 Range extenders take full advantage of world class Cisco networking expertise in IPv6, security. It provides an open, high performance RF mesh solution based on the following standards:

IEEE 802.15.4 g/e/v IETF 6LoWPAN IETF Routing Protocol for Low Power and Lossy Networks (RPL) IETF Constrained Application Protocol (CoAP)

IR530 is the next generation Field Area Network solution to meet the demands of Smart Grid applications such as distribution automation, distributed generation, renewable energy, PEV charging stations, generic SCADA telemetry applications and water, oil & gas applications.

IR530 includes solution requirements such as higher bandwidth, lower latency, higher availability, improved security, fog computing, and Wi-SUN compliance for CG-Mesh.

Page No: 9 of 121

Section 3: Result Summary

3.1 Results Summary Table

Basic Standard	Technical Requirements / Details	Result		
FCC 15.247 RSS-247	 20 dB Bandwidth (2FSK and OQPSK): For frequency hopping systems operating in the 902-928 MHz band: The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz 6 dB and 99 % Bandwidth (OFDM): 99% OCB is required only for Average Power measurement The minimum 6 dB bandwidth of a DTS transmission shall be at least 500 kHz. 	e hopping channel is 500 Pass neasurement		
FCC 15.247 RSS-247				
on a measurement of the maximum conducted output powerFCC 15.247Power Spectral Density (OFDM Modes) :RSS-247The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.		Pass		
FCC 15.247 RSS-247Carrier Frequency Separation (2FSK and OQPSK Modes): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater				

Page No: 10 of 121

FCC 15.247 RSS-247	 Average Time of Occupancy (2FSK and OQPSK Modes): For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20-second period. Average Time of Occupancy (OFDM Modes): The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency on any frequency not to exceed 0.4 seconds 	Pass
	within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4	
FCC 15.247Conducted Band-Edge:RSS-247In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the 		Pass
FCC15.247/15.205 RSS-Gen 8.10	Restricted band : Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) and RSS-Gen 6.13 must also comply with the radiated emission limits specified in FCC 15.209 (a) and RSS-Gen 8.10	Pass

Radiated Emissions

Basic Standard Technical Requirements / Details		Result
FCC 15.209 (a) RSS-Gen 6.13	TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the filed strength limits table in this section.	Pass

* MPE calculation is recorded in a separate report

Page No: 11 of 121

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. Please also refer to the "Justification for worst Case test Configuration" section of this report for further details on the selection of EUT samples.

4.1 Sam	ple Details					
Sample	Equipment	Manufacturer	Hardware	Firmware	Software Rev.	Serial Number
No.	Details		Rev.	Rev.		
S01	IR530SB- OFD- FCC/K9	Cisco Systems, Inc.	01	6.0.1	6.0.1	FCW2125004F

4.2 System Details

Sample No.	Description	Samples
1	S01	Conducted and Radiated Testing

4.3 Antenna Information

The following antennas are supported by this product series.

Antenna	Frequency (MHz)	Peak gain (dBi)	Radiation pattern	Connector	Mounting	Mechanical specifications
ANT- WPAN-OD- OUT-N	863 – 928	1.5	Omnidirectional dipole, 84° vertical HPBW	N(m)	Direct connection to N(f) bulkhead adapter or lightning arrestor	7.7" long, 1.02" diameter IP67 -40 to +85°C operating
ANT- LPWA-DB- O-N-5	863 - 928	5.6	Omnidirectional collinear dipole, 24 - 28° vertical HPBW	N(m)	Direct connection to N(f) bulkhead adapter or lightning arrestor	28" long, 1" diameter IP67 -40 to +70° C operating

Page No: 12 of 121

Mode#	Description	Comments
1	Mgmtserialtest	Mgmtserialtest version allows to do conducted and Radiated testing at antenna port of EUT. Image version : 5.7.20

4.3	Mode of Operation Details	5

Test Mode	Modulation Type	Data Rate (kbps)	Chanel Spacing (kHz)	No of Channels	Mode	- 4. Tes Mode
А	2FSK	50	200	129	64	Modu
В	2FSK	50	200	129	96	
С	2FSK	150	400	64	66	atio
D	2FSK	150	400	64	98	an D-4
Е	O-QPSK	6.25	200	129	192	Dat
F	OFDM	50	800	31	144	Packe
G	OFDM	200	800	31	146	Тур
Н	OFDM	400	800	31	147	Descri
Ι	OFDM	800	800	31	149	tion
J	OFDM	1200	800	31	150	

Note 1: 2FSK and O-QPSK Operates as Frequency Hopping Spread Spectrum Modulations

- Note 2: OFDM Operates as Hybrid Modulation (DSSS and FHSS together)
- Note 3: The channel spacing is 200 kHz and 400 kHz for 2-FSK at 50 kbps and 150kbps respectively and 800 kHz for OFDM Option 2.

There will be 129 Channels with 200 kHz Channel Spacing for 2FSK and 64 Channels with 400kHz Channel spacing and 31 OFDM RF channels with 800kHz Channel Spacing.

Page No: 13 of 121

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

al tal ta

4.5 Transmit Power versus Channel

Channel 0 through 128									
Mode	Rate kbps	Raw	Pout dBm						
		DEC/Hex							
64	50	24/0x18	29						
96	50	24/0x18	29						
66	150	24/0x18	29						
98	150	24/0x18	29						
192	6.2	24/0x18	29						

	OFDM Modes											
Channel ()			Channel 1	thru 31							
Mode	Rate kbps	Rate kbps Raw Pout dBm			Rate kbps	Raw	Pout dBm					
		DEC/Hex				Dec/Hex						
144	50	18/0x12	23	144	50	27/0x1b	28					
146	200	18/0x12	23	146	200	27/0x1b	28					
147	400	18/0x12	23	147	400	25/0x19	27					
149	800	18/0x12	23	149	800	21/0x15	25					
150	1200	18/0x12	23	150	1200	18/0x12	23					

cisco

Page No: 14 of 121

Appendix A: Conducted Test Results

Duty Cycle

Duty Cycle Test Requirement From KDB 558074 D01 DTS Meas Guidance v04

1. All measurements are to be performed with the EUT transmitting at 100 percent duty cycle at its maximum power control level; however, if 100 percent duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.

Duty Cycle Test Method From KDB 558074 D01 DTS Meas Guidance v04

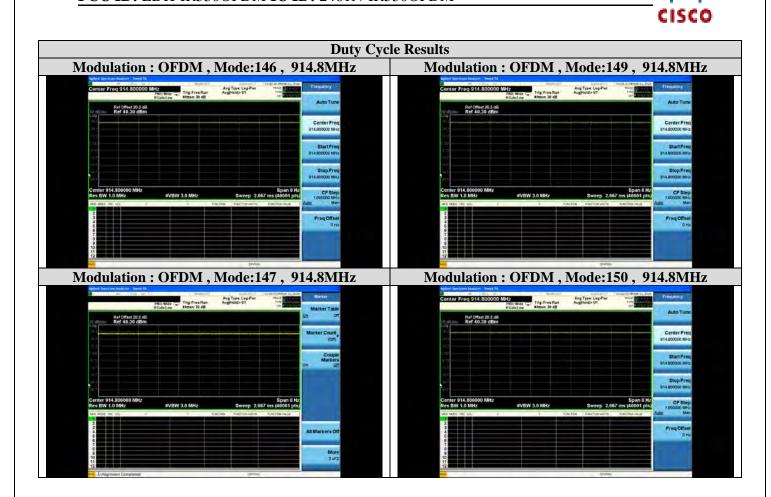
a) A diode detector and an oscilloscope that together have sufficiently short response time to permit accurate measurements of the on- and off-times of the transmitted signal.

b) The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on- and off-times of the transmitted signal.

1) Set the center frequency of the instrument to the center frequency of the transmission.


2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.

3) Set detector = peak or average.


4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if $T \le 16.7$ microseconds.)

Duty Cycle Plots

cisco

Page No: 16 of 121

սիսիս

Duty Cycle is 100% for all modes

Page No: 17 of 121

FCC 15.247(a) (1) (i), RSS- 247 5.1(c)

The 20 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 20 dB below the maximum in-band spectral density of the modulated signal

A.1.1 Limits

FCC 15.247(a) (1) (i), RSS- 247 5.1(c)

For frequency hopping systems operating in the 902-928 MHz band: The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

A.1.2 Test Procedure

Refer to Public Notice DA 00-705 Step 1: Edit the spectrum analyzer settings according to the parameters below.

-Center Frequency: frequency under test

-Span: approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel -RBW: $\geq 1\%$ of the 20 dB bandwidth

-VBW: ≥ RBW

- Sweep: Auto Couple

-Ref Level: 10dB (or higher if required)

-Attenuation: 20dB (if required)

-Detector: Peak

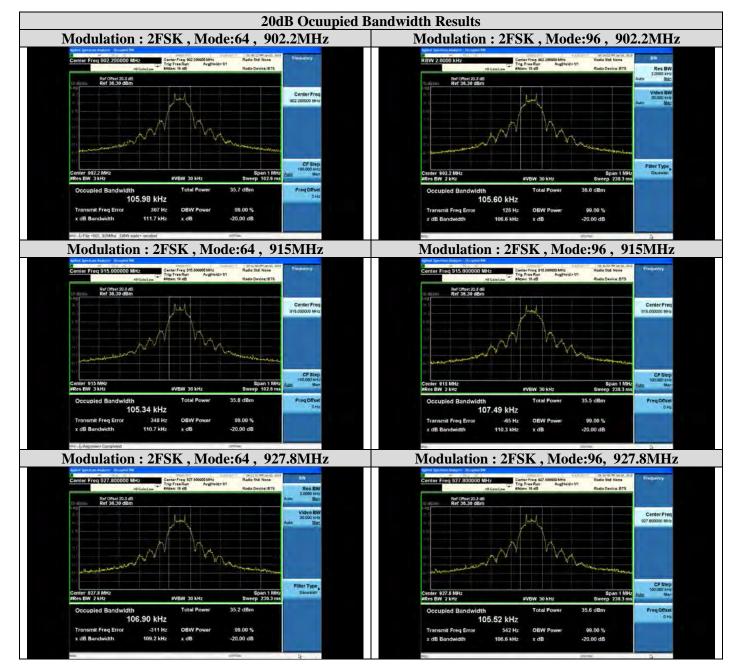
- Trace Mode: Max Hold

Step 2: The EUT is set in a transmitter mode at its maximum data rate. Allow the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission. Then use the marker-normal function to place at the 20 dB down on one side of the emission. Reset with the marker-delta function and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. Record data.

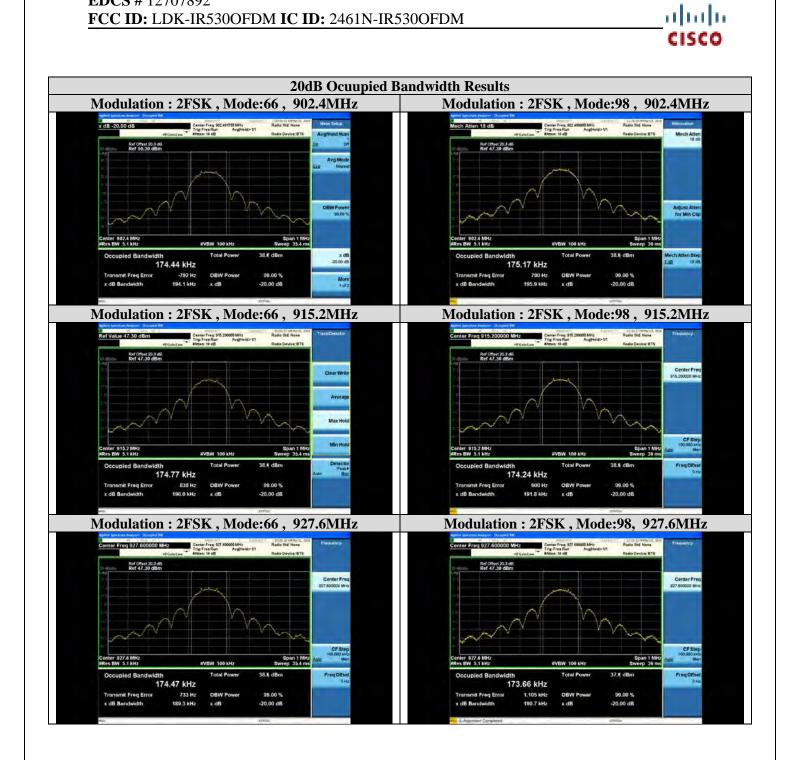
Step 3:

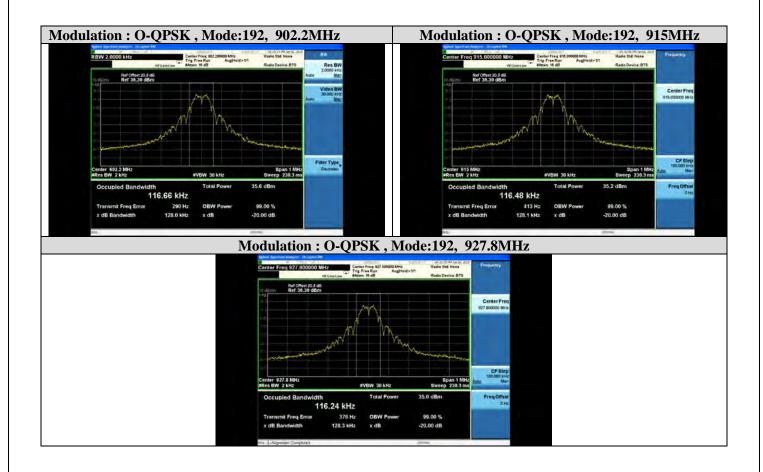
• Record the x dB Bandwidth = -20 dB. This value should be in the test report.

Page No: 18 of 121


	20dB Bandwidth									
Modulation Type	Phymode	Frequency (MHz)	Data rate (kbps)	Channel Spacing (kHz)	20dB BW (kHz)					
		902.2	50	200	111.7					
2FSK	64	915.0	50	200	110.7					
		927.8	50	200	109.2					
		902.2	50	200	106.6					
2FSK	96	915.0	50	200	110.3					
		927.8	50	200	106.6					
		902.4	150	400	194.1					
2FSK	66	915.2	150	400	196.0					
		927.6	150	400	189.3					
		902.4	150	400	195.9					
2FSK	98	915.2	150	400	191.8					
		927.6	150	400	190.7					
		902.2	6.25	200	128.0					
O-QPSK	192	915.0	6.25	200	128.1					
		927.8	6.25	200	128.3					

A.1.3 20dB Occupied Bandwidth Data Table


Page No: 19 of 121


cisco

Page No: 20 of 121

Page No: 21 of 121

Page No: 22 of 121

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

cisco

A.1.5 6dB and 99% Occupied Bandwidth (OFDM Modes)

FCC 15.247(a) (2), RSS- 247 5.2(a)

The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.

A.1.5.1 Limit

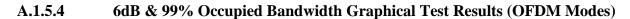
FCC 15.247(a) (2), RSS- 247 5.2(a)

No Limit is Applicable. 99% OCB is required only for Average Power measurement

The minimum 6 dB bandwidth of a DTS transmission shall be at least 500 kHz.

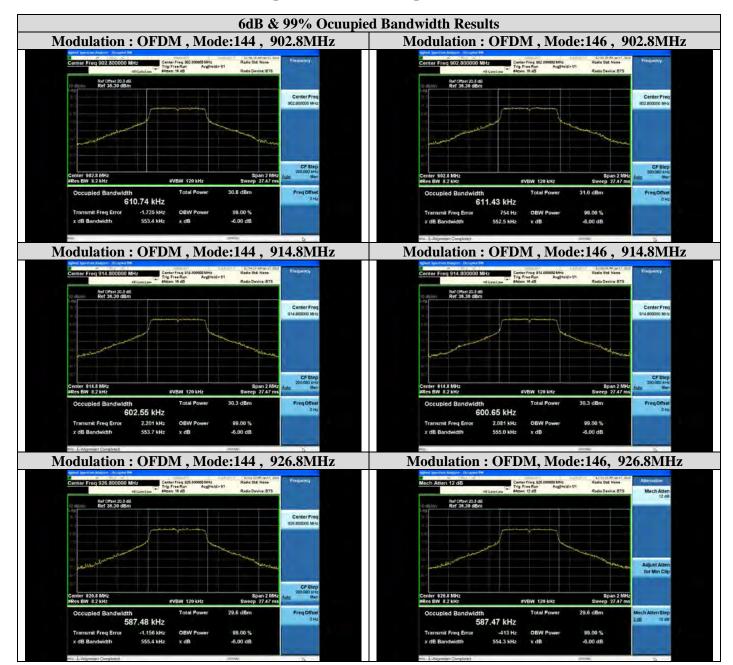
A.1.5.2 Test Procedure

Refer to ANSI C63.10-2013 Clause 6.9.3

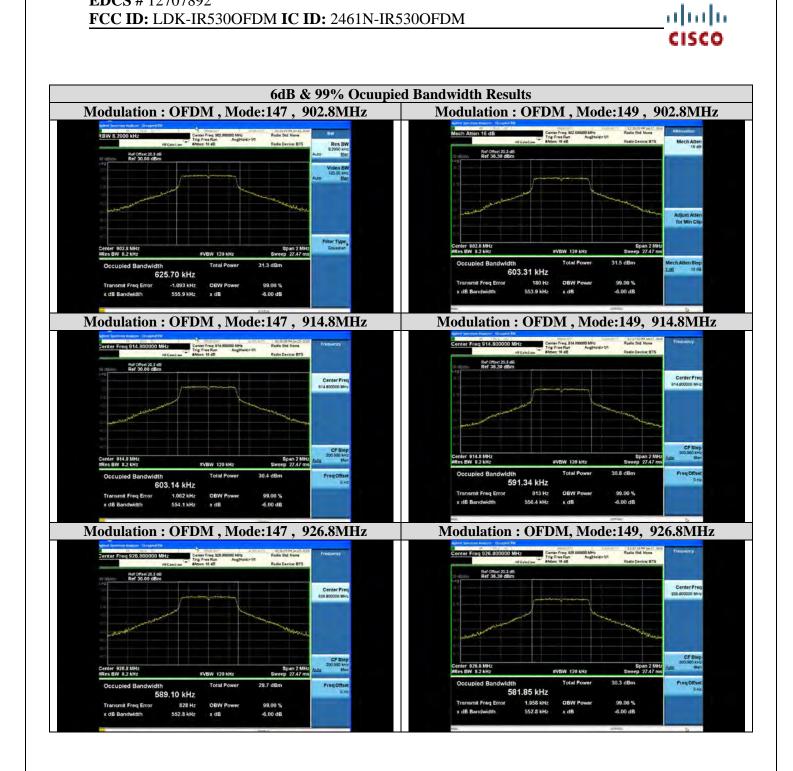

- The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- Peak detection and max hold mode (until the trace stabilizes) shall be used.
- Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

_uhuhu cisco

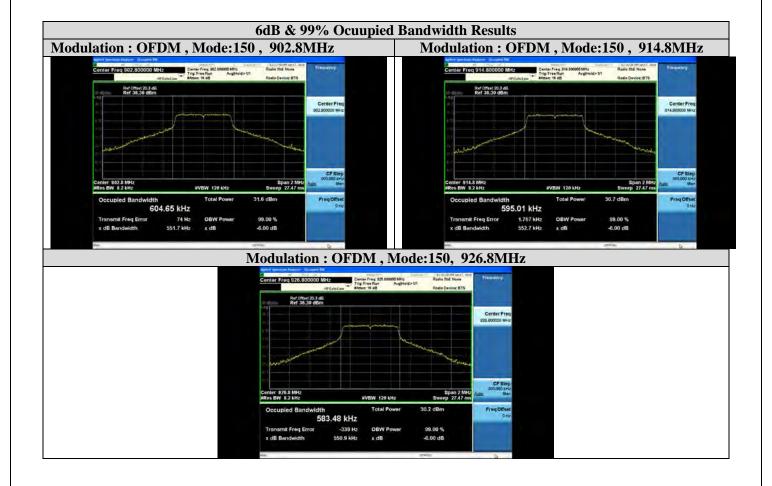
	99% Occupied Bandwidth								
Modulation Type	Phymode	Frequency (MHz)	Data rate (kbps)	Channel Spacing (kHz)	99% BW (kHz)	6dB BW (kHz)			
		902.8			610.74	553.4			
OFDM	144	914.8	50	800	602.55	553.7			
		926.8			587.58	555.4			
		902.8	200	200		611.43	552.5		
OFDM	146	914.8			800	600.65	555.0		
		926.8			587.47	554.3			
		902.8	400	400		625.70	555.9		
OFDM	147	914.8			800	603.14	554.1		
		926.8			589.10	552.8			
		902.8			603.31	553.9			
OFDM	149	914.8	800	800	591.34	556.4			
		926.8		[581.85	552.8			
		902.8			604.65	551.7			
OFDM	150	914.8	1200	800	595.01	552.7			
		926.8			583.48	550.9			


A.1.5.3 6dB & 99% Occupied Bandwidth Data Table

Page No: 24 of 121



սիսիս


CISCO

Page No: 25 of 121

Page No: 26 of 121

cisco

Page No: 27 of 121

A.2 Maximum Peak Conducted Output Power (2FSK and OQPSK Modes)

FCC 15.247 (b) (3), RSS 247 5.4 (a)

The maximum peak conducted output power is defined as the maximum power level measured with a peak detector using a filter with width and shape of which is sufficient to accept the signal bandwidth. However, when a filter with adequate width is not available, an integrated method utilizing a peak detector is acceptable.

A.2.1 Limits

FCC 15.247 (b) (3)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels

RSS 247 5.4 (a)

For FHSs operating in the band 902-928 MHz, the maximum peak conducted output power shall not exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W and the e.i.r.p. shall not exceed 1 W if the hopset uses less than 50 hopping channels.

A.2.3 Test Procedure

Refer to ANSI C63.10 Clause 7.8.5

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:

a) Use the following spectrum analyzer settings:

- Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- RBW > 20 dB bandwidth of the emission being measured.
- VBW \geq RBW.
- Sweep: Auto.
- Detector function: Peak.
- Trace: Max hold.

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.

e) A plot of the test results and setup description shall be included in the test report.

A.2.4 Maximum Peak Conducted Output Power Data Table (2FSK and OQPSK Modes)

Page No: 28 of 121

Modulation	2FSK								
Mode	64								
Channel Spacing	200kHz	Maximun	n Peak Condu	ucted Output	Power & E.I	. R. P			
Data Rate	50kbps								
Frequency (MHz)	Peak Conducted Output Power (dBm)	Peak Conducted Power Limit (dBm)	ConductedAntennaE.I.R.PE.I.R.PPower LimitGainLimitI(dBi)(dBm)(dBm)						
902.2	29.272	30	5.6	34.872	36	Pass			
915.0	28.894	30	5.6	34.494	36	Pass			
927.8	28.603	30	5.6	34.203	36	Pass			

uluulu cisco

Modulation	2FSK								
Mode	96								
Channel Spacing	200kHz	Maximun	n Peak Condu	icted Output	Power & E.I	. R. P			
Data Rate	50kbps								
Frequency (MHz)	Peak Conducted Output Power (dBm)	Peak Conducted Power Limit (dBm)	Antenna Gain (dBi)	E.I.R.P (dBm)	E.I.R.P Limit (dBm)	Result			
902.2	29.341	30	5.6	34.941	36	Pass			
915.0	28.904	30	5.6	34.504	36	Pass			
927.8	28.641	30	5.6	34.241	36	Pass			

Note: Worst case is determined as the modulation with Highest Output Power.

Page No: 29 of 121

Modulation	2FSK								
Mode	66								
Channel Spacing	400kHz	Maximun	n Peak Condu	acted Output	Power & E.I	.R.P			
Data Rate	150kbps								
Frequency (MHz)	Peak Conducted Output Power	PeakAntennaE.I.R.PE.I.R.PConductedGainLimitResuPower Limit </th							
902.4	(dBm) 29.981	(dBm) 30	(dBi) 5.6	(dBm) 35.581	(dBm) 36	Pass			
915.2	29.630	30	5.6	35.230	36	Pass			
927.6	29.328	30	5.6	34.928	36	Pass			

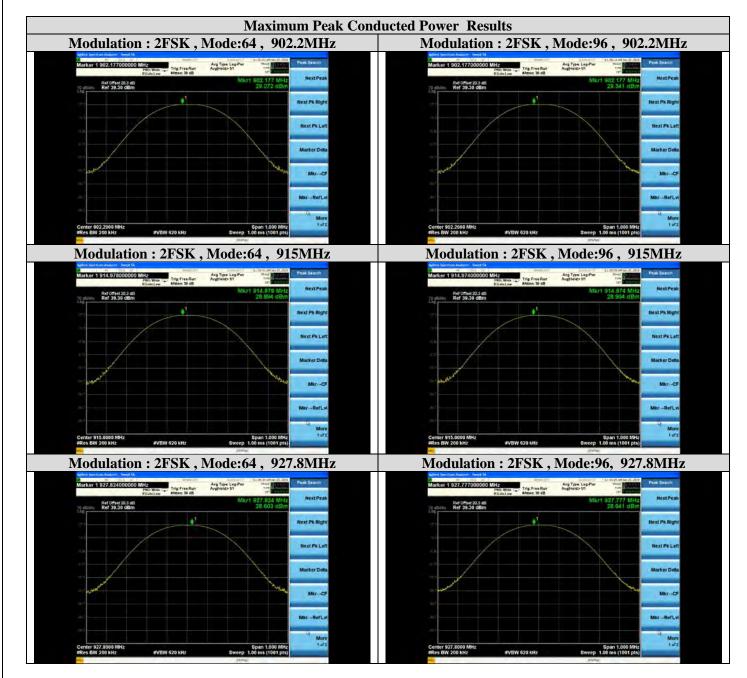
uhuhu cisco

Modulation	2FSK						
Mode	98						
Channel Spacing	400kHz	Maximun	n Peak Cond	ucted Output	Power & E.I	. R. P	
Data Rate	150kbps						
Frequency (MHz)	Peak Conducted Output Power	PeakAntennaE.I.R.PE.I.R.PConductedGainLimitResultPower Limit </th					
	(dBm)	(dBm)	(dBi)	(dBm)	(dBm)		
902.4	29.760	30	5.6	35.360	36	Pass	
915.2	29.397	30	5.6	34.997	36	Pass	
927.6	29.084	30	5.6	34.684	36	Pass	

Page No: 30 of 121

Modulation	O-QPSK							
Mode	192	Maximum Peak Conducted Output Power & E.I.R.P						
Channel Spacing	200kHz							
Data Rate	6.2kbps							
Frequency (MHz)	Peak Conducted Output Power (dBm)	Peak Conducted Power Limit (dBm)	Antenna Gain (dBi)	E.I.R.P (dBm)	E.I.R.P Limit (dBm)	Result		
902.2	29.317	30	5.6	34.917	36	Pass		
915.0	28.943	30	5.6	34.543	36	Pass		
927.8	28.620	30	5.6	34.220	36	Pass		

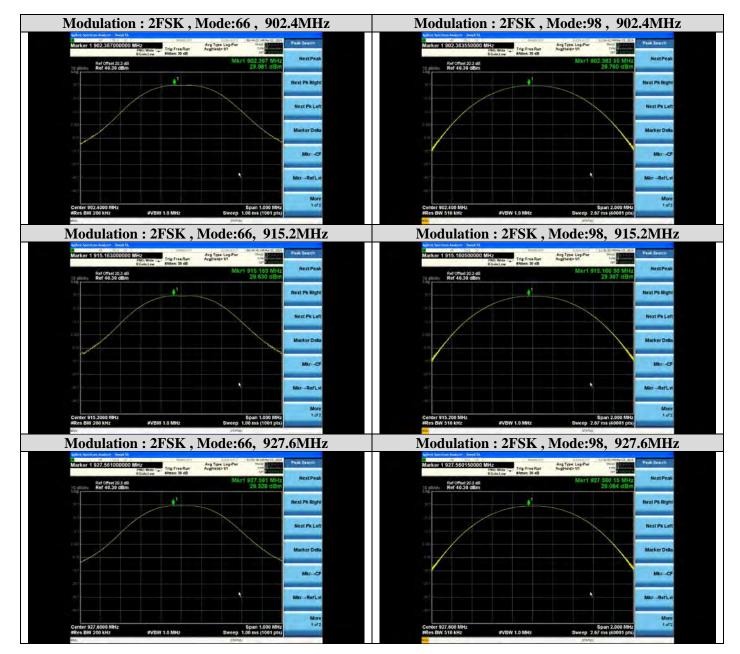
Page No: 31 of 121


This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

uluulu cisco

A.2.5 Maximum Peak Conducted Output Power Graphical Test Results

սիսիս


cisco

Maximum Peak Conducted Power Results

Page No: 32 of 121

cisco

Page No: 33 of 121

cisco

Page No: 34 of 121

A.2.6 Maximum Conducted Output Power (OFDM Modes)

FCC 15.247 (b) (3), RSS 247 5.4 (d)

The maximum conducted output power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level.

A.2.6.1 Limits

FCC 15.247 (b) (3)

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one-Watt limit can be based on a measurement of the maximum conducted output power

RSS 247 5.4 (d)

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed four Watts

A.2.6.2 Test Procedure

Refer to KDB 558074 D01 DTS Meas Guidance v04 9.2.2.2 (Trace averaging with the EUT transmitting at full power throughout each sweep)

- Set span to at least $1.5 \times OBW$.
- Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz
- Set $VBW \ge 3 \times RBW$.
- Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\leq \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- Sweep time = auto.
- Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

Page No: 35 of 121

A.2.6.3 Maximum Conducted Output Power Data Table (OFDM Modes)

Modulation	OFDM							
Mode	144	Maximum Conducted Output Power & E.I.R.P						
Channel Spacing	800kHz							
Data Rate	50kbps							
Frequency (MHz)	Maximum Conducted Output Power (dBm)	Maximum Conducted Power Limit (dBm)	Antenna Gain (dBi)	E.I.R.P (dBm)	E.I.R.P Limit (dBm)	Result		
902.8	23.03	30	5.6	28.63	36	Pass		
914.8	27.09	30	5.6	32.69	36	Pass		
926.8	26.74	30	5.6	32.34	36	Pass		

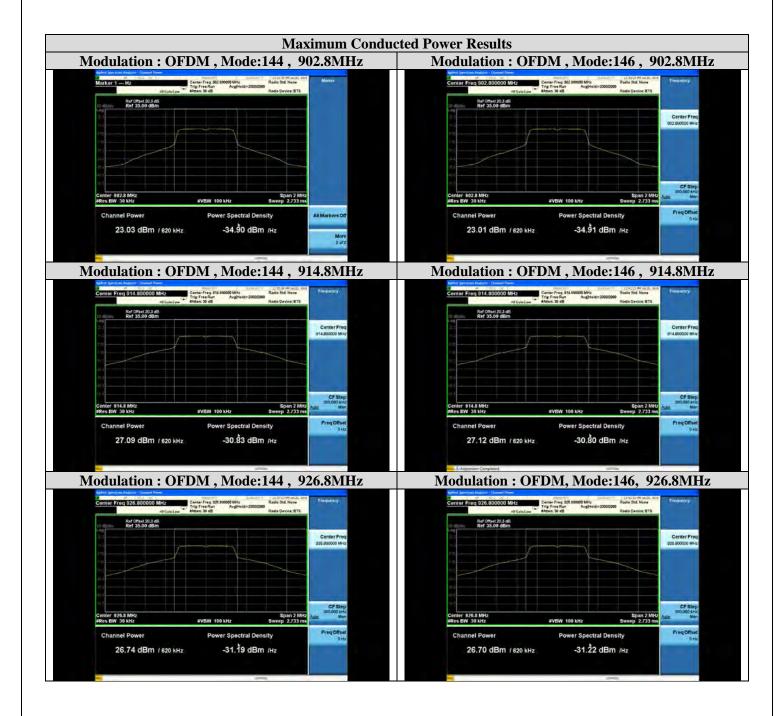
Modulation	OFDM							
Mode	146	Maximum Conducted Output Power & E.I.R.P						
Channel Spacing	800kHz							
Data Rate	200kbps							
Frequency (MHz)	Maximum Conducted Output Power (dBm)	Maximum Conducted Power Limit (dBm)	Antenna Gain (dBi)	E.I.R.P (dBm)	E.I.R.P Limit (dBm)	Result		
902.8	23.01	30	5.6	28.61	36	Pass		
914.8	27.12	30	5.6	32.72	36	Pass		
926.8	26.70	30	5.6	32.30	36	Pass		

Page No: 36 of 121

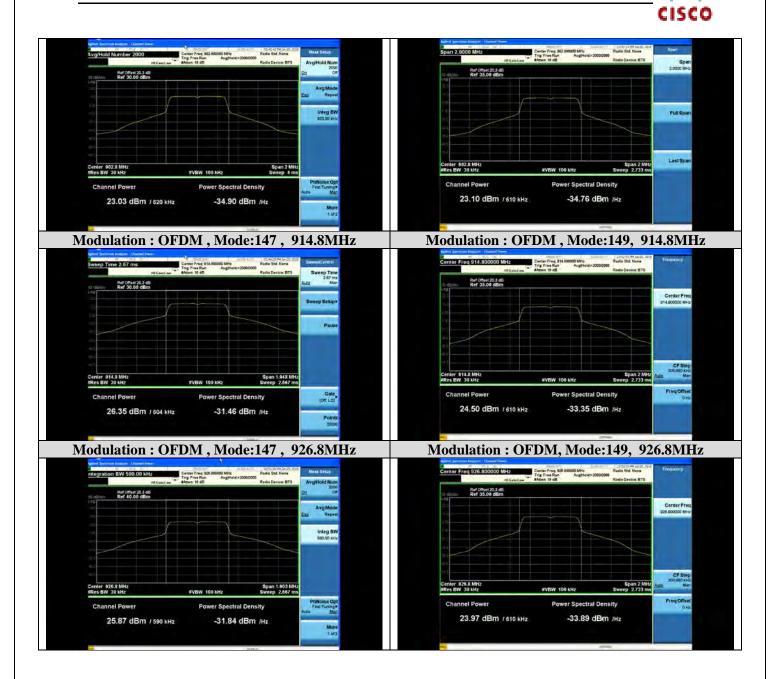
Modulation	OFDM						
Mode	147	Maximum Conducted Output Power & E.I.R.P					
Channel Spacing	800kHz						
Data Rate	400kbps						
Frequency (MHz)	Maximum Conducted Output Power (dBm)	Maximum Conducted Power Limit (dBm)	Antenna Gain (dBi)	E.I.R.P (dBm)	E.I.R.P Limit (dBm)	Result	
902.8	23.03	30	5.6	28.63	36	Pass	
914.8	26.35	30	5.6	31.95	36	Pass	
926.8	25.87	30	5.6	31.47	36	Pass	

Modulation	OFDM						
Mode	149	Maximum Conducted Output Power & E.I.R.P					
Channel Spacing	800kHz						
Data Rate	800kbps						
Frequency (MHz)	Maximum Conducted Output Power (dBm)	Maximum Conducted Power Limit (dBm)	Antenna Gain (dBi)	E.I.R.P (dBm)	E.I.R.P Limit (dBm)	Result	
902.8	23.10	30	5.6	28.70	36	Pass	
914.8	24.50	30	5.6	30.10	36	Pass	
926.8	23.97	30	5.6	29.57	36	Pass	

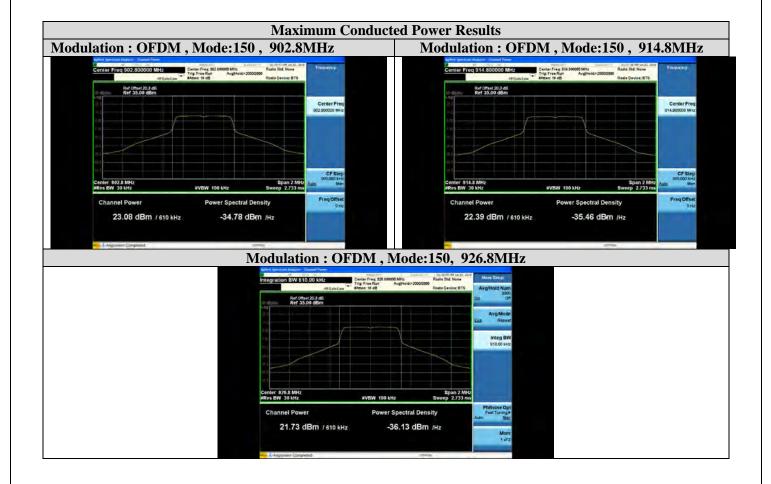
Page No: 37 of 121


Modulation	OFDM						
Mode	150	Maximum Conducted Output Power & E.I.R.P					
Channel Spacing	800kHz						
Data Rate	1200kbps						
Frequency (MHz)	Maximum Conducted Output Power (dBm)	Maximum Conducted Power Limit (dBm)	Antenna Gain (dBi)	E.I.R.P (dBm)	E.I.R.P Limit (dBm)	Result	
902.8	23.08	30	5.6	28.68	36	Pass	
914.8	22.39	30	5.6	27.99	36	Pass	
926.8	21.73	30	5.6	27.33	36	Pass	

uhuhu cisco


Page No: 38 of 121

A.2.6.4 Maximum Conducted Output Power Graphical Test Results (OFDM Modes)



Maximum Conducted Power Results Results					
Modulation : OFDM , Mode:147 , 902.8MHz Modulation : OFDM , Mode:149 , 902.8MH					
Page No: 39 of 121					

սիսիս

Page No: 40 of 121

cisco

Page No: 41 of 121

A.3 Power Spectral Density (OFDM Modes)

FCC 15.247(f); RSS-247 5.3(b)

The Power Spectral Density is the total energy output per unit bandwidth from a pulse or sequence of pulses for which the transmit power is at its maximum level, divided by the total duration of the pulses, This total time does not include the time between pulses during which the transmit power is off or below its maximum level.

A.3.1 Limits

FCC 15.247(f); RSS-247 5.3(b)

The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than eight dBm in any 3 kHz band during any time interval of continuous transmission.

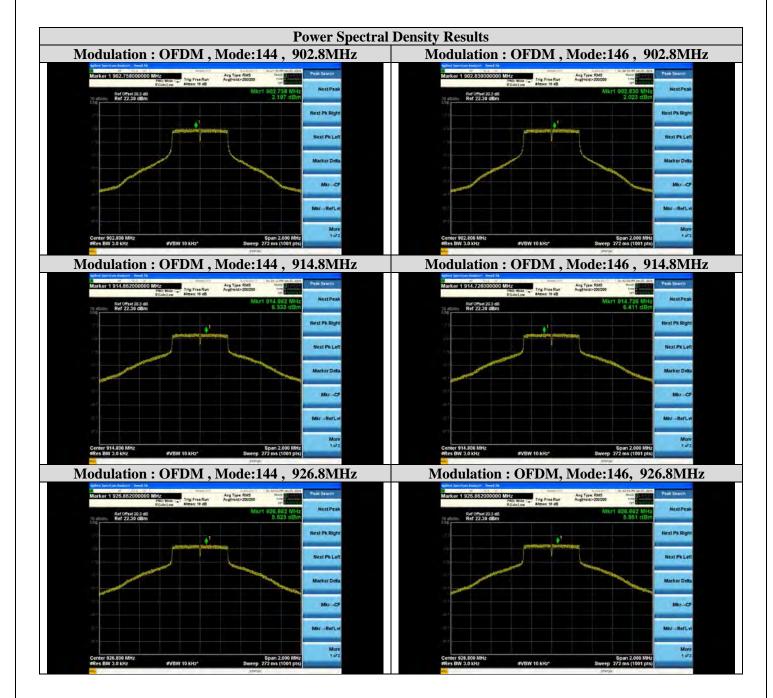
A.3.2 Test Procedure

Ref. KDB 558074 DTS Meas Guidance v04 section 10.3

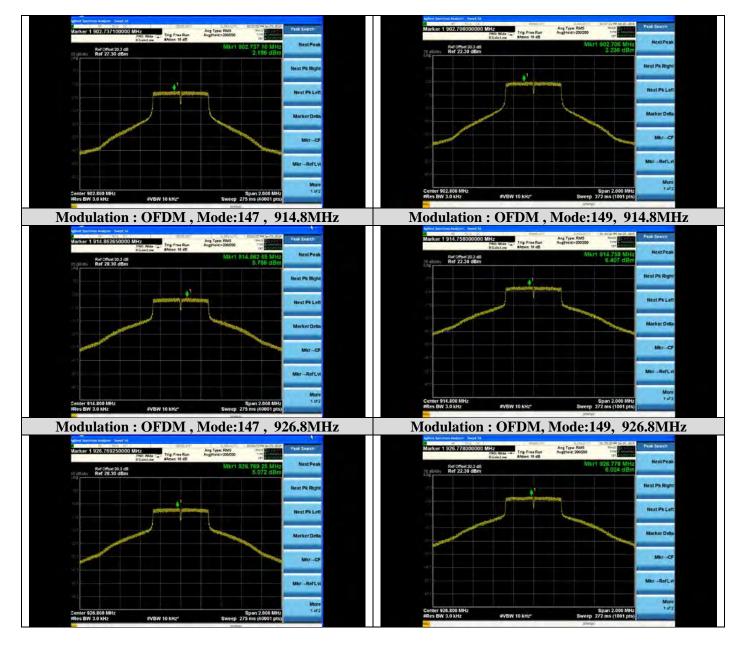
- Set instrument center frequency to DTS channel center frequency.
- Set span to at least $1.5 \times OBW$.
- Set RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- Set $VBW \ge 3 \times RBW$.
- Detector = power averaging (RMS) or sample detector (when RMS not available).
- Ensure that the number of measurement points in the sweep ≥ 2 × span/RBW. g) Sweep time = auto couple.
- Employ trace averaging (RMS) mode over a minimum of 100 traces.
- Use the peak marker function to determine the maximum amplitude level

Page No: 42 of 121

	Power Spectral Density Table								
Modulation Type	Phymode	Frequency (MHz)	Data rate (kbps)	Channel Spacing (kHz)	PSD (dBm/kHz)	PSD Limit (8dBm/3kHz)			
		902.8	_		2.197	8dBm/3kHz			
OFDM	144	914.8	50	800	6.333	8dBm/3kHz			
		926.8			5.523	8dBm/3kHz			
		902.8		800	2.023	8dBm/3kHz			
OFDM	146	914.8	200		6.411	8dBm/3kHz			
		926.8			5.851	8dBm/3kHz			
		902.8	400					2.196	8dBm/3kHz
OFDM	147	914.8		800	5.766	8dBm/3kHz			
		926.8			5.072	8dBm/3kHz			
		902.8				2.236	8dBm/3kHz		
OFDM	149	914.8	800	800	6.407	8dBm/3kHz			
		926.8	1		6.024	8dBm/3kHz			
		902.8			2.464	8dBm/3kHz			
OFDM	150	914.8	1200	800	1.896	8dBm/3kHz			
		926.8			0.811	8dBm/3kHz			

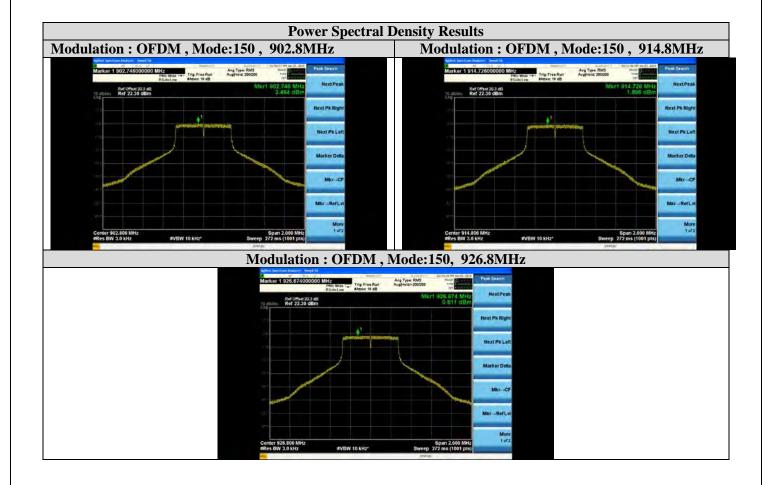

A.3.3 Power Spectral Density Data Table

Page No: 43 of 121


սիսիս

cisco

Power Spectral Density Results					
Modulation : OFDM , Mode:147 , 902.8MHz	Modulation : OFDM , Mode:149 , 902.8MHz				


Page No: 44 of 121

Page No: 45 of 121

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

cisco

cisco

Page No: 46 of 121

A.4 Carrier Frequency Separation

A.4.1 Limits

FCC 15.247(a) (1) & & RSS-247 5.1(b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater

A.4.2 Test Procedure

Refer ANSI C63.10 Section 7.8.2

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- Span: Wide enough to capture the peaks of two adjacent channels.
- RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- Video (or average) bandwidth (VBW) \geq RBW.
- Sweep: Auto.
- Detector function: Peak.
- Trace: Max hold.
- Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

A.4.3 Carrier Frequency Separation Data Table

Frequency (MHz)	Modulation Systems	Phymode	Carrier Frequency Separation (kHz)	Limits (kHz) 20db BW	Results
914.8 & 914.6	2FSK	64	200.000	110.7	Pass
915.0 & 914.8	2FSK	96	200.000	110.3	Pass
915.2 & 914.8	2FSK	66	401.587	195.0	Pass
915.2 & 914.8	2FSK	98	474.475	194.0	Pass

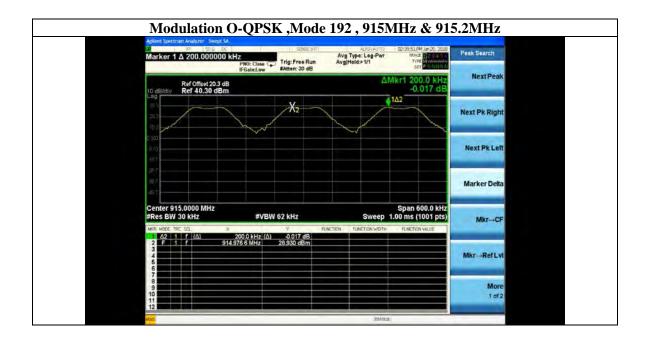
Page No: 47 of 121



սիսիս

cisco

A.4.4 Carrier Frequency Separation Graphical Results


Page No: 48 of 121

Page No: 49 of 121

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

cisco

Page No: 50 of 121

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

cisco

A.5 Number of Hopping Frequencies

A.5.1 Limits

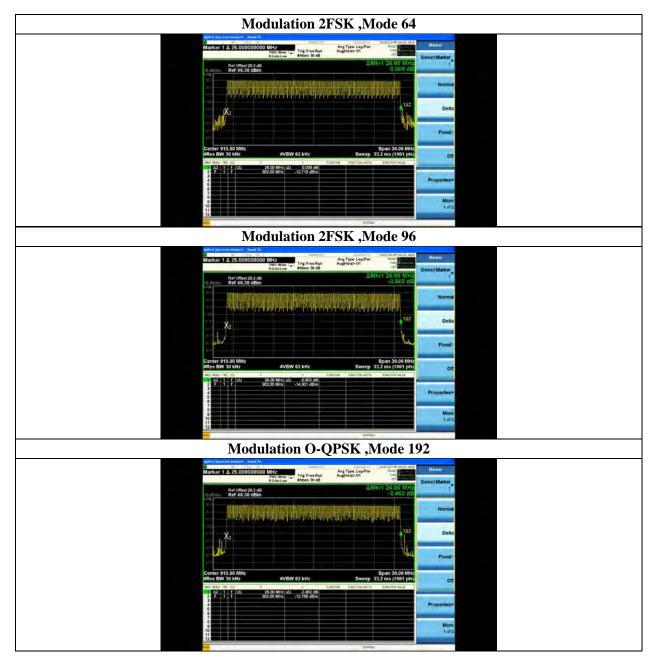
FCC 15.247(a) (1) (i) & RSS-247 (5.1) (c)

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies

A.5.2 Test Procedures

Refer ANSI C63.10 Section 7.8.3

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:


- Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- VBW \geq RBW.
- Sweep: Auto.
- Detector function: Peak.
- Trace: Max hold.
- Allow the trace to stabilize.

A.5.3 Number of Hopping Frequencies Data Table

Frequency (MHz)	Total No. of Channels	Limits	Results
902-928	129	≥ 50	Pass
902-928	64	\geq 50	Pass

Total number of hopping frequencies in the 902-928MHz Band = 129 Channels (2FSK,OQPSK) Total number of hopping frequencies in the 902-928MHz Band = 64 Channels (2FSK with 400kHz Channel spacing)

Page No: 51 of 121

cisco

A.4.3 Number of Hopping Frequencies Graphical Test Results

Page No: 52 of 121

<section-header>

Page No: 53 of 121

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

cisco

cisco

A.5 Average Time of Occupancy (2FSK and OQPSK Modes)

A.5.1 Limits

FCC 15.247 (a) (1) (i) & RSS-247 (5.1) (c)

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20-second period.

A.5.2 Test Procedure

Refer to ANSI C63.10 7.8.4 The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- Span: Zero span, centered on a hopping channel.
- RBW shall be \leq channel spacing and where possible RBW should be set $\gg 1 / T$, where T is the expected dwell time per channel.
- Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- Detector function: Peak.
- Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Average Time of Occupancy and Dwell Time Calculations

Page No: 54 of 121

cisco

Modulation Type : 2FSK , Mode 64, 50kbps			
Measured time of occupancy (dwell time) for one total transmission =	138.2 ms		
Time Frame = 0.4 s * 50 hopping channels =	20000 ms		
Measured time to return to one channel =	17820 ms		
Total transmit events for one channel in the Time Frame, $20000 \text{ ms} / 17820 \text{ ms} =$	1.122 events		
Total time that one channel transmits within the 20 s Time Frame = $1.122 * 138.2$ ms =	155.0604 ms		

Modulation Type : 2FSK , Mode 96, 50kbps				
Measured time of occupancy (dwell time) for one total transmission =	138.3 ms			
Time Frame = 0.4 s * 50 hopping channels =	20000 ms			
Measured time to return to one channel =	17820 ms			
Total transmit events for one channel in the Time Frame, $20000 \text{ ms} / 17820 \text{ ms} =$	1.122 events			
Total time that one channel transmits within the 20 s Time Frame = $1.122 * 138.3$ ms =	168.726 ms			

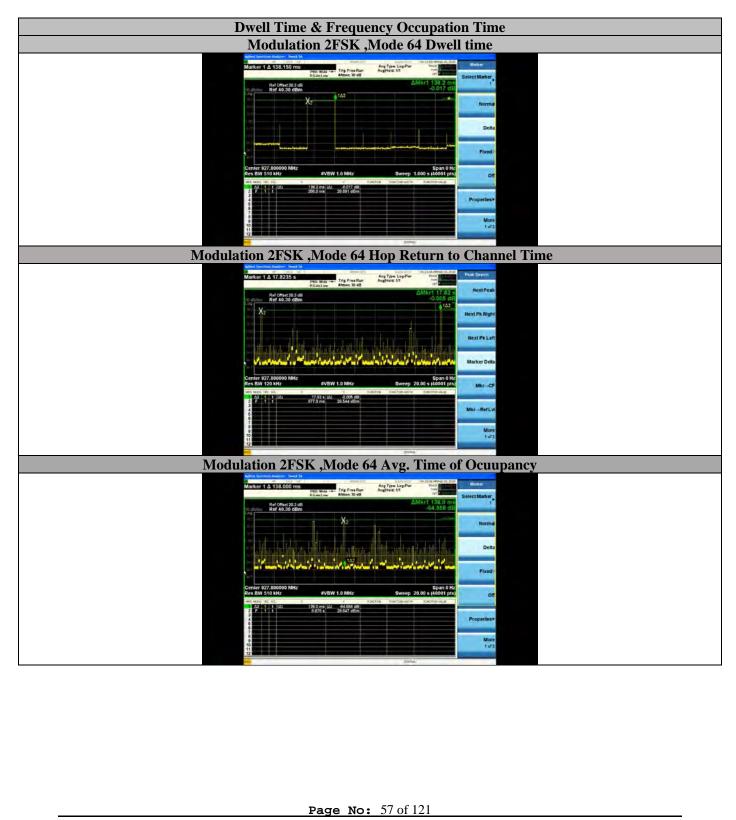
Modulation Type : 2FSK , Mode 66, 150kbps	
Measured time of occupancy (dwell time) for one total transmission =	136.4 ms
Time Frame = 0.4 s * 50 hopping channels =	20000 ms
Measured time to return to one channel =	8800 ms
Total transmit events for one channel in the Time Frame, 20000 ms / 8800 ms =	2.28 events
Total time that one channel transmits within the 20 s Time Frame = 2.28×136.4 ms =	310.992 ms

Modulation Type : 2FSK , Mode 98, 150kbps			
Measured time of occupancy (dwell time) for one total transmission =	137.5 ms		
Time Frame = 0.4 s * 50 hopping channels =	20000 ms		
Measured time to return to one channel =	8783 ms		
Total transmit events for one channel in the Time Frame, 20000 ms / 8783 ms =	2.277 events		
Total time that one channel transmits within the 20 s Time Frame = $2.277 * 137.5$ ms =	313.0875 ms		

Modulation Type : O-QPSK , Mode 192, 6.2kbps	
Measured time of occupancy (dwell time) for one total transmission =	138 ms
Time Frame = 0.4 s * 50 hopping channels =	20000 ms
Measured time to return to one channel =	17820 ms
Total transmit events for one channel in the Time Frame, $20000 \text{ ms} / 17820 \text{ ms} =$	1.122 events
Total time that one channel transmits within the 20 s Time Frame = 1.122×138 ms =	154 ms

A.5.3 Average Time of Occupancy and Dwell time Data table

Modulation Type	Phymode	Dwell Time	Time Occupancy	Limits (ms)	Results
		Page No: 55 of 121			

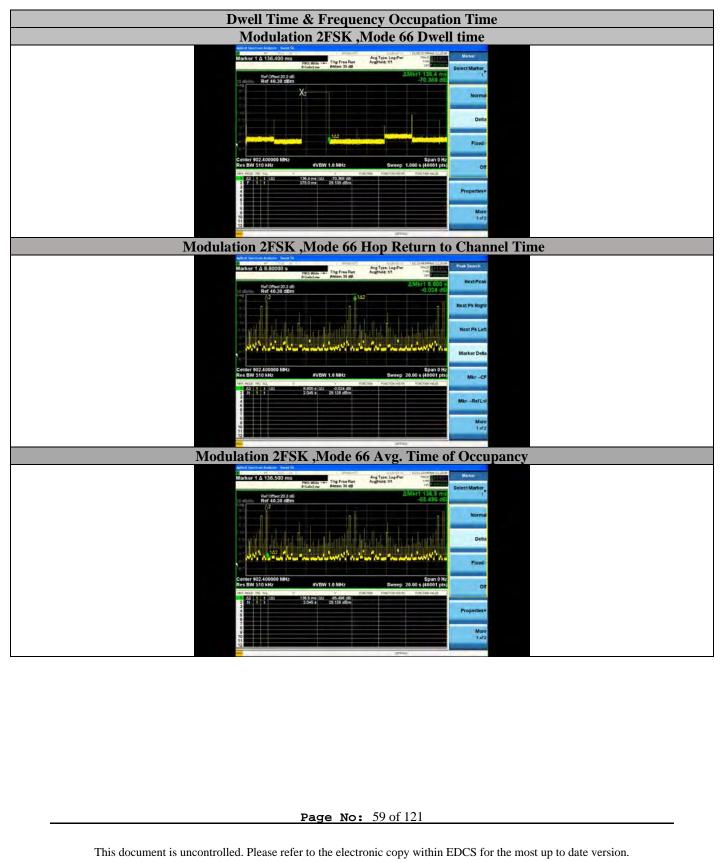

uluulu cisco

		(ms)	(ms)		
2FSK	64	138.2	155	400	Pass
2FSK	96	138.3	168	400	Pass
2FSK	66	136.4	310	400	Pass
2FSK	98	137.5	313	400	Pass
Q-QPSK	192	138.0	154	400	Pass

Page No: 56 of 121

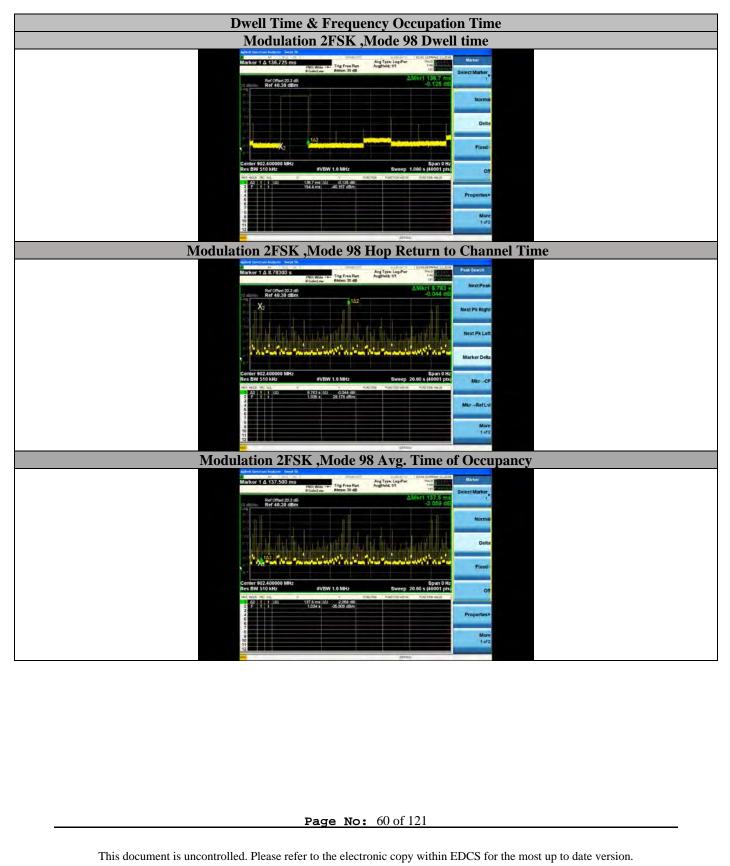
_uluulu cisco

A.5.4 Average Time of Occupancy and Dwell Time Graphical Test Results



Dwell Time & Frequency Occupation Time Modulation 2FSK ,Mode 96 Dwell time Avg Type Lo Ref Offset 20.3 dB Ref 40.30 dBm nter 927.800000 MHz s BW 120 kHz Span 0 Modulation 2FSK ,Mode 96 Hop Return to Channel Time Avg Type Logil Avg/Hold: 1/1 Trig: Free Run Ref 0ffset 20.3 dB Ref 40.30 dBm Modulation 2FSK ,Mode 96 Avg. Time of Occupancy Avg Type L Available 17 Ref Offset 20.3 Ref 40.30 dB

cisco


Page No: 58 of 121

cisco


Cisco Systems, Inc. Company Confidential

cisco

Cisco Systems, Inc. Company Confidential

cisco

A.5.5 Average Time of Occupancy (OFDM Modes)

A.5.5.1 Limits FCC 15.247 (f) & RSS-247 (5.3) (a)

The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4

A.5.5.2 Test Procedure

Refer to ANSI C63.10 7.8.4

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- Span: Zero span, centered on a hopping channel.
- RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- Detector function: Peak.
- Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Page No: 62 of 121

Average Time of Occupancy and Dwell Time Calculations

Modulation Type : OFDM , Mode 144	
Measured time of occupancy (dwell time) for one total transmission =	137 ms
Time Frame = 0.4 s * 31 hopping channels =	12400 ms
Measured time to return to one channel =	4267 ms
Total transmit events for one channel in the Time Frame, $12400 \text{ ms} / 4267 \text{ ms} =$	2.906 events
Total time that one channel transmits within the 20 s Time Frame = 2.906×137 ms =	398.122 ms

Modulation Type : OFDM , Mode 146	
Measured time of occupancy (dwell time) for one total transmission =	137 ms
Time Frame = 0.4 s * 31 hopping channels =	12400 ms
Measured time to return to one channel =	4267 ms
Total transmit events for one channel in the Time Frame, $12400 \text{ ms} / 4267 \text{ ms} =$	2.906 events
Total time that one channel transmits within the 20 s Time Frame = 2.906×137 ms =	398.122 ms

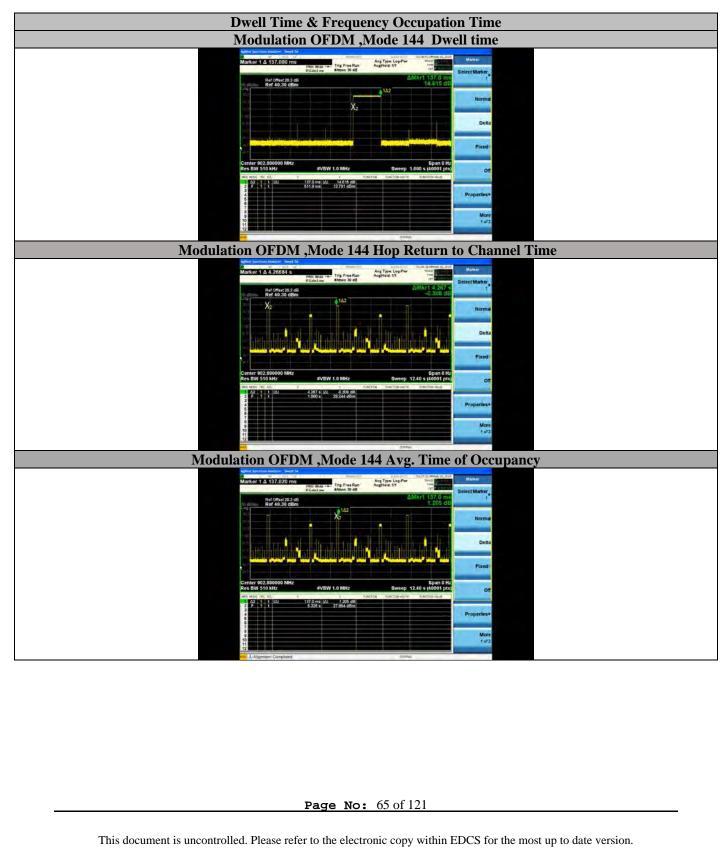
Modulation Type : OFDM , Mode 147	
Measured time of occupancy (dwell time) for one total transmission =	136.6 ms
Time Frame = 0.4 s * 31 hopping channels =	12400 ms
Measured time to return to one channel =	4242 ms
Total transmit events for one channel in the Time Frame, $12400 \text{ ms} / 4242 \text{ ms} =$	2.923 events
Total time that one channel transmits within the 20 s Time Frame = $2.923 \times 136.6 \text{ ms} =$	399. 281 ms

Modulation Type : OFDM , Mode 149	
Measured time of occupancy (dwell time) for one total transmission =	137 ms
Time Frame = 0.4 s * 31 hopping channels =	12400 ms
Measured time to return to one channel =	4287 ms
Total transmit events for one channel in the Time Frame, $12400 \text{ ms} / 4287 \text{ ms} =$	2.892 events
Total time that one channel transmits within the 20 s Time Frame = 2.892×137 ms =	396. 204 ms

Modulation Type : OFDM , Mode 150	
Measured time of occupancy (dwell time) for one total transmission =	137 ms
Time Frame = 0.4 s * 31 hopping channels =	12400 ms
Measured time to return to one channel =	4287 ms
Total transmit events for one channel in the Time Frame, $12400 \text{ ms} / 4287 \text{ ms} =$	2.892 events
Total time that one channel transmits within the 20 s Time Frame = 2.892×137 ms =	396. 204 ms

Page No: 63 of 121

cisco


Modulation Type	Phymode	Dwell Time	Time Occupancy	Limits (ms)	Results
		(ms)	(ms)		
OFDM	144	137	398	400	Pass
OFDM	146	137	398	400	Pass
OFDM	147	136.6	399	400	Pass
OFDM	149	137	396	400	Pass
OFDM	150	137	396	400	Pass

A.5.5.3 Average Time of Occupancy and Dwell time Data table

Page No: 64 of 121

cisco

A.5.5.4 Average Time of Occupancy and Dwell Time Graphical Test Results

Cisco Systems, Inc. Company Confidential

Dwell Time & Frequency Occupation Time Modulation OFDM ,Mode 146 Dwell time Avg Type Lo Ref Offset 20.3 d Ref 40.30 dBr Span 0 (40091 p 1478 4 Modulation OFDM ,Mode 146 Hop Return to Channel Time Avg Type Lo AvgPield: 1/1 Trig: Free Run Ref 00set 20.3 Ref 40.30 di 4267 8 0.419 Modulation OFDM ,Mode 146 Avg. Time of Occupancy Avg Type

cisco

Page No: 66 of 121

cisco


Page No: 67 of 121

cisco

Page No: 68 of 121

cisco

Page No: 69 of 121

A.6 Conducted Band Edge Measurements

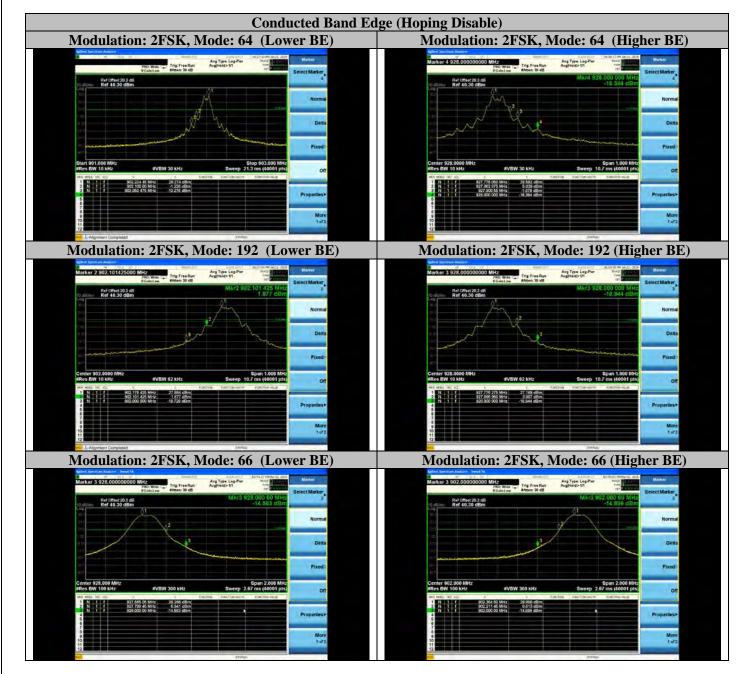
A.6.1 Limits

15.247 (d) & RSS-247 (5.5)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in FCC §15.209(a) & RSS-Gen is not required.

A.6.2 Test Procedure

Refer to Public notice DA-00 705


- Use the following spectrum analyzer settings:
- Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
- RBW $\geq 1\%$ of the span
- $VBW \ge RBW$
- Sweep = auto
- Detector function = peak
- Trace = max hold
- Allow the trace to stabilize. Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission. The marker-delta value now displayed must comply with the limit specified in this Section. Submit this plot.
- Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit. Submit this plot.

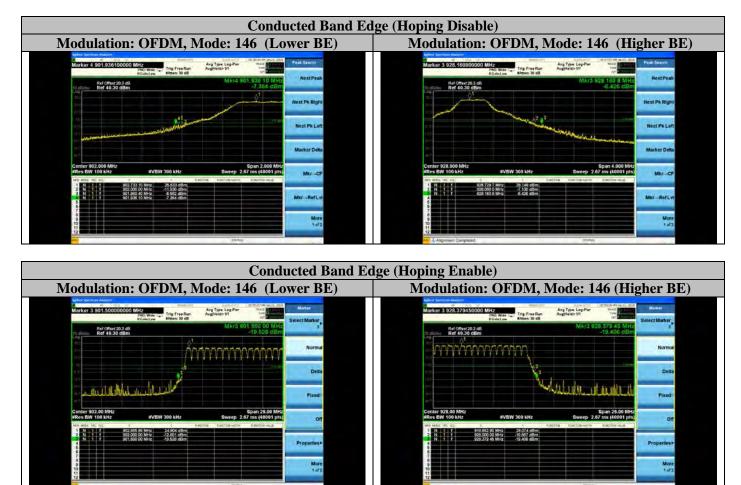
Page No: 70 of 121

A.6.3 Conducted Band Edge Graphical Test Results (2FSK and OQPSK 20dBc)

սիսիս

CISCO

Note: Mode 64 and 96 represents identical mode except Forward error correction ON for mode 64 and off for mode 96. Similarly, Mode 66 and 98 represent identical mode. So band edge data can be used for one another


Conducted Band Edge (Hoping Enable)			
Modulation: 2FSK, Mode: 64 (Lower BE) Modulation: 2FSK, Mode: 64 (Higher BE)			
Page No:	: 71 of 121		
This document is uncontrolled. Please refer to the electr	and approximation EDCS for the most up to date version		

Cisco Systems, Inc. Company Confidential

Page No: 72 of 121

A.6.4 Conducted Band Edge Graphical Test Results (OFDM Modes 30dBc)

Note: All the OFDM Modes have same channel spacing of 800 kHz and therefore only Mode with Highest power have been shown here and rest of the modes represents the same results

Page No: 73 of 121

A.7 Emissions in Non-Restricted Bands

A.7.1 Limits

15.247 (d) & RSS-247 (5.5)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in FCC §15.209(a) & RSS-Gen is not required.

A.7.2 Test Procedure

Ref. 558074 D01 DTS Meas Guidance v04 Section 11.2

Reference Level Measurement:

Establish a reference level by using the following procedure:

- Set instrument center frequency to DTS channel center frequency.
- Set the span to $\geq 1.5 \times \text{DTS}$ bandwidth.
- Set the RBW = 100 kHz.
- Set the VBW $\geq 3 \times RBW$.
- Detector = peak.
- Sweep time = auto couple.
- Trace mode = max hold.
- Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Page No: 74 of 121

Emission level measurement

- Set the center frequency and span to encompass frequency range to be measured.
- Set the RBW = 100 kHz.
- Set the VBW \geq 3 × RBW.
- Detector = peak.
- Sweep time = auto couple.
- Trace mode = max hold.
- Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band. Report the three highest emissions relative to the limit.

անան

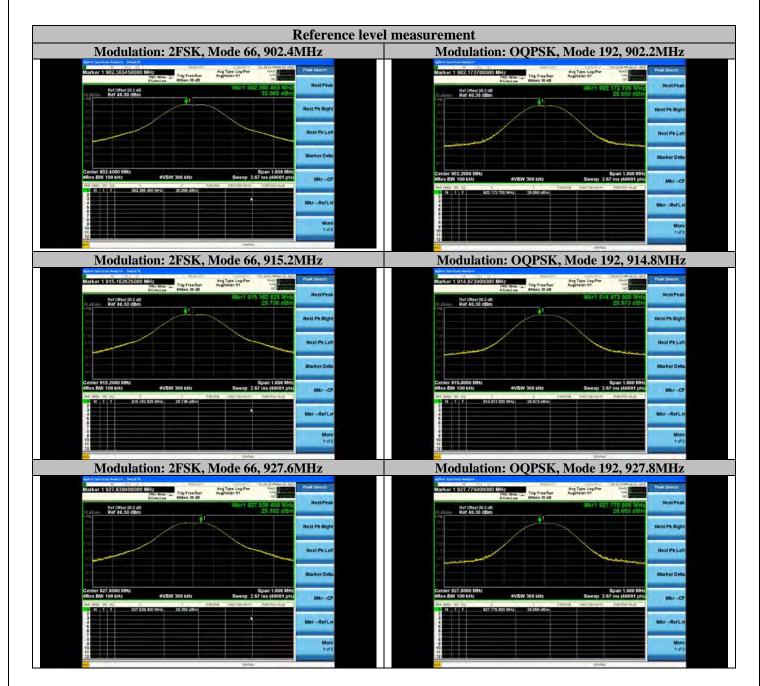
Note: Mode 66 represents worst-case mode for 2FSK Modulations Mode 192 represents worst-case mode for OQPSK Modulations Mode 146 represents worst-case mode for OFDM Modulations

Page No: 75 of 121

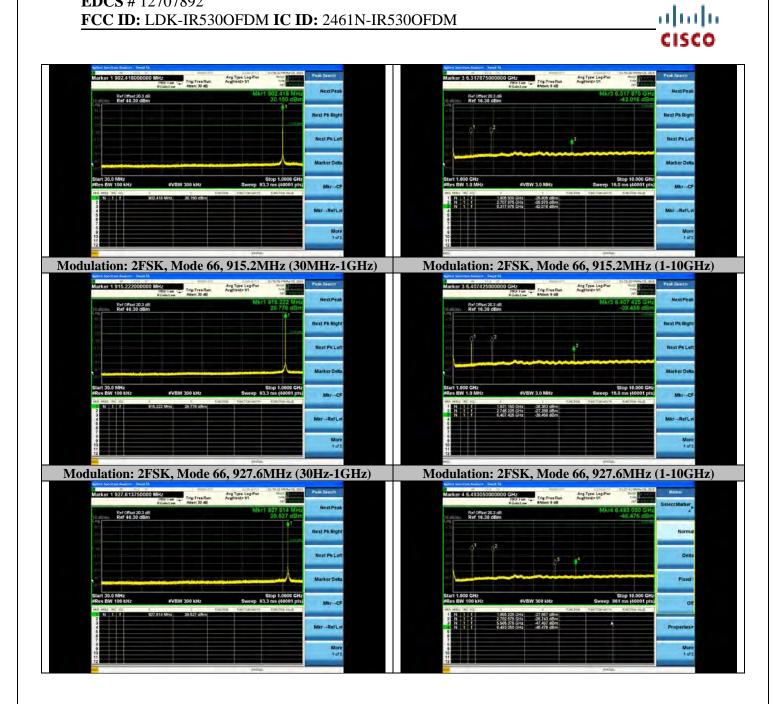
A.7.3 Emissions in Non-Restricted Bands Results (2FSK and OQPSK Modes 20dBc)

Frequency (MHz)	Mode	Reference Level (dBm)	Data Rate (Kbps)	Highest Emissions (dBm)	Limit (20dBc)	Margin (dB)
	902.4MHz	30.09	150.00	-25.605	10.09	35.695
Mode 66 2FSK	915.2MHz	30.09	150.00	-26.383	10.09	36.473
21 51	927.6MHz	30.09	150.00	-27.657	10.09	37.666

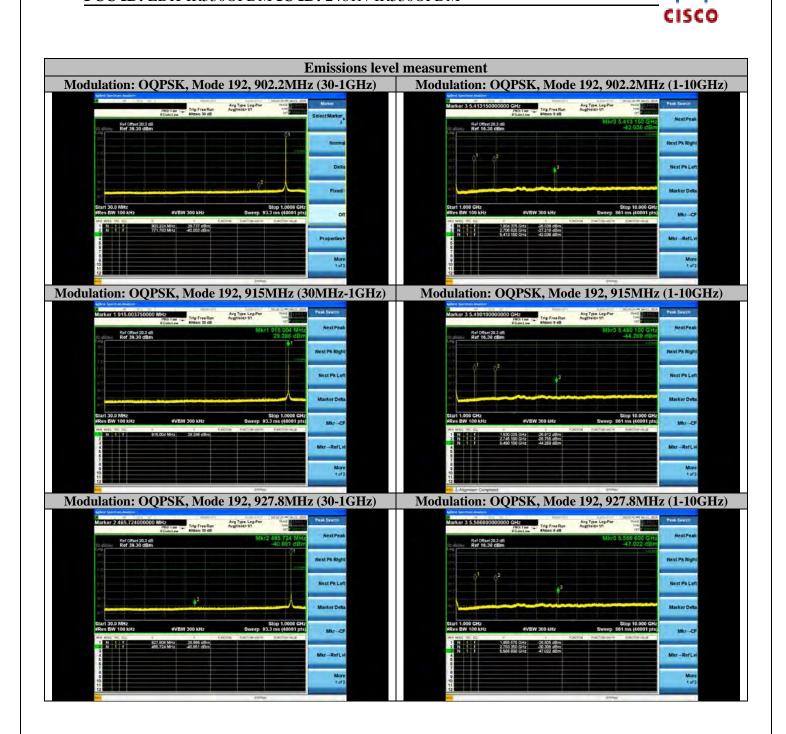
Frequency (MHz)	Mode	Reference Level (dBm)	Data Rate (Kbps)	Highest Emissions (dBm)	Limit (20dBc)	Margin (dB)
	902.2MHz	29.550	6.2	-26.039	9.550	35.589
Mode 192 OQPSK	915.0MHz	28.973	6.2	-26.912	9.550	36.462
OQI DK	927.8MHz	28.650	6.2	-28.805	9.550	38.355


Emissions in non-Restricted Bands Results (OFDM Mode 30dBc)

Frequency (MHz)	Mode	Reference Level (dBm)	Data Rate (Kbps)	Highest Emissions (dBm)	Limit (30dBc)	Margin (dB)
	902.8MHz	25.120	200	-35.281	-1.654	33.627
Mode 146 OFDM	914.8MHz	28.346	200	-30.607	-1.654	28.953
	926.8MHz	27.948	200	-32.194	-1.654	30.540

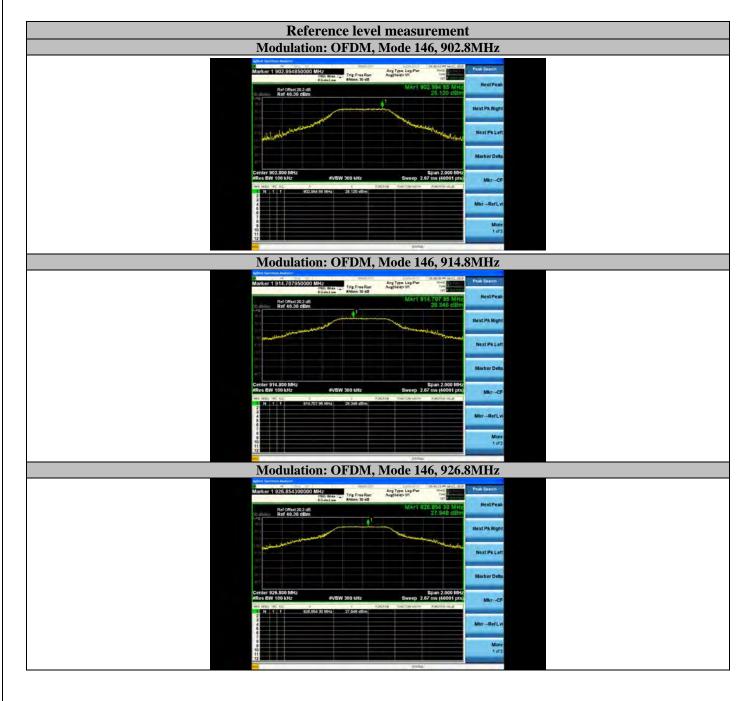

Page No: 76 of 121

A.7.4 Emissions in Non-Restricted Bands Test Results (2FSK and OQPSK Modes 20dBc)

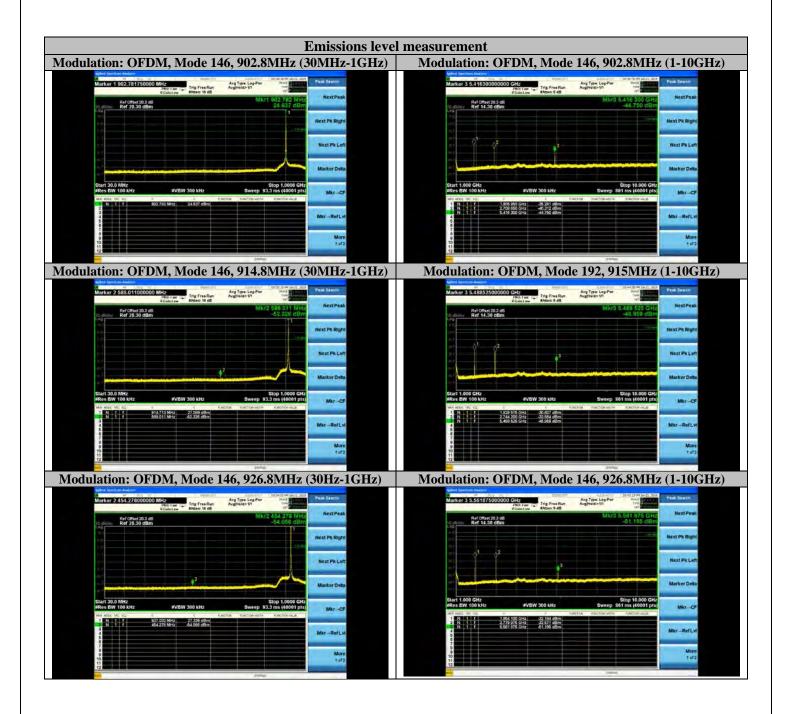

cisco

Emissions level measurement								
Modulation: 2FSK, Mode 66, 902.4MHz (30MHz-1GHz) Modulation: 2FSK, Mode 66, 902.4MHz (1-10GHz)								
Page No:	77 of 121							

Page No: 78 of 121



սիսիս


Page No: 79 of 121

A.7.5 Emissions in non - Restricted Bands Graphical Test Results (OFDM Modes 30dBc)

Page No: 80 of 121

cisco

Page No: 81 of 121

- 2nd Harmonics of all three channels falls under non-restricted bands and so limit of 20dBc satisfies

ահահո

- Third Harmonics of all three channels falls under restricted bands so general limit of 15.209 needs to be satisfied. This is demonstrated in next section
- Sixth Harmonics of Channel 0 falls under restricted band so general limit of -41.2 and -21.2 Avg and peak respectively needs to be satisfied. This is demonstrated in next section
- 6th Harmonics of middle channel and last channel doesn't fall under restricted bands so limit of 20dBc needs to be satisfies

Page No: 82 of 121

A.8 Emissions in Restricted Bands

A.8.1 Limits

FCC 15.247(e); RSS-Gen 7.2.2(b)

FCC: Radiated emissions, which fall in the restricted bands, as, defined in FCC §15.205(a), must also comply with the radiated emission limits specified in Sec. 15.209(a).

RSS: Unwanted emissions falling into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen

A.8.2 Test Procedure

Refer to ANSI C63.10-2013 Section 12.2

Peak Power measurement procedure:

Peak emission levels are measured by setting the instrument as follows:

- RBW = 100 kHz for below 1GHz and 1MHz for above 1GHz.
- VBW \ge 3 × RBW.
- Detector = Peak.
- Sweep time = auto.
- Trace mode = max hold.
- Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be longer for low duty cycle applications).

Average Power measurement procedure:

If the EUT can be configured or modified to transmit continuously (duty cycle \ge 98 % then the average emission levels shall be measured using the following method (with EUT transmitting continuously).

- RBW = 1 MHz (unless otherwise specified).
- VBW \geq 3 × RBW.
- Detector = RMS, if span/(# of points in sweep) ≤ (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
- Averaging type = power (i.e., RMS).
 - As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
- Sweep time = auto.

Perform a trace average of at least 100 traces.

Page No: 83 of 121

Frequency	Data Rate	A.G	RestrictedMax.BandsEmissionsLevel		E.I.R.P	Limit	Result
(MHz)	(kbps)	(dBi)	(MHz)	(dBm)	(dBm)	(dBm)	
			Mode 66: 2	FSK			
		5.6	2600-2900	-54.540	-48.940	-21.2	Pass
002.4	150	5.6	2600-2900	-58.526	-52.926	-41.2	Pass
902.4	150	5.6	4500-5150	-52.923	-47.323	-21.2	Pass
			4500-5150	-57.348	-51.748	-41.2	Pass
		56	2600-2900	-54.681	-49.081	-21.2	Pass
915.2	150	5.6	2600-2900	-59.149	-53.549	-41.2	Pass
915.2	150	5.6	4500-5150	-52.626	-47.026	-21.2	Pass
		5.0	4500-5150	-58.854	-53.254	-41.2	Pass
		5.6	2600-2900	-50.035	-44.435	-21.2	Pass
027.6	150	5.0	2600-2900	-49.827	-44.227	-41.2	Pass
927.6	150	5.6	4500-5150	-50.129	-44.529	-21.2	Pass
		5.0	4500-5150	-53.926	-48.326	-41.2	Pass

A.8.3 Emissions in Restricted Bands Results (2FSK and OQPSK)

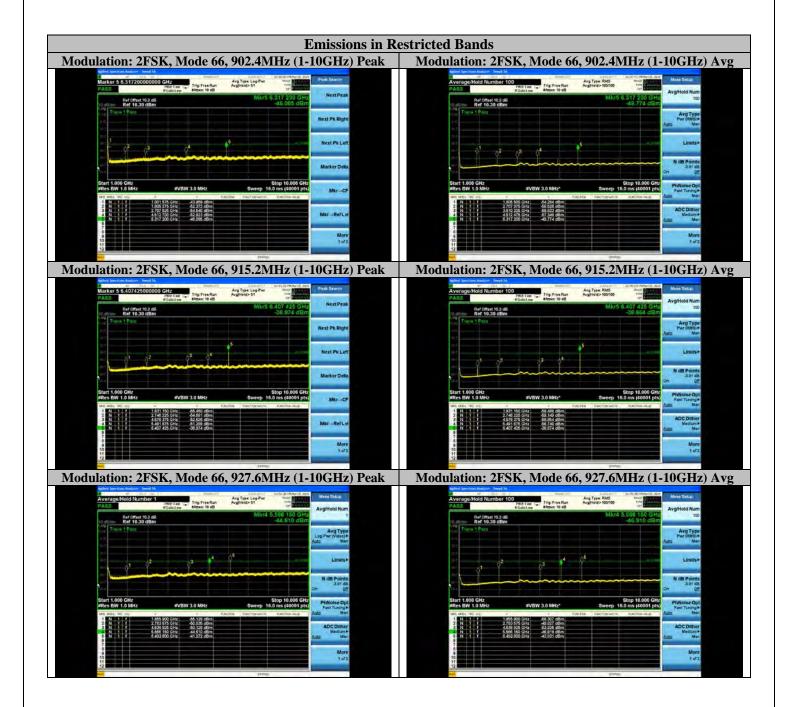
Mode 192: OQPSK										
		5.6	2600-2900	-50.395	-44.795	-21.2	Pass			
902.2	()	5.0	2600-2900	-53.295	-47.695	-41.2	Pass			
902.2	6.2	5.6	4500-5150	-54.440	-48.840	-21.2	Pass			
			4500-5150	-59.566	-53.966	-41.2	Pass			
		5.6	2600-2900	-51.131	-45.531	-21.2	Pass			
915.0	()		2600-2900	-54.373	-48.773	-41.2	Pass			
915.0	6.2		4500-5150	-52.614	-47.014	-21.2	Pass			
		5.6	4500-5150	-57.173	-51.573	-41.2	Pass			
		56	2600-2900	-52.756	-47.156	-21.2	Pass			
027.0		5.6	2600-2900	-56.225	-50.625	-41.2	Pass			
927.8	6.2	5.6	4500-5150	-53.828	-48.228	-21.2	Pass			
		5.6	4500-5150	-58.868	-53.268	-41.2	Pass			

Page No: 84 of 121

cisco

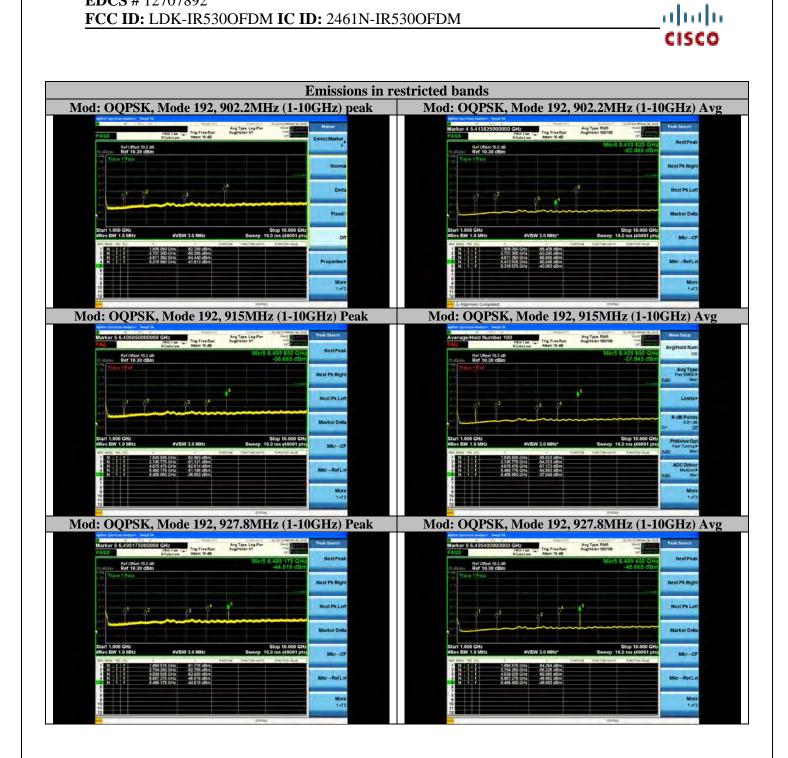
			Mode 146: O	FDM			
		5.6	2600-2900	-55.155	-49.555	-21.2	Pass
902.8	200	5.0	2600-2900	-64.787	-59.187	-41.2	Pass
902.0	200	56	5350-5460	-53.421	-47.821	-21.2	Pass
		5.6	5350-5460	-63.575	-57.975	-41.2	Pass
		5.6	2600-2900	-51.321	-45.721	-21.2	Pass
914.8	200	5.0	2600-2900	-57.532	-51.932	-41.2	Pass
914.0	200	5.6	4500-5150	-52.935	-47.335	-21.2	Pass
		5.0	4500-5150	-60.280	-54.680	-41.2	Pass
		5.6	2600-2900	-52.476	-46.876	-21.2	Pass
926.8	200	5.0	2600-2900	-59.393	-53.793	-41.2	Pass
920.8	200	5.6	4500-5150	-53.945	-48.345	-21.2	Pass
		5.0	4500-5150	-62.291	-56.691	-41.2	Pass

Page No: 85 of 121



A.8.4 Emissions in Restricted Bands Graphical Test Results (2FSK and OQPSK)

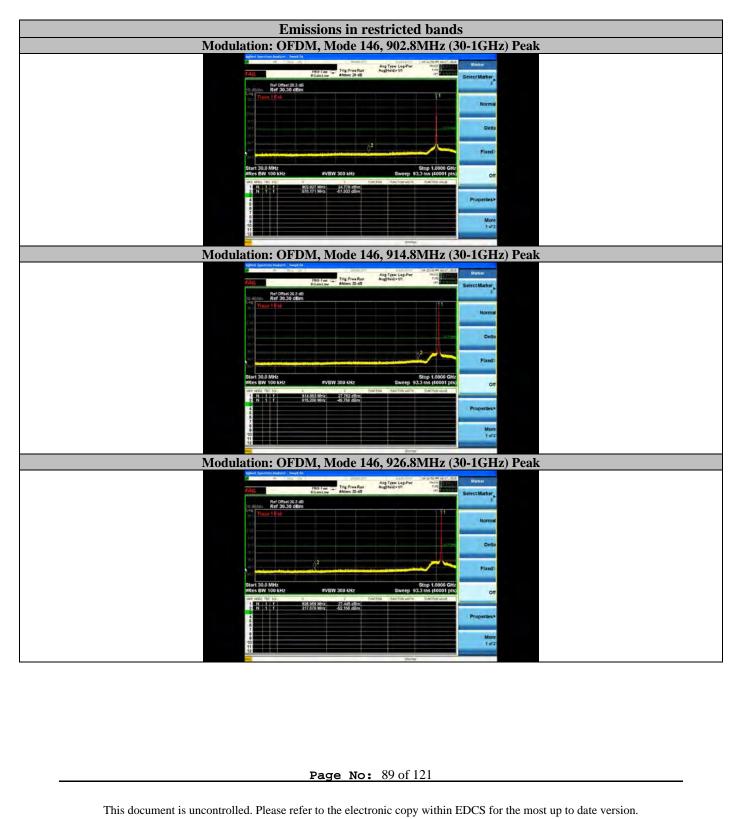
սիսիս


cisco

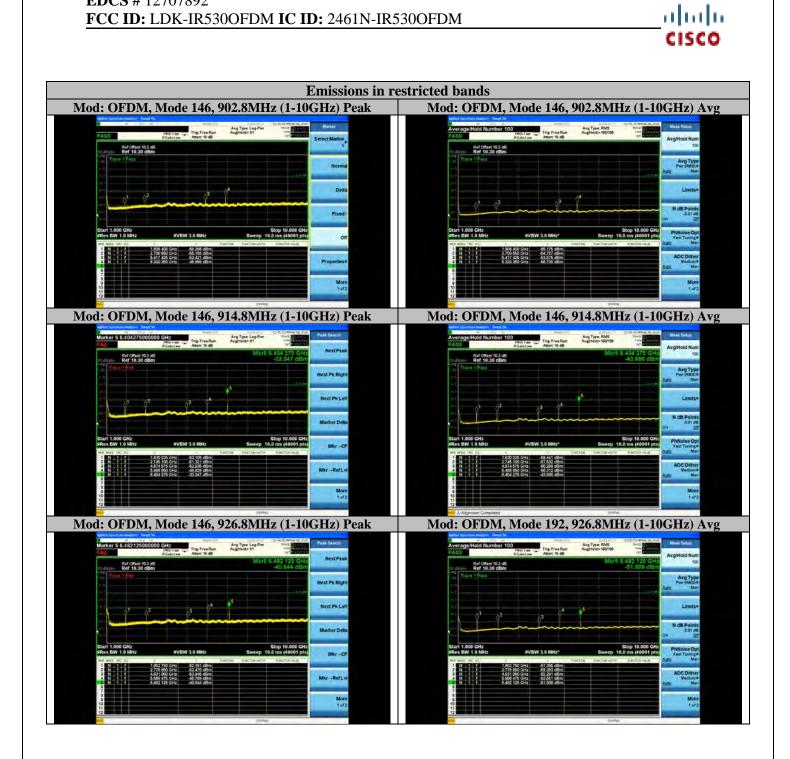
Page No: 86 of 121

cisco

Page No: 87 of 121



Page No: 88 of 121


A.8.4 Emissions in Restricted Bands Graphical Test Results (OFDM Modes)

սիսիս

cisco

Cisco Systems, Inc. Company Confidential

Page No: 90 of 121

Appendix B: Radiated Test Results

B.1 Radiated Spurious Emissions & Restricted Bands

FCC 15.209; RSS-Gen 7.2.4 Issue 3

The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the table specified in the table in FCC§15.209(a) and in RSS-Gen 7.2.5.

B.1.1 Limits

Radiated emissions which fall in the restricted bands, as defined in FCC Section 15.205(a) and RSS-Gen Section 7.2.2(b), must also comply with the radiated emission limits specified in FCC Section 15.209(a) and RSS-Gen Section 7.2.5.

15.209 (a) except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (uV/meter)	Field strength (dBuV/meter)	Measurement distance (meters)
30-88	100**	40 Qp	3
88-216	150**	43.5 Qp	3
216-960	200**	46 Qp	3
Above 960	500	54 Av / 74 Pk	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz However, operation within These frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector

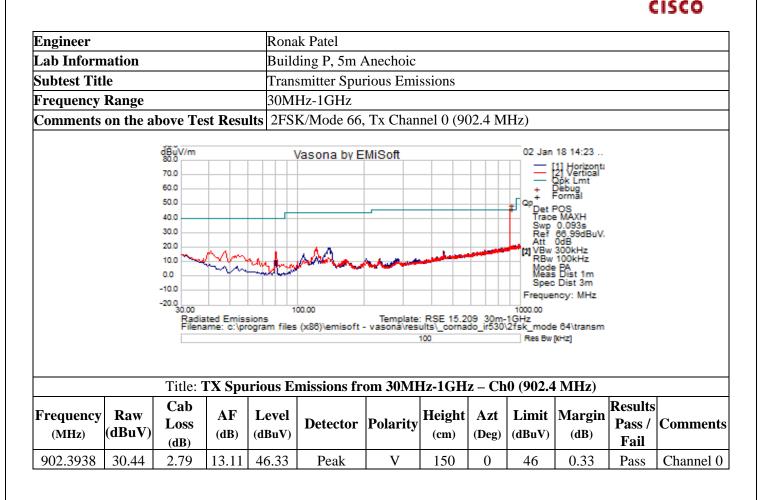
Page No: 91 of 121

B.1.2 Test Procedure

Ref. C63.10-2013 section 6.5 & 6.6

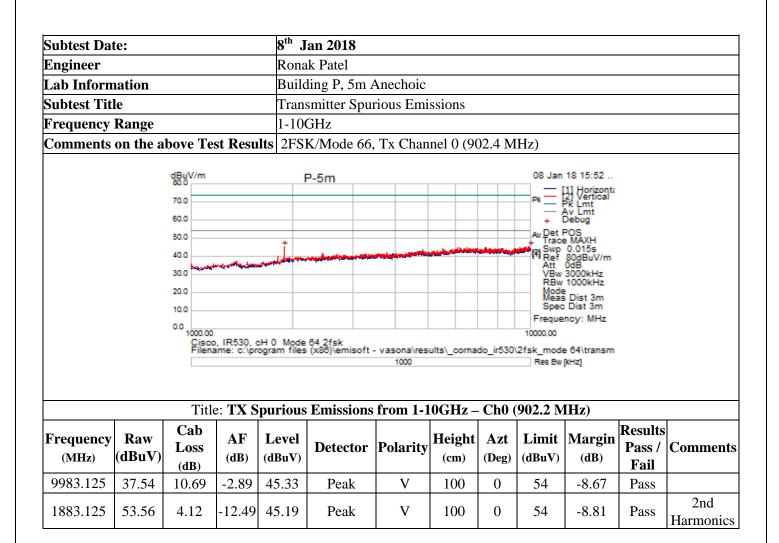
Test Pro	ocedure
1. Using	Vasona software, configure the spectrum analyzer as shown above (be sure to enter
all losse	s between the transmitter output and the spectrum analyzer).
2. Place	the radio in continuous transmit mode. Maximize Turntable (find worst case table
angle) a	nd maximize Antenna (find worst case height).
3. Use the	he peak marker function to determine the maximum amplitude level.
4. Cente	The marker frequency and perform final measurement in Quasi-peak (≤ 1 Ghz) and
Average	e (above 1 GHz)
4. Recor	rd at least 6 highest readings for the worst case operating mode.
Ref. C6	3.10-2013 section 4 / CISPR16-1-1
Test Pa	rameters
Span = I	Entire frequency range or segment if necessary.
Referen	ce Level = 80 dBuV
RBW =	100 kHz (less than or equal to 1 GHz); 1 MHz (above 1 GHz)
$VBW \geq$	3 x RBW
Detector	r = Peak & Quasi-Peak (frequency range 30 MHz to 1 GHz);
	Peak & Average (frequency range above 1 GHz);
	Changing VBW to 10 Hz for average measurement
Sweep 7	Time = Couple

. The system was evaluated up to 10 GHz

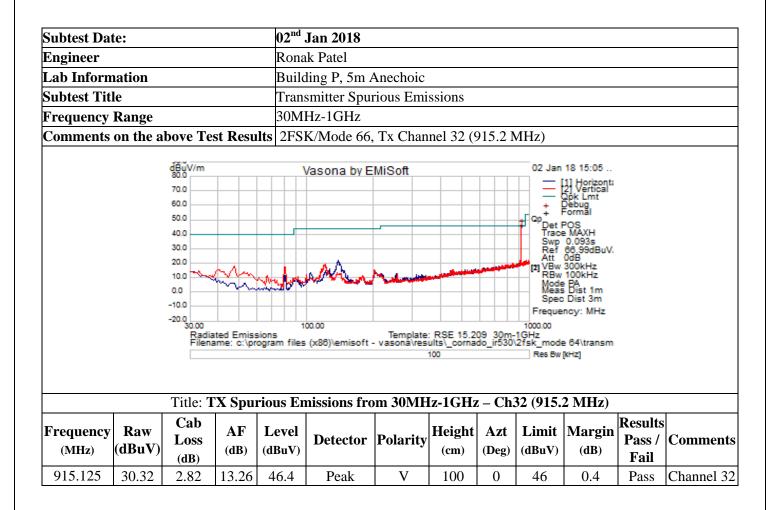

. These data represent the worst case mode data for all supported operating modes and antennas.

- For emissions below 1000 MHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector function properly adjusted for factors such as pulse desensitization as required, with an equal or greater measurement bandwidth relative to the applicable CISPR quasi-peak bandwidth.
- Above 1000 MHz, measurements shall be performed using an average detector with a minimum Resolution bandwidth of 1 MHz

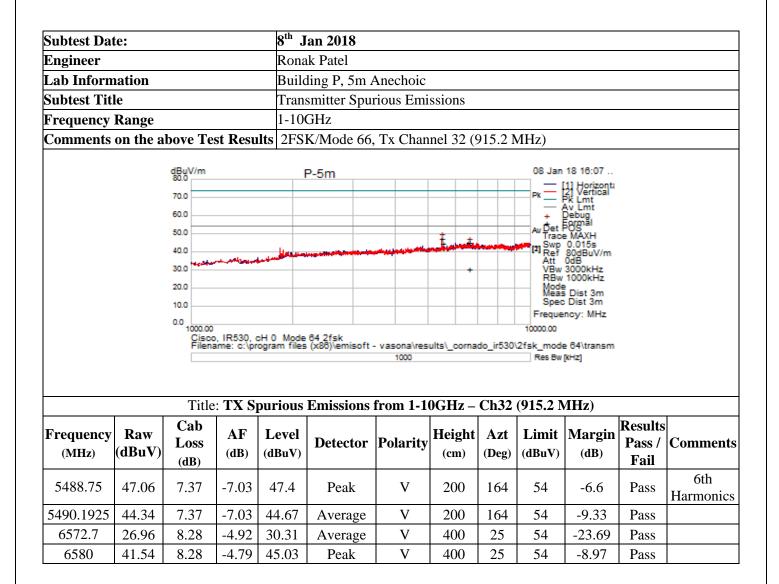
Note2: The data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements


B.1.3 Transmitter Radiated Spurious Emissions Graphical Data Results

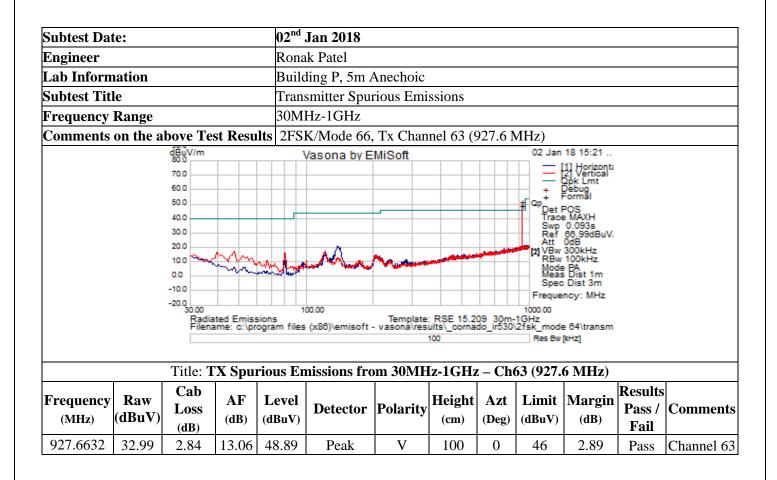
Subtest Date:	02 nd Jan 2018
	Page No: 92 of 121
This docume	nt is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version.
	Cisco Systems, Inc. Company Confidential


ահահո

Page No: 93 of 121


11 11 11

Page No: 94 of 121



11111

Page No: 95 of 121

Page No: 96 of 121

11111

Page No: 97 of 121

Subtest Dat	te:			8 th J	an 2018							
Engineer		Ronak Patel										
Lab Inform	nation			Build	Building P, 5m Anechoic							
Subtest Tit	le			Tran	Transmitter Spurious Emissions							
Frequency	Range			1-10	GHz							
Comments	on the a	bove T	est Resu	lts 2FS	K/Mode 66,	, Tx Chan	nel 63 (9	927.6 N	MHz)			
dBuV/m 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 00 1000.00 Cisco, IR530, oH 0 Filename: c:\program					P-5m	- vasona\res	‡ ‡ + ults_corna	do_ir530	PK Aw Öet Trace Swp [2] Swp Att VBw RBw Mode Meas Spec Freque	0.015s 80dBuV/m 0dB 3000kHz 1000kHz Dist 3m Dist 3m ncy: MHz e 64\transm		
		Tit	le: TX S	purious	Emissions	from 1-1	0GHz –	Ch63	(927.6 N	AHz)		
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)		Polarity	Height (cm)	Azt (Deg)		,	Results Pass / Fail	Comments
1855	54.54	4.08	-12.9	45.73	Peak	V	100	60	54	-8.27	Pass	2nd Harm
1855.7253	52.98	4.08	-12.89	44.18	Average	V	100	60	54	-9.82	Pass	2nd Harm
5567.5 49.06 7.4 -6.62 49.85 Peak					Peak	V	200	235	54	-4.16	Pass	6th Harm
5567.0105							Pass	6th Harm				
6298.75	42.27	8.09	-5.09	45.27	Peak	V	300	117	54	-8.73	Pass	
6298.335	26.72	8.09	-5.09	29.71	Average	V	300	117	54	-24.29	Pass	

uluulu cisco

Page No: 98 of 121

Subtest Date:	02 nd Jan 2018							
Engineer	Ronak Patel	Ronak Patel						
Lab Information	Building P, 5m	Building P, 5m Anechoic						
Subtest Title	Transmitter Spu	Transmitter Spurious Emissions						
Frequency Range	30MHz-1GHz							
Comments on the above Test Result	OQPSK/Mode	192, Tx C	hannel () (902.1	2 MHz)			
	100.00 Is am files (x88)\emisoft	Template vasona\res	100	do_ir530	+ Cop Cop Cop Cop Cop Cop Cop Cop	[kHz]		
	ous Emissions fr	om 30MI	Iz-1GH	z – Ch	0 (902.2	1	1	
	Level Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
902.39375 28.45 2.79 13.11	4.34 Peak	V	150	0	46	-1.66	Pass	Channel 0

uhuhu cisco

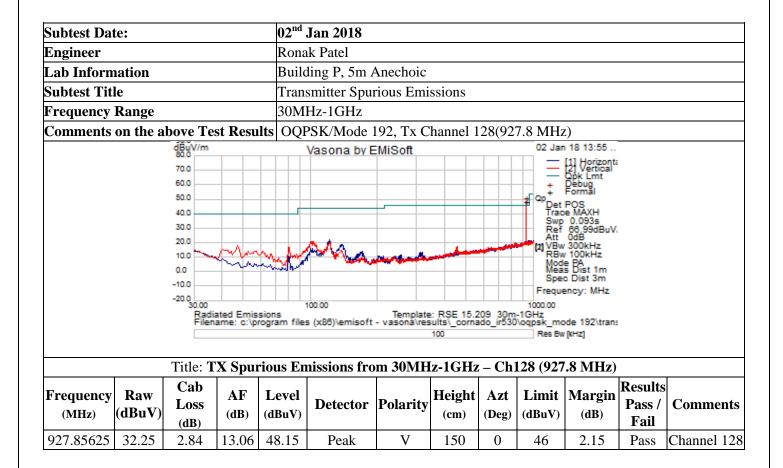
Page No: 99 of 121

Subtest Dat	te:			8 th J	an 2018							
Engineer				Rona	ık Patel							
Lab Inform	nation			Build	ling P, 5m A	Anechoic						
Subtest Titl	le			Tran	smitter Spur	rious Emi	ssions					
Frequency	Range			1-10	GHz							
Comments	on the a	bove Te	st Resu	lts OQI	PSK/Mode 1	192, Tx C	hannel ((902.)	2 MHz)			
		dBuV/m							08 Jan	18 16:53		
		dBuV/m 80.0		'	P-5m				1	1] Horizonta		
		70.0							PK	2] Vertical Pk Lmt Av Lmt		
		60.0								Debug ormal		
		50.0		Ŧ			. ŧ.		Av Det Trace	MAXH 0.015s		
		40.0		- Alana					Att	80dBuV/m 0dB		
		30.0							RBw	3000kHz 1000kHz		
		20.0								Dist 3m Dist 3m		
		10.0								ncy: MHz		
		1000.00 Cisco	, IR530, d	H 0 Mode	64 2fsk				10000.00			
		Filena	ame: c:\pr	ogram files	(x86)\emisoft ·	vasona\res 1000	ults_corna	do_ir530	2fsk_mode Res Bw			
		Title	e: TX S	purious	Emissions	from 1-1	0GHz –	Ch0 (902.2 M	(Hz)		
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
1855	55.18	4.08	-12.9	46.36	Peak	V	100	62	54	-7.64	Pass	2nd Harm
1855.5325	53.15	4.08	-12.89	44.34	Average	V	100	62	54	-9.66	Pass	
5567.5	47	7.4	-6.62	47.78	Peak	V	200	234	54	-6.22	Pass	6th Harmon
5566.7584	46.71	7.4	-6.62	47.49	Average	V	200	234	54	-6.51	Pass	
9921.25	37.32	10.66	-2.83	45.15	Peak	Н	300	290	54	-8.85	Pass	
9890.36	24.21	10.61	-2.97	31.86	Average	Н	300	290	54	-22.14	Pass	

uhuhu cisco

Page No: 100 of 121

Subtest Date:			02 nd .	Jan 2018							
Engineer			Rona	Ronak Patel							
Lab Information			Build	ling P, 5m A	Anechoic						
Subtest Title			Trans	smitter Spur	rious Emi	ssions					
Frequency Range			30M	Hz-1GHz							
Comments on the	above Te	st Resu	lts OQF	SK/Mode	192, Tx C	hannel 6	64 (915	MHz)			
	Filena		sions ogram files	/asona by E	Template	100	do_ir530	+ Cop Ref Att (2) VBw Mode Meas Spec Freque 1000.00 1GHz coppsk_moo Res Bw	[kHz]		
	-	ГХ Ѕрџ	irious E	missions fr	om 30M	Hz-1GH	z – Cł	<u>164 (915</u>	· · · ·	1	
Frequency (MHz) (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
915.125 33.45	2.82	13.26	49.53	Peak	V	100	0	46	3.53	Pass	Channel 64


uhuhu cisco

Page No: 101 of 121

Subtest Date:	9 th Jan 2018					
Engineer	Ronak Patel					
Lab Information	Building P, 5m Anechoic					
Subtest Title	Transmitter Spurious Emi	ssions				
Frequency Range	1-10GHz					
Comments on the above Test Results	OQPSK/Mode 192, Tx C	hannel 64 (915 MHz)				
10 × 11		00 1- 10 00 0	-			
dĐưV/m 80.0	P-5m	09 Jan 18 09:3				
70.0		Pk — [1] Horiz Pk — [2] Vertic Pk Lmt				
60.0		Av Lmt + Debug				
50.0		Av + Debug				
40.0	A DESCRIPTION OF THE OWNER OWNER	HTrace MAXH Swp 0.015s				
30.0		Ref 80dBuV Att 0dB	//m			
20.0		VBw 3000kH:				
10.0		RBw 1000kH Mode Meas Dist 3n				
0.0		Meas Dist 3n Spec Dist 3n	n			
-10.0		Frequency: MH	łz.			
-20.0		10000.00				
Cisco, IR530, cH Filename: c:\progr) Mode 04 215K am files (x80)\emisoft - vasona\res	ults_cornado_ir530\2fsk_mode 64\tran	ism			
	1000	Res Bw [kHz]				
Title: TX Sp	rious Emissions from 1-1	10GHz – Ch64 (915 MHz)				
Encourage Day Cab	ovol	Height Agt Limit Mar	Results			
Loss	evel Detector Polarity	Height Azt Limit Marg	^{gin} Pass / Comments			
(MHz) (dBuV) Loss (dB) ((B) ((B	BuV)	(cm) (Deg) (dBuV) (dB) Fail			
	4.72 Peak V	100 251 54 -9.2	9 Pass			

uhuhu cisco

Page No: 102 of 121

11 11 11

Page No: 103 of 121

Subtest Dat	te:			8 th J	an 2018							
Engineer				Rona	onak Patel							
Lab Inform	nation			Build	Building P, 5m Anechoic							
Subtest Tit	le			Tran	Transmitter Spurious Emissions							
Frequency	Range			1-10	GHz							
Comments	on the a	bove Te	st Resu	lts OQI	PSK/Mode	192, Tx C	hannel 1	28 (92	27.8 MH	z)		
		dBuV/m 80.0			P-5m					18 16:53 1] Horizont: 2] Vertical PK Lmt		
		60.0								Pk Lmt Av Lmt Debug		
		50.0		+			+		Av Det	argnäl MAXH		
		40.0		t.						0.015s 80dBuV/m		
		30.0	100.000 000 0000							0dB 3000kHz 1000kHz		
		20.0							Mode	Dist 3m		
		10.0								Dist 3m ncy: MHz		
		0.0 1000.00 Cisco	IR530 d	H 0 Mode	64 2fek				10000.00			
		Filena	ame: c:\pr	ogram files	(x88)\emisoft	 vasona\res 1000 	ults_corna	do_ir530	2fsk_mode Res Bw			
			TX Sp	urious l	Emissions f	rom 1-10	GHz – (Ch128	(927.8]	MHz)	1	
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
1855	55.18	4.08	-12.9	46.36	Peak	v	100	62	54	-7.64	Pass	2nd Harmonics
1855.5325	53.15	4.08	-12.89	44.34	Average	V	100	62	54	-9.66	Pass	
5567.5	47	7.4	-6.62	47.78	Peak	v	200	234	54	-6.22	Pass	6th Harmonics
5566.7584	46.71	7.4	-6.62	47.49	Average	V	200	234	54	-6.51	Pass	
9921.25	37.32	10.66	-2.83	45.15	Peak	Н	300	290	54	-8.85	Pass	
9890.36	24.21	10.61	-2.97	31.86	Average	Н	300	290	54	-22.14	Pass	

uhuhu cisco

Page No: 104 of 121

Subtest Date:	02 nd Jan 2018
Engineer	Ronak Patel
Lab Information	Building P, 5m Anechoic
Subtest Title	Transmitter Spurious Emissions
Frequency Range	30MHz-1GHz
Comments on the above Test Result	ts OFDM/Mode 146, Tx Channel 0(902.8 MHz)
-10.0 -20.0 -20.0 Radiated Emissi	Vasona by EMiSoft 02 Jan 18 15:42 Image: Construction of the second seco
Title: TX Spu	rious Emissions from 30MHz-1GHz – Ch0(902.8 MHz)
	Level dBuV) Detector Polarity Height (cm) (Deg) (dBuV) (dBuV) (dB) (dB) (dB) (dB) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm
902.3938 25.22 2.79 13.11	41.11 Peak H 150 0 46 -4.89 Pass Channel 0

uhuhu cisco

Page No: 105 of 121

Subtest Date:	9 th Jan 2018							
Engineer	Ronak Patel	Ronak Patel						
Lab Information	Building P, 5m	Building P, 5m Anechoic						
Subtest Title	Transmitter Spu	rious Emi	ssions					
Frequency Range	1-10GHz							
Comments on the above Test Result	s OFDM/Mode 1	46, Tx Ch	annel 0	(902.8	MHz)			
dBuV/m	P-5m				09 Jan	18 10:04		
70.0						1] Horizonta 2] Vertical Pk Lmt Av Lmt Debug		
50.0 40.0 30.0		****			"Swp	POS MAXH 0.015s 80dBuV/m		
20.0					VBw RBw	0dB 3000kHz 1000kHz Dist 3m		
-10.0					Freque	Dist 3m ncy: MHz		
1000.00 Cisco, IR530, cH Filename: c:\prog	0 Mode 64 2fsk ram files (x88)\emisoft	vasona\res 1000	ults_cornad	do_ir530\	10000.00 2fsk_mode Res Bw			
Title: TX Sp	urious Emissions	from 1-1	0GHz –	Ch0 ((902.8 M	IHz)		
	Level dBuV) Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
9971.875 36.89 10.7 -2.87	14.72 Peak	Н	150	232	54	-9.28	Pass	

uhuhu cisco

Page No: 106 of 121

Subtest Date:	02 nd	Jan 2018							
Engineer	Rona	Ronak Patel							
Lab Information	Buil	uilding P, 5m Anechoic							
Subtest Title	Tran	smitter Spur	rious Emi	ssions					
Frequency Range	30M	Hz-1GHz							
Comments on the above Test Re	sults OFI	DM/Mode 14	46, Tx Ch	annel 15	5(902.8	8 MHz)			
dBuV/m 800 700 600 500 400 300 200 10.0 -100 -200 3000 Radiated Er Filename: c	nissions	Vasona by E	Template	e: RSE 15.2 sults_corna 100	209_30m ado_ir530	Cop Trac Swp Ref Att 100.00 Freque 1000.00		Ĩ	
Title: TX S	purious E	missions fr	om 30Ml	Hz-1GH	z – Ch	15(914.	8 MHz)		
Frequency Raw (dBuV) Cab Loss (dB)		Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
915.125 29.29 2.82 13.2	6 45.37	Peak	Н	150	0	46	-0.63	Pass	Channel 15

uhuhu cisco

Page No: 107 of 121

Subtest Dat	te:			9 th J	an 2018									
Engineer				Rona	Ronak Patel									
Lab Inforn	nation			Build	Building P, 5m Anechoic									
Subtest Tit	le			Trans	smitter Spur	rious Emi	ssions							
Frequency	Range			1-10	GHz									
Comments	on the a	bove Te	st Resu	lts OFD	M/Mode 1	46, Tx Ch	annel 15	5(914.8	8 MHz)					
		dBuV/m		F	P-5m				09 Jan	18 11:41				
		70.0							PK	1] Horizonta 2] Vertical Pk Lmt				
		60.0							+	Av Lmt				
		50.0		ŧ			.			Debug orgnal				
		40.0 30.0		-			+		(¥) Trace Swp	0.015s				
		20.0							Att	80dBuV/m 0dB				
		10.0			VBw 3000kHz RBw 1000kHz									
		0.0								Dist 3m Dist 3m				
		-10.0								ncy: MHz				
		-20.0							10000.00	-				
		Cisco Filena	o, IR530, c ame: c:\pr	H 0 Mode	64 2fsk (x86)\emisoft	vasona\res	ults_corna	do_ir530	2fsk_mode	e 64\transm				
						1000			Res Bw	[kHz]				
		Title	· TX S	minus	Emissions	from 1-1	OGH7_	Ch15	(914 8 N	/H 7)				
				Juiious			00112 -		(714.0 I	,	D a gurl 4 g			
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments		
1826.875	52.56	4.05	-13.19	43.42	Peak	v	150	51	54	-10.58	Pass	2nd Harmonics		
1829.3441	43.46	4.05	-13.17	34.34	Average	v	150	50	54	-19.66	Pass	2nd Harmonics		
5488.75	46.22	7.37	-7.03	46.56	Peak	V	200	178	54	-7.44	Pass	6th Harmonics		
5488.3475	35.08	7.37	-7.03	35.42	Average	V	200	177	54	-18.59	Pass	6th Harmonics		

uhuhu cisco

Page No: 108 of 121

Subtest Date:	02 nd Jan 2018										
Engineer			Rona	Ronak Patel							
Lab Information			Build	ling P, 5m A	Anechoic						
Subtest Title			Trans	smitter Spur	rious Emi	ssions					
Frequency Range			30M	Hz-1GHz							
Comments on the al	bove Tes	st Resu	lts OFE	DM/Mode 14	46, Tx Ch	annel 30)(926.8	3 MHz)			
		tted Emis:	sions	Vasona by E	Template	e: RSE 15.2 ults'_corna	209 30m do_ir530	Att Cop Cop Cop Cop Cop Cop Cop Cop		i	
	Title: 7	TX Spu	rious E	missions fr	om 30MI	Hz-1GH	z – Ch	30(926.	8 MHz)		
Frequency Raw (MHz) (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
927.25 29.4	2.84	13.06	45.3	Peak	V	100	0	46	-0.7	Pass	Channel 30

uhuhu cisco

Page No: 109 of 121

Subtest Dat	te:			9 th Jan 2018								
Engineer				Rona	ak Patel							
Lab Inform	nation			Build	Building P, 5m Anechoic							
Subtest Tit	le			Trans	smitter Spur	rious Emi	ssions					
Frequency	Range			1-10	GHz							
Comments on the above Test Results OFDM/Mode 146, Tx Channel 30(926.8 MHz)												
		dBuV/m 80.0 70.0 60.0 50.0			P-5m				Pk	18 11:00 1 Horizont: 2 Vertical PK Lmt Av Lmt Debug Borgnal 50 gnal		
		40.0 30.0 20.0 10.0 -10.0 -20.0 1000.00	~~*******	,					Kar Swp Ref Att VBw RBw Mode Spec	e MAXH 0.015s 80dBuV/m 0dB 3000kHz 1000kHz i Dist 3m i Dist 3m ncy: MHz		
		Filena	ime: c:\pr	•	64 2fsk (x86)\emisoft Emissions	1000	-	-	Res Bw	[kHz]		
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
1855	52.49	4.08	-12.9	43.67	Peak	v	150	51	54	-10.33	Pass	2nd Harmonics
1853.7513	50.85	4.08	-12.91	42.02	Average	v	150	54	54	-11.98	Pass	2nd Harmonics
6326.875	41.47	8.11	-4.97	44.61	Peak	Н	200	305	54	-9.39	Pass	7th Harmonics
6364.845	27	8.12	-4.84	30.29	Average	Н	200	305	54	-23.71	Pass	7th Harmonics

uhuhu cisco

Page No: 110 of 121

Appendix C: AC Power Line Conducted Emissions

FCC 15.207

Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.

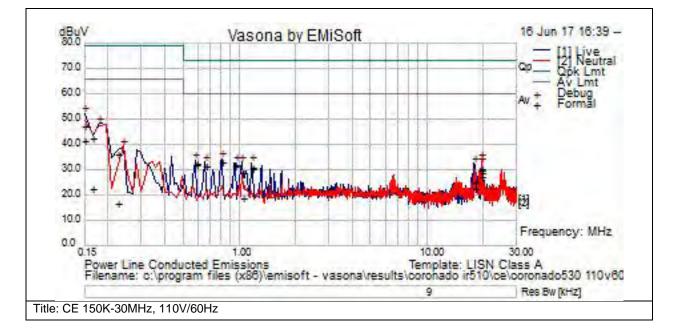
RSS-Gen 8.8 Issue 4

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz-30 MHz, shall not exceed the limits .

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown below. The more stringent limit applies at the frequency range boundaries.

Page No: 111 of 121

Test Number: 201740 Spec ID: 2680								
Basic Standard	Applied to	Class	Freq Range	Test Details / Comments				
CFR47 Part 15 Subpart B	AC Power Line	A	0.15MHz - 30MHz	U.S line voltages must be used. 110V 60Hz and/or 208V 60Hz (only when the product has a dedicated 208V input). FCC test method ANSI C63-4 2014.				
Operating Mode	Mode: 1, IR530 -	Mode: 1, IR530 - WW Formal Test						
Power Input	110, 60Hz (+/-20%	6)						
Overall Result	Pass	Pass						
Comments	No further comments							
Deviation	There were no dev	There were no deviations from the specification						


System Number	Description	Samples	System under test	Support equipment
1	EUT-IR530	S02	\checkmark	
2	Support Equipment (IR510, CGM, ASR1k switch, Isolator switch, Rackmount computer with Monitor, Laptop, Keyboard and Mouse)	S01, S03, S04, S06, S07, S08, S09, S10, S11, S12, S13 and S14		
3	Ixia Traffic Generator	S05		\checkmark

Subtest Number: 201740 - 1			Subtest Date: 31-Jul-2017				
Engineer	Chakravarthy S	Chakravarthy Sulva					
Lab Information	Building P, Shie	eld Room 1					
Subtest Results	•						
Line Under Test	[A] AC Power						
Transducer	LISN						
Subtest Result	Pass						
Highest Frequency	30.0	30.0					
Lowest Frequency	0.15						
Comments on the above Test Results	EUT powered b	oy 110V/60Hz.					
Environmental Conditio							
Temperature: (59 to 95)F		69.3F					
Humidity: (10 to 75)%:		50.7%					
Comments:							

Page No: 112 of 121

Equipment use	d:				
Equipment No	Manufacturer	Model	Description	Last Cal	Next Cal Due Date
CIS002464	Fischer Custom Communications	FCC-801- M2-16	CDN, 2-LINE, 16A	10-MAR-17	10-MAR-18
CIS005687	Fluke	73 III	Digital Multimeter	03-NOV-16	03-NOV-17
CIS007704	Fischer Custom Communications	FCC-LISN- 50/250-50-2- 01	LISN	05-MAY-17	05-MAY-18
CIS007705	Fischer Custom Communications	FCC-LISN- 50/250-50-2- 01	LISN	02-JUN-17	02-JUN-18
CIS018963	York	CNE V	Comparison Noise Emitter, 30 - 1000MHz	Cal Not Required	N/A
CIS020913	Fischer Custom Communications	FCC-LISN- PA-NEMA- 5-15	AC Adapter	05-MAY-17	05-MAY-18
CIS021135	Fischer Custom Communications	FCC-LISN- PA-NEMA- 5-15	AC Adapter	02-JUN-17	02-JUN-18
CIS029960	Fischer Custom Communications	FCC-LISN- 50/250-50-2- 01	LISN	09-MAR-17	09-MAR-18
CIS029962	Fischer Custom Communications	FCC-LISN- PA-NEMA- 5-15	Power Adaptor, Polarized 120VAC	09-MAR-17	09-MAR-18
CIS035236	Stanley	33-696	5 Meter Tape Measure	Cal Not Required	N/A
CIS045050	Rohde & Schwarz	ESCI	EMI Test Receiver	09-NOV-16	09-NOV-17
CIS046719	Bird	5-T-MB	5W 50 Ohm BNC Termination 4GHz	28-NOV-16	28-NOV-17
CIS047408	Teseq	CCN 1000-1	Harmonic/Flicker Test System -AC Power Analyzer	04-JAN-17	04-JAN-18
CIS047409	Teseq	NSG 1007	Harmonic/Flicker Test System -AC Power Source	04-JAN-17	04-JAN-18
CIS049468	Coleman	RG223	BNC 25 ft Cable	10-MAR-17	10-MAR-18
CIS049481	Coleman	RG223	BNC 2ft Cable	12-APR-17	12-APR-18
CIS049532	TTE	H785-150K- 50-21378	High Pass Filter	03-MAY-17	03-MAY-18
CIS049555	Bird	5-T-MB	5W 50 Ohm BNC Termination 4GHz	10-AUG-16	10-AUG-17
CIS049560	Bird	5-T-MB	5W 50 Ohm BNC Termination 4GHz	10-AUG-16	10-AUG-17
CIS051750	Bird	5-T-MB	5W 50 Ohm BNC Termination 4GHz	10-AUG-16	10-AUG-17
CIS054231	Newport	iBTHP-5- DB9	5 inch Temp/RH/Press Sensor w/20ft cable	09-FEB-17	09-FEB-18

Page No: 113 of 121

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

սիսիս

Page No: 114 of 121

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measure ment Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.150219	20.1	21.2	0.1	41.3	Av	L	66	-24.7	Pass	
0.807888	13.2	19.9	0	33.2	Av	L	60	-26.8	Pass	
0.588189	12.3	19.9	0	32.2	Av	L	60	-27.8	Pass	
0.954222	11.8	19.9	0	31.7	Av	L	60	-28.3	Pass	
0.661464	11.5	19.9	0	31.4	Av	L	60	-28.6	Pass	
1.175	10.5	19.9	0	30.4	Av	L	60	-29.6	Pass	
19.475	8	20.4	0.1	28.6	Av	Ν	60	-31.4	Pass	
0.150219	25.9	21.2	0.1	47.1	Qp	L	79	-31.9	Pass	
19.591	6.5	20.4	0.1	27.1	Av	Ν	60	-32.9	Pass	
0.165432	21.5	21	0.1	42.6	Qp	L	79	-36.4	Pass	
17.842	2	20.4	0.1	22.5	Av	L	60	-37.5	Pass	
0.807888	13.3	19.9	0	33.2	Qp	L	73	-39.8	Pass	
0.588189	12.4	19.9	0	32.3	Qp	L	73	-40.7	Pass	
1.041	-1	19.9	0	18.9	Av	L	60	-41.1	Pass	
0.954222	11.9	19.9	0	31.8	Qp	L	73	-41.2	Pass	
0.661464	11.6	19.9	0	31.5	Qp	L	73	-41.5	Pass	
1.175	10.8	19.9	0	30.8	Qp	L	73	-42.2	Pass	
19.475	9.8	20.4	0.1	30.4	Qp	Ν	73	-42.6	Pass	
0.223602	15.2	20.7	0	36	Qp	Ν	79	-43	Pass	
19.591	9.3	20.4	0.1	29.9	Qp	Ν	73	-43.1	Pass	
0.165432	1.1	21	0.1	22.2	Av	L	66	-43.8	Pass	
1.041	8.9	19.9	0	28.8	Qp	L	73	-44.2	Pass	
17.842	4.6	20.4	0.1	25.1	Qp	L	73	-47.9	Pass	
0.223602	-4	20.7	0	16.7	Av	Ν	66	-49.3	Pass	

uhuhu cisco

Page No: 115 of 121

Appendix D:List of Test Equipment Used to perform the test

	Radiated Testing								
Equip#	Manufacturer/ Model	Description	Last Cal	Next Due					
42013	ETS Lindgren/3117	Double Ridged Horn Antenna	04 th May 2017	04 th May 2018					
45096	CISCO/TH0118	Mast Mount Preamplifier Array, 1-18GHz	31 st Oct 2017	31 st Oct 2018					
47300	Keysight (Agilent/HP)/ N9038A	EMI Receiver	28 th Mar 2017	28 th Mar 2018					
49563	HUBER + SUHNER/ Sucoflex 106A	Coaxial Cable, 8m	21 st Aug 2017	21 st Aug 2018					
21117	MICRO-COAX/UFB311A-0- 2484-520520	Coaxial Cable-18Ghz	16 th Aug 2017	16 th Aug 2018					
25662	MICRO-COAX/UFB311A-1- 0840-504504	Coaxial Cable, 84.0 in. to 18GHz	21 st Aug 2017	21 st Aug 2018					
56128	PASTERNACK/PE6072	SMA 50 Ohm Termination	1 st Dec 2017	1 st Dec 2018					
35235	LUFKIN/HY1035CME	Tape Measure	n/a	n/a					
30654	SUNOL SCIENCES/JB1	Combination Antenna, 30MHz-2GHz	19 th Jan 2018	19 th Jan 2019					
40597	CISCO/Above 1GHz Site Cal	1GHz Cispr Site Verification	26 th Sep 2017	26 th Sep 2018					
8448	CISCO/NSA CAL	NSA Chamber	06 th Oct 2017	06 th Oct 2018					
8171	Keysight (Agilent/HP)/ 8491B Opt 010	ATTENUATOR	26 th April 2017	26 th April 2018					
	Co	onducted testing							
49516	Keysight (Agilent/HP)/ N9030A- 550	PXA Signal Analyzer, 3Hz to 50GHz	02 nd Nov 2017	02 nd Nov 2018					
54402	HUBER + SUHNER/Sucoflex 102	RF Cable 2.4mm - N Type 18GHz	20 th Apr 2017	20 th Apr 2018					
55603	MINI-CIRCUITS/BW-S10- 2W263	SMA 10dB Attenuator	31 st Aug 2017	31 st Aug 2018					
54367	AEROFLEX/40AH2W-20	SMA Attenuator, 20 dB 40GHz	21 st Apr 2017	21 st Apr 2018					
46385	Micro-Tronics/HPM16310	Highpass Filter	26 th Jun 2017	26 th Jun 2018					

Page No: 116 of 121

Appendix E: Abbreviation Key and Definitions

The following table defines abbreviations used within this test report.

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
ТАР	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	Emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10 ³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	А	Amp
L3	Line 3	μΑ	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	M	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
Ν	Neutral Line	R	Return
S	Supply	AC	Alternating Current

Page No: 117 of 121

Appendix F: Software Used to Perform Testing

սիսիս

EMIsoft Vasona, version 6.024

Page No: 118 of 121

սիսիս

cisco

Appendix G: Test Procedures

Measurements were made in accordance with

- ANSI C63.10:2013,
- 558074 D01 DTS Meas Guidance v04
- RSS Gen Issue 4
- Public Notice DA Public notice DA-00 705

Page No: 119 of 121

Appendix H:Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

Page No: 120 of 121

Worst case modes were selected by ANSI C63.10 2013 Section 5.6.2.2

For devices with multiple operating modes, measurements on the middle channel can be used to determine the worst-case mode(s). The worst-case modes are as follows:

a) Band edge requirements—Measurements on the mode with the widest bandwidth can be used to cover the same channel (center frequency) on modes with narrower bandwidth that have the same or lower output power for each modulation family (e.g., OFDM and direct sequence spread spectrum).

b) Spurious emissions—Measure the mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum).

c) In-band PSD—Measurements on the mode with the narrowest bandwidth can be used to cover all modes within the same modulation family of an equal or lower output power provided the result is less than 50% of the limit.

Page No: 121 of 121