# Test Report C9124AXD-B

Cisco Catalyst C9124AX Series 802.11ax Access Point 5GHz Auxiliary Radio

FCC ID: LDK-HTIAK2282

## 5250-5350 MHz

Against the following Specifications:

CFR47 Part 15.407



**Cisco Systems** 170 West Tasman Drive

San Jose, CA 95134

| J.J.C.                                 | Shut                             |
|----------------------------------------|----------------------------------|
| Author: Johanna Knudsen                | Approved By: Sam Kim             |
| Tested By: Julian Land, Said Abdelwafi | Title: Manager, Radio Compliance |
|                                        | Revision: 1                      |

This report replaces any previously entered test report under EDCS – **21574902**. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 11644123.

| This test report has been electronically authorized and archived using the CISCO Engi                                                                                                                                                                                                                                                                                                                | neering Document Control system. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| SECTION 1: OVERVIEW                                                                                                                                                                                                                                                                                                                                                                                  | 3                                |
| SECTION 2: ASSESSMENT INFORMATION                                                                                                                                                                                                                                                                                                                                                                    | 4                                |
| <ul> <li>2.1 GENERAL</li> <li>2.2 DATE OF TESTING.</li> <li>2.3 REPORT ISSUE DATE</li> <li>2.4 TESTING FACILITIES</li> <li>2.5 EQUIPMENT ASSESSED (EUT).</li> <li>2.6 EUT DESCRIPTION.</li> </ul>                                                                                                                                                                                                    |                                  |
| SECTION 3: RESULT SUMMARY                                                                                                                                                                                                                                                                                                                                                                            | 8                                |
| 3.1 Results Summary Table                                                                                                                                                                                                                                                                                                                                                                            | 8                                |
| SECTION 4: SAMPLE DETAILS                                                                                                                                                                                                                                                                                                                                                                            |                                  |
| APPENDIX A: EMISSION TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                    | 11                               |
| Conducted Test Setup Diagram<br>A.1 Duty Cycle<br>A.2 99% and 26dB Bandwidth<br>A.3 Maximum Conducted Output Power<br>A.4 Power Spectral Density<br>A.5 Conducted Spurious Emissions<br>A.6 Conducted Bandedge<br>A.6 Conducted Bandedge<br>APPENDIX B: EMISSION TEST RESULTS<br>Radiated Emission Setup Diagram-Below 1G<br>B.1 Radiated Spurious Emissions<br>B.2 Radiated Emissions 30MHz to 1GHz |                                  |
| B.3 AC CONDUCTED EMISSIONS                                                                                                                                                                                                                                                                                                                                                                           |                                  |
| APPENDIX C: LIST OF TEST EQUIPMENT USED TO PERFORM THE TES                                                                                                                                                                                                                                                                                                                                           |                                  |
| APPENDIX D: ABBREVIATION KEY AND DEFINITIONS                                                                                                                                                                                                                                                                                                                                                         | 51                               |
| APPENDIX E: PHOTOGRAPHS OF TEST SETUPS                                                                                                                                                                                                                                                                                                                                                               |                                  |
| APPENDIX F: SOFTWARE USED TO PERFORM TESTING                                                                                                                                                                                                                                                                                                                                                         | 52                               |
| APPENDIX G: TEST PROCEDURES                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| APPENDIX H: SCOPE OF ACCREDITATION (A2LA CERTIFICATE NU                                                                                                                                                                                                                                                                                                                                              | MBER 1178-01)52                  |
| APPENDIX I: TEST ASSESSMENT PLAN                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| APPENDIX J: WORST CASE JUSTIFICATION                                                                                                                                                                                                                                                                                                                                                                 |                                  |

## Section 1: Overview

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

## Specifications:

CFR47 Part 15.407

#### Section 2: Assessment Information

#### 2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

| Temperature          | 15°C to 35°C (54°F to 95°F)          |
|----------------------|--------------------------------------|
| Atmospheric Pressure | 860mbar to 1060mbar (25.4" to 31.3") |
| Humidity             | 10% to 75*%                          |

 All AC testing was performed at one or more of the following supply voltages: 110V 60 Hz (+/-20%)

#### **Units of Measurement**

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB] The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

#### Measurement Uncertainty Values

| voltage and power measurements    | ± 2 dB     |
|-----------------------------------|------------|
| conducted EIRP measurements       | ± 1.4 dB   |
| radiated measurements             | ± 3.2 dB   |
| frequency measurements            | ± 2.4 10-7 |
| temperature measurements          | ± 0.54°    |
| humidity measurements             | ± 2.3%     |
| DC and low frequency measurements | ± 2.5%     |

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

| 30 MHz - 300 MHz   | +/- 3.8 dB |
|--------------------|------------|
| 300 MHz - 1000 MHz | +/- 4.3 dB |
| 1 GHz - 10 GHz     | +/- 4.0 dB |
| 10 GHz - 18GHz     | +/- 8.2 dB |
| 18GHz - 26.5GHz    | +/- 4.1 dB |
| 26.5GHz - 40GHz    | +/- 3.9 dB |

Conducted emissions (expanded uncertainty, confidence interval 95%)

| 30 MHz – 40GHz | +/- 0.38 dB |
|----------------|-------------|
|                |             |

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

2.2 Date of testing

24-FEB-2021 through 10-MAR-2021

#### 2.3 Report Issue Date

26-MAR-2021

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled.

#### 2.4 Testing facilities

This assessment was performed by:

#### **Testing Laboratory**

Cisco Systems, Inc. 125 West Tasman Drive (Building P) San Jose, CA 95134 USA

#### Headquarters

Cisco Systems, Inc., 170 West Tasman Drive San Jose, CA 95134, USA

#### **Registration Numbers for Industry Canada**

| Cisco System Site       | Address                    | Site Identifier    |
|-------------------------|----------------------------|--------------------|
| Building P, 10m Chamber | 125 West Tasman Dr         | Company #: 2461N-2 |
|                         | San Jose, CA 95134         |                    |
| Building P, 5m Chamber  | 125 West Tasman Dr         | Company #: 2461N-1 |
|                         | San Jose, CA 95134         |                    |
| Building 7, 5m Chamber  | 425 E. Tasman Drive        | Company #: 2461N-3 |
|                         | San Jose, California 95134 |                    |
|                         | United States              |                    |

#### **Test Engineers**

Said Abdelwafi, Julian Land

## 2.5 Equipment Assessed (EUT)

C9124AXI

#### 2.6 EUT Description

The Cisco Catalyst 9124AX Series outdoor access points are next-generation Wi-Fi 6 access points encased in a rugged and robust design that service providers and enterprises can easily deploy.

The radio supports the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst-case data for all modes.

802.11a - Non HT20, One Antenna, 6 to 54 Mbps, 1ss

The following antennas are supported by this product series. Please note, the antenna information has been provided by the customer (the Cisco business unit). The data included in this report represent the worst-case data for all antennas.

| Frequency             | Antenna Name |                 | Antenna Gain          |  |
|-----------------------|--------------|-----------------|-----------------------|--|
| 2.4GHz & 5GHz (Wi-Fi) | Antenna 1    | TX/RX: internal | 9dBi@2.4GHz 9dBi@5GHz |  |
| 2.4GHz & 5GHz (Wi-Fi) | Antenna 2    | TX/RX: internal | 9dBi@2.4GHz 9dBi@5GHz |  |
| 2.4GHz & 5GHz (Wi-Fi) | Antenna 3    | TX/RX: internal | 9dBi@2.4GHz 9dBi@5GHz |  |
| 2.4GHz & 5GHz (Wi-Fi) | Antenna 4    | TX/RX: internal | 9dBi@2.4GHz 9dBi@5GHz |  |
| BLE                   | Antenna T    | TX/RX: internal | 4dBi                  |  |
| 2.4GHz & 5GHz (Aux)   | Antenna A    | TX/RX: internal | 9dBi@2.4GHz 9dBi@5GHz |  |
| 2.4GHz & 5GHz (Aux)   | Antenna B    | RX: internal    | 9dBi@2.4GHz 9dBi@5GHz |  |

## Ithaca (Internal Antenna) Model C9124AXD-x

## Section 3: Result Summary

## 3.1 Results Summary Table

#### **Conducted emissions**

| Basic<br>Standard          | Technical Requirements / Details                                                                                                                                                                                                                                                                                                                            | Result |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                            |                                                                                                                                                                                                                                                                                                                                                             | D      |
| 15.407                     | <b>99% &amp; 26 dB Bandwidth</b> :<br>The 99% occupied bandwidth is the frequency bandwidth such that, below<br>its lower and above its upper frequency limits, the mean powers are each<br>equal to 0.5% of the total mean power of the given emission. There is no<br>limit for 99% OBW.                                                                  | Pass   |
|                            | The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.                                                                                    |        |
| 15.407                     | Output Power:<br>For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum<br>conducted output power over the frequency bands of operation shall not<br>exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB                                                                                                                            | Pass   |
|                            | <ul><li>emission bandwidth in megahertz.</li><li>If transmitting antennas of directional gain greater than 6 dBi are used,</li><li>both the maximum conducted output power and the maximum power</li><li>spectral density shall be reduced by the amount in dB that the directional</li><li>gain of the antenna exceeds 6 dBi.</li></ul>                    | 1 455  |
| 15.407                     | Power Spectral DensityThe maximum power spectral density shall not exceed 11 dBm in any 1megahertz band. If transmitting antennas of directional gain greater than 6dBi are used, both the maximum conducted output power and themaximum power spectral density shall be reduced by the amount in dBthat the directional gain of the antenna exceeds 6 dBi. | Pass   |
| 15.407                     | Conducted Spurious Emissions / Band-Edge:<br>2) For transmitters operating in the 5.25-5.35 GHz band: All emissions<br>outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27<br>dBm/MHz.                                                                                                                                                    | Pass   |
| 15.407<br>15.205<br>15.209 | <b>Restricted band:</b><br>Unwanted emissions must comply with the general field strength limits set forth in §15.209.                                                                                                                                                                                                                                      | Pass   |

| Basic Standard             | Technical Requirements / Details                                                                                                                                                                                                   | Result                                                      |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 15.407<br>15.205<br>15.209 | <b>TX Spurious Emissions:</b><br>Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the field strength limits table in this section. | Not<br>covered<br>by the<br>scope of<br>this test<br>report |
| 15.207                     | AC conducted Emissions:<br>U-NII devices using an AC power line are required to comply also with<br>the conducted limits set forth in §15.207.                                                                                     | Not<br>covered<br>by the<br>scope of<br>this test<br>report |

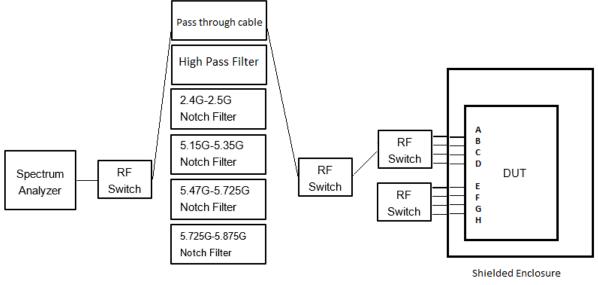
## Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing.

#### 4.1 Sample Details

| Sample<br>No. | Equipment<br>Details           | Manufacturer           | Hardware Rev. | Serial Number |
|---------------|--------------------------------|------------------------|---------------|---------------|
| S01           | C9124AXI-B<br>(used in Rack 9) | Foxconn<br>(for Cisco) | 074-125082-01 | FOC243919ZU   |
| S02           | C9124AXI-B<br>(used in Rack 4) | Foxconn<br>(for Cisco) | 074-125082-01 | FOC243919PK   |

## 4.2 System Details


| System # | Description          | Samples |
|----------|----------------------|---------|
| 1        | EUT (used in Rack 9) | S01     |
| 2        | EUT (used in Rack 4) | S02     |

## 4.3 Mode of Operation Details

| Mode# | Description          | Comments                                                         |
|-------|----------------------|------------------------------------------------------------------|
| 1     | Continuous Transmit  | AP Running Image: 8.8.1.10                                       |
|       | Testing using Rack 9 | Cisco AP Software, (ap1g6a), [sjc-ads-                           |
|       |                      | 9175:/nobackup/rahulsi6/ithaca/c175_throttle/router]             |
|       |                      | Compiled Wed Feb 17 19:47:58 PST 2021                            |
| 2     | Continuous Transmit  | AP Running Image: 8.8.1.10                                       |
|       | Testing using Rack 4 | Cisco AP Software, (ap1g6a), [cheetah-                           |
|       |                      | build9:/san1/BUILD/workspace/c175_throttle_mfg/label/mfg-ap1g6a] |
|       |                      | Compiled Sun Mar 7 19:58:16 GMT 2021                             |

## **Appendix A: Emission Test Results**

## Conducted Test Setup Diagram



8-port radio shown here Some radios will fewer transmit paths

## A.1 Duty Cycle

## **Duty Cycle Test Requirement**

#### From KDB 789033 D02 General UNII Test Procedures New Rules v02r01

#### B. Duty Cycle (x), Transmission Duration (T), and Maximum Power Control Level

1. All measurements are to be performed with the EUT transmitting at 100 percent duty cycle at its maximum power control level; however, if 100 percent duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.

## **Duty Cycle Test Method**

#### From KDB 789033 D02 General UNII Test Procedures New Rules v02r01:

#### B. Duty Cycle (x), Transmission Duration (T), and Maximum Power Control Level

The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW  $\ge$  EBW if possible; otherwise, set RBW to the largest available value. Set VBW  $\ge$  RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T  $\le$  16.7 microseconds.)

## **Duty Cycle Test Information**

| Tested By :                 | Date of testing:                |
|-----------------------------|---------------------------------|
| Said Abdelwafi, Julian Land | 24-FEB-2021 through 10-MAR-2021 |
| Test Result : PASS          |                                 |

#### Test Equipment

See Appendix C for list of test equipment

## Duty Cycle Data Table

Duty Cycle table and screen captures are shown below for power/psd modes.

| Frequency<br>(MHz) | Mode                   | Data Rate<br>(Mbps) | Duty Cycle<br>Correction<br>Factor<br>(dB) |
|--------------------|------------------------|---------------------|--------------------------------------------|
| 5260               | Non HT20, 6 to 54 Mbps | 6.0                 | 0.13139                                    |
| 5280               | Non HT20, 6 to 54 Mbps | 6.0                 | 0.11619                                    |
| 5300               | Non HT20, 6 to 54 Mbps | 6.0                 | 0.11619                                    |
| 5320               | Non HT20, 6 to 54 Mbps | 6.0                 | 0.11619                                    |

## **Data Screenshots**

5260 MHz: Non HT20, 6 to 54 Mbps

| Spec<br>Swej   | trum Ana<br>ot SA     | lyzer 1             | •      | Spectrum Analyzer 2<br>Occupied BW                                                                             | +                                |                                                         |                     |                                        |                                     | \$                    | Frequency              | · · · <del>深</del> |
|----------------|-----------------------|---------------------|--------|----------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------|---------------------|----------------------------------------|-------------------------------------|-----------------------|------------------------|--------------------|
| KE'<br>RL      | /SIGH1<br>·≁·         | Couplir<br>Align: ( | ng: DC | Input Ζ: 50 Ω<br>Corrections: On<br>Freq Ref: Int (S)<br>NFE: Full                                             | #Atten: 30 dB<br>µW Path: Standa | PNO: Fast<br>ard Gate: Off<br>IF Gain: Lo<br>Sig Track: | Avg Ho<br>w Trig: F | vpe: Log-Powe<br>old: 1/1<br>iree Run  | Pr 123456<br>A WWWWW<br>P N N N N N |                       | Frequency<br>00000 GHz | Settings           |
| 1 Sp           | ectrum                |                     | v      |                                                                                                                |                                  |                                                         |                     | Mk                                     | r4 116.0 μs                         |                       | 0000 Hz                |                    |
|                | e/Div 10              | dB                  |        |                                                                                                                | Ref Level 15.00                  | dBm                                                     |                     | -                                      | 19.208 dBm                          |                       | ept Span               |                    |
| Log<br>5.00    |                       | m pro               | maged  | Mana was a second and a second a | and have been been               | man man                                                 | mmmy m              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Mary and and and                    | Zer                   | o Span                 |                    |
| -5.00<br>-15.0 |                       | 4                   |        |                                                                                                                | 1<br>2                           |                                                         |                     |                                        |                                     | FI                    | ull Span               |                    |
| -25.0          |                       |                     |        |                                                                                                                |                                  |                                                         |                     |                                        |                                     | Start Fre             |                        |                    |
| -35.0<br>-45.0 |                       |                     |        |                                                                                                                |                                  |                                                         |                     |                                        |                                     | L                     | 00000 GHz              |                    |
| -55.0          |                       | ¥                   |        |                                                                                                                |                                  |                                                         | <mark>P</mark>      |                                        |                                     | Stop Fre              |                        |                    |
| -65.0          |                       |                     |        |                                                                                                                |                                  |                                                         |                     |                                        |                                     | 5.26000               | 00000 GHz              |                    |
| -75.0          |                       |                     |        |                                                                                                                |                                  |                                                         |                     |                                        |                                     | AU                    | TO TUNE                |                    |
|                | er 5.2600<br>BW 3.0 N |                     | SHz    |                                                                                                                | #Video BW 100                    | ) kHz                                                   |                     | Sween 1 (                              | Span 0 Hz<br>00 ms (1001 pts)       | CF Step               |                        |                    |
|                | rker Table            | 11 12               | •      |                                                                                                                |                                  |                                                         |                     | Oncep 1.                               |                                     | 3.00000               |                        |                    |
|                |                       |                     |        |                                                                                                                |                                  |                                                         |                     |                                        |                                     | Aut                   | 0                      |                    |
|                | Mode                  | Trace               | Scale  |                                                                                                                | Y                                | Function                                                | Function V          | Nidth Fu                               | unction Value                       | Mar                   | ו                      |                    |
|                | N<br>2 N              | 1                   | t<br>t | 409.0 μs<br>418.0 μs                                                                                           |                                  |                                                         |                     |                                        |                                     | Freq Off              | set                    |                    |
|                |                       | 1                   | t      | 107.0 µs                                                                                                       |                                  |                                                         |                     |                                        |                                     | 0 Hz                  |                        |                    |
|                |                       | 1                   | t      | 116.0 µs                                                                                                       | -19.21 dBm                       |                                                         |                     |                                        |                                     | X Axis S              | calo                   |                    |
| E E            |                       |                     |        |                                                                                                                |                                  |                                                         |                     |                                        |                                     | Loc                   |                        |                    |
|                |                       |                     | _      |                                                                                                                |                                  |                                                         |                     |                                        |                                     | 📒 Lin                 |                        |                    |
|                | 5                     | 2                   |        | <b>?</b> Feb 25, 2021 5:20:47 AM                                                                               | $\square $                       | 9                                                       | 7.02, 0.13          |                                        |                                     | Signal Ti<br>(Span Zo |                        |                    |

Antenna A

## A.2 99% and 26dB Bandwidth

## 99% and 26dB Bandwidth Test Requirement

There is no requirement for the value of bandwidth. However, the 26dB BW (EBW) is used to calculate the power limits in 15.407 (a) (2). Power measurements are made using the 99% Bandwidth as the integration bandwidth.

### 99% and 26dB Bandwidth Test Procedure

The 99-percent occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission. Measurement of the 99-percent occupied bandwidth is required only as a condition for using the optional band-edge measurement techniques described in section II.G.3.d). Measurements of 99-percent occupied bandwidth may also optionally be used in lieu of the EBW to define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in section II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a).

#### **Ref. KDB 789033 D02 General UNII Test Procedures New Rules v02r01** Section D. 99 Percent Occupied Bandwidth

 ANSI C63.10: 2013

 99% BW

 Test Parameters

 1. Set center frequency to the nominal EUT channel center frequency.

 2. Set span = 1.5 times to 5.0 times the OBW.

 3. Set RBW = 1 % to 5 % of the OBW

 4. Set VBW ≥ 3 · RBW

 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

 6. Use the 99 % power bandwidth function of the instrument (if available).

#### **Ref KDB 789033 D02 General UNII Test Procedures New Rules v02r01** Section C. Measurement Bandwidth, Section 1

## 26 BW

X dB BW = -26dB (using the OBW function of the spectrum analyzer)

Emission Bandwidth (EBW)

a) Set RBW = approximately 1% of the emission bandwidth.

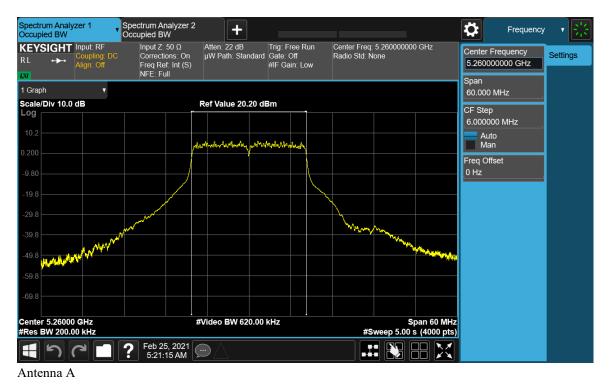
b) Set the VBW > RBW.

c) Detector = Peak.

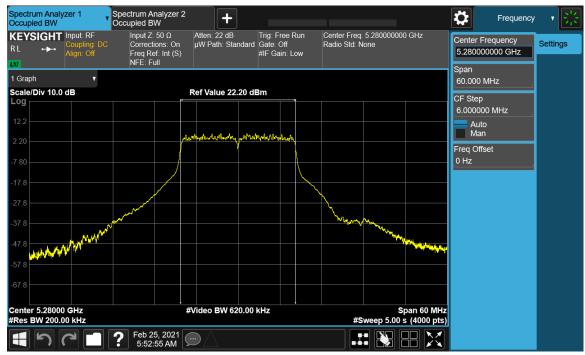
d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

| Tested By :                 | Date of testing:                |
|-----------------------------|---------------------------------|
| Said Abdelwafi, Julian Land | 24-FEB-2021 through 10-MAR-2021 |
| Test Result : PASS          |                                 |

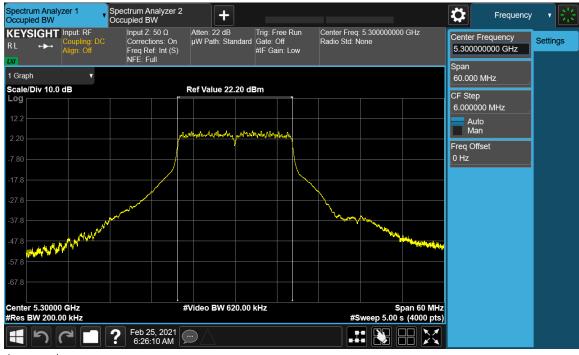

#### **Test Equipment**

See Appendix C for list of test equipment


| Frequency<br>(MHz) | Mode                   | Data Rate<br>(Mbps) | 26dB<br>BW<br>(MHz) | 99% BW<br>(MHz) |
|--------------------|------------------------|---------------------|---------------------|-----------------|
| 52(0               | Neg UT20 ( to 54 Mbre  |                     | 21.8                | 16 492          |
| 5260               | Non HT20, 6 to 54 Mbps | 6.0                 | 21.8                | 16.483          |
| 5280               | Non HT20, 6 to 54 Mbps | 6.0                 | 21.7                | 16.483          |
| 5300               | Non HT20, 6 to 54 Mbps | 6.0                 | 21.8                | 16.487          |
| 5320               | Non HT20, 6 to 54 Mbps | 6.0                 | 21.9                | 16.492          |

## **Data Screenshots**

5260 MHz: Non HT20, 6 to 54 Mbps




#### 5280 MHz: Non HT20, 6 to 54 Mbps



Antenna A

#### 5300 MHz: Non HT20, 6 to 54 Mbps



Antenna A

## A.3 Maximum Conducted Output Power

## **Maximum Conducted Output Power Test Requirement**

**15.407 (2)** For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. ... If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

**15.407** (5) The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Referencing "644545 D03 Guidance for IEEE 802.11ac v01", covering signals that cross the boundary between two adjacent UNII bands, the FCC describes a procedure to measure EBW, power, and PSD in each UNII band. For the case of a 160MHz signal equally distributed between UNII-1 and UNII-2a, we apply the following alternate procedure. Rather than measure:

- The half of the signal in UNII-1, measured against the 30dBm power / 17dBm/MHz PSD limits
- The half of the signal in UNII-2a, measured against the 24dBm power / 11dBm/MHz PSD limits

If a 160MHz signal (equally distributed between the two bands) produces a total power of 27dBm across the entire 160 MHz EBW, the total power in each band would be half of the total, or 24dBm (which meets both the UNII-1 and UNII-2a limits), and would have a PSD no greater than 11dBm/MHz in either sub-band.

Given these facts, we have measured the complete 160 MHz EBW (across both sub-bands) against 27dBm power and 11dBm/MHz PSD limits, rather than individual sub band measurements against the individual sub band limits."

## Maximum Conducted Output Power Test Procedure

#### Ref. KDB 789033 D02 General UNII Test Procedures New Rules v02r01

ANSI C63.10: 2013

#### Maximum Conducted Output Power

Test Procedure

1. Set the radio in the continuous transmitting mode at full power

2. Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer band-power measurement function with band limits set equal to the EBW or the OBW band edges.

3. Capture graphs and record pertinent measurement data.

#### Ref. KDB 789033 D02 General UNII Test Procedures New Rules v02r01

2. Measurement using a Spectrum Analyzer or EMI Receiver (SA), (d) Method SA-2

#### **Maximum Conducted Output Power**

#### Test parameters

Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

(i) Measure the duty cycle, x, of the transmitter output signal as described in section II.B.

(ii) Set span to encompass the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(iii) Set RBW = 1 MHz.

(iv) Set VBW  $\geq$  3 MHz.

(v) Number of points in sweep  $\geq$  2 Span / RBW. (This ensures that bin-to-bin spacing is  $\leq$  RBW/2, so that narrowband signals are not lost between frequency bins.)

(vi) Sweep time = auto.

(vii) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(viii) Do not use sweep triggering. Allow the sweep to "free run".

(ix) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed to ensure that the average accurately represents the true average over the on and off periods of the transmitter.

(x) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth)

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-andsum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. ANSI C63.10 section 14.3.2.2

| Tested By :                 | Date of testing:                |
|-----------------------------|---------------------------------|
| Said Abdelwafi, Julian Land | 24-FEB-2021 through 10-MAR-2021 |
| Test Result : PASS          |                                 |

#### **Test Equipment**

See Appendix C for list of test equipment

## Maximum Output Power

Frequency 5260 MHz

|                        | Paths    | related Antenna Gain<br>() | Max Power<br>m)   | y Cycle           | Total Tx Channel Power<br>(dBm) | it<br>II)      | gin            |
|------------------------|----------|----------------------------|-------------------|-------------------|---------------------------------|----------------|----------------|
| Mode                   | Tx Paths | Correlated<br>(dBi)        | Tx 1 Max<br>(dBm) | Duty Cycl<br>(dB) | Total Tx (<br>(dBm)             | Limit<br>(dBm) | Margin<br>(dB) |
| Non HT20, 6 to 54 Mbps | 1        | 9                          | 17.3              | 0.13              | 17.4                            | 21             | 3.57           |

## Frequency 5280 MHz

|                        |          | ain                              |                         |                    | ver -                           |                |                |
|------------------------|----------|----------------------------------|-------------------------|--------------------|---------------------------------|----------------|----------------|
| Mode                   | Tx Paths | Correlated Antenna Gain<br>(dBi) | Tx 1 Max Power<br>(dBm) | Duty Cycle<br>(dB) | Total Tx Channel Power<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| Non HT20, 6 to 54 Mbps | 1        | 9                                | 17.3                    | 0.12               | 17.4                            | 21             | 3.63           |

Frequency 5300 MHz

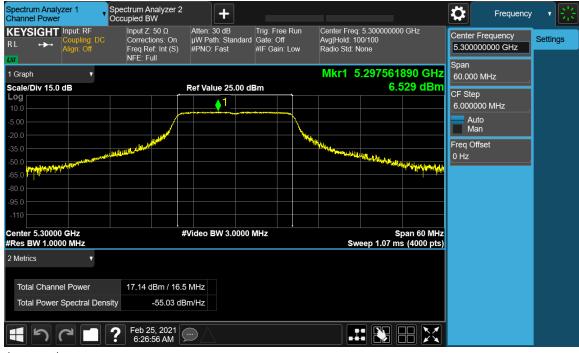
|                        | Paths    | Correlated Antenna Gain<br>(dBi) | Tx 1 Max Power<br>(dBm) | Duty Cycle<br>(dB) | Total Tx Channel Power<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|------------------------|----------|----------------------------------|-------------------------|--------------------|---------------------------------|----------------|----------------|
| Mode                   | <u>к</u> | <u>ਹੋਰ</u>                       | <u>유</u> 명              | (gp)               | <u> </u>                        | 21             | (qB)           |
| Non HT20, 6 to 54 Mbps | 1        | 9                                | 17.1                    | 0.12               |                                 | 21             | 3.74           |

## Frequency 5320 MHz

| Frequency 5320 MHz     |          |                             |                         |                    |                                 |                |                |
|------------------------|----------|-----------------------------|-------------------------|--------------------|---------------------------------|----------------|----------------|
|                        |          | Antenna Gain                | Power                   |                    | Total Tx Channel Power<br>(dBm) |                |                |
| Mode                   | Tx Paths | Correlated Antenna<br>(dBi) | Tx 1 Max Power<br>(dBm) | Duty Cycle<br>(dB) | Total Tx Ch:<br>(dBm)           | Limit<br>(dBm) | Margin<br>(dB) |
| Non HT20, 6 to 54 Mbps | 1        | 9                           | 17.1                    | 0.12               | 17.2                            | 21             | 3.83           |

## **Data Screenshots**

5260 MHz: Non HT20, 6 to 54 Mbps


| Spectrum Analyzer 1<br>Channel Power                            | Spectrum Analyzer 2<br>Occupied BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                                            |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               | Frequency            | · · *    |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------|----------------------|----------|
| KEYSIGHT       Input: RF         R L       ↔         Align: Off | Input Ζ: 50 Ω<br>Corrections: On<br>Freq Ref: Int (S)<br>NFE: Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Atten: 30 dB<br>µW Path: Stand<br>#PNO: Fast | Trig: Free<br>lard Gate: Off<br>#IF Gain: |           | Center Fred<br>Avg Hold: 1<br>Radio Std: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) GHz                                    | Center Fr<br>5.260000<br>Span | requency<br>0000 GHz | Settings |
| 1 Graph 🔹                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           |           | Mkr1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.261882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | 60.000 N                      | ИHz                  |          |
| Scale/Div 15.0 dB                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ref Value 23.0                               | 0 dBm                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 309 dBm                                  | CF Step                       |                      |          |
| Log<br>8.00                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | <u> </u>                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 6.00000                       | 0 MHz                |          |
| -7.00                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           | $\lambda$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Auto<br>Man                   |                      |          |
| -22.0                                                           | . Louis and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                           | NINTHA    | Mara .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Freq Offs                     |                      |          |
| -37.0                                                           | La result and a state of the second state of t |                                              |                                           |           | and the second s | Minister of the State of the St |                                          | 0 Hz                          | el .                 |          |
| -52.0<br>-67.0                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an a |                               |                      |          |
| -82.0                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | '                                        |                               |                      |          |
| -97.0                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               |                      |          |
| -112                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           | +         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               |                      |          |
| Center 5.26000 GHz<br>#Res BW 1.0000 MHz                        | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Video BW 3.00                                | 00 MHz                                    | •         | Sw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S<br>veep 1.07 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pan 60 MHz<br>s (4000 pts)               |                               |                      |          |
| 2 Metrics v                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               |                      |          |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               |                      |          |
| Total Channel Power                                             | 17.30 dBm / 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MHz                                          |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               |                      |          |
| Total Power Spectral Den                                        | -54.87 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m/Hz                                         |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               |                      |          |
| <b>1</b> 2 2 1                                                  | Feb 25, 2021<br>5:22:01 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HX                                       |                               |                      |          |
| Antenna A                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               |                      |          |

## 5280 MHz: Non HT20, 6 to 54 Mbps

| Spectrum Analyzer 1<br>Channel Power                   | Spectrum Analyzer 2<br>Occupied BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Frequency                                                     | - 湯      |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------|----------|
| RL +++ Align: Off                                      | Input Z: 50 Ω<br>Corrections: On<br>Freq Ref: Int (S)<br>NFE: Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µW Path: Standard  | Trig: Free Run<br>Gate: Off<br>#IF Gain: Low | Center Freq: 5.28000<br>Avg Hold: 100/100<br>Radio Std: None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000 GHz                       | Center Frequency<br>5.280000000 GHz                           | Settings |
| 1 Graph ▼<br>Scale/Div 15.0 dB                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ref Value 25.00 dE | 2m                                           | Mkr1 5.2761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81545 GHz<br>6.751 dBm         | Span<br>60.000 MHz                                            |          |
| Log                                                    | The second secon |                    |                                              | high the same of the day to be for the day to be for the day to be for the same of the day to be for the day to be day to be day to be for the day to be for the d |                                | CF Step<br>6.000000 MHz<br>Auto<br>Man<br>Freq Offset<br>0 Hz |          |
| -50.0<br>-65.0<br>-80.0<br>-95.0<br>-110               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maratenianen hydere            |                                                               |          |
| Center 5.28000 GHz<br>#Res BW 1.0000 MHz               | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Video BW 3.0000 M  | MHz                                          | Sweep 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Span 60 MHz<br>/ ms (4000 pts) |                                                               |          |
| 2 Metrics  Total Channel Power Total Power Spectral De | 17.25 dBm / 16.5<br>nsity -54.92 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                               |          |
| <b>1</b> 560                                           | Feb 25, 2021 5:53:41 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                               |          |

Antenna A

#### 5300 MHz: Non HT20, 6 to 54 Mbps



Antenna A

## A.4 Power Spectral Density

## **Power Spectral Density Test Requirement**

15.407 (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

15.407 (5) The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Referencing "644545 D03 Guidance for IEEE 802.11ac v01". covering signals that cross the boundary between two adjacent UNII bands, the FCC describes a procedure to measure EBW, power, and PSD in each UNII band. For the case of a 160MHz signal equally distributed between UNII-1 and UNII-2a, we apply the following alternate procedure.

Rather than measure:

- The half of the signal in UNII-1, measured against the 30dBm power / 17dBm/MHz PSD limits •
  - The half of the signal in UNII-2a, measured against the 24dBm power / 11dBm/MHz PSD limits

If a 160MHz signal (equally distributed between the two bands) produces a total power of 27dBm across the entire 160 MHz EBW, the total power in each band would be half of the total, or 24dBm (which meets both the UNII-1 and UNII-2a limits), and would have a PSD no greater than 11dBm/MHz in either sub-band.

Given these facts, we have measured the complete 160 MHz EBW (across both sub-bands) against 27dBm power and 11dBm/MHz PSD limits, rather than individual sub band measurements against the individual sub band limits."

## **Power Spectral Density Test Procedure**

## Ref. KDB 789033 D02 General UNII Test Procedures New Rules v02r01

## F. Maximum Power Spectral Density (PSD)

## **Power Spectral Density**

#### Test Procedure

The rules requires "maximum power spectral density" measurements where the intent is to measure the maximum value of the time average of the power spectral density measured during a period of continuous transmission. 1. Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)

2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.

3. Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add  $10 \log(1/x)$ , where x is the duty cycle, to the peak of the spectrum.

b) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.

4. The result is the Maximum PSD over 1 MHz reference bandwidth.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v02r01 2. Measurement using a Spectrum Analyzer or EMI Receiver (SA), (d) Method SA-2

**Power Spectral Density** 

Test parameters

Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

(i) Measure the duty cycle, x, of the transmitter output signal as described in section II.B.

(ii) Set span to encompass the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(iii) Set RBW = 1 MHz.

(iv) Set VBW  $\geq$  3 MHz.

(v) Number of points in sweep  $\ge 2$  Span / RBW. (This ensures that bin-to-bin spacing is  $\le$  RBW/2, so that narrowband signals are not lost between frequency bins.)

(vi) Sweep time = auto.

(vii) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(viii) Do not use sweep triggering. Allow the sweep to "free run".

(ix) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed to ensure that the average accurately represents the true average over the on and off periods of the transmitter.

(x) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth)

#### F. Maximum Power Spectral Density (PSD)

2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.

3. Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add  $10 \log(1/x)$ , where x is the duty cycle, to the peak of the spectrum.

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-andsum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. (See ANSI C63.10 section 14.3.2.2)

| Tested By :                 | Date of testing:                |
|-----------------------------|---------------------------------|
| Said Abdelwafi, Julian Land | 24-FEB-2021 through 10-MAR-2021 |
| Test Result · PASS          |                                 |

#### Test Equipment

See Appendix C for list of test equipment

## **Power Spectral Density**

Frequency 5260 MHz

| Mode                   | Tx Paths | Correlated Antenna Gain<br>(dBi) | Tx 1 PSD<br>(dBm/MHz) | Duty Cycle<br>(dB) | Total PSD<br>(dBm/MHz) | Limit<br>(dBm/MHz) | Margin<br>(dB) |
|------------------------|----------|----------------------------------|-----------------------|--------------------|------------------------|--------------------|----------------|
| Non HT20, 6 to 54 Mbps | 1        | 9                                | 6.8                   | 0.13               | 6.9                    | 8                  | 1.06           |

## Frequency 5280 MHz

|                        | st       | Correlated Antenna Gain<br>(dBi) | SD<br>AHz)            | ycle               | SD<br>AHz)             | (HZ)               |                |
|------------------------|----------|----------------------------------|-----------------------|--------------------|------------------------|--------------------|----------------|
| Mode                   | Tx Paths | 1                                | Tx 1 PSD<br>(dBm/MHz) | Duty Cycle<br>(dB) | Total PSD<br>(dBm/MHz) | Limit<br>(dBm/MHz) | Margin<br>(dB) |
| Non HT20, 6 to 54 Mbps | 1        | 9                                | 6.8                   | 0.12               | 6.9                    | 8                  | 1.13           |

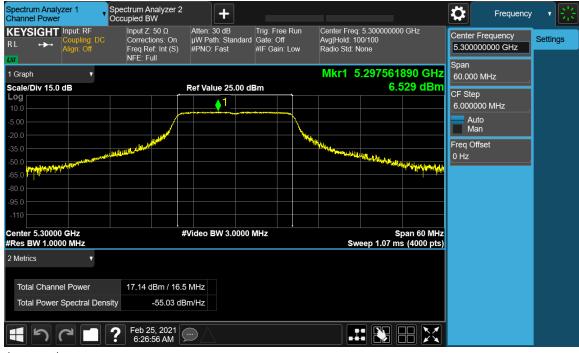
| Frequency 5300 MHz     |       |                     |                       |                |                        |                    |                |
|------------------------|-------|---------------------|-----------------------|----------------|------------------------|--------------------|----------------|
|                        |       |                     |                       |                |                        |                    |                |
|                        |       |                     |                       |                |                        |                    |                |
|                        |       |                     |                       |                |                        |                    |                |
|                        |       |                     |                       |                |                        |                    |                |
|                        |       |                     |                       |                |                        |                    |                |
|                        |       |                     |                       |                |                        |                    |                |
|                        |       | lain                |                       |                |                        |                    |                |
|                        |       | na G                |                       |                |                        |                    |                |
|                        |       | Antenna Gain        |                       |                |                        |                    |                |
|                        |       |                     | (Z                    | e              | ( <b>z</b> )           | ( <b>z</b> )       |                |
|                        | Paths | late                | DSD<br>AHM            | Cycle          | DSD<br>MHM             | HM                 | .9             |
|                        | x Pa  | Correlated<br>(dBi) | Tx 1 PSD<br>(dBm/MHz) | Duty (<br>(dB) | Total PSD<br>(dBm/MHz) | Limit<br>(dBm/MHz) | Margin<br>(dB) |
| Mode                   | Tx    |                     |                       |                |                        |                    |                |
| Non HT20, 6 to 54 Mbps | 1     | 9                   | 6.5                   | 0.12           | 6.6                    | 8                  | 1.35           |

### Frequency 5320 MHz

| ths<br>lated Antenna Gain<br>SSD<br>MHz)<br>Cycle<br>Cycle<br>BSD<br>MHz)<br>MHz)<br>MHz)<br>MHz)      | Frequency 5520 MILL |          |                                  |                       | 1                 |                        |                    |                |
|--------------------------------------------------------------------------------------------------------|---------------------|----------|----------------------------------|-----------------------|-------------------|------------------------|--------------------|----------------|
| Mode     Tx Pat       Limit     Limit       Margi     Margi                                            | Mode                | Tx Paths | Correlated Antenna Gain<br>(dBi) | Tx 1 PSD<br>(dBm/MHz) | Duty Cycle<br>dB) | Total PSD<br>(dBm/MHz) | Limit<br>(dBm/MHz) | Margin<br>(dB) |
| Non HT20, 6 to 54 Mbps         1         9         6.5         0.12         6.6         8         1.36 |                     |          |                                  |                       |                   |                        |                    | 1 36           |

## **Data Screenshots**

5260 MHz: Non HT20, 6 to 54 Mbps


| Spectrum Analyzer 1<br>Channel Power                            | Spectrum Analyzer 2<br>Occupied BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                                            |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               | Frequency            | · · *    |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------|----------------------|----------|
| KEYSIGHT       Input: RF         R L       ↔         Align: Off | Input Ζ: 50 Ω<br>Corrections: On<br>Freq Ref: Int (S)<br>NFE: Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Atten: 30 dB<br>µW Path: Stand<br>#PNO: Fast | Trig: Free<br>lard Gate: Off<br>#IF Gain: |           | Center Fred<br>Avg Hold: 1<br>Radio Std: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) GHz                                    | Center Fr<br>5.260000<br>Span | requency<br>0000 GHz | Settings |
| 1 Graph 🔹                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           |           | Mkr1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.261882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | 60.000 N                      | ИHz                  |          |
| Scale/Div 15.0 dB                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ref Value 23.0                               | 0 dBm                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 309 dBm                                  | CF Step                       |                      |          |
| Log<br>8.00                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | <u> </u>                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 6.00000                       | 0 MHz                |          |
| -7.00                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           | $\lambda$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Auto<br>Man                   |                      |          |
| -22.0                                                           | . Louis and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                           | NINTHA    | Mara .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Freq Offs                     |                      |          |
| -37.0                                                           | La result and a state of the second state of t |                                              |                                           |           | and the second s | Minister of the State of the St |                                          | 0 Hz                          | el .                 |          |
| -52.0<br>-67.0                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an a |                               |                      |          |
| -82.0                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | '                                        |                               |                      |          |
| -97.0                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               |                      |          |
| -112                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           | +         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               |                      |          |
| Center 5.26000 GHz<br>#Res BW 1.0000 MHz                        | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Video BW 3.00                                | 00 MHz                                    | •         | Sw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S<br>veep 1.07 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pan 60 MHz<br>s (4000 pts)               |                               |                      |          |
| 2 Metrics v                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               |                      |          |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               |                      |          |
| Total Channel Power                                             | 17.30 dBm / 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MHz                                          |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               |                      |          |
| Total Power Spectral Den                                        | -54.87 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m/Hz                                         |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               |                      |          |
| <b>1</b> 00                                                     | Feb 25, 2021<br>5:22:01 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HX                                       |                               |                      |          |
| Antenna A                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                               |                      |          |

## 5280 MHz: Non HT20, 6 to 54 Mbps

| Spectrum Analyzer 1<br>Channel Power                   | Spectrum Analyzer 2<br>Occupied BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Frequency                                                     | - 湯      |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------|----------|
| RL +++ Align: Off                                      | Input Z: 50 Ω<br>Corrections: On<br>Freq Ref: Int (S)<br>NFE: Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µW Path: Standard  | Trig: Free Run<br>Gate: Off<br>#IF Gain: Low | Center Freq: 5.28000<br>Avg Hold: 100/100<br>Radio Std: None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000 GHz                       | Center Frequency<br>5.280000000 GHz                           | Settings |
| 1 Graph ▼<br>Scale/Div 15.0 dB                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ref Value 25.00 dE | 2m                                           | Mkr1 5.2761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81545 GHz<br>6.751 dBm         | Span<br>60.000 MHz                                            |          |
| Log                                                    | The second secon |                    |                                              | high the same of the day to be for the day to be for the day to be for the same of the day to be for the day to be day to be day to be for the day to be for the d |                                | CF Step<br>6.000000 MHz<br>Auto<br>Man<br>Freq Offset<br>0 Hz |          |
| -50.0<br>-65.0<br>-80.0<br>-95.0<br>-110               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maratenianen hydere            |                                                               |          |
| Center 5.28000 GHz<br>#Res BW 1.0000 MHz               | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Video BW 3.0000 M  | MHz                                          | Sweep 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Span 60 MHz<br>/ ms (4000 pts) |                                                               |          |
| 2 Metrics  Total Channel Power Total Power Spectral De | 17.25 dBm / 16.5<br>nsity -54.92 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                               |          |
| <b>1</b> 560                                           | Feb 25, 2021<br>5:53:41 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                               |          |

Antenna A

#### 5300 MHz: Non HT20, 6 to 54 Mbps



Antenna A

## A.5 Conducted Spurious Emissions

## **Conducted Spurious Emissions Test Requirement**

**15.407(b)** Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

Use formula below to substitute conducted measurements in place of radiated measurements

E[dBµV/m] = EIRP[dBm] - 20 log(d[meters]) + 104.77, where E = field strength and d = 3 meter

1) Average Plot, Limit= -41.25 dBm eirp 2) Peak plot, Limit = -21.25 dBm eirp

## **Conducted Spurious Emissions Test Procedure**

#### KDB 789033 D02 General UNII Test Procedures New Rules v02r01

**Ref.** ANSI C63.10: 2013

#### **Conducted Spurious Emissions**

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Use the peak marker function to determine the maximum spurs amplitude level.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded. (see ANSI C63.10:2013 section 14.3.2.2)

6. Capture graphs and record pertinent measurement data.

#### Ref. ANSI C63.10: 2013 section 12.7.6 (Peak) and 12.7.7.2 (Average)

# KDB 789033 D02 General UNII Test Procedures New Rules v02r01, Sec. 5 (Peak), Sec. 6 (Average Method AD)

| <b>Conducted Spurious Emissions</b><br>Test parameters |                 |
|--------------------------------------------------------|-----------------|
| Peak                                                   | Average         |
| RBW = 1 MHz                                            | RBW = 1 MHz     |
| $VBW \ge 3 MHz$                                        | $VBW \ge 3 MHz$ |
| Sweep = Auto                                           | Sweep = Auto    |
| Detector = Peak                                        | Detector = RMS  |
| Trace = Max Hold.                                      | Power Averaging |

Add the max antenna gain + ground reflection factor (4.7 dB for frequencies between 30 MHz and 1000 MHz, and 0 dB for frequencies > 1000 MHz).

| Tested By :                 | Date of testing:                |
|-----------------------------|---------------------------------|
| Said Abdelwafi, Julian Land | 24-FEB-2021 through 10-MAR-2021 |
| Test Result : PASS          |                                 |

Test Equipment

See Appendix C for list of test equipment

## Conducted Spurs Average Upper

Frequency 5260 MHz

|                        | ths      | lated Antenna Gain     | Spur Power<br>1)       | Cycle              | Total Conducted Spur<br>(dBm) |               | Ц              |
|------------------------|----------|------------------------|------------------------|--------------------|-------------------------------|---------------|----------------|
| Mode                   | Tx Paths | Correlated Ar<br>(dBi) | Tx 1 Spur Pov<br>(dBm) | Duty Cycle<br>(dB) | Total Conduc<br>(dBm)         | Limit<br>(dB) | Margin<br>(dB) |
| Non HT20, 6 to 54 Mbps | 1        | 9                      | -71.5                  | 0.13               | -62.4                         | -41           | 21.12          |

## **Data Screenshots**

5260 MHz: Non HT20, 6 to 54 Mbps

| Spectr<br>Swept         | rum Ana<br>SA  | lyzer 1                         | v      | Spectrum Analyzer 2<br>Occupied BW                                 | +                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |         |                                                       | <b>*</b>                      | Frequency            | - * 🛞    |
|-------------------------|----------------|---------------------------------|--------|--------------------------------------------------------------------|-------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------|-------------------------------------------------------|-------------------------------|----------------------|----------|
| KEY:<br>RL              | SIGH1          | Input: I<br>Couplii<br>Align: ( | ng: DC | Input Ζ: 50 Ω<br>Corrections: On<br>Freq Ref: Int (S)<br>NFE: Full | #Atten: 0 dB<br>µW Path: Star | IF Gair | Dff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #Avg Type: P<br>Avg Hold: 125<br>Trig: Free Ru | 5/125   | IS 1 2 3 4 5 6<br>A <del>WW WW W</del><br>A N N N N N | Center Fr<br>26.00000<br>Span | equency<br>00000 GHz | Settings |
| 1 Spec                  | ctrum          |                                 | v      |                                                                    |                               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Μ                                              | kr4 3   | 9.020 GHz                                             | 28.0000                       | 000 GHz              |          |
| Scale                   | /Div 10        | dB                              |        |                                                                    | Ref Level -10.                | .00 dBm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | -71     | 1.454 dBm                                             | Swe                           | ot Span<br>Span      |          |
| -30.0<br>-40.0          |                |                                 |        |                                                                    |                               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |         |                                                       | Ful                           | l Span               |          |
| -50.0<br>-60.0          |                |                                 |        |                                                                    |                               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |         | 4-                                                    | Start Fred<br>12.00000        | l<br>00000 GHz       |          |
| -70.0<br>-80.0<br>-90.0 | 2<br>←<br>~~~~ | James                           | ۱      | hand of the second subscription for                                | manderan                      | -       | and and the state of the state |                                                | ᠕ᠬᠬᠰ᠕ᢕ  | manna                                                 | Stop Freq<br>40.00000         | )<br>00000 GHz       |          |
| -100                    | 12.00 GI       |                                 |        |                                                                    | #Video BW 3                   | .0 MHz* |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | s       | top 40.00 GHz                                         | AUT                           | O TUNE               |          |
| #Res                    | BW 1.0         | MHz                             |        |                                                                    |                               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Swee                                           | p ~50.5 | ms (1001 pts)                                         |                               |                      |          |
| 5 Mark                  | ker Table      |                                 | •      |                                                                    |                               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |         |                                                       | L                             | 0000 GHz             |          |
| 1                       | Mode<br>N      | Trace                           | Scale  | e X<br>5.260 GHz                                                   | Y<br>dB                       | Functi  | on Fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nction Width                                   | Fun     | ction Value                                           | Auto<br>Man                   |                      |          |
| 2<br>3                  | Ν              | 1                               | f      | 10.520 GHz                                                         | dB                            | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |         |                                                       | Freq Offs<br>0 Hz             | et                   |          |
| 4<br>5<br>6             | N              |                                 |        | 39.020 GHz                                                         | -71.45 dB                     | m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |         |                                                       | X Axis Sc<br>Log<br>Lin       | ale                  |          |
|                         | 5              | 2                               |        | Peb 25, 2021<br>5:23:41 AM                                         |                               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |         |                                                       | Signal Tra<br>(Span Zoo       | ack<br>m)            |          |
| Ante                    | enna /         | 4                               |        |                                                                    |                               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |         |                                                       |                               |                      |          |

## **Conducted Spurs Peak Upper**

| Frequency | <b>5260</b> I | MHz |
|-----------|---------------|-----|
|           |               |     |

|        |                  | Paths    | Correlated Antenna Gain<br>(dBi) | l Spur Power<br>m) | Total Conducted Spur<br>(dBm) | lit<br>)      | rgin           |
|--------|------------------|----------|----------------------------------|--------------------|-------------------------------|---------------|----------------|
| Mode   |                  | Tx Paths | Correls<br>(dBi)                 | Tx 1 Sp<br>(dBm)   | Total C<br>(dBm)              | Limit<br>(dB) | Margin<br>(dB) |
| Non HT | 20, 6 to 54 Mbps | 1        | 9                                | -49.2              | -40.1                         | -21           | 18.82          |

## **Data Screenshots**

-

5260 MHz: Non HT20, 6 to 54 Mbps

| Spectr<br>Swept | um Anal<br>SA         | yzer 1                          | •          | Spectrum Analy<br>Occupied BW                                                                                  | zer 2           | +                             |                                             |          |        |                                               |          |               |                                             |                        | Frequency               | · •   | <b>尝</b> |
|-----------------|-----------------------|---------------------------------|------------|----------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|---------------------------------------------|----------|--------|-----------------------------------------------|----------|---------------|---------------------------------------------|------------------------|-------------------------|-------|----------|
| KEY:<br>RL      | SIGHT<br>• <b>•</b> • | Input: F<br>Couplir<br>Align: C | ng: DC     | Input Z: 50<br>Corrections<br>Freq Ref: In<br>NFE: Full                                                        | : On            | #Atten: 0 dB<br>µW Path: Star | IF Ga                                       |          |        | #Avg Type: F<br>Avg Hold: 12<br>Trig: Free Ru | 25/125   | M₩₩           | 456<br>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                        | Frequency<br>000000 GHz | Setti | ngs      |
| 1 Spec          | trum                  |                                 | •          |                                                                                                                |                 |                               |                                             |          |        | N                                             | lkr4 3   | <b>39.160</b> | GHz                                         | • •                    | 0000 GHz                |       |          |
| Scale/          | 'Div 10 o             | B                               |            |                                                                                                                | R               | ef Level -10.                 | .00 dBm                                     |          |        |                                               | -        | 49.17         | dBm                                         |                        | ept Span<br>o Span      |       |          |
| -30.0<br>-40.0  |                       |                                 |            |                                                                                                                |                 |                               |                                             |          |        |                                               |          |               | 4                                           | F                      | ull Span                |       |          |
| -50.0<br>-60.0  | 2                     |                                 |            | المالية المحاجز والمحاجز والم | Martin Strategy | Law Martin Martin             | 184 <sup>4</sup> -1-444/14-14 <sup>14</sup> | Ward and | trutym | rither store of sold and the                  | ph.Manna | (Pad Maland   | ute Wine                                    | Start Fre              | eq<br>000000 GHz        |       |          |
| -70.0<br>-80.0  | Berry Western         | ***********                     | 149.4.14a. |                                                                                                                |                 |                               |                                             |          |        |                                               |          |               |                                             | Stop Fre               |                         |       |          |
| -90.0<br>-100   |                       |                                 |            |                                                                                                                |                 |                               |                                             |          |        |                                               |          |               |                                             | 40.000                 | 000000 GHz              |       |          |
|                 | 2.00 GH               | 7                               |            |                                                                                                                | #               | Video BW 3                    |                                             |          |        |                                               |          | Stop 40.0     | 0 GHz                                       | AU                     | TO TUNE                 |       |          |
|                 | 3W 1.0 I              |                                 |            |                                                                                                                |                 |                               |                                             |          |        | Swee                                          |          | 5 ms (10      |                                             | CF Step                | )                       |       |          |
| 5 Mark          | er Table              |                                 | •          |                                                                                                                |                 |                               |                                             |          |        |                                               |          |               |                                             | L                      | 00000 GHz               |       |          |
|                 | Mode                  | Trace                           | Scale      |                                                                                                                |                 | Y                             | Func                                        | tion     | Fun    | ction Width                                   | Fun      | nction Val    | ue                                          | Aut<br>Ma              |                         |       |          |
| 1               | N<br>N                | 1                               | f          | 5.260<br>10.520                                                                                                | ) GHz           | dB<br>dB                      |                                             |          |        |                                               |          |               |                                             | Freq Of                | fset                    |       |          |
| 3               |                       |                                 |            |                                                                                                                |                 |                               |                                             |          |        |                                               |          |               |                                             | 0 Hz                   |                         |       |          |
| 4<br>5<br>6     | N                     | 1                               | f          | 39.160                                                                                                         | ) GHz           | -49.17 dB                     | m                                           |          |        |                                               |          |               |                                             | X Axis S<br>Log<br>Lin | g                       |       |          |
|                 | 5                     | 2                               |            | <b>?</b> Feb 25, 2<br>5:25:32                                                                                  |                 |                               |                                             |          |        |                                               |          |               | X                                           | Signal T<br>(Span Zo   | rack                    |       |          |
| Ante            | nna A                 | 1                               |            |                                                                                                                |                 |                               |                                             |          |        |                                               |          |               |                                             |                        |                         |       |          |

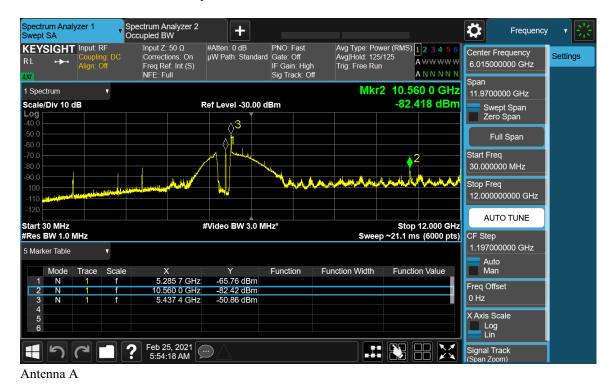
## Conducted Spurs Average

Frequency 5260 MHz

|                        |          | =                   |                 |              |                               |               |                |
|------------------------|----------|---------------------|-----------------|--------------|-------------------------------|---------------|----------------|
|                        |          | Gain                |                 |              | -                             |               |                |
|                        |          | la (                |                 |              | nd                            |               |                |
|                        |          | Antenna             | er              |              | s p                           |               |                |
|                        |          | vnt                 | Spur Power<br>) |              | cte                           |               |                |
|                        |          | d A                 | r P             | e            | npu                           |               |                |
|                        | hs       | ate                 | nd              | Cycle        | O                             |               | e              |
|                        | Pat      | i)                  | m) C            | м<br>М       | m) (I                         | ) iit         | rgii           |
| Mode                   | Tx Paths | Correlated<br>(dBi) | Tx 1 S<br>(dBm) | Duty<br>(dB) | Total Conducted Spur<br>(dBm) | Limit<br>(dB) | Margin<br>(dB) |
| Non HT20, 6 to 54 Mbps | 1        | 9                   | -51.5           | 0.13         | -42.4                         | -41           | 1.15           |

#### Frequency 5280 MHz

|                        | tths     | Correlated Antenna Gain<br>(dBi) | Spur Power<br>) | Cycle              | Total Conducted Spur<br>(dBm) |               | in             |
|------------------------|----------|----------------------------------|-----------------|--------------------|-------------------------------|---------------|----------------|
| Mode                   | Tx Paths |                                  | Tx 1<br>(dBm    | Duty Cycle<br>(dB) |                               | Limit<br>(dB) | Margin<br>(dB) |
| Non HT20, 6 to 54 Mbps | 1        | 9                                | -50.9           | 0.12               | -41.7                         | -41           | 0.49           |


| Frequency 5300 MHz     | 1     |                             |                 |              |                               |               |                |
|------------------------|-------|-----------------------------|-----------------|--------------|-------------------------------|---------------|----------------|
|                        |       |                             |                 |              |                               |               |                |
|                        |       |                             |                 |              |                               |               |                |
|                        |       |                             |                 |              |                               |               |                |
|                        |       |                             |                 |              |                               |               |                |
|                        |       |                             |                 |              |                               |               |                |
|                        |       |                             |                 |              |                               |               |                |
|                        |       | Gain                        |                 |              |                               |               |                |
|                        |       | la G                        |                 |              | pur                           |               |                |
|                        |       | tenn                        | ver             |              | ed S                          |               |                |
|                        |       | An                          | Pov             |              | luct                          |               |                |
|                        | hs    | Correlated Antenna<br>(dBi) | Spur Power<br>) | Cycle        | Total Conducted Spur<br>(dBm) |               | -              |
|                        | Paths | rrel:<br>3i)                |                 | ty C         | Total (<br>(dBm)              | s) mit        | Margin<br>(dB) |
| Mode                   | Tx    | Corre<br>(dBi)              | Tx 1<br>(dBn    | Duty<br>(dB) | Toi<br>(dE                    | Limit<br>(dB) | Mar;<br>(dB)   |
| Non HT20, 6 to 54 Mbps | 1     | 9                           | -53.0           | 0.12         | -43.9                         | -41           | 2.65           |

#### Frequency 5320 MHz


| Frequency 5520 MILZ    |          | 1                                |                          | 1                  | T                             | r             |                |
|------------------------|----------|----------------------------------|--------------------------|--------------------|-------------------------------|---------------|----------------|
| Mode                   | Tx Paths | Correlated Antenna Gain<br>(dBi) | Tx 1 Spur Power<br>(dBm) | Duty Cycle<br>(dB) | Total Conducted Spur<br>(dBm) | Limit<br>(dB) | Margin<br>(dB) |
| Non HT20, 6 to 54 Mbps | 1        | 9                                | -53.0                    | 0.12               | -43.8                         | -41           | 2.59           |

## **Data Screenshots**

5280 MHz: Non HT20, 6 to 54 Mbps



5260 MHz: Non HT20, 6 to 54 Mbps



Antenna A

#### 5320 MHz: Non HT20, 6 to 54 Mbps



Antenna A

## **Conducted Spurs Peak**

Frequency 5260 MHz

|                        |          | Gain           |                  |              |                               |               |                |
|------------------------|----------|----------------|------------------|--------------|-------------------------------|---------------|----------------|
|                        |          | Antenna G      | wer              |              | ted Spur                      |               |                |
|                        | Tx Paths | elated         | Spur Power<br>m) | y Cycle      | Total Conducted Spur<br>(dBm) | it            | .gin           |
| Mode                   | Tx F     | Corre<br>(dBi) | Tx 1 S<br>(dBm)  | Duty<br>(dB) | Total (<br>(dBm)              | Limit<br>(dB) | Margin<br>(dB) |
| Non HT20, 6 to 54 Mbps | 1        | 9              | -43.4            | 0.13         | -34.3                         | -27           | 7.27           |

#### Frequency 5280 MHz

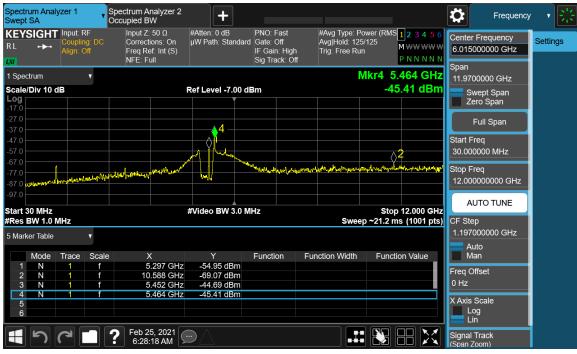
|                        | ths      | Correlated Antenna Gain<br>(dBi) | Spur Power<br>) | Cycle              | Total Conducted Spur<br>(dBm) |               | .5             |
|------------------------|----------|----------------------------------|-----------------|--------------------|-------------------------------|---------------|----------------|
| Mode                   | Tx Paths | Correlated A<br>(dBi)            | Tx 1<br>(dBm    | Duty Cycle<br>(dB) |                               | Limit<br>(dB) | Margin<br>(dB) |
| Non HT20, 6 to 54 Mbps | 1        | 9                                | -42.6           | 0.12               | -33.5                         | -27           | 6.48           |

| Frequency 5300 MHz     |       |                     |                 |              |                               |               |                |
|------------------------|-------|---------------------|-----------------|--------------|-------------------------------|---------------|----------------|
|                        |       |                     |                 |              |                               |               |                |
|                        |       |                     |                 |              |                               |               |                |
|                        |       |                     |                 |              |                               |               |                |
|                        |       |                     |                 |              |                               |               |                |
|                        |       |                     |                 |              |                               |               |                |
|                        |       |                     |                 |              |                               |               |                |
|                        |       | Gain                |                 |              |                               |               |                |
|                        |       | la G                |                 |              | pur                           |               |                |
|                        |       | Antenna             | ver             |              | ed S                          |               |                |
|                        |       | An                  | Pov             |              | luct                          |               |                |
|                        | hs    | Correlated<br>(dBi) | Spur Power<br>) | Cycle        | Total Conducted Spur<br>(dBm) |               | -              |
|                        | Paths | rrel<br>3i)         | -               | 3) (t)       | Total (<br>(dBm)              | Limit<br>(dB) | Margin<br>(dB) |
| Mode                   | Tx    | Corro<br>(dBi)      | Tx 1<br>(dBn    | Duty<br>(dB) | To <sup>r</sup>               | Limi<br>(dB)  | Mar;<br>(dB)   |
| Non HT20, 6 to 54 Mbps | 1     | 9                   | -44.7           | 0.12         | -35.6                         | -27           | 8.58           |

### Frequency 5320 MHz

| Frequency 5520 MHZ     | 1       |                                  |                          |                    |                               |               |                |
|------------------------|---------|----------------------------------|--------------------------|--------------------|-------------------------------|---------------|----------------|
|                        |         |                                  |                          |                    |                               |               |                |
|                        |         |                                  |                          |                    |                               |               |                |
|                        |         | ıtenna Gain                      | wer                      |                    | ted Spur                      |               |                |
|                        | x Paths | Correlated Antenna Gain<br>(dBi) | Tx 1 Spur Power<br>(dBm) | Duty Cycle<br>(dB) | Total Conducted Spur<br>(dBm) | Limit<br>(dB) | Margin<br>(dB) |
| Mode                   | Tx      |                                  |                          |                    |                               |               |                |
| Non HT20, 6 to 54 Mbps | 1       | 9                                | -53.6                    | 0.12               | -44.5                         | -27           | 17.48          |

## **Data Screenshots**


5280 MHz: Non HT20, 6 to 54 Mbps

| Spectr<br>Swept               | um Anal<br>SA         | yzer 1                          |                                | Spectrum Analyzer 2<br>Occupied BW                                 | +                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                    |           |                           |                  | Frequency                  | <ul><li>▼ 2</li></ul> |
|-------------------------------|-----------------------|---------------------------------|--------------------------------|--------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------|-----------|---------------------------|------------------|----------------------------|-----------------------|
| KEY:<br>RL                    | SIGH1                 | Input: I<br>Couplii<br>Align: 0 | ng: DC                         | Input Ζ: 50 Ω<br>Corrections: On<br>Freq Ref: Int (S)<br>NFE: Full | #Atten: 0 dB<br>μW Path: Stand | PNO: Fas<br>lard Gate: Off<br>IF Gain: I<br>Sig Track                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Avg F<br>High Trig:                                                                                             | Type: Po<br>łold: 125/<br>Free Run | 125       | 123456<br>MWWWW<br>PNNNNN |                  | r Frequency<br>5000000 GHz | Settings              |
| 1 Spec                        | trum                  |                                 | •                              |                                                                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | Μ                                  | lkr4 5    | .764 GHz                  |                  | 00000 GHz                  |                       |
| Log                           | /Div 10 (             | dB                              |                                |                                                                    | Ref Level -7.00                | ) dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                    | -53       | 3.97 dBm                  |                  | wept Span<br>ero Span      |                       |
| -17.0 -<br>-27.0 -            |                       |                                 |                                |                                                                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                    |           |                           |                  | Full Span                  |                       |
| -37.0 -<br>-47.0 -<br>-57.0 - |                       |                                 |                                |                                                                    | 4                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                    |           | 2                         | Start I<br>30.00 | Freq<br>00000 MHz          |                       |
| -67.0<br>-77.0<br>-87.0       | 1 Kershara Marka      | Rand-point-site                 | ر<br>مواري <sub>ا موس</sub> ور | a deres de regel ange ar agt de plager                             | here a second                  | where and the states of the st | and the south of the | hamininana/~                       | ware with | physical                  | Stop I<br>12.00  | Freq<br>00000000 GHz       |                       |
| -97.0<br>Start 3              | 30 MHz                |                                 |                                |                                                                    | #Video BW 3.0                  | ) MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                    | Stop      | o 12.000 GHz              | 4                |                            |                       |
|                               | BW 1.0 I<br>(er Table | MHz                             | •                              |                                                                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | Sweep                              | o ~21.2 m | ıs (1001 pts)             | CF St<br>1,197   | ep<br>/000000 GHz          |                       |
| 5 Mark                        | Mode                  | Trace                           | Scale                          | e X                                                                | Y                              | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Function                                                                                                        | Width                              | Funct     | ion Value                 |                  | uto<br>1an                 |                       |
| 1 2                           | N<br>N                | 1                               | f<br>f                         | 5.285 GHz<br>10.564 GHz                                            | -69.00 dBm                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                    |           |                           | Freq (<br>0 Hz   | Offset                     |                       |
| 3<br>4<br>5                   | N<br>N                | 1                               | f                              | 5.428 GHz<br>5.764 GHz                                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                    |           |                           | X Axis           | Scale                      |                       |
| 6                             |                       |                                 |                                |                                                                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                    |           |                           |                  | .og<br>.in                 |                       |
|                               | ょ                     | C                               |                                | <b>?</b> Feb 25, 2021<br>5:55:04 AM                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                    |           |                           |                  | l Track<br>Zoom)           |                       |
| Ante                          | enna A                | A                               |                                |                                                                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                    |           |                           |                  |                            |                       |

#### 5260 MHz: Non HT20, 6 to 54 Mbps



#### 5300 MHz: Non HT20, 6 to 54 Mbps



# A.6 Conducted Bandedge

## **Conducted Band Edge Test Requirement**

**15.407(b)** Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

## KDB 789033 D02 General UNII Test Procedures New Rules v02r01

## 2. Unwanted Emissions that fall Outside of the Restricted Bands

a) For all measurements, follow the requirements in II.G.3. "General Requirements for Unwanted Emissions Measurements."

b) At frequencies below 1000 MHz, use the procedure described in II.G.4. "Procedure for Unwanted Emissions Measurements Below 1000 MHz."

c) At frequencies above 1000 MHz, use the procedure for maximum emissions described in II.G.5., *"Procedure for Unwanted Emissions Measurements Above 1000 MHz."* 

(i) Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz.<sub>3</sub>

## **Conducted Band Edge Test Procedure**

## KDB 789033 D02 General UNII Test Procedures New Rules v02r01

**Ref.** ANSI C63.10: 2013

## **Conducted Spurious Emissions**

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Use the peak marker function to determine the maximum spurs amplitude level.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded. (see ANSI C63.10:2013 section 14.3.2.2)

6. Capture graphs and record pertinent measurement data.

#### Ref. ANSI C63.10: 2013 section 12.7.6 (Peak) and 12.7.7.2 (Average)

KDB 789033 D02 General UNII Test Procedures New Rules v02r01, Sec. 5 (Peak), Sec. 6 (Average Method AD)

## **Conducted Spurious Emissions**

Test parameters

| Peak        | Average     |
|-------------|-------------|
| RBW = 1 MHz | RBW = 1 MHz |

| $VBW \ge 3 MHz$   | $VBW \ge 3 MHz$ |
|-------------------|-----------------|
| Sweep = Auto      | Sweep = Auto    |
| Detector = Peak   | Detector = RMS  |
| Trace = Max Hold. | Power Averaging |

| Tested By :                 | Date of testing:                |
|-----------------------------|---------------------------------|
| Said Abdelwafi, Julian Land | 24-FEB-2021 through 10-MAR-2021 |
| Test Result : PASS          |                                 |

#### Test Equipment

See Appendix C for list of test equipment

## Conducted Bandedge Average

Frequency 5320 MHz

|                        | x Paths | Correlated Antenna Gain<br>(dBi) | Tx 1 Bandedge Level<br>(dBm) | uty Cycle<br>B) | Total Tx Bandedge Level<br>(dBm) | imit<br>B)    | Margin<br>(dB) |
|------------------------|---------|----------------------------------|------------------------------|-----------------|----------------------------------|---------------|----------------|
| Mode                   | Tx P    | Corre<br>(dBi)                   | Tx 1<br>(dBn                 | Duty<br>(dB)    | Tota<br>(dBn                     | Limit<br>(dB) | Marg<br>(dB)   |
| Non HT20, 6 to 54 Mbps | 1       | 9                                | -57.3                        | 0.12            | -48.2                            | -41           | 6.93           |

## **Data Screenshots**

5320 MHz: Non HT20, 6 to 54 Mbps

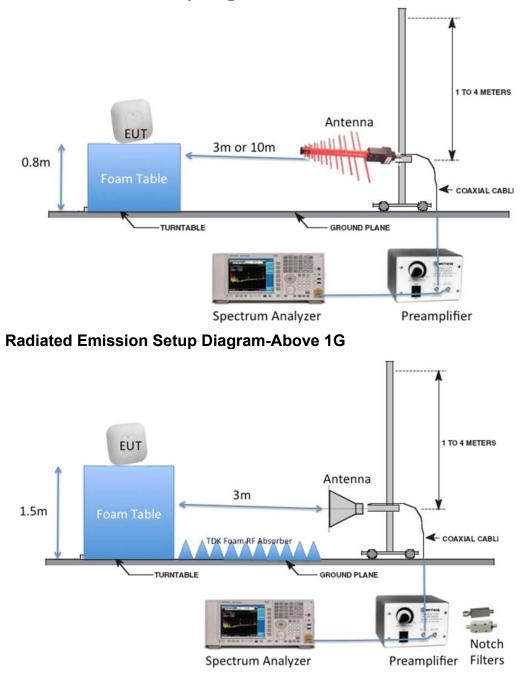
| Spec<br>Swep            | trum Ana<br>ot SA     | lyzer 1             | •                        | Spectrum Analyzer 2<br>Occupied BW                                 | +                               |                                                       |              |                                                 |              |                         |                        | Frequency             | - • 影    |
|-------------------------|-----------------------|---------------------|--------------------------|--------------------------------------------------------------------|---------------------------------|-------------------------------------------------------|--------------|-------------------------------------------------|--------------|-------------------------|------------------------|-----------------------|----------|
| KEY<br>RL               | ′SIGH1<br>·►·<br>FAIL | Couplin<br>Align: C | ig: DC                   | Input Ζ: 50 Ω<br>Corrections: On<br>Freq Ref: Int (S)<br>NFE: Full | #Atten: 30 dB<br>µW Path: Stand | PNO: Fa:<br>lard Gate: Off<br>IF Gain: I<br>Sig Track | _ow          | #Avg Type: Pe<br>Avg Hold: 125<br>Trig: Free Ru | o/125<br>n A | 23456<br>WWWWW<br>NNNNN |                        | requency<br>00000 GHz | Settings |
| 1 Spe                   | ectrum                |                     | v                        |                                                                    |                                 |                                                       |              | Mkr                                             | 2 5.353      | 37 GHz                  | • ·                    | 0000 MHz              |          |
| Scale<br>Log<br>13.0    | e/Div 10              | dB<br>a 1 Fa        |                          |                                                                    | Ref Level 23.00                 | 0 dBm                                                 |              |                                                 | -57.3        | 09 dBm                  |                        | ept Span<br>o Span    |          |
| 3.00<br>-7.00           |                       |                     | 11                       |                                                                    |                                 |                                                       |              |                                                 |              |                         | FL                     | ull Span              |          |
| -17.0<br>-27.0          | \                     | <u>ل</u>            |                          |                                                                    |                                 |                                                       |              |                                                 |              |                         | Start Fre<br>5.32000   | eq<br>00000 GHz       |          |
| -37.0<br>-47.0<br>-57.0 |                       | Burry C             | Conversion of the second | 12                                                                 | หมูษาราชรถกฎษาชาวิห             | արուսուտություններ                                    | ทัมปา .คมใน  | เฟลสมณหมีท                                      | տողություն   | 14. A. Provenski stari  | Stop Fre<br>5.46000    | q<br>00000 GHz        |          |
|                         | 5.32000               |                     |                          |                                                                    | #Video BW 3.0                   |                                                       | - u - yv - u |                                                 | Stop 5       | .46000 GHz              |                        | TO TUNE               |          |
|                         | BW 1.0                | MHz                 | v                        |                                                                    |                                 |                                                       |              | Sw                                              | reep 1.00 m  | ıs (601 pts)            | CF Step<br>14.0000     | 000 MHz               |          |
| 1                       | Mode<br>N             | Trace<br>1          | Scal<br>f                | e X<br>5.350 00 GHz                                                | Y<br>-58.73 dBm                 | Function                                              | Fur          | nction Width                                    | Functio      | n Value                 | Auto<br>Mar            | ı                     |          |
| 2<br>3<br>4             |                       | 1                   | f                        | 5.353 37 GHz                                                       |                                 |                                                       |              |                                                 |              |                         | Freq Off<br>0 Hz       | set                   |          |
| 5                       |                       |                     |                          |                                                                    |                                 |                                                       |              |                                                 |              |                         | X Axis S<br>Log<br>Lin |                       |          |
|                         | 5                     |                     |                          | <b>Feb 25, 2021</b><br>7:08:40 AM                                  |                                 |                                                       |              |                                                 |              |                         | Signal Ti<br>(Span Zo  | rack<br>om)           |          |

## Conducted Bandedge Peak

| Frequency | 5320 | MHz |
|-----------|------|-----|
|           |      |     |

|                | •                             | Tx Paths | Correlated Antenna Gain<br>(dBi) | 1 Bandedge Level<br>im) | Total Tx Bandedge Level<br>(dBm) | nit<br>() | Margin<br>(dB) |
|----------------|-------------------------------|----------|----------------------------------|-------------------------|----------------------------------|-----------|----------------|
| Mode<br>Non HT | <sup>2</sup> 20, 6 to 54 Mbps |          | 6<br>Corr<br>(dBi)               | H (map)<br>-39.7        | 9.06-<br>(dBm)                   | (dB)      | (dB)<br>3.58   |

## **Data Screenshots**


5320 MHz: Non HT20, 6 to 54 Mbps

| Spectrum<br>Swept SA    |                 | ter 1                           | v                   | Spectrum Ar<br>Occupied BV                  | alyzer 2<br>V                                                                                                                                                                                                                      | +                             |           |        |                  |                                                                                                                 |                                                            |                  |                     |          |                   | Free                        | quency   | ۷      | 22  |
|-------------------------|-----------------|---------------------------------|---------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|--------|------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------|---------------------|----------|-------------------|-----------------------------|----------|--------|-----|
| REYSIO                  | •••             | Input: R<br>Couplin<br>Align: O | g: DC               | Input Z:<br>Correctio<br>Freq Re<br>NFE: Of | ons: On<br>f: Int (S)                                                                                                                                                                                                              | #Atten: 28 dE<br>µW Path: Sta | ndard (   | F Gair |                  | Avg                                                                                                             | /g Type: L<br>g Hold: 10<br>g: Free Ru                     |                  | 123<br>MWW<br>PNN   | ₩₩₩      |                   | Frequenc                    |          | Settir | ngs |
| 1 Spectrur              | m               |                                 | •                   |                                             |                                                                                                                                                                                                                                    |                               |           |        |                  |                                                                                                                 | Mk                                                         | r2 5.3           | 51 03 (             | GHz      |                   | 00000 MH                    | łz       |        |     |
| Scale/Div               | v 10 dE         |                                 | il                  |                                             |                                                                                                                                                                                                                                    | Ref Level 23                  | .00 dBr   | n      |                  |                                                                                                                 |                                                            | -3               | 39.66 c             | dBm      |                   | vept Spar<br>ro Span        | ו        |        |     |
| 3.00                    |                 |                                 |                     |                                             |                                                                                                                                                                                                                                    |                               |           |        |                  |                                                                                                                 |                                                            |                  |                     |          |                   | Full Span                   |          |        |     |
| -17.0                   |                 |                                 | <u></u> Թղու,       | 2                                           |                                                                                                                                                                                                                                    |                               |           |        |                  |                                                                                                                 |                                                            |                  |                     | _        | Start F<br>5.3200 | req<br>)00000 G             | Hz       |        |     |
| -37.0<br>-47.0<br>-57.0 |                 |                                 | - 1    (") <b> </b> | Male and                                    | مەرىمىيەت مەرمىيەت مەرمەر م<br>مەرمەر مەرمەر | เกษณะการสมประ                 | -incontra |        | alween/Role-ares | re the second | <sup>y Th</sup> ord and and and and and and and and and an | اليحولين السيحان | ການເປັນເປັນແມ່ນແມ່ນ | ┎╻╢╻╻╻╻┍ | Stop Fi<br>5.4600 | <sup>r</sup> eq<br>)00000 G | Hz       |        |     |
| -67.0<br>Start 5.32     |                 |                                 |                     |                                             |                                                                                                                                                                                                                                    | #Video BW                     | 3.0 MH:   | z      |                  |                                                                                                                 |                                                            |                  | p 5.46000           |          |                   | JTO TUN                     | E        |        |     |
| #Res BW<br>5 Marker 1   |                 | Hz                              | v                   |                                             |                                                                                                                                                                                                                                    |                               |           |        |                  |                                                                                                                 | Sv                                                         | veep 1.0         | 0 ms (60            | 1 pts)   | L                 | 0000 MHz                    | <u>.</u> |        |     |
| 1                       | ode 1<br>N<br>N | Ггасе<br>1<br>1                 | Scale<br>f          | 5.350                                       | ) 00 GHz<br>  03 GHz                                                                                                                                                                                                               | Y<br>-45.36 dE<br>-39.66 dE   | 3m        | unctio | on F             | Functio                                                                                                         | n Width                                                    | Fund             | ction Valu          | Je       | Freq O<br>0 Hz    |                             | _        |        |     |
| 4<br>5<br>6             |                 |                                 |                     |                                             |                                                                                                                                                                                                                                    |                               |           |        |                  |                                                                                                                 |                                                            |                  |                     |          | X Axis<br>Lo      | bg                          |          |        |     |
|                         | า (             |                                 |                     | <b>?</b> Feb 25<br>7:05:3                   | 5, 2021<br>37 AM                                                                                                                                                                                                                   | $\mathbb{D}$                  |           |        |                  |                                                                                                                 |                                                            |                  |                     | X        | Signal<br>(Span Z | Track<br>oom)               |          |        |     |

#### **Appendix B: Emission Test Results**

Testing Laboratory: Cisco Systems, Inc., 125 West Tasman Drive, San Jose, CA 95134, USA

## **Radiated Emission Setup Diagram-Below 1G**



# **B.1 Radiated Spurious Emissions**

FCC 15.205 / 15.407 Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Not covered by the scope of this test report.

# **B.2 Radiated Emissions 30MHz to 1GHz**

FCC 15.209 / 15.205 / 15.407 Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Ref. ANSI C63.10: 2013 section 6.5

Not covered by the scope of this test report.

# **B.3 AC Conducted Emissions**

**FCC 15.207** Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.

Measurement Procedure Accordance with ANSI C63.10:2013 section 6.2

Not covered by the scope of this test report.

| Equipment<br># | Manufacturer/ Model                                 | acturer/ Model Description                                    |                      | Next Due             | Test Item |  |  |  |  |
|----------------|-----------------------------------------------------|---------------------------------------------------------------|----------------------|----------------------|-----------|--|--|--|--|
|                | Test Equipment used for conducted tests – Rack 9    |                                                               |                      |                      |           |  |  |  |  |
| 58719          | Cisco/Automation Test<br>Insertion Loss             | Rack 9                                                        | Verify<br>Before Use | Verify<br>Before Use | A.1-A.6   |  |  |  |  |
| 57562          | Keysight (Agilent/HP)/<br>N9030B-550 OPT LNP<br>EP0 | PXA Signal Analyzer,<br>2Hz-50GHz with Options<br>LNP and EP0 | 23-Jul-20            | 23-Jul-21            | A.1-A.6   |  |  |  |  |
| 58231          | NATIONAL<br>INSTRUMENTS / PXIe-<br>1062Q            | CHASSIS                                                       | Cal Not<br>Required  | Cal Not<br>Required  | A.1-A.6   |  |  |  |  |
| 58232          | NATIONAL<br>INSTRUMENTS / PXIe-<br>8840             | Up to 2.6 GHz Quad-Core<br>PXI Express Controller             | Cal Not<br>Required  | Cal Not<br>Required  | A.1-A.6   |  |  |  |  |
| 58234          | NATIONAL<br>INSTRUMENTS / PXI-<br>2796              | 40 GHz Dual 6x1<br>Multiplexer (SP6T)                         | Verify<br>Before Use | Verify<br>Before Use | A.1-A.6   |  |  |  |  |
| 58236          | NATIONAL<br>INSTRUMENTS / PXI-<br>2796              | 40 GHz Dual 6x1<br>Multiplexer (SP6T)                         | Verify<br>Before Use | Verify<br>Before Use | A.1-A.6   |  |  |  |  |
| 58237          | NATIONAL<br>INSTRUMENTS / PXI-<br>2799              | Switch 1x1                                                    | Verify<br>Before Use | Verify<br>Before Use | A.1-A.6   |  |  |  |  |
| 56327          | PASTERNACK/ PE5019-1                                | Torque Wrench                                                 | 14-May-20            | 14-May-21            | A.1-A.6   |  |  |  |  |
| 58256          | COMET/ T7611-4                                      | WEB SENSOR FOR<br>REMOTE THERMOMETER<br>HYGROMETER            | 3-Feb-21             | 3-Feb-22             | A.1-A.6   |  |  |  |  |

# Appendix C: List of Test Equipment Used to perform the test

| Equip# | Manufacturer/ Model                     | odel Description                  |                      | Next Due             | Test Item |  |  |  |  |  |
|--------|-----------------------------------------|-----------------------------------|----------------------|----------------------|-----------|--|--|--|--|--|
|        | Test Equipment used for conducted tests |                                   |                      |                      |           |  |  |  |  |  |
| 57478  | Cisco/Automation Test<br>Insertion Loss | Rack 4                            | Verify<br>Before Use | Verify<br>Before Use | A.1-A.6   |  |  |  |  |  |
| 58702  | Keysight (Agilent/HP)/<br>N9030B-550    | PXA Signal Analyzer,<br>2Hz-50GHz | 15-Oct-20            | 15-Oct-21            | A.1-A.6   |  |  |  |  |  |
| 55096  | National Instruments/<br>PXI-1042       | CHASSIS, PXI                      | Cal Not<br>Required  | Cal Not<br>Required  | A.1-A.6   |  |  |  |  |  |

| 57239 | National Instruments/<br>PXI-8115 | Embedded Controller                                | Cal Not<br>Required  | Cal Not<br>Required  | A.1-A.6 |
|-------|-----------------------------------|----------------------------------------------------|----------------------|----------------------|---------|
| 57250 | National Instruments/<br>PXI-2796 | 40 GHz Dual 6x1<br>Multiplexer (SP6T)              | Verify<br>Before Use | Verify<br>Before Use | A.1-A.6 |
| 57251 | National Instruments/<br>PXI-2799 | Switch 1x1                                         | Verify<br>Before Use | Verify<br>Before Use | A.1-A.6 |
| 56093 | National Instruments/<br>PXI-2796 | 40 GHz Dual 6x1<br>Multiplexer (SP6T)              | Verify<br>Before Use | Verify<br>Before Use | A.1-A.6 |
| 56327 | PASTERNACK/ PE5019-1              | Torque Wrench                                      | 14-May-20            | 14-May-21            | A.1-A.6 |
| 58256 | COMET/ T7611-4                    | WEB SENSOR FOR<br>REMOTE THERMOMETER<br>HYGROMETER | 3-Feb-21             | 3-Feb-22             | A.1-A.6 |

# Appendix D: Abbreviation Key and Definitions

| Abbreviation | Description                                                               | Abbreviation | Description                        |
|--------------|---------------------------------------------------------------------------|--------------|------------------------------------|
| EMC          | Electro Magnetic Compatibility                                            | °F           | Degrees Fahrenheit                 |
| EMI          | Electro Magnetic Interference                                             | °C           | Degrees Celsius                    |
| EUT          | Equipment Under Test                                                      | Temp         | Temperature                        |
| ITE          | Information Technology Equipment                                          | S/N          | Serial Number                      |
| TAP          | Test Assessment Schedule                                                  | Qty          | Quantity                           |
| ESD          | Electro Static Discharge                                                  | emf          | Electromotive force                |
| EFT          | Electric Fast Transient                                                   | RMS          | Root mean square                   |
| EDCS         | Engineering Document Control<br>System                                    | Qp           | Quasi Peak                         |
| Config       | Configuration                                                             | Av           | Average                            |
| CIS#         | Cisco Number (unique identification number for Cisco test equipment)      | Pk           | Peak                               |
| Cal          | Calibration                                                               | kHz          | Kilohertz (1x10 <sup>3</sup> )     |
| EN           | European Norm                                                             | MHz          | MegaHertz (1x10 <sup>6</sup> )     |
| IEC          | International Electro technical<br>Commission                             | GHz          | Gigahertz (1x10 <sup>9</sup> )     |
| CISPR        | International Special Committee on<br>Radio Interference                  | Н            | Horizontal                         |
| CDN          | Coupling/Decoupling Network                                               | V            | Vertical                           |
| LISN         | Line Impedance Stabilization<br>Network                                   | dB           | decibel                            |
| PE           | Protective Earth                                                          | V            | Volt                               |
| GND          | Ground                                                                    | kV           | Kilovolt (1x10 <sup>3</sup> )      |
| L1           | Line 1                                                                    | μV           | Microvolt (1x10 <sup>-6</sup> )    |
| L2           | Line2                                                                     | А            | Amp                                |
| L3           | Line 3                                                                    | μA           | Micro Amp (1x10 <sup>-6</sup> )    |
| DC           | Direct Current                                                            | mS           | Milli Second (1x10 <sup>-3</sup> ) |
| RAW          | Uncorrected measurement value,<br>as indicated by the measuring<br>device | μS           | Micro Second (1x10 <sup>-6</sup> ) |
| RF           | Radio Frequency                                                           | μS           | Micro Second (1x10 <sup>-6</sup> ) |
| SLCE         | Signal Line Conducted Emissions                                           | m            | Meter                              |
| Meas dist    | Measurement distance                                                      | Spec dist    | Specification distance             |
| N/A or NA    | Not Applicable                                                            | SL           | Signal Line (or Telecom Line)      |
| Р            | Power Line                                                                | L            | Live Line                          |
| Ν            | Neutral Line                                                              | R            | Return                             |
| S            | Supply                                                                    | AC           | Alternating Current                |

## The following table defines abbreviations used within this test report.

## **Appendix E: Photographs of Test Setups**

EUT Photos have been omitted from this test report. Photos can be found in the supplementary exhibit included in the submission and EDCS# 21541319.

## Appendix F: Software Used to Perform Testing

Cisco Internal LabView Radio Test Automation Software:

- RF Automation Main versions: 208, 218
- RF Domain Report Generation version 3

## **Appendix G:Test Procedures**

Measurements were made in accordance with

- KDB Publication No. 789033 D02 General UNII Test Procedures New Rules v02r01
- KDB Publication No. 662911 MIMO
- ANSI C63.4 2014 Unintentional Radiators
- ANSI C63.10 2013 Intentional Radiators

Test procedures are summarized below:

| FCC 5GHz Test Procedures     | EDCS # 1445048 |
|------------------------------|----------------|
| FCC 5GHz RSE Test Procedures | EDCS # 1511600 |

## Appendix H: Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

## Appendix I: Test Assessment Plan

Compliance Test Plan (Excel) EDCS# 21468206 Target Power Tables EDCS# 19774156

## Appendix J: Worst Case Justification

N/A

# End