

Formal Radio Test Report

FCC ID: LDK-ETHIK2360

C9124AXE-B

Cisco Catalyst C9124AX Series 802.11ax Access Point 5 GHz Auxiliary Radio

5470-5725 MHz

Against the following Specifications:

CFR47 Part 15.407

Cisco Systems 170 West Tasman Drive San Jose, CA 95134

J.J.L.	Shuff
Author: Johanna Knudsen, Nathan Sousa	Approved By: Sam Kim
Tested By: Johanna Knudsen, Julian Land, & Mathew	Title: Manager, Radio Compliance
Blackburn	Revision: 1

This report replaces any previously entered test report under EDCS – 22608366. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 11644124.

SECTION 1: OVERVIEW	3
SECTION 2: ASSESSMENT INFORMATION	4
 2.1: GENERAL	5 5 6 6
SECTION 3: RESULT SUMMARY	7
3.1: RESULTS SUMMARY TABLE	7
SECTION 4: SAMPLE DETAILS	8
 4.1: SAMPLE DETAILS 4.2: SYSTEM DETAILS 4.3: MODE OF OPERATION DETAILS 	8
APPENDIX A: EMISSION TEST RESULTS	9
A.1: DUTY CYCLE A.2: 99% AND 26DB BANDWIDTH A.3: MAXIMUM CONDUCTED OUTPUT POWER A.3.1: 7 dBi A.3.2: 8 dBi A.3.3: 13 dBi A.3.4: 14 dBi A.3.4: 14 dBi A.4: POWER SPECTRAL DENSITY	12 17 19 23 27 31
A.4.1: 7 dBi	37
A.4.2: 8 dBi A.4.3: 13 dBi A.4.4: 14 dBi A.5: CONDUCTED SPURIOUS EMISSIONS A.5.1: 7 dBi	45 49 53
A.5.1.7 dBi A.5.2: 8 dBi	
A.5.3: 13 dBi A.5.4: 14 dBi A.6: CONDUCTED BANDEDGE A.6.1: 7 dBi A.6.2: 8 dBi A.6.3: 13 dBi A.6.4: 14 dBi	85 95 97 .103 .109
APPENDIX B: EMISSION TEST RESULTS	.121
B.1: RADIATED SPURIOUS EMISSIONS B.2: RADIATED EMISSIONS 30MHz TO 1GHz B.3: AC CONDUCTED EMISSIONS	.123 .124
APPENDIX C: LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	.125
APPENDIX D: ABBREVIATION KEY AND DEFINITIONS	-
APPENDIX E: PHOTOGRAPHS OF TEST SETUPS	
APPENDIX F: SOFTWARE USED TO PERFORM TESTING	.127
APPENDIX G: TEST PROCEDURES	
APPENDIX H: SCOPE OF ACCREDITATION (A2LA CERTIFICATE NUMBER 1178-01)	.127
APPENDIX I: TEST ASSESSMENT PLAN	
APPENDIX J: WORST CASE JUSTIFICATION	.127

Page No: 2 of 127

Section 1: Overview

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Specifications:

CFR47 Part 15.407

Page No: 3 of 127

Section 2: Assessment Information

2.1: General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature	15 °C to 35 °C (54 °F to 95 °F)
Atmospheric Pressure	860 mbar to 1060 mbar (25.4" to 31.3")
Humidity	10% to 75*%

e) All AC testing was performed at one or more of the following supply voltages:

110V 60 Hz (+/-20%)

Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB]

The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:

Antenna Factors, Pre-Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss

Note: To convert the results from dBuV/m to uV/m use the following formula:

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Measurement Uncertainty Values

voltage and power measurements	± 2 dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%

Page No: 4 of 127

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz – 300 MHz	± 3.8 dB
300 MHz – 1000 MHz	± 4.3 dB
1 GHz – 10 GHz	± 4.0 dB
10 GHz – 18GHz	± 8.2 dB
18GHz – 26.5GHz	± 4.1 dB
26.5GHz – 40GHz	± 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 40 GHz ± 0.38 dB

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

2.2: Date of testing

30-JUL-2021 to 31-JUL-2021; 03-AUG-2021

2.3: Report Issue Date

13-OCT-2021

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled.

2.4: Testing facilities

This assessment was performed by:

Testing Laboratory Cisco Systems, Inc. 125 West Tasman Drive (Building P) San Jose, CA 95134 USA

Headquarters Cisco Systems, Inc., 170 West Tasman Drive San Jose, CA 95134, USA

Page No: 5 of 127

Cisco System Site	Address	Site Identifier
Building P, 10m Chamber	125 West Tasman Dr	Company #: 2461N-2
	San Jose, CA 95134	
Building P, 5m Chamber	125 West Tasman Dr	Company #: 2461N-1
	San Jose, CA 95134	
Building 7, 5m Chamber	425 E. Tasman Drive	Company #: 2461N-3
	San Jose, California 95134	
	United States	

Registration Numbers for Industry Canada

Test Engineers:

Johanna Knudsen, Julian Land, Mathew Blackburn

2.5: Equipment Assessed (EUT)

C9124AXE

2.6: EUT Description

The Cisco Catalyst 9124AX Series outdoor access points are next-generation Wi-Fi 6 access points encased in a rugged and robust design that service providers and enterprises can easily deploy.

The radio supports the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst-case data for all modes.

802.11a - Non HT20, One Antenna, 6 to 54 Mbps, 1ss

The following antennas are supported by this product series. Please note, the antenna information has been provided by the customer (the Cisco business unit). The data included in this report represent the worst-case data for all antennas.

Frequency	Antenna Name		Antenna Gain
	5 GHz TX/RX: External	Antenna 1	7 dBi (Side Lobe: -1 dBi)
5 GHz 1		Antenna 2	8 dBi (Side Lobe: 5 dBi)
	TA/RA. External	Antenna 3	13 dBi (Side Lobe: 2 dBi)
		Antenna 4	14 dBi (Side Lobe: 5 dBi)

Section 3: Result Summary

3.1: Results Summary Table

Conducted emissions

Basic Standard	Technical Requirements / Details	Result
FCC 15.407	 99% & 26 dB Bandwidth: The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW. The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission. 	Pass
FCC 15.407	Output Power: 15.407 (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	Pass
FCC 15.407	Power Spectral Density: 15.407 (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bandsthe maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	Pass
FCC 15.407	Conducted Spurious Emissions / Band-Edge: 15.407 (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.	Pass
FCC 15.407 FCC 15.209 FCC 15.205	Restricted band: Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) must also comply with the radiated emission limits specified in FCC 15.209 (a).	Pass

Radiated Emissions (General requirements)

Basic Standard	Technical Requirements / Details	
FCC 15.209 FCC 15.205	TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the filed strength limits table in this section.	Not covered by the scope of this report
FCC 15.207	AC conducted Emissions: Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.	Not covered by the scope of this report

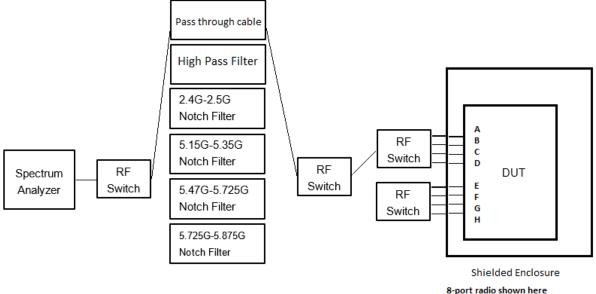
Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing.

4.1: Sample Details

Sample	Equipment	Manufacturer	Hardware	Serial
No.	Details		Rev.	Number
S01	C9124AXE-B (Used in Rack 9)	Foxconn (For Cisco)	PP	FOC25220CP1

4.2: System Details


System #	Description	Samples
1	EUT (used in Rack 9)	S01

4.3: Mode of Operation Details

Mode#	Description	Comments
1	Continuously Transmitting Testing using Rack 9	AP Running Image: 8.8.1.10 Cisco AP Software, (ap1g6a), [cheetah- build9:/san1/BUILD/workspace/c176_throttle_mfg/label/mfg-ap1g6a] Compiled Wed Jul 14 22:18:33 GMT 2021

Appendix A: Emission Test Results

Conducted Test Setup Diagram

8-port radio shown here Some radios will fewer transmit paths

Page No: 9 of 127

A.1: Duty Cycle

Duty Cycle Test Requirement

From KDB 789033 D02 General UNII Test Procedures New Rules v02r01

B. Duty Cycle (x), Transmission Duration (T), and Maximum Power Control Level

1. All measurements are to be performed with the EUT transmitting at 100 percent duty cycle at its maximum power control level; however, if 100 percent duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.

Duty Cycle Test Method

From KDB 789033 D02 General UNII Test Procedures New Rules v02r01:

B. Duty Cycle (x), Transmission Duration (T), and Maximum Power Control Level

The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \ge EBW if possible; otherwise, set RBW to the largest available value. Set VBW \ge RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \le 16.7 microseconds.)

Duty Cycle Test Information

Tested By:	Date of testing:
Johanna Knudsen, Julian Land, Mathew Blackburn	30-JUL-2021 to 31-JUL-2021
Test Result: PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 10 of 127

Duty Cycle Data Table

Duty Cycle table and screen captures are shown below for Power/PSD modes. Results shown are representative for all antenna gains.

Frequency (MHz)	Mode	Data Rate (Mbps)	Duty Cycle (dB)
5500	Non HT20, 6 to 54 Mbps	6.0	0.13094
5560	Non HT20, 6 to 54 Mbps	6.0	0.13094
5700	Non HT20, 6 to 54 Mbps	6.0	0.13094
5720	Non HT20, 6 to 54 Mbps	6.0	0.13094

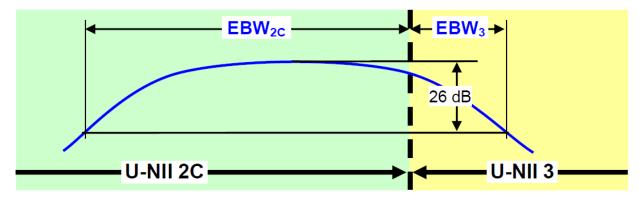
Data Screenshots

5500 MHz: Non HT20, 6 to 54 Mbps

Keysight Spectrum Analyzer - Swept SA						- ¢ 🔀
IXI RF 50 Ω CORREC Center Freq 5.500000000 GHz	SENSE:IN	Avg Type	e: Log-Pwr		1 2 3 4 5 6	Frequency
NFE PNO: Fast IFGain:Low	↔ Trig: Free Ru #Atten: 28 dB		: 1/1	DE		Auto Tune
10 dB/div Ref 15.00 dBm 5.00 000 000 000 000 000 000 000 000 000	2	when the second s	(Aborated a			Center Freq 5.50000000 GHz
-15.0						Start Freq 5.50000000 GHz
-55.0						Stop Freq 5.50000000 GHz
	3W 100 kHz		Sweep 1.	000 ms (1		CF Step 3.000000 MHz <u>Auto</u> Man
MKR MODE TRC SCL X 1 N 1 f 5.488 GHz 2 N 1 f 10.995 GHz 3 N 1 f 5.117 GHz 4 N 1 f 5.333 GHz 5 - - - - - 6 - - - - -	Y -58.633 dBm -70.497 dBm -60.195 dBm -53.576 dBm	FUNCTION FUI	NCTION WIDTH	FUNCTIO		Freq Offset 0 Hz
7 8 9 10 11						Scale Type
MSG	97.03, 0.13		STATUS		•	

Antenna A

Page No: 11 of 127


A.2: 99% and 26dB Bandwidth

99% and 26dB Bandwidth Test Requirement

There is no requirement for the value of bandwidth. However, the 26dB BW (EBW) is used to calculate the power limits in 15.407 (a) (2). Power measurements are made using the 99% Bandwidth as the integration bandwidth.

Band-crossing emissions:

For an emission that crosses the boundary between two adjacent U-NII bands, the boundary frequency between the bands serves as one edge for defining the portion of the EBW that falls within a particular U-NII band. However, the -26 dB points are measured relative to the highest point on the contiguous segment—regardless of which band contains that highest point (Figure 4).

Figure 3. Emission Bandwidth (EBW) within a Band for Band-Crossing Signals

99% and 26dB Bandwidth Test Procedure

ANSI C63.10: 2013 Section 6.9.3 Ref. KDB 789033 Section D. 99 Percent Occupied Bandwidth KDB 662911

99% BW

Test Parameters

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW

4. Set VBW ≥ 3 · RBW

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

6. Use the 99 % power bandwidth function of the instrument (if available).

Page No: 12 of 127

Ref KDB 789033 in Section C. Measurement Bandwidth, Section 1

26 BW	
Test parameters	
X dB BW = -26dB (using the OBW function	n of the spectrum analyzer)
Emission Bandwidth (EBW)	
a) Set RBW = approximately 1% of the em	ission bandwidth.
b) Set the VBW > RBW.	
c) Detector = Peak.	
d) Trace mode = max hold.	
e) Measure the maximum width of the em	ission that is 26 dB down from the maximum of the emission. Compare
5	Readjust RBW and repeat measurement as needed until the RBW/EBW
ratio is approximately 1%.	
Teated Dec	Data of testinger

Tested By:	Date of testing:
Johanna Knudsen, Julian Land, Mathew Blackburn	30-JUL-2021 to 31-JUL-2021; 03-AUG-2021
Test Result: PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 13 of 127

99% and 26dB Bandwidth Table

Results shown are representative for all antenna gains.

Frequency (MHz)	Mode	Data Rate (Mbps)	26dB BW (MHz)	99% BW (MHz)
5500	Non HT20, 6 to 54 Mbps	6.0	21.9	16.512
5560	Non HT20, 6 to 54 Mbps	6.0	21.6	16.509
5700	Non HT20, 6 to 54 Mbps	6.0	22.3	16.529
5720	Non HT20, 6 to 54 Mbps	6.0	16.0	13.331

Data Screenshots

5720 MHz: Non HT20, 6 to 54 Mbps

Keysight Spectrum Analyzer - Occupied B					
RL RF 50 Ω DC Center Freg 5.695000000		SENSE:INT r Freq: 5.695000000 GHz	Radio Std:	None	Frequency
NFE		Free Run n: 22 dB	Radio Devi	ce: BTS	
10 dB/div Ref 22.20 dBr	n				
12.2					Center Freq
2.20			Marthadardortada	water	5.695000000 GHz
-7.80					
-17.8					
-27.8		www.www.			
-37.8	and a second when the second	w M V V V			
-47.8					
-67.8					
Center 5.69500 GHz #Res BW 200 kHz	#	VBW 620 kHz		0.00 MHz veep 5 s	CF Step
					6.000000 MHz <u>Auto</u> Man
Occupied Bandwid		Total Power	23.9 dBm		
1	3.331 MHz				Freq Offset
Transmit Freq Error	23.298 MHz	% of OBW Powe	r 99.00 %		0 Hz
x dB Bandwidth	15.98 MHz	x dB	-26.00 dB		
MSG			STATUS		


Antenna A

Page No: 14 of 127

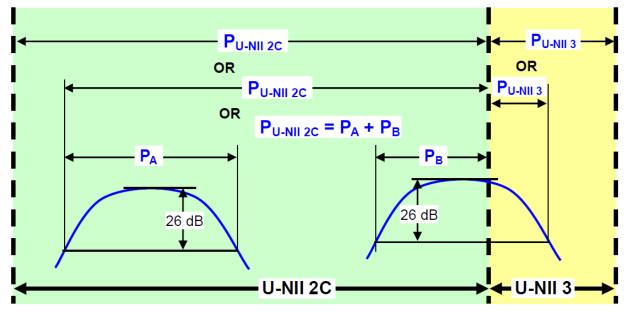
Antenna A

Page No: 15 of 127

Antenna A

Page No: 16 of 127

A.3: Maximum Conducted Output Power


Maximum Conducted Output Power Test Requirement

15.407:

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. ... If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Band-Crossing Signals:

When measuring the portion of the maximum conducted output power within a single U-NII band, the power shall be integrated across only the portion of the EBW that falls within that band. That is, if an EBW extends across the boundary between two adjacent bands, the boundary frequency between the bands serves as one edge of the frequency range to be integrated. Integration across an entire U-NII band without regard to 26 dB points is also acceptable for determining conducted output power within that band.

Conducted output power within a U-NII band: Integrate over the band or integrate over a span including the 26 dB EBWs of transmission segments within the band or integrate over 26 dB EBW of each transmission segment in the band and sum.

Figure 4. Conducted Output Power Measurement Examples

Maximum Conducted Output Power Test Procedure

ANSI C63.10: 2013

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Maximum Conducted Output Power
Test Procedure
1. Set the radio in the continuous transmitting mode at full power
2. Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using
the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer
band-power measurement function with band limits set equal to the EBW or the OBW band edges.
Capture graphs and record pertinent measurement data.

Page No: 17 of 127

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v02r01

2. Measurement using a Spectrum Analyzer or EMI Receiver (SA), (d) Method SA-2

Maximum Conducted Output Power Test parameters

Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction). (i) Measure the duty cycle, x, of the transmitter output signal as described in section II.B.

(ii) Set span to encompass the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(iii) Set RBW = 1 MHz.

(iv) Set VBW ≥ 3 MHz.

(v) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(vi) Sweep time = auto.

(vii) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(viii) Do not use sweep triggering. Allow the sweep to "free run".

(ix) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed to ensure that the average accurately represents the true average over the on and off periods of the transmitter.

(x) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth)

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. ANSI C63.10 section 14.3.2.2

Tested By: Johanna Knudsen, Julian Land, Mathew Blackburn	Date of testing: 30-JUL-2021 to 31-JUL-2021; 03-AUG-2021
Test Result: PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 18 of 127

A.3.1: 7 dBi

Maximum Output Power

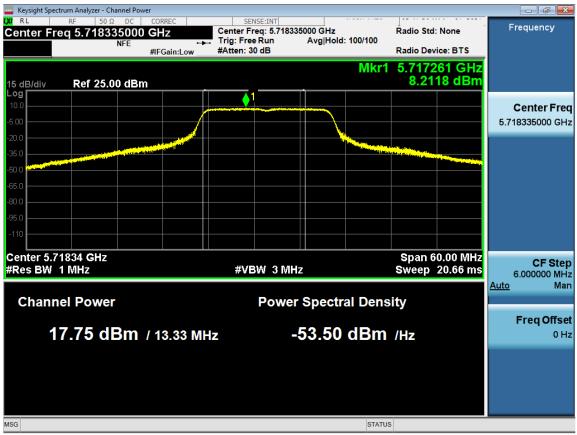
Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	16.1	0.13	16.2	23	6.81

Frequency 5560 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	17.4	0.13	17.6	23	5.43

Frequency 5700 MHz

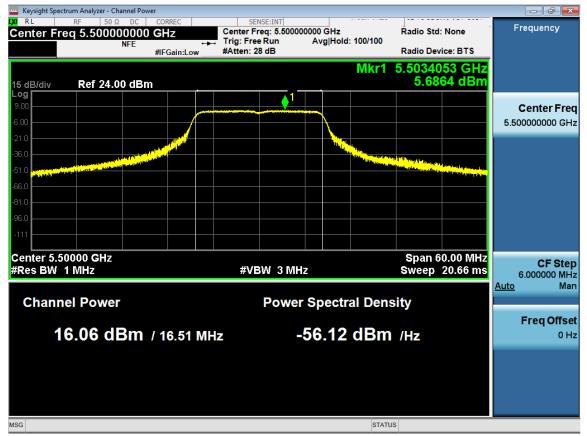

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	13.6	0.13	13.7	23	9.29

Frequency 5720 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	17.7	0.13	17.9	23	5.12

Data Screenshots

Page No: 19 of 127


Antenna A

Page No: 20 of 127

Antenna A

Page No: 21 of 127

Antenna A

Page No: 22 of 127

A.3.2: 8 dBi

Maximum Output Power

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	16.0	0.13	16.2	22	5.85

Frequency 5560 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	17.4	0.13	17.6	22	4.43

Frequency 5700 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	13.6	0.13	13.7	22	8.29

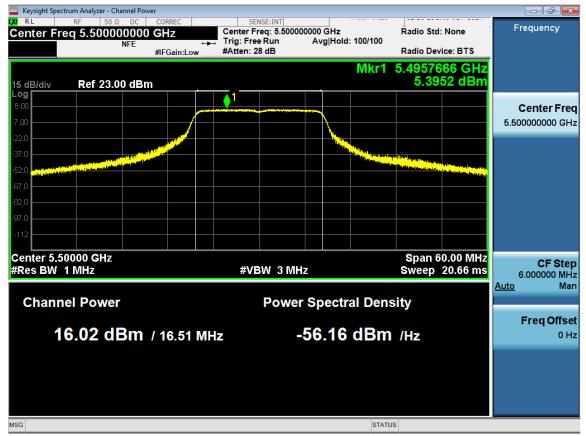
Frequency 5720 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	17.7	0.13	17.9	22	4.12

Page No: 23 of 127

Data Screenshots

5720 MHz: Non HT20, 6 to 54 Mbps


Antenna A

Page No: 24 of 127

Antenna A

Page No: 25 of 127

Antenna A

Page No: 26 of 127

A.3.3: 13 dBi

Maximum Output Power

Frequency 5500 MHz

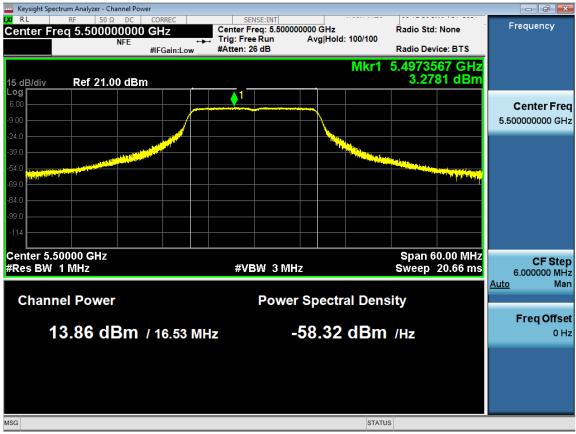
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	13.9	0.13	14.0	17	3.01

Frequency 5560 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	13.8	0.13	13.9	17	3.09

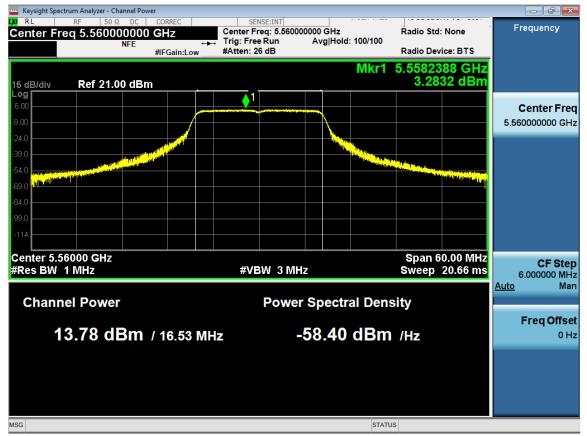
Frequency 5700 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	13.6	0.13	13.7	17	3.29


Frequency 5720 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	12.5	0.13	12.6	17	4.38

Page No: 27 of 127


Data Screenshots

5500 MHz: Non HT20, 6 to 54 Mbps

Antenna A

Page No: 28 of 127

Antenna A

Page No: 29 of 127

Antenna A

Page No: 30 of 127

A.3.4: 14 dBi

Maximum Output Power

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	11.7	0.13	11.8	16	4.18

Frequency 5560 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	11.7	0.13	11.8	16	4.19

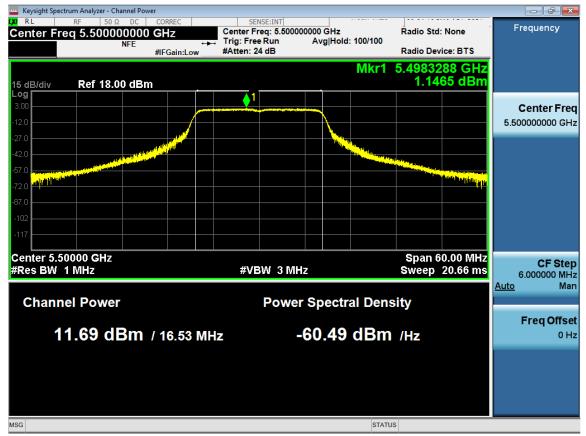
Frequency 5700 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	11.4	0.13	11.6	16	4.44

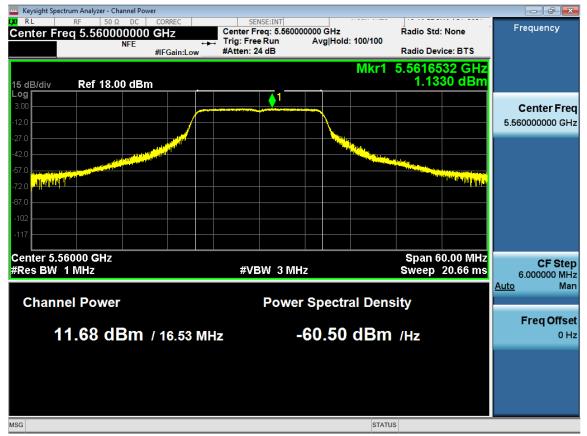

Frequency 5720 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Duty Cycle (dB)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	12.5	0.13	12.6	16	3.38

Page No: 31 of 127


Data Screenshots

5720 MHz: Non HT20, 6 to 54 Mbps


Antenna A

Page No: 32 of 127

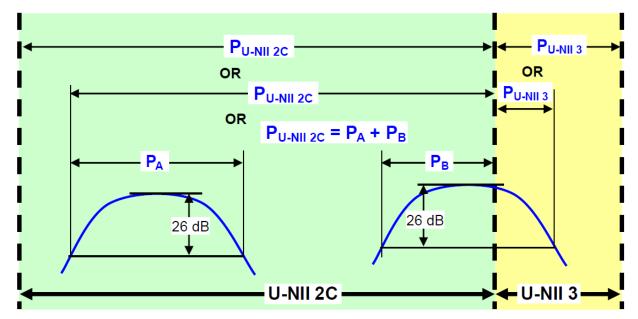
Antenna A

Page No: 33 of 127

Antenna A

Page No: 34 of 127

A.4: Power Spectral Density


Power Spectral Density Test Requirement

15.407:

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Band-Crossing Signals:

When measuring the portion of the maximum conducted output power within a single U-NII band, the power shall be integrated across only the portion of the EBW that falls within that band. That is, if an EBW extends across the boundary between two adjacent bands, the boundary frequency between the bands serves as one edge of the frequency range to be integrated. Integration across an entire U-NII band without regard to 26 dB points is also acceptable for determining conducted output power within that band.

Conducted output power within a U-NII band: Integrate over the band or integrate over a span including the 26 dB EBWs of transmission segments within the band or integrate over 26 dB EBW of each transmission segment in the band and sum.

Figure 4. Conducted Output Power Measurement Examples

Power Spectral Density Test Procedure

ANSI C63.10: 2013 Peak Power Spectral Density 12.5, 12.3.2.4 Method SA-2

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v02r01, F. Maximum Power Spectral Density Power Spectral Density

Test Procedure

The rules requires "maximum power spectral density" measurements where the intent is to measure the maximum value of the time average of the power spectral density measured during a period of continuous transmission.

1. Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)

2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.

3. Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add 10 $\log(1/x)$, where x is the duty cycle, to the peak of the spectrum.

b) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.

4. The result is the Maximum PSD over 1 MHz reference bandwidth.

ANSI C63.10: 2013 Peak Power Spectral Density 12.5, 12.3.2.4 Method SA-2

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v02r01, F. Maximum Power Spectral Density Power Spectral Density

FOW	ei opeciia	Dens
Test	parameters	3

Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction). (i) Measure the duty cycle, x, of the transmitter output signal as described in section II.B.

(ii) Set span to encompass the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(iii) Set RBW = 1 MHz.

(iv) Set VBW ≥ 3 MHz.

(v) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(vi) Sweep time = auto.

(vii) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode. (viii) Do not use sweep triggering. Allow the sweep to "free run".

(ix) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed to ensure that the average accurately represents the true average over the on and off periods of the transmitter.

(x) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth)

F. Maximum Power Spectral Density (PSD)

2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.

3. Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add $10 \log(1/x)$, where x is the duty cycle, to the peak of the spectrum.

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. ANSI C63.10 section 14.3.2.2.

Tested By:	Date of testing:
Johanna Knudsen, Julian Land, Mathew Blackburn	31-JUL-2021; 03-AUG-2021
Test Result: PASS	

Test Equipment

See Appendix C for list of test equipment

A.4.1: 7 dBi

Power Spectral Density

Frequency 5500 MHz

Mode	Paths	rrelated Antenna Gain 3i)	1 PSD 3m/MHz)	ty Cycle 3)	Total PSD (dBm/MHz)	nit 3m/MHz)	ırgin 3)
	Tx Pat	Correl (dBi)	шĘ	Duty ((dB)	Total I (dBm/	Limit (dBm/	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	5.7	0.13	5.8	10	4.18

Frequency 5560 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Duty Cycle (dB)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	7.3	0.13	7.5	10	2.53

Frequency 5700 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Duty Cycle (dB)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	3.2	0.13	3.3	10	6.72

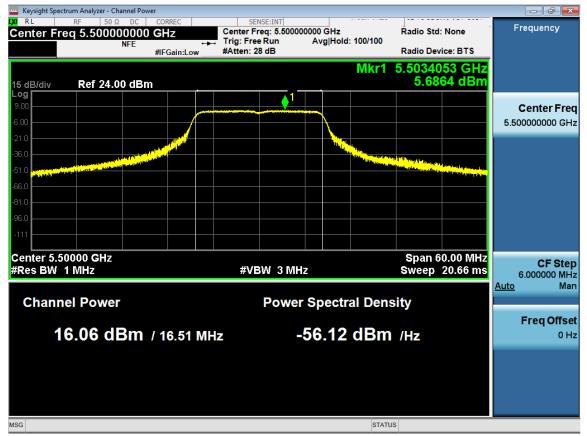
Frequency 5720 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Duty Cycle (dB)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	8.2	0.13	8.3	10	1.66

Data Screenshots

Page No: 37 of 127

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential


Antenna A

Page No: 38 of 127

Antenna A

Page No: 39 of 127

Antenna A

Page No: 40 of 127

A.4.2: 8 dBi

Power Spectral Density

Frequency 5500 MHz

Mode	Paths	orrelated Antenna Gain Bi)	(1 PSD Bm/MHz)	ıty Cycle B)	Total PSD (dBm/MHz)	mit Bm/MHz)	argin B)
	Tx Pa	Corre (dBi)	Tx 1 (dBm	Duty (dB)	Total (dBm	Limit (dBm	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	5.4	0.13	5.5	9	3.47

Frequency 5560 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	T× 1 PSD (dBm/MHz)	Duty Cycle (dB)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	7.3	0.13	7.5	9	1.53

Frequency 5700 MHz

Mode			Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Duty Cycle (dB)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
Non HT20, 6 to	54 Mbps	1	1	8	3.2	0.13	3.3	9	5.72

Frequency 5720 MHz

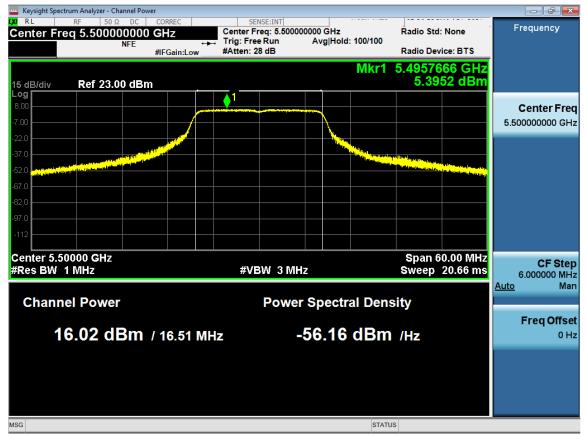
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Duty Cycle (dB)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	8.2	0.13	8.3	9	0.66

Page No: 41 of 127

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential

Data Screenshots

5720 MHz: Non HT20, 6 to 54 Mbps


Antenna A

Page No: 42 of 127

Antenna A

Page No: 43 of 127

Antenna A

Page No: 44 of 127

A.4.3: 13 dBi

Power Spectral Density

Frequency 5500 MHz

	1		1	1			
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Duty Cycle (dB)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	3.3	0.13	3.4	4	0.59

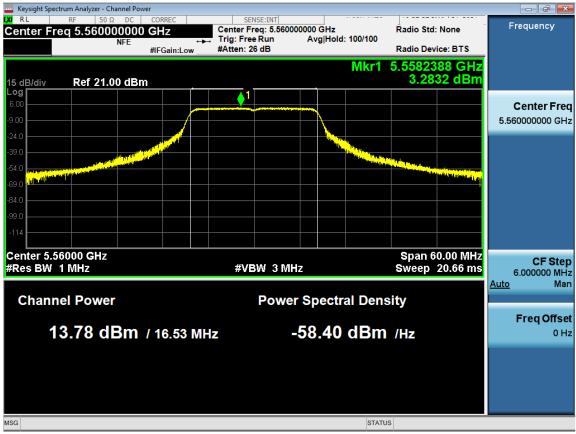
Frequency 5560 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	T× 1 PSD (dBm/MHz)	Duty Cycle (dB)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	3.3	0.13	3.4	4	0.59

Frequency 5700 MHz

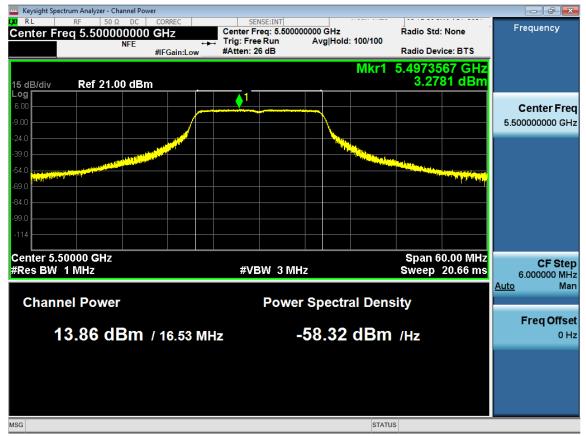
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Duty Cycle (dB)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	3.2	0.13	3.3	4	0.72

Frequency 5720 MHz

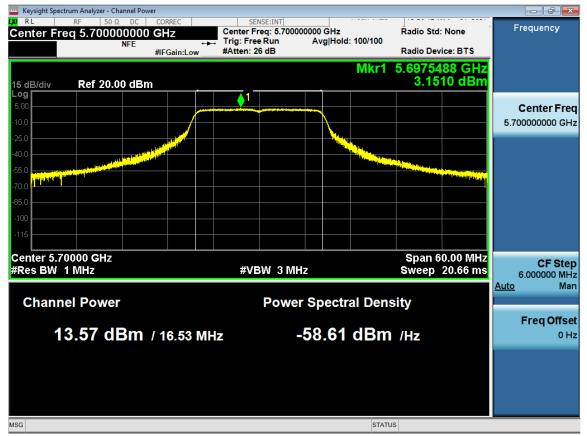

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Duty Cycle (dB)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	3.0	0.13	3.1	4	0.88

Page No: 45 of 127

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential


Data Screenshots

5560 MHz: Non HT20, 6 to 54 Mbps


Antenna A

Page No: 46 of 127

Antenna A

Page No: 47 of 127

Antenna A

Page No: 48 of 127

A.4.4: 14 dBi

Power Spectral Density

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Duty Cycle (dB)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	1.1	0.13	1.3	3	1.72

Frequency 5560 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	T× 1 PSD (dBm/MHz)	Duty Cycle (dB)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	1.1	0.13	1.3	3	1.74

Frequency 5700 MHz

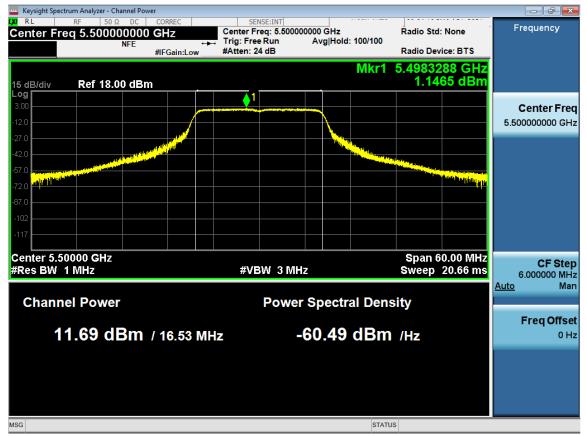
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Duty Cycle (dB)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	1.1	0.13	1.3	3	1.74

Frequency 5720 MHz

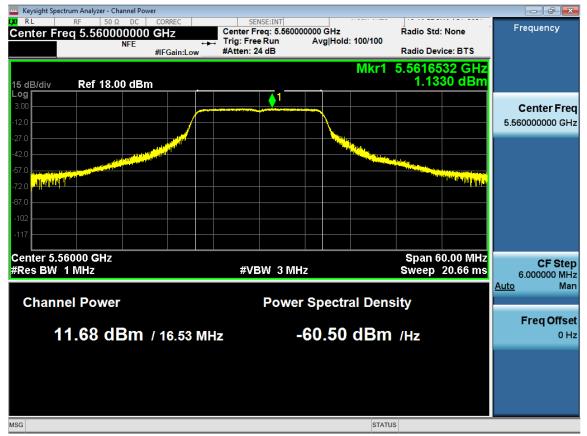

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Duty Cycle (dB)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	2.7	0.13	2.9	3	0.12

Page No: 49 of 127

This document is uncontrolled. Please refer to the electronic copy within EDCS for the most up to date version. Cisco Systems, Inc. Company Confidential


Data Screenshots

5720 MHz: Non HT20, 6 to 54 Mbps


Antenna A

Page No: 50 of 127

Antenna A

Page No: 51 of 127

Antenna A

Page No: 52 of 127

A.5: Conducted Spurious Emissions

Conducted Spurious Emissions Test Requirement

15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits

15.205 | 15.209

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Use formula below to substitute conducted measurements in place of radiated measurements

 $E[dB\mu V/m] = EIRP[dBm] - 20 \log(d[meters]) + 104.77$, where E = field strength and d = 3 meter

1) Average Plot, Limit= -41.25 dBm eirp 2) Peak plot, Limit = -21.25 dBm eirp

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

2. Unwanted Emissions that fall Outside of the Restricted Bands

a) For all measurements, follow the requirements in II.G.3. *"General Requirements for Unwanted Emissions Measurements."*

b) At frequencies below 1000 MHz, use the procedure described in II.G.4. *"Procedure for Unwanted Emissions Measurements Below 1000 MHz."*

c) At frequencies above 1000 MHz, use the procedure for maximum emissions described in II.G.5., *"Procedure for Unwanted Emissions Measurements Above 1000 MHz."*

(i) Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz.

Page No: 53 of 127

Conducted Spurious Emissions Test Procedure

Ref. ANSI C63.10: 2013

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Conducted Spurious Emissions

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Use the peak marker function to determine the maximum spurs amplitude level.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measureand-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded. (see ANSI C63.10:2013 section 14.3.2.2)

6. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 section 12.7.6 (Peak) and 12.7.7.2 (Average)

KDB 789033 D02 General UNII Test Procedures New Rules v02r01, Sec. 5 (Peak), Sec. 6 (Average Method AD)

Test parameters	
Peak	Average
RBW = 1 MHz	RBW = 1 MHz
VBW ≥ 3 MHz	VBW ≥ 3 MHz
Sweep = Auto	Sweep = Auto
Detector = Peak	Detector = RMS
Trace = Max Hold.	Power Averaging

Add the max antenna gain + ground reflection factor (4.7 dB for frequencies between 30 MHz and 1000 MHz, and 0 dB for frequencies > 1000 MHz).

Tested By:	Date of testing:
Johanna Knudsen, Julian Land, Mathew Blackburn	30-JUL-2021 to 31-JUL-2021; 03-AUG-2021
Test Result: PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 54 of 127

A.5.1: 7 dBi

Conducted Spurious Average Upper Table

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	-71.8	0.13	-64.7	-41	23.41

Data Screenshots

5500 MHz: Non HT20, 6 to 54 Mbps

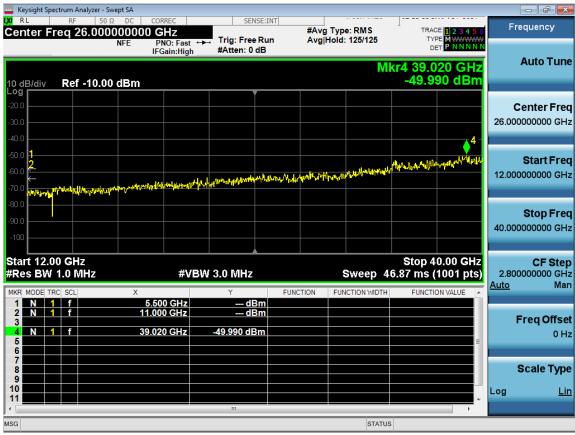
Keysight Spectrum Analyzer - Swept SA					
⊠ RL RF 50Ω DC Center Freq 26.00000000		SENSE:INT	#Avg Type: RMS Avg Hold: 125/125	TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref -10.00 dBm		#Atten: 0 dB		Ikr4 34.512 GHz -71.788 dBm	Auto Tune
-20.0 -30.0 -40.0					Center Freq 26.00000000 GHz
-50.0 -60.0 1				4	Start Freq 12.000000000 GHz
-80.0 Z -90.0 K -100		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Stop Freq 40.000000000 GHz
Start 12.00 GHz #Res BW 1.0 MHz	#VBW 3			Stop 40.00 GHz 46.87 ms (1001 pts)	CF Step 2.80000000 GHz <u>Auto</u> Man
2 N 1 f 1	5.500 GHz 1.000 GHz 4.512 GHz -	dBm dBm 71.788 dBm			Freq Offset 0 Hz
7 8 9 9 9 10 10 11 11 11 11 11 11 11 11 11 11 11				•	Scale Type
MSG		III	STATU	JS	

Antenna A

Page No: 55 of 127

pur

Conducted Spurious Emissions Peak Upper Table


Frequency 5500 MHz		

Mode	Tx Paths	Correlated Antenn (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Fotal Conducted S (dBm)	Limit (dB)	Margin (dB)	
Non HT20, 6 to 54 Mbps	1	7	-50.0	0.13	-42.9	-21	21.61	

a Gain

Data Screenshots

5500 MHz: Non HT20, 6 to 54 Mbps

Antenna A

Page No: 56 of 127

Conducted Spurious Average Table

Frequency 5500 MHz

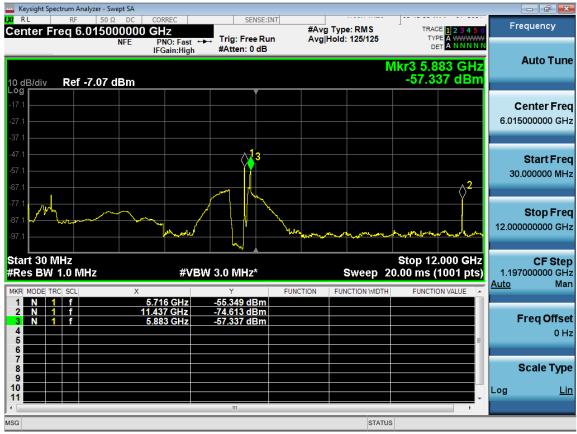
Mode	Tx Paths	^I Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	hMargin (dB)
Non HT20, 6 to 54 Mbps	1	7	-63.8	0.13	-56.7	-41	15.42

Frequency 5560 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	-69.0	0.13	-61.9	-41	20.62

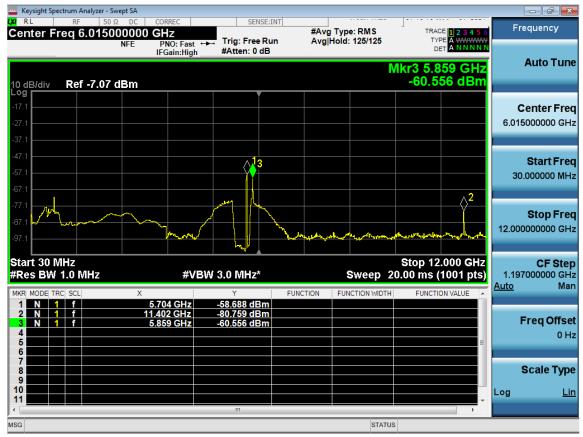
Frequency 5700 MHz

			1				
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	-60.6	0.13	-53.5	-41	12.22

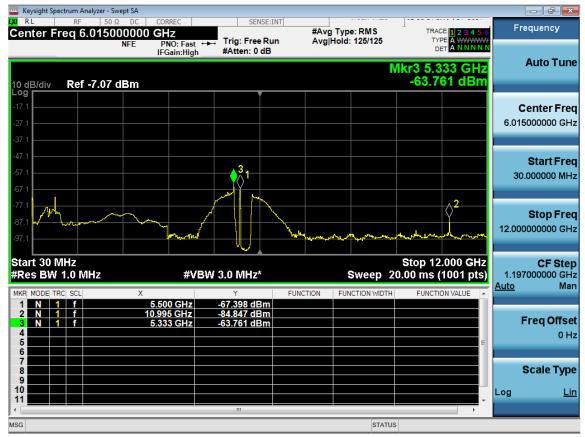

Frequency 5720 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	-57.3	0.13	-50.2	-41	8.92

Page No: 57 of 127


Data Screenshots

5720 MHz: Non HT20, 6 to 54 Mbps


Antenna A

Page No: 58 of 127

Antenna A

Page No: 59 of 127

Antenna A

Page No: 60 of 127

Conducted Spurious Emissions Peak Table

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	-60.2	0.13	-53.1	-27	26.07

Frequency 5560 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	-59.9	0.13	-52.8	-27	25.77

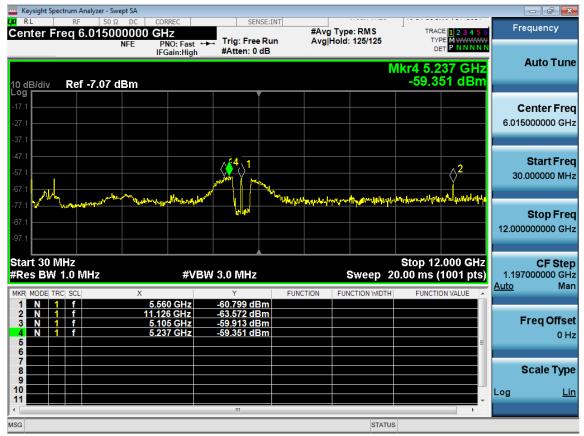
Frequency 5700 MHz

			r				
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	-63.4	0.13	-56.3	-27	29.27

Frequency 5720 MHz

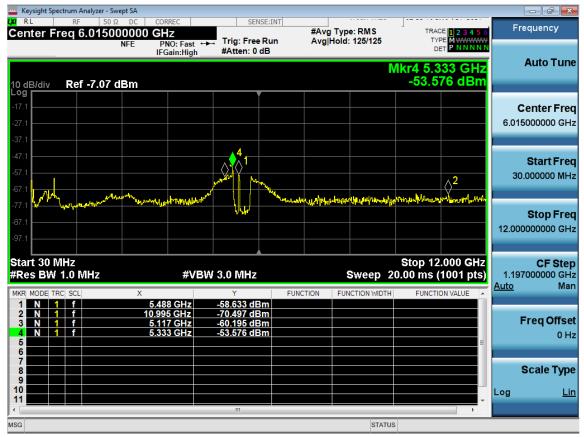
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	-58.5	0.13	-51.4	-27	24.37

Page No: 61 of 127


Data Screenshots

5720 MHz: Non HT20, 6 to 54 Mbps

Keysight Spectrum Analyzer - Swept SA				- ¢ 🔀
RL RF 50 Ω DC Center Freq 6.015000000	CORREC SENSE:IN	#Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
NFE	PNO: Fast +++ Trig: Free Run IFGain:High #Atten: 0 dB	n Avg Hold: 125/125	TYPE MWWW DET PNNNNN	
		N	lkr4 5.883 GHz	Auto Tune
10 dB/div Ref -7.07 dBm			-48.234 dBm	
-17.1				Center Freq
-27.1				6.015000000 GHz
-37.1	————— <mark></mark> 4—			
-47.1			<u>م2</u>	Start Freq
-57.1				30.000000 MHz
-67.1	may the start the second	where we want the ward and the state of the second state of the se	echowskip provide whe	
-87.1	Ψ η			Stop Freq
-97.1				12.00000000 GHz
Start 30 MHz			Stop 12.000 GHz	CF Step
#Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 20	0.00 ms (1001 pts)	1.197000000 GHz
MKR MODE TRC SCL X	Ý	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
1 N 1 f 2 N 1 f 1	5.716 GHz -46.143 dBm 1.437 GHz -63.350 dBm			
	5.081 GHz -58.539 dBm 5.883 GHz -48.234 dBm			Freq Offset 0 Hz
5			Ξ	OT IL
7				Scale Type
9				
				Log <u>Lin</u>
MSG		STATUS		
		314103		


Antenna A

Page No: 62 of 127

Antenna A

Page No: 63 of 127

Antenna A

Page No: 64 of 127

A.5.2: 8 dBi

Conducted Spurious Average Upper Table

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	-71.8	0.13	-63.7	-41	22.41

Data Screenshots

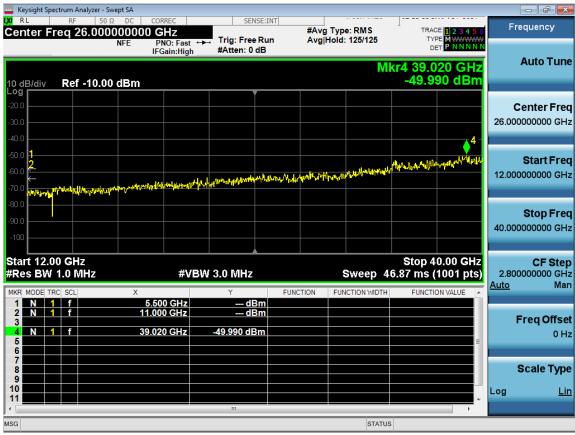
5500 MHz: Non HT20, 6 to 54 Mbps

Keysight Spectrum Analyzer - Swept SA					
⊠ RL RF 50Ω DC Center Freq 26.00000000		SENSE:INT	#Avg Type: RMS Avg Hold: 125/125	TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref -10.00 dBm		#Atten: 0 dB		Ikr4 34.512 GHz -71.788 dBm	Auto Tune
-20.0 -30.0 -40.0					Center Freq 26.00000000 GHz
-50.0 -60.0 1				4	Start Freq 12.000000000 GHz
-80.0 Z -90.0 K -100		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Stop Freq 40.000000000 GHz
Start 12.00 GHz #Res BW 1.0 MHz	#VBW 3			Stop 40.00 GHz 46.87 ms (1001 pts)	CF Step 2.80000000 GHz <u>Auto</u> Man
2 N 1 f 1	5.500 GHz 1.000 GHz 4.512 GHz -	dBm dBm 71.788 dBm			Freq Offset 0 Hz
7 8 9 9 9 10 10 11 11 11 11 11 11 11 11 11 11 11				•	Scale Type
MSG		III	STATU	JS	

Antenna A

Page No: 65 of 127

Conducted Spurious Emissions Peak Upper Table


requency 5500 MHz	

Mode	Tx Paths	Correlated Antenna Gai (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	-50.0	0.13	-41.9	-21	20.61

L L

Data Screenshots

5500 MHz: Non HT20, 6 to 54 Mbps

Antenna A

Page No: 66 of 127

Conducted Spurious Average Table

Frequency 5500 MHz

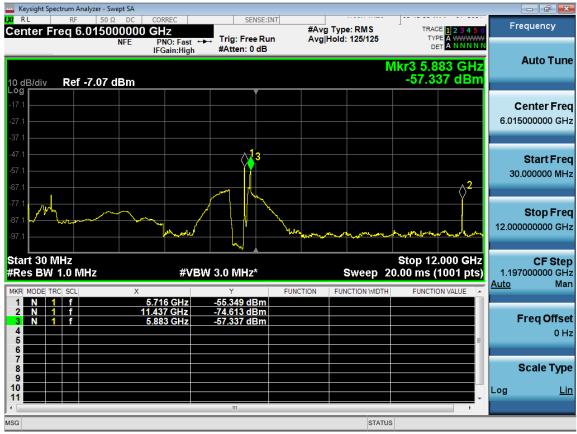
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	.Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	-63.5	0.13	-55.4	-41	14.12

Frequency 5560 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	-69.0	0.13	-60.9	-41	19.62

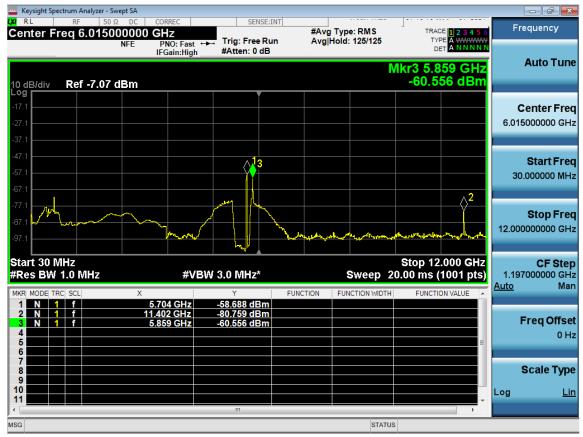
Frequency 5700 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	-60.6	0.13	-52.5	-41	11.22

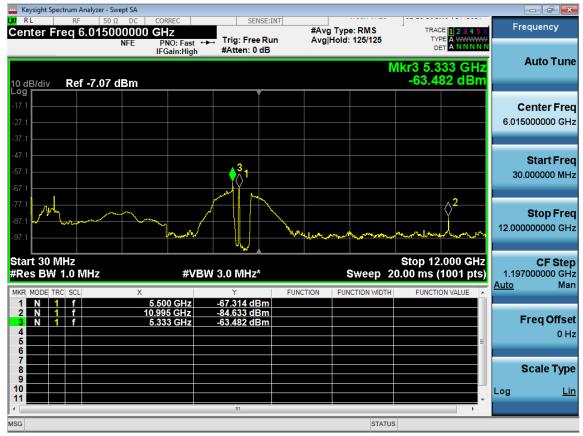

Frequency 5720 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	-57.3	0.13	-49.2	-41	7.92

Page No: 67 of 127


Data Screenshots

5720 MHz: Non HT20, 6 to 54 Mbps


Antenna A

Page No: 68 of 127

Antenna A

Page No: 69 of 127

Antenna A

Page No: 70 of 127

Conducted Spurious Emissions Peak Table

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	-59.8	0.13	-51.7	-27	24.67

Frequency 5560 MHz

Mode	k Paths	orrelated Antenna Gain Bi)	k 1 Spur Power Bm)	uty Cycle B)	otal Conducted Spur Bm)	mit B)	argin B)
	Т× F	Cori (dBi	Tx 1 (dBr	Dut) (dB)	Tota (dBr	Limi (dB)	Març (dB)
Non HT20, 6 to 54 Mbps	1	8	-59.9	0.13	-51.8	-27	24.77

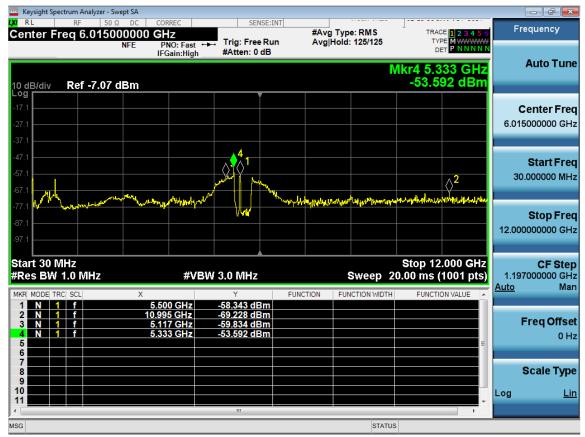
Frequency 5700 MHz

		1	1	1	1	1	1
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	-63.4	0.13	-55.3	-27	28.27

Frequency 5720 MHz

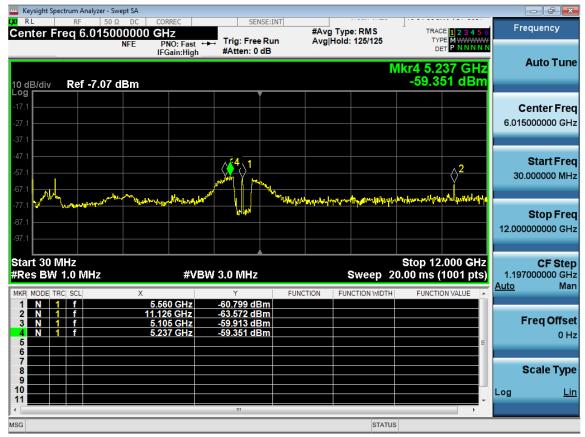
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	-58.5	0.13	-50.4	-27	23.37

Page No: 71 of 127


Data Screenshots

5720 MHz: Non HT20, 6 to 54 Mbps

Exercise Sectrum Analyzer - Swept SA	
X RL RF 50 Ω CORREC SENSE:INT Address of the sense: Center Freq 6.015000000 GHz #Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE M WWWWW
NFE PNO: Fast ↔ Trig: Free Run Avg Hold: 125/125 IFGain:High #Atten: 0 dB	DET
Mkr4	5.883 GHz Auto Tune
10 dB/div Ref -7.07 dBm -4	8.234 dBm
-17.1	Center Freq
-27.1	6.015000000 GHz
-37.1	
-47.1	∧2 Start Freq
-57.1	30.000000 MHz
77.1 May man and a second and a	Nortowattan and
-87.1	Stop Freq
-97.1	12.00000000 GHz
Start 30 MHz Sto	p 12.000 GHz CF Step
#Res BW 1.0 MHz #VBW 3.0 MHz Sweep 20.00	ms (1001 pts) 1.197000000 GHz
	UNCTION VALUE
1 N 1 f 5.716 GHz -46.143 dBm 2 N 1 f 11.437 GHz -63.350 dBm	Freq Offset
3 N 1 f 5.081 GHz -58.539 dBm 4 N 1 f 5.883 GHz -48.234 dBm	0 Hz
7 8	Scale Type
9 10	Log Lin
MSG STATUS	


Antenna A

Page No: 72 of 127

Antenna A

Page No: 73 of 127

Antenna A

Page No: 74 of 127

A.5.3: 13 dBi

Conducted Spurious Average Upper Table

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	-71.8	0.13	-58.7	-41	17.41

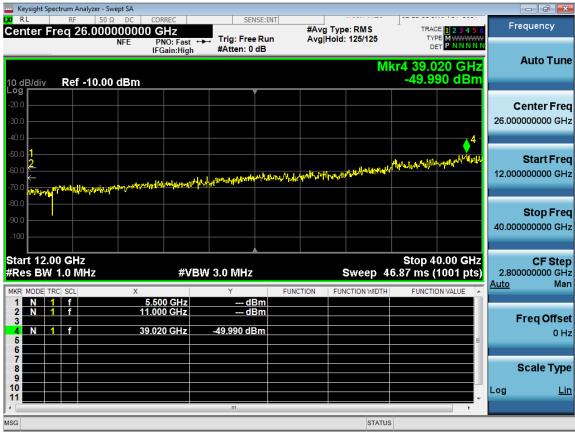
Data Screenshots

5500 MHz: Non HT20, 6 to 54 Mbps

weysight Spectrum Analyzer - Swept SA							- 6 ×
⊠ RL RF 50 Ω DC Center Freq 26.00000000		SENSE:IN	#Avg T	ype: RMS	TRAC	E 1 2 3 4 5 6	Frequency
NFE	PNO: Fast ↔ IFGain:High	. Trig: Free Rur #Atten: 0 dB	n Avgino	old: 125/125	kr4 34.5 -71.78		Auto Tune
-20.0 -30.0 -40.0							Center Freq 26.00000000 GHz
-50.0 -60.0 1 -70.0 C					4	- L AMOTOR	Start Freq 12.000000000 GHz
-80.0 2 -90.0 (-100		Jun Anna		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	han a la han	all and a second se	Stop Freq 40.000000000 GHz
Start 12.00 GHz #Res BW 1.0 MHz	#VBW	3.0 MHz*	FUNCTION	Sweep 4	6.87 ms (0.00 GHz 1001 pts)	CF Step 2.800000000 GHz <u>Auto</u> Man
1 N 1 f 2 N 1 f 3 J 4 N 1 f 3 J 5 J	5.500 GHz 1.000 GHz 4.512 GHz	dBm dBm -71.788 dBm				E	Freq Offset 0 Hz
6 7 8 9 10							Scale Type Log <u>Lin</u>
MSG		m		STATUS	3		

Antenna A

Page No: 75 of 127


Conducted Spurious Emissions Peak Upper Table

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	-50.0	0.13	-36.9	-21	15.61

Data Screenshots

5500 MHz: Non HT20, 6 to 54 Mbps

Antenna A

Page No: 76 of 127

Conducted Spurious Average Table

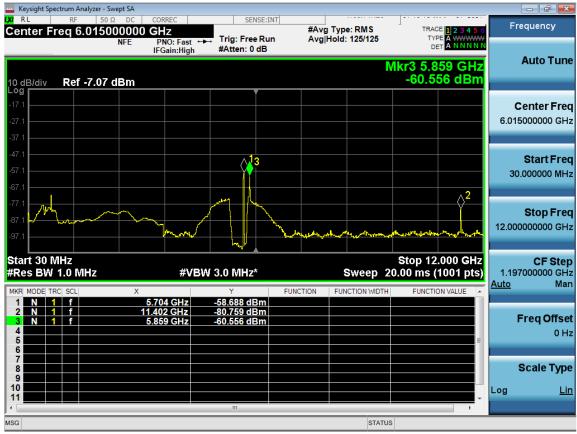
Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	k Margin S(dB)
Non HT20, 6 to 54 Mbps	1	13	-65.8	0.13	-52.7	-41	11.42

Frequency 5560 MHz

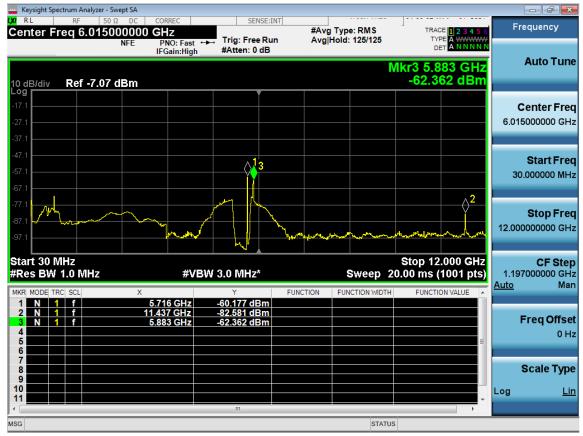
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	-71.8	0.13	-58.7	-41	17.42

Frequency 5700 MHz

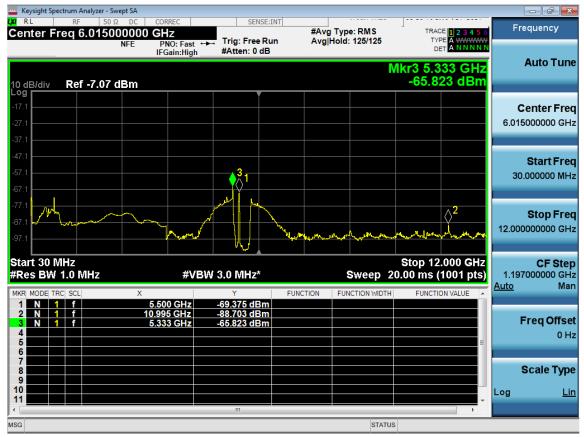

		r	1	r	1		
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	-60.6	0.13	-47.5	-41	6.22

Frequency 5720 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	-62.4	0.13	-49.3	-41	8.02


Page No: 77 of 127

5700 MHz: Non HT20, 6 to 54 Mbps


Antenna A

Page No: 78 of 127

Antenna A

Page No: 79 of 127

Antenna A

Page No: 80 of 127

Conducted Spurious Emissions Peak Table

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	-62.5	0.13	-49.4	-27	22.37

Frequency 5560 MHz

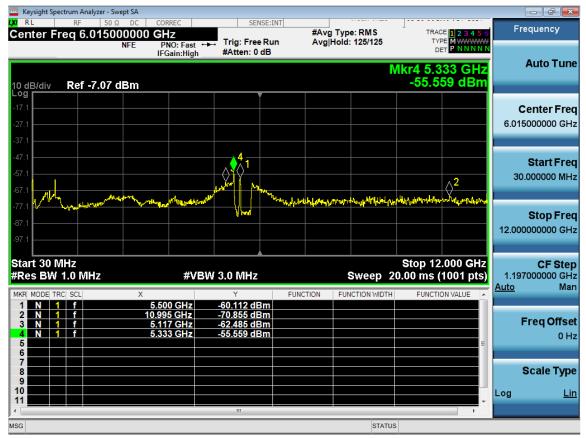
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	-63.2	0.13	-50.1	-27	23.07

Frequency 5700 MHz

			1	1	1	1	1
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	-63.4	0.13	-50.3	-27	23.27

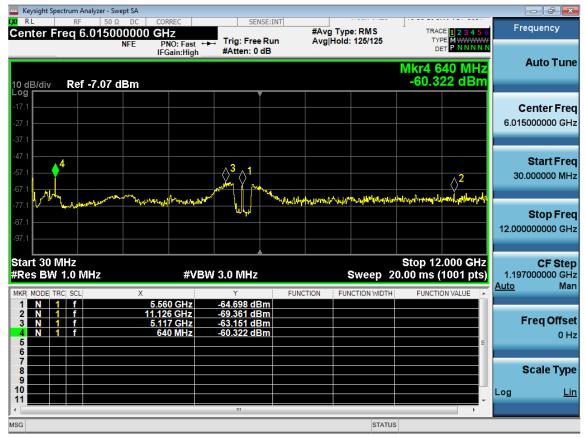
Frequency 5720 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	-61.6	0.13	-48.5	-27	21.47


Page No: 81 of 127

5720 MHz: Non HT20, 6 to 54 Mbps

Keysight Spectrum Analyzer - Swept SA	
	4 5 6 Frequency
NFE PNO: Fast →→ Trig: Free Run Avg Hold: 125/125 TYPE MWW IFGain:High #Atten: 0 dB DET PNN	NNN
Mkr4 5.883 G	Hz Auto Tune
10 dB/div Ref -7.07 dBm -52.197 dB	Bm
-17.1	Center Freq
-27.1	6.015000000 GHz
-37.1	
	Start Freq
-57.1 -67.1	2 30.000000 MHz
77 1 V May a longer and a far and a second a secon	UAN
-87.1	Stop Freq
.97.1	12.000000000 GHz
Start 30 MHz Stop 12.000 C	Hz CF Step
#Res BW 1.0 MHz #VBW 3.0 MHz Sweep 20.00 ms (1001	ots) 1.197000000 GHz
MKR MODE TRC SCL X Y FUNCTION WIDTH FUNCTION VALUE	<u>Auto</u> Man
1 N 1 f 5.716 GHz -50.711 dBm 2 N 1 f 11.437 GHz -69.467 dBm	Eren Offect
3 N 1 f 5.117 GHz -61.553 dBm 4 N 1 f 5.883 GHz -52.197 dBm	Freq Offset
	E
	Scale Type
9 10 10 10 10 10 10 10 10 10 10 10 10 10	Log Lin
MSG STATUS	


Antenna A

Page No: 82 of 127

Antenna A

Page No: 83 of 127

Antenna A

Page No: 84 of 127

A.5.4: 14 dBi

Conducted Spurious Average Upper Table

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	-71.8	0.13	-57.7	-41	16.41

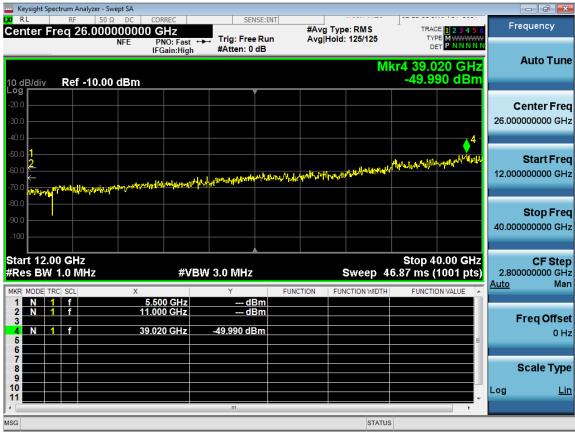
Data Screenshots

5500 MHz: Non HT20, 6 to 54 Mbps

weysight Spectrum Analyzer - Swept SA							- 6 ×
⊠ RL RF 50 Ω DC Center Freq 26.00000000		SENSE:IN	#Avg T	ype: RMS	TRAC	E 1 2 3 4 5 6	Frequency
NFE	PNO: Fast ↔ IFGain:High	. Trig: Free Rur #Atten: 0 dB	n Avgino	old: 125/125	kr4 34.5 -71.78		Auto Tune
-20.0 -30.0 -40.0							Center Freq 26.00000000 GHz
-50.0 -60.0 1					4	- L AMOTOR	Start Freq 12.000000000 GHz
-80.0 2 -90.0 (-100		Jun Anna		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	har a la har	all and a second se	Stop Freq 40.000000000 GHz
Start 12.00 GHz #Res BW 1.0 MHz	#VBW	3.0 MHz*	FUNCTION	Sweep 4	6.87 ms (0.00 GHz 1001 pts)	CF Step 2.800000000 GHz <u>Auto</u> Man
1 N 1 f 2 N 1 f 3 J 4 N 1 f 3 J 5 J	5.500 GHz 1.000 GHz 4.512 GHz	dBm dBm -71.788 dBm				E	Freq Offset 0 Hz
6 7 8 9 10							Scale Type Log <u>Lin</u>
MSG		m		STATUS	3		

Antenna A

Page No: 85 of 127


Conducted Spurious Emissions Peak Upper Table

Frequency	5500	MHz	

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	-50.0	0.13	-35.9	-21	14.61

Data Screenshots

5500 MHz: Non HT20, 6 to 54 Mbps

Antenna A

Page No: 86 of 127

Conducted Spurious Average Table

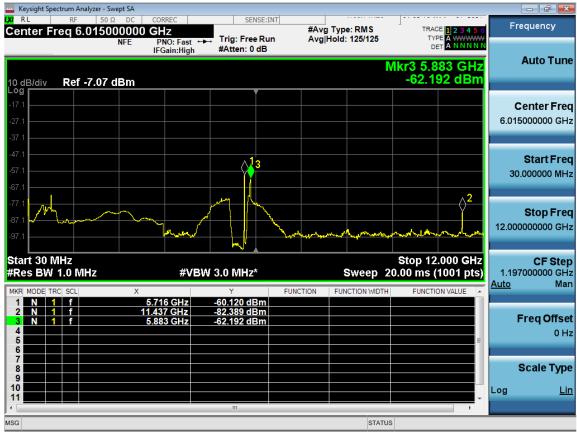
Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	-68.1	0.13	-54.0	-41	12.72

Frequency 5560 MHz

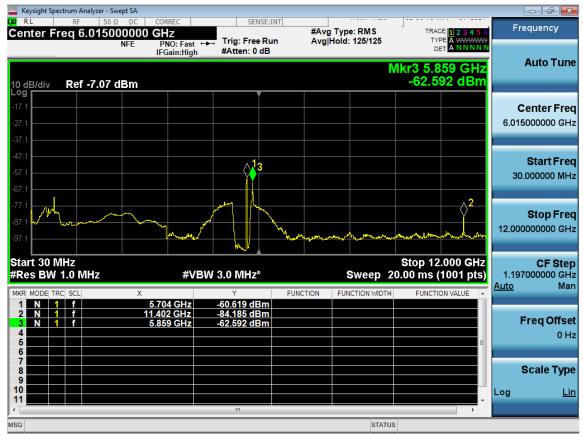
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	-71.9	0.13	-57.8	-41	16.52

Frequency 5700 MHz

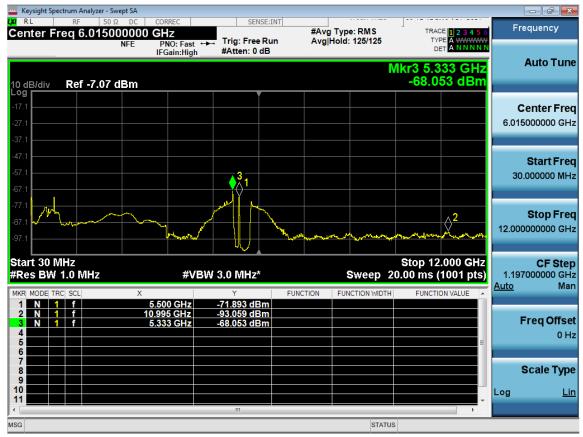

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	-62.6	0.13	-48.5	-41	7.22

Frequency 5720 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	-62.2	0.13	-48.1	-41	6.82


Page No: 87 of 127

5720 MHz: Non HT20, 6 to 54 Mbps


Antenna A

Page No: 88 of 127

Antenna A

Page No: 89 of 127

Antenna A

Page No: 90 of 127

Conducted Spurious Emissions Peak Table

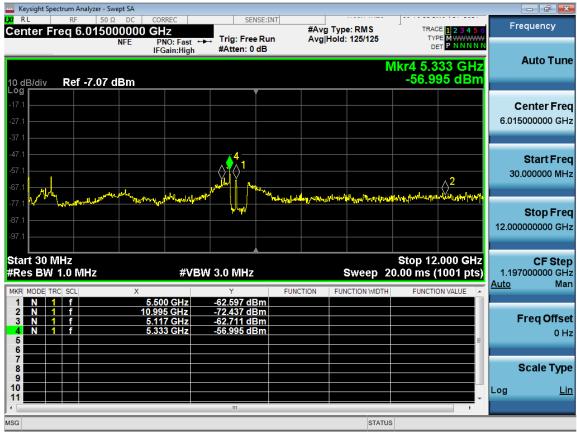
Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	-62.7	0.13	-48.6	-27	21.57

Frequency 5560 MHz

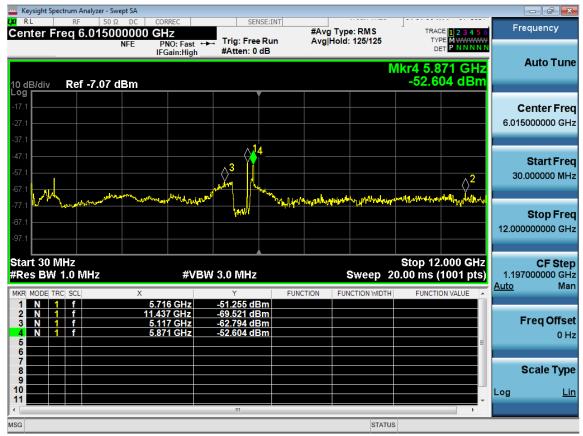
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	-64.0	0.13	-49.9	-27	22.87

Frequency 5700 MHz

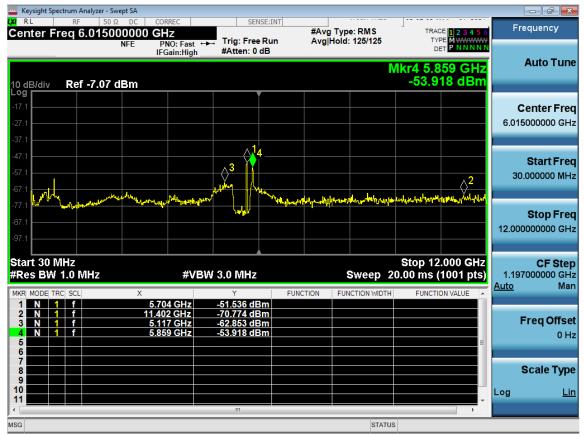

		1					
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	-62.9	0.13	-48.8	-27	21.77

Frequency 5720 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Duty Cycle (dB)	Total Conducted Spur (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	-62.8	0.13	-48.7	-27	21.67


Page No: 91 of 127

5500 MHz: Non HT20, 6 to 54 Mbps


Antenna A

Page No: 92 of 127

Antenna A

Page No: 93 of 127

Antenna A

Page No: 94 of 127

A.6: Conducted Bandedge

15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits

15.205 | 15.209

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Use formula below to substitute conducted measurements in place of radiated measurements

 $E[dB\mu V/m] = EIRP[dBm] - 20 \log(d[meters]) + 104.77$, where E = field strength and d = 3 meter

1) Average Plot, Limit= -41.25 dBm eirp

2) Peak plot, Limit = -21.25 dBm eirp

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

2. Unwanted Emissions that fall Outside of the Restricted Bands

a) For all measurements, follow the requirements in II.G.3. *"General Requirements for Unwanted Emissions Measurements."*

b) At frequencies below 1000 MHz, use the procedure described in II.G.4. *"Procedure for Unwanted Emissions Measurements Below 1000 MHz."*

c) At frequencies above 1000 MHz, use the procedure for maximum emissions described in II.G.5., *"Procedure for Unwanted Emissions Measurements Above 1000 MHz."*

(i) Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz.

Conducted Band Edge Test Procedure

Ref. ANSI C63.10: 2013

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Conducted Spurious Emissions

Test Procedure

1. Connect the antenna port(s) to the spectrum analyzer input.

2. Place the radio in continuous transmit mode

3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

4. Use the peak marker function to determine the maximum spurs amplitude level.

5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measureand-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst-case output is recorded. (See ANSI C63.10:2013 section 14.3.2.2)

6. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 section 12.7.6 (Peak) and 12.7.7.2 (Average)

KDB 789033 D02 General UNII T		New Rules	Sec. 5 (Peak),	Sec. 6 (Average M	ethod
AD)					

Conducted Spurious Emissions	
Test parameters	
Peak	Average
RBW = 1 MHz	RBW = 1 MHz
VBW ≥ 3 MHz	VBW ≥ 3 MHz
Sweep = Auto	Sweep = Auto
Detector = Peak	Detector = RMS
Trace = Max Hold.	Power Averaging
Tested By:	Date of testing:

Johanna Knudsen, Julian Land, Mathew Blackburn	30-JUL-2021 to 31-JUL-2021; 03-AUG-2021
Test Result: PASS	

Test Equipment

See Appendix C for list of test equipment

Page No: 96 of 127

A.6.1: 7 dBi

Conducted Bandedge Average Table

Frequency 5500 MHz

						1	
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Duty Cycle (dB)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	-51.2	0.13	-44.1	-41	2.82

Frequency 5700 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Duty Cycle (dB)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	-57.1	0.13	-50.0	-41	8.72

Page No: 97 of 127

5500 MHz: Non HT20, 6 to 54 Mbps

Keysight Spectrum Analyzer - Swept SA				
RL RF 50 Ω DC Center Freq 5.425000000 50 Ω DC DC <t< td=""><td>CORREC SENSE:I</td><td>#Avg Type: RMS</td><td>TRACE 1 2 3 4 5 6</td><td>Frequency</td></t<>	CORREC SENSE:I	#Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast +++ Trig: Free Ru IFGain:Low #Atten: 28 dE		DET A WWWWW	
		Mkr	2 5.469 13 GHz	Auto Tune
10 dB/div Ref 22.00 dBm			-51.220 dBm	
12.0 Trace 1 Pass				Center Freq
2.00				5.425000000 GHz
-8.00				
-18.0				Start Freq
-28.0				5.350000000 GHz
-38.0			2	
-48.0		and the second sec	And the second sec	Stop Freq
-58.0 -68.0 - 144 (144) (144) (144) (144) (144)	net a litelati kana da daki ka bing di kana bina ang bing da ang	WWWWWWWWW		5.500000000 GHz
			-150.00 üDni	
Start 5.35000 GHz	#\/D\\/ 2 0 MU-*	C	Stop 5.50000 GHz	CF Step 15.000000 MHz
#Res BW 1.0 MHz	#VBW 3.0 MHz*		.066 ms (4000 pts)	Auto Man
	470 00 GHz -51.841 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 5.4	169 13 GHz -51.220 dBm			Freq Offset
4 5			=	0 Hz
6				
8				Scale Type
10				Log <u>Lin</u>
	m		• •	
MSG		STATU	S	

Antenna A

Page No: 98 of 127

weysight Spectrum Analyzer - Swept SA				- 6 -
X RL RF 50 Ω DC CORREC	SENSE:INT	#Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
	st ↔ Trig: Free Run w #Atten: 18 dB	Avg Hold: 125/125	DET A NNNN	
		M	(r2 5.854 8 GHz	Auto Tune
10 dB/div Ref 17.50 dBm			-57.757 dBm	
Log 7.50 Trace 1 Pass	Ĭ			Contor From
-2.50				Center Freq 6.725000000 GHz
-12.5				0.720000000 0112
-22.5				
-32.5				Start Freq 5.70000000 GHz
-42.5				5.70000000 GH2
-52.5				
-62.5				Stop Freq
-72.5	tell it se likeliket at som det bestellt at som det tellt at som		alte state in the local data in the state of the second state of t	7.750000000 GHz
and a spatial state of the spa	<mark>r i a poli a dela constitución de la constitución de la constitución de la constitución de la constitución de la Constitución de la constitución de l</mark>		A HITLE HIT HIS SOUDLAN	
Start 5.700 GHz #Res BW 1.0 MHz #	VBW 3.0 MHz*	Sweep 3	Stop 7.750 GHz 466 ms (4000 pts)	CF Step 205.000000 MHz
		CTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
1 N 1 f 5.725 0 GH	z -57.118 dBm			
2 N 1 f 5.854 8 GH	z -57.757 dBm			Freq Offset
4			=	0 Hz
6				
8				Scale Type
9 10				Log Lin
MSG		STATU	5	

Antenna A

Page No: 99 of 127

Conducted Bandedge Peak Table

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	-34.7	-27.6	-27	0.57

Frequency 5700 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	7	-44.8	-37.7	-27	10.67

Page No: 100 of 127

5500 MHz: Non HT20, 6 to 54 Mbps

🔤 Keysight Spectrum Analyzer - Swept	t SA					
M RL RF 50 Ω Center Freq 5.425000	DC CORREC	SENSE:IN	#Avg Ty	/pe: Log-Pwr	TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast • IFGain:Low	Trig: Free Run #Atten: 28 dB	n Avg Hol	d: 100/100	DET PNNNN	
				Mkr	2 5.468 91 GHz	Auto Tune
10 dB/div Ref 22.00 df	Bm				-34.744 dBm	
Log 12.0 Trace 1 Pass					petiting the	Center Freq
2.00						5.425000000 GHz
-8.00						
-18.0						Start Freq
-28.0				•	2	5.35000000 GHz
-38.0				I		
-48.0 March Adaptor Contraction and Adaptor	arta dia ana <mark>ny fahabasa a</mark>	er dage versteren die tereten der heter	ne-tashihi yani filansi kulapatahi	No. of Concession, Name		Stop Freq
-58.0						5.500000000 GHz
-68.0					-150.00 dBm	
Start 5.35000 GHz	1				Stop 5.50000 GHz	CF Step
#Res BW 1.0 MHz	#VB	W 3.0 MHz		Sweep 1.	.066 ms (4000 pts)	15.000000 MHz Auto Man
MKR MODE TRC SCL	× 5.470 00 GHz	, -39.301 dBm	FUNCTION F	UNCTION WIDTH	FUNCTION VALUE	
2 N 1 f	5.468 91 GHz	-34.744 dBm				Freq Offset
4						0 Hz
5 6					E	
8						Scale Type
9						Log Lin
MSG				STATUS		

Antenna A

Page No: 101 of 127

						- 6 💌
RL RF 50 Ω DC Center Freq 6.7250000 6.7250000 C <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<>		SENSE:IN	#Avg	Type: Log-Pwr old: 100/100	TRACE 1 2 3 4 5 TYPE M	Frequency
PASS	IFGain:Low	#Atten: 18 dB			DET PNNNN	
10 dB/div Ref 17.50 dBn	n			Mk	r2 5.728 7 GH: -44.795 dBn	2
Log Trace 1 Pass 7.50 -2.50 -12.5						Center Freq 6.725000000 GHz
-22.5						Start Freq 5.700000000 GHz
-52.5	, teo cal ative to take to be a set				-150.00 dB	Stop Freq 7.750000000 GHz
Start 5.700 GHz #Res BW 1.0 MHz		W 3.0 MHz			Stop 7.750 GH: 466 ms (4000 pts	CF Step 205.000000 MHz <u>Auto</u> Man
MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 4 6 6	× 5.725 0 GHz 5.728 7 GHz	Y -48.240 dBm -44.795 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Freq Offset 0 Hz
7 8 9 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11						Scale Type
MSG				STATUS	4	

Antenna A

Page No: 102 of 127

A.6.2: 8 dBi

Conducted Bandedge Average Table

Frequency 5500 MHz

		1		1			
Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Duty Cycle (dB)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	-51.5	0.13	-43.4	-41	2.12

Frequency 5700 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Duty Cycle (dB)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	-57.1	0.13	-49.0	-41	7.72

Page No: 103 of 127

5500 MHz: Non HT20, 6 to 54 Mbps

Keysight Spectrum Analyzer - Swept SA				
Center Freq 5.425000000	CORREC SENSE:IN CHZ PNO: East	#Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast ↔ Trig: Free Run IFGain:Low #Atten: 28 dB	-	DETANNNN	Auto Tune
		Mkr	2 5.468 16 GHz -51.467 dBm	Auto Tune
10 dB/div Ref 21.00 dBm			-01.407 0.511	
11.0				Center Freq
-9.00				5.425000000 GHz
-9.00				
-29.0			/	Start Freq 5.35000000 GHz
-39.0			2	3.330000000 3112
-49.0			2 1	Stop Freq
	(hope of the provident of			5.50000000 GHz
	dd militar i dd far 'n taan 'n trefferant op te		-150.00 dBm	
Start 5.35000 GHz			Stop 5.50000 GHz	CF Step
#Res BW 1.0 MHz	#VBW 3.0 MHz*	-	.066 ms (4000 pts)	15.000000 MHz Auto Man
MKR MODE TRC SCL X	Y 0 00 GHz -53.270 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
	8 16 GHz -51.467 dBm			Freq Offset
4			=	0 Hz
6				
8				Scale Type
10 11				Log <u>Lin</u>
	III		• •	
MSG		STATUS		

Antenna A

Page No: 104 of 127

🚾 Keysight Spectrum Analyzer - Swept SA						- 6
KE RF 50 Ω DC Center Freq 6.72500000		SENSE:IN	#Avg	Type: RMS	TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast ++	Trig: Free Rur #Atten: 18 dB	n Avg∣H	lold: 125/125	DET A NNNN	
	I Guilleow			Mk	r2 5.854 8 GHz	Auto Tune
10 dB/div Ref 17.50 dBm	1				-57.757 dBm	
Log 7,50 Trace 1 Pass		Ĭ				Contor From
-2.50						Center Freq 6.725000000 GHz
-12.5						0.720000000 6112
-22.5						
-32.5						Start Freq
-42.5						5.70000000 GHz
-52.5						
-62.5						Stop Freq
TO T	and the state of the	ere all he like al her floren	in te accelette	alland Basteriller	. In the state of the state of the state of the	7.75000000 GHz
					a la presidente de la companya de l Na companya de la comp	
Start 5.700 GHz #Res BW 1.0 MHz	-#1 (D14)	() O MILI-*		O	Stop 7.750 GHz	CF Step 205.000000 MHz
		/ 3.0 MHz*			466 ms (4000 pts)	Auto Man
MKR MODE TRC SCL	5.725 0 GHz	Y -57.118 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f	5.854 8 GHz	-57.757 dBm				Freq Offset
4						0 Hz
5					E	
7						Scale Type
9						Could Type
10					-	Log <u>Lin</u>
		m			•	
MSG				STATUS		

Antenna A

Page No: 105 of 127

Conducted Bandedge Peak Table

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	-35.3	-27.2	-27	0.17

Frequency 5700 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	8	-44.8	-36.7	-27	9.67

Page No: 106 of 127

5500 MHz: Non HT20, 6 to 54 Mbps

🔤 Keysight Spectrum Analyzer - Swept SA				
RL RF 50 Ω DC Center Freq 5.425000000			RACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast +++ Trig: Fre IFGain:Low #Atten: 2	: 100/100		
	in Guilleon	Mkr2 5.46	9 17 GHz	Auto Tune
10 dB/div Ref 21.00 dBm		-35	.275 dBm	
Log 11.0 Trace 1 Pass				Center Freq
1.00				5.425000000 GHz
-9.00				
-19.0				Start Freq
-29.0		2	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.35000000 GHz
-39.0		A LANDARD HILL		
-49.0 Million Despires and International Activity	al na shight an			Stop Freq
-59.0				5.50000000 GHz
-69.0			-150.00 dBm	
Start 5.35000 GHz		 Stop 5	.50000 GHz	CF Step
#Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 1.066 m		15.000000 MHz Auto Man
MKR MODE TRC SCL X	70 00 GHz -38.521 d	NCTION WIDTH FUN	CTION VALUE	
	69 17 GHz -35.275 d			Freq Offset
4				0 Hz
6			=	
7 8 8				Scale Type
9				Log Lin
11				
MSG		STATUS		

Antenna A

Page No: 107 of 127

Keysight Spectrum Analyzer - Swept SA	CORREC	CENCE	-7817				
Center Freq 6.725000000	GHz	SENSE	#Av	g Type: Log-Pwr Hold: 100/100		1 2 3 4 5 6 E M WWWW	Frequency
PASS	PNO: Fast ++ IFGain:Low	#Atten: 18 d				PNNNN	Auto Tuno
10 dB/div Ref 17.50 dBm				Mk	r2 5.728 -44.79	7 GHz 95 dBm	Auto Tune
Log 7.50 Trace 1 Pass		<u> </u>					Center Freq
-2.50							6.725000000 GHz
-12.5							
-22.5							Start Freq
-42.5							5.70000000 GHz
	aluniosi di kishiri dada a			n (^j elja nestrija jeljeljeljeljeljeljelje		un polantino de analasia	
-62.5							Stop Freq 7.75000000 GHz
-72.5						-150.00 dBm	
Start 5.700 GHz #Res BW 1.0 MHz	#VBM	/ 3.0 MHz		Sweep 3	Stop 7. 466 ms (4	750 GHz	CF Step 205.000000 MHz
MKR MODE TRC SCL X		Y	FUNCTION	FUNCTION WIDTH	FUNCTIO		<u>Auto</u> Man
	725 0 GHz 728 7 GHz	-48.240 dBm -44.795 dBm					
3 4							Freq Offset 0 Hz
5						E	
7 8							Scale Type
9 10							Log Lin
11 <		III					
MSG				STATUS	3		

Antenna A

Page No: 108 of 127

A.6.3: 13 dBi

Conducted Bandedge Average Table

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Duty Cycle (dB)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	-56.0	0.13	-42.9	-41	1.62

Frequency 5700 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Duty Cycle (dB)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	-57.1	0.13	-44.0	-41	2.72

Page No: 109 of 127

5500 MHz: Non HT20, 6 to 54 Mbps

Keysight Spectrum Analyzer - Swept SA				- F ×
RL RF 50 Ω DC Center Freq 5.425000000	CORREC SENSE:INT	#Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 26 dB	Avg Hold: 125/125		
		Mkr2	5.468 83 GHz	Auto Tune
10 dB/div Ref 19.00 dBm			-55.982 dBm	
9.00 Trace 1 Pass				Center Freq
-1.00				5.425000000 GHz
-11.0				
-21.0				Start Freq
-41.0			J. Contraction of the second s	5.35000000 GHz
-51.0		2	- All and a second s	
-61.0		to shaladad bila addada ing ang ang ang ang ang ang ang ang ang a		Stop Freq 5.50000000 GHz
	<mark>H^andra Marina (</mark> Marina), ina ka			3.50000000 GH2
Start 5.35000 GHz		St	op 5.50000 GHz	CF Step
#Res BW 1.0 MHz	#VBW 3.0 MHz*	Sweep 1.06	6 ms (4000 pts)	15.000000 MHz uto Man
MKR MODE TRC SCL X	Y 70 00 GHz -58.302 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>uto</u> iviari
	68 83 GHz -55.982 dBm			Freq Offset
4				0 Hz
6				
7				Scale Type
9				og <u>Lin</u>
11 · [
MSG		STATUS		

Antenna A

Page No: 110 of 127

Keysight Spectrum Analyzer - Swe		or Nor J				
Center Freq 6.72500	0000 GHz	SENSE:I	#Avg 1	Гуре: RMS old: 125/125		Frequency
PASS	NFE PNO: Fast IFGain:Low	#Atten: 18 dB				Auto Tune
10 dB/div Ref 17.50 d	IBm			Mk	r2 5.854 8 GHz -57.757 dBm	Auto Tune
7.50 Trace 1 Pass						Center Freq
-2.50						6.725000000 GHz
-12.5						
-22.5						Start Freq
-42.5						5.70000000 GHz
-52.5						Stop Freq
-62.5	de tra .					7.75000000 GHz
-72.5					la di bianka pili dia anta milan Ny fisia	
Start 5.700 GHz #Res BW 1.0 MHz		3W 3.0 MHz*			Stop 7.750 GHz 466 ms (4000 pts)	CF Step 205.000000 MHz
	X	Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Man
1 N 1 f	5.725 0 GHz	-57.118 dBm	- Cherlon			
3	5.854 8 GHz	-57.757 dBm				Freq Offset
4 5					E	0 Hz
6 7 8						Scale Type
9						
11					-	Log <u>Lin</u>
MSG				STATUS	•	

Antenna A

Page No: 111 of 127

Conducted Bandedge Peak Table

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	-42.5	-29.4	-27	2.37

Frequency 5700 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	13	-44.8	-31.7	-27	4.67

Page No: 112 of 127

5500 MHz: Non HT20, 6 to 54 Mbps

🔤 Keysight Spectrum Analyzer - Swept SA						
Center Freq 5.4250000	CORREC	SENSE:IN	#Avg Ty	pe: Log-Pwr	TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast ↔ IFGain:Low	Trig: Free Rur #Atten: 26 dB	n Avg Hol	d: 100/100		
	in Galilleon			Mkr	2 5.468 87 GHz	Auto Tune
10 dB/div Ref 19.00 dBm					-42.517 dBm	
Log 9.00 Trace 1 Pass					Alder Ait	Center Freq
-1.00						5.425000000 GHz
-11.0						
-21.0						Start Freq
-31.0					2	5.35000000 GHz
-41.0				t male a select		
-51.0 million daw starting in structure and an an	un de la service de la factoria de l	relation and the second se	underskildeterkiltetyker	AN AN AND AN		Stop Freq
-61.0						5.50000000 GHz
-71.0					-150.00 dBm	
Start 5.35000 GHz					Stop 5.50000 GHz	CF Step
#Res BW 1.0 MHz	#VB\	N 3.0 MHz		Sweep 1.	066 ms (4000 pts)	15.000000 MHz Auto Man
	< .470 00 GHz	Y -44.690 dBm	FUNCTION FI	JNCTION WIDTH	FUNCTION VALUE	
	5.468 87 GHz	-42.517 dBm				Freq Offset
4						0 Hz
5 6					E	
7 8						Scale Type
9						Log Lin
MSG				STATUS		

Antenna A

Page No: 113 of 127

Keysight Spectrum Analyzer - Swept SA	CORREC	CENCE	-7817				
Center Freq 6.725000000	GHz	SENSE	#Av	g Type: Log-Pwr Hold: 100/100		1 2 3 4 5 6 E M WWWW	Frequency
PASS	PNO: Fast ++ IFGain:Low	#Atten: 18 d				PNNNN	Auto Tuno
10 dB/div Ref 17.50 dBm				Mk	r2 5.728 -44.79	7 GHz 95 dBm	Auto Tune
Log 7.50 Trace 1 Pass		<u> </u>					Center Freq
-2.50							6.725000000 GHz
-12.5							
-22.5							Start Freq
-42.5							5.70000000 GHz
	al where the state of the state			n (^j elja nestrija jeljeljeljeljeljeljelje		un polantin di analata	
-62.5							Stop Freq 7.75000000 GHz
-72.5						-150.00 dBm	
Start 5.700 GHz #Res BW 1.0 MHz	#VBM	/ 3.0 MHz		Sweep 3	Stop 7. 466 ms (4	750 GHz	CF Step 205.000000 MHz
MKR MODE TRC SCL X		Y	FUNCTION	FUNCTION WIDTH	FUNCTIO		<u>Auto</u> Man
	725 0 GHz 728 7 GHz	-48.240 dBm -44.795 dBm					
3 4							Freq Offset 0 Hz
5						E	
7 8							Scale Type
9 10							Log Lin
11 <		III					
MSG				STATUS	3		

Antenna A

Page No: 114 of 127

A.6.4: 14 dBi

Conducted Bandedge Average Table

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Duty Cycle (dB)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	-59.1	0.13	-45.0	-41	3.72

Frequency 5700 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Duty Cycle (dB)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	-59.1	0.13	-45.0	-41	3.72

Page No: 115 of 127

5500 MHz: Non HT20, 6 to 54 Mbps

Keysight Spectrum Analyzer - Swept SA				_ ¢ <mark>×</mark>
ເ₩ RL RF 50 Ω DC Center Freq 5.425000000	CORREC SENSE	#Avg Type: R		6 Frequency
PASS	PNO: Fast +++ Trig: Free F IFGain:Low #Atten: 24 c			
			Mkr2 5.467 22 GH	Auto Tune
10 dB/div Ref 16.00 dBm			-59.056 dBn	
6.00 Trace 1 Pass				Center Freq
-4.00				5.425000000 GHz
-14.0				
-24.0				Start Freq
-44.0				5.350000000 GHz
-54.0			2 ² 1	
-64.0	anti bian di Jacober, ati pindiki ti militi bin di bili kati	daana) ahadhii ka dhada ah badhada hii ^h i		Stop Freq 5.50000000 GHz
	<u>in te li che e contra l'il entre l'antre e contra e contra</u>		-150.00 dB	
Start 5.35000 GHz			Stop 5.50000 GH	Z CF Step
#Res BW 1.0 MHz	#VBW 3.0 MHz*	Sw	eep 1.066 ms (4000 pts	15.000000 MHz Auto Man
MKR MODE TRC SCL X	470 00 GHz -61.556 dBn		ON WIDTH FUNCTION VALUE	
	467 22 GHz -59.056 dBn			Freq Offset
4				0 Hz
6				
8				Scale Type
10 11				Log <u>Lin</u>
			•	
MSG			STATUS	

Antenna A

Page No: 116 of 127

Keysight Spectrum Analyzer - Swe			. mail			
ເ <mark>೫</mark> RL RF 50 Ω Center Freq 6.72500		SENSE:IN	#Avg 1	ype: RMS	TRACE 1 2 3 4 5 6	Frequency
PASS	NFE PNO: Fast IFGain:Low	Trig: Free Rur #Atten: 16 dB	n Avgino	old: 125/125		
10 dB/div Ref 15.50 d	Bm			Mk	r2 5.863 0 GHz -60.009 dBm	Auto Tune
Log 5.50 -4.50 -14.5						Center Freq 6.725000000 GHz
-24.5						Start Freq 5.700000000 GHz
-54.5	1997 A.	nd ha i rátha a tháith ha fa		an ili a talaha talaha talaha talaha	n ta la seconda da la seconda da s Na seconda da condecembra da seconda da second	Stop Freq 7.75000000 GHz
Start 5.700 GHz #Res BW 1.0 MHz	#VE	SW 3.0 MHz*		Sweep 3.	Stop 7.750 GHz 466 ms (4000 pts)	CF Step 205.000000 MHz
MKR MODE TRC SCL	× 5.725 0 GHz	Y -59.139 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N 1 f 3 4 5 6	5.863 0 GHz	-60.009 dBm				Freq Offset 0 Hz
7 8 9 9 10 11						Scale Type
		III			Þ	
MSG				STATUS		

Antenna A

Page No: 117 of 127

Conducted Bandedge Peak Table

Frequency 5500 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	-45.2	-31.1	-27	4.07

Frequency 5700 MHz

Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dB)	Margin (dB)
Non HT20, 6 to 54 Mbps	1	14	-47.2	-33.1	-27	6.07

Page No: 118 of 127

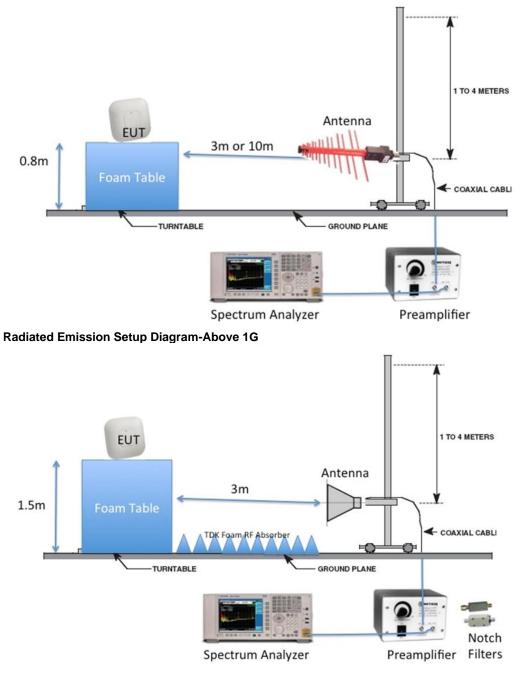
5500 MHz: Non HT20, 6 to 54 Mbps

RL RF 50 Ω DC Center Freq 5.425000000		SENSE:INT	#Avg Type: Log-Pw		Frequency
PASS	PNO: Fast	rig: Free Run Atten: 24 dB	Avg Hold: 100/100		
,	in Gamileon		Mk	r2 5.467 44 GHz	Auto Tune
10 dB/div Ref 16.00 dBm				-45.199 dBm	
Log 6.00 Trace 1 Pass				,0110 MA	Center Freq
-4.00					5.425000000 GHz
-14.0				/	
-24.0					Start Freq
-34.0				2	5.35000000 GHz
-44.0			and a kalitati a gamati sakati pakati		
-54.0		an a			Stop Freq
-64.0					5.50000000 GHz
-74.0				-150.00 dBm	
Start 5.35000 GHz		A		Stop 5.50000 GHz	CF Step
#Res BW 1.0 MHz	#VBW 3.0	0 MHz	Sweep	1.066 ms (4000 pts)	15.000000 MHz Auto Man
MKR MODE TRC SCL X	170 00 GHz -49	Y FUI 9.226 dBm	CTION FUNCTION WIDT	H FUNCTION VALUE	Auto Man
2 N 1 f 5.4		5.199 dBm			Freq Offset
3					0 Hz
5				E	
7					Scale Type
9					
11				-	Log <u>Lin</u>
MSG		III	STAT	19	
Maa			STAT		

Antenna A

Page No: 119 of 127

Keysight Spectrum Analyzer - Swept SA	CORREC	CENCE	THE			
Image: RL RF 50 Ω DC Center Freq 6.725000000) GHz	SENSE:	#Avg	Type: Log-Pwr Hold: 100/100	TRACE 1 2 3 4 5	6 Frequency
PASS	PNO: Fast ← IFGain:Low	#Atten: 16 dl			DET	N
10 dB/div Ref 15.50 dBm				Mk	r2 5.727 7 GH: -47.803 dBn	Auto Tune
Log 5.50 Trace 1 Pass		Ĭ				Center Freq
-4.50						6.725000000 GHz
-14.5						
-24.5						Start Freq
-44.5						5.700000000 GHz
-54.5	an a	teber di papa di patri di m		. Na parte de la company d	ويستجمع والمتعاد والمراجع والمراجع والمحاوي	Stop Freq
-64.5						7.750000000 GHz
-74.5					-150.00 dBr	
Start 5.700 GHz #Res BW 1.0 MHz	#VB	W 3.0 MHz		Sweep 3.	Stop 7.750 GH: 466 ms (4000 pts	CF Step 205.000000 MHz Auto Man
MKR MODE TRC SCL X	.725 0 GHz	۲ -47.239 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Man
	.727 7 GHz	-47.803 dBm				Freq Offset
4						0 Hz
6 7						
8						Scale Type
10						Log <u>Lin</u>
€		III		STATUS	•	
mod				314103		


Antenna A

Page No: 120 of 127

Appendix B: Emission Test Results

Testing Laboratory: Cisco Systems, Inc., 125 West Tasman Drive, San Jose, CA 95134, USA

Radiated Emission Setup Diagram-Below 1G

Page No: 121 of 127

B.1: Radiated Spurious Emissions

FCC 15.205 | 15.407

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Not covered by the scope of this test report.

Page No: 122 of 127

B.2: Radiated Emissions 30MHz to 1GHz

FCC 15.209 | 15.205 | 15.407

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Ref. ANSI C63.10: 2013 section 6.5

Not covered by the scope of this test report.

Page No: 123 of 127

B.3: AC Conducted Emissions

FCC 15.207

Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.

Measurement Procedure:

Accordance with ANSI C63.10:2013 section 6.2

Not covered by the scope of this test report.

Page No: 124 of 127

Equipment #	Manufacturer/ Model Description		Last Cal	Next Due			
	Test Equipment used for conducted tests – Rack 9						
58719	Cisco/Automation Test Insertion Loss	Rack 9	Verify Before Use	Verify Before Use			
53614	Keysight (Agilent/HP)/ N9030B-550 OPT LNP EP0	PXA Signal Analyzer, 2Hz- 50GHz with Options LNP and EP0	1-Jul-21	1-Jul-22			
58231	NATIONAL INSTRUMENTS / PXIe- 1062Q	CHASSIS	Cal Not Required	Cal Not Required			
58232	NATIONAL INSTRUMENTS / PXIe- 8840	Up to 2.6 GHz Quad-Core PXI Express Controller	Cal Not Required	Cal Not Required			
58234	NATIONAL INSTRUMENTS / PXI-2796	40 GHz Dual 6x1 Multiplexer (SP6T)	Verify Before Use	Verify Before Use			
58236	NATIONAL INSTRUMENTS / PXI-2796	40 GHz Dual 6x1 Multiplexer (SP6T)	Verify Before Use	Verify Before Use			
58237	NATIONAL INSTRUMENTS / PXI-2799	Switch 1x1	Verify Before Use	Verify Before Use			
54235	PASTERNACK/ PE5019-1	Torque Wrench	9-Mar-21	9-Mar-22			
58256	COMET/ T7611-4	WEB SENSOR FOR REMOTE THERMOMETER HYGROMETER	3-Feb-21	3-Feb-22			

Appendix C: List of Test Equipment Used to perform the test

Page No: 125 of 127

Appendix D: Abbreviation Key and Definitions

Abbreviation	Description	Abbreviation	Description				
EMC	Electro Magnetic Compatibility	°F Degrees Fahrenheit					
EMI	Electro Magnetic Interference	°C	Degrees Celsius				
EUT	Equipment Under Test	Temp	Temperature				
ITE	Information Technology Equipment	S/N	Serial Number				
TAP	Test Assessment Schedule	Qty	Quantity				
ESD	Electro Static Discharge	emf	Electromotive force				
EFT	Electric Fast Transient	RMS	Root mean square				
EDCS	Engineering Document Control System	Qp	Quasi Peak				
Config	Configuration	Av	Average				
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak				
Cal	Calibration	kHz	Kilohertz (1x10 ³)				
EN	European Norm	MHz	MegaHertz (1x10 ⁶)				
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)				
CISPR	International Special Committee on Radio Interference	Н	Horizontal				
CDN	Coupling/Decoupling Network	V	Vertical				
LISN	Line Impedance Stabilization Network	dB	decibel				
PE	Protective Earth	V	Volt				
GND	Ground	kV	Kilovolt (1x10 ³)				
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)				
L2	Line2	А	Amp				
L3	Line 3	μA	Micro Amp (1x10 ⁻⁶)				
DC	Direct Current	mS	Milli Second (1x10 ⁻³)				
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)				
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)				
SLCE	Signal Line Conducted Emissions	m	Meter				
Meas dist	Measurement distance	Spec dist	Specification distance				
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)				
Р	Power Line	L	Live Line				
N	Neutral Line	R	Return				
S	Supply	AC Alternating Current					

The following table defines abbreviations used within this test report.

Page No: 126 of 127

Appendix E: Photographs of Test Setups

EUT Photos have been omitted from this test report. Photos can be found in the supplementary exhibit included in the submission and EDCS# 22609793.

Appendix F: Software Used to Perform Testing

Cisco Internal LabView Radio Test Automation Software:

RF Automation Main versions: 230 RF Domain Report Generation - version 3

Appendix G: Test Procedures

Measurements were made in accordance with:

- KDB Publication No. 789033 D02 General UNII Test Procedures New Rules v02r01
- KDB Publication No. 662911 MIMO
- ANSI C63.4 2014 Unintentional Radiators
- ANSI C63.10 2013 Intentional Radiators

Test procedures are summarized below:

FCC 5GHz Test Procedures	EDCS # 1445048
FCC 5GHz RSE Test Procedures	EDCS # 1511600

Appendix H: Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

Appendix I: Test Assessment Plan

Compliance Test Plan EDCS# 21468207 Target Power Tables (Excel) EDCS# EDCS-21389500

Appendix J: Worst Case Justification

N/A

End

Page No: 127 of 127