

Choose certainty.
Add value.

April 27, 2013

Page 1 of 61

Prüfbericht / Test Report

Nr. / No. 20351-08912-7 (Edition 3)

Applicant: Endress & Hauser GmbH

Type of equipment: K-Band Level Probing Radar (LPR)

Type designation: FMR 50, FMR51, FMR 52, FMR 56, FMR 57 (K-Band liquid)

FMR 50, FMR51, FMR 52, FMR 56, FMR 57 (K-Band solid)

Order No.: 106/12063546

Test standards: FCC Code of Federal Regulations,

CFR 47, Part 15,

Management:

Robert Kees

Dr. Jens Butenandt

Sections 15.205, 15.207 and 15.209

Industry Canada Radio Standards Specifications

RSS-GEN Issue 3, Sections 7.2.2, 7.2.4 and 7.2.5(Category I Equipment)

Note:

The test data of this report is related only to the individual item which has been tested. This report shall not be reproduced except in full extent without the written approval of the testing laboratory.

Table of Contents

1	D	Description of the Equipment Under Test (EUT)					
2	А	Administrative Data5					
3	lo	Identification of the Test Laboratory6					
4	S	dummary	7				
5		peration Mode and Configuration of EUT					
6		leasurement Procedures					
Ü	6.1	Conducted Output Power					
	6.2	Bandwidth Measurements					
	6.3	Pulse Train Measurement	15				
	6.4	Conducted AC Powerline Emission	17				
	6.5	Radiated Emission Measurement 9 kHz to 30 MHz	19				
	6.6	Radiated Emission in Fully or Semi Anechoic Room	21				
	6.7	Radiated Emission at Alternative Test Site	24				
7	Р	hotographs Taken During Testing	26				
8	Т	est Results	31				
	8.1	Occupied Bandwidth	32				
	8.2	Bandwidth of the Emission	36				
	8.3	Designation of Emissions	38				
	8.4	Pulse Train Measurement	39				
	8.5	Desensitization of pulsed Emissions					
	8.6	Restricted Bands of Operation	42				
	8.7	Conducted Powerline Emission Measurement 150 kHz to 30 MHz	44				
	8.8	Radiated Emission Measurement 9 kHz to 30 MHz	45				
	8.9	Radiated Emission Measurement 30 MHz to 100 GHz	47				
	8.10	Exposure of Humans to RF Fields	55				
9	Referenced Regulations5						
1(т с	est Equipment List with Calibration Data	59				
1	1 Revision History61						

1 Description of the Equipment Under Test (EUT)

General data of EUT	General data of EUT		
Type designation ¹ :	FMR 50, FMR51, FMR 52, FMR 56, FMR 57 (K-Band liquid) FMR 50, FMR51, FMR 52, FMR 56, FMR 57 (K-Band solid)		
Parts ² :	FMR 50, FMR51, FMR 52, FMR 56, FMR 57 (K-Band liquid) - Base module - Housing GT 19 - FMR 50 Horn 40 mm / 1.5", PVDF gekapselt - FMR 56 Horn 100 mm / 4", PP plattiert - FMR 56 Horn 40 mm / 1.5" - FMR 51 Horn 100 mm / 4" - FMR 52 Horn 80 mm / 3", frontbündig FMR 50, FMR51, FMR 52, FMR 56, FMR 57 (K-Band solid) Base module - Housing GT 19 - FMR 50 Horn 40 mm / 1.5", PVDF gekapselt - FMR 56 Horn 100 mm / 4", PP plattiert - FMR 51 Horn 100 mm / 4" - FMR 52 Horn 80 mm / 3", frontbündig - FMR 57 Horn 100 mm / 4" - FMR 57 Parabol 250 mm / 10"		
Serial number(s):	Test Samples		
Manufacturer:	Endress & Hauser GmbH		
Type of equipment:	K-Band Level Probing Radar (LPR)		
Version:	As received		
FCC ID:			
Additional parts/accessories:			

¹ Type designation of the system if EUT consists of more than one part.

² Type designations of the parts of the system, if applicable.

TÜV SÜD Product Service GmbH Äußere Frühlingstraße 45 94315 Straubing Germany

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de

Technical data of EUT		
Application frequency range:	24.05 GHz - 26.5 GHz	
Frequency range:	25.2 GHz	
Operating frequency:	25.2 GHz	
Type of modulation:	1G50P0NAN	
Pulse train:	558.54 ns	
Pulse width:	2.04 ns	
Number of RF-channels:	1	
Channel spacing:	N/A	
Designation of emissions ³ :	1G50P0NAN	
Type of antenna:	See table of configuration of EUTs for details	
Size/length of antenna:	See table of configuration of EUTs for details	
Connection of antenna:	☐ not detachable	
Type of power supply:	DC supply	
Specifications for power supply:	nominal voltage: 24.0 V	

³ Also known as "Class of Emission".

TÜV SÜD Product Service GmbH Äußere Frühlingstraße 45 94315 Straubing Germany

Application details

+49 9421 5522-0 Phone: Fax: +49 9421 5522-99 Web: www.tuev-sued.de

Administrative Data

Applicant (full address):

Endress & Hauser GmbH Hauptstraße 1

D 79689 Maulburg

Mr. Ralf Reimelt Contact person:

106/12063546 Order number:

Receipt of EUT: June 19, 2012; July 3, 2012

Date(s) of test: June 29, 2012 to July 20, 2012

Note(s): The applicant provided different configurations for tests. In order to

simplify tests the configuration were numbered.

Mr. Reimelt attended tests on June 19, 2012 and July 3, 2012.

Report details

Report number: 20351-08912-7

Edition:

Issue date: April 27, 2013

3 Identification of the Test Laboratory

Details of the Test Laboratory

Company name: TÜV SÜD Product Service GmbH

Address: Aeussere Fruehlingstrasse 45

D-94315 Straubing

Germany

FCC test site registration number 90926 Industry Canada test site registration: 3050A-2

Contact person: Mr. Johann Roidt

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99

4 Summary

Summary of test results

The tested sample complies with the requirements set forth in the

Code of Federal Regulations CFR 47, Part 15, Sections 15.205, 15.207 and 15.209

of the Federal Communication Commission (FCC) and the

Radio Standards Specifications RSS-GEN Issue 3, Sections 7.2.2, 7.2.4 and 7.2.5 (Category I Equipment)

of Industry Canada (IC).

Personnel involved in this report		
Laboratory Manager:		
	The Col	
	Mr. Johann Roidt	
Responsible for testing:	Skinell Martin	
	Mr. Martin Steindl	
Responsible for test report:	Mr. Martin Steindl	

5 Operation Mode and Configuration of EUT

Operation Mode(s)

Normal operation mode: Measurement with pulsed signal

Configuration(s) of EUT

FCC test setup, DC 24 V power supply, EUT in vertical position. Conducted emissions were performed with a transmitter head without antenna and 50 Ω termination. Tests within tanks were performed with the equivalent "solid" module which is electrical idencical but in configured to have a greate output power.

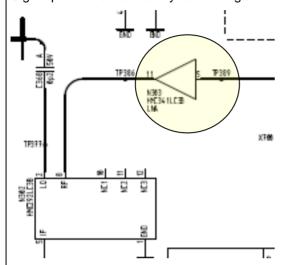
List	List of ports and cables			
Port	Description	Classification ⁴	Cable type	Cable length
1	DC supply with HART communication	dc power	Unshielded	2 m

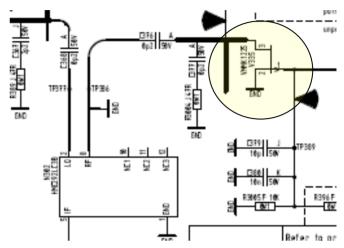
List o	List of devices connected to EUT			
Item	Description	Type Designation	Serial no. or ID	Manufacturer

List o	List of support devices			
Item	Description	Type Designation	Serial no. or ID	Manufacturer

Test Report No. 20351-08912-7 (Edition 3)

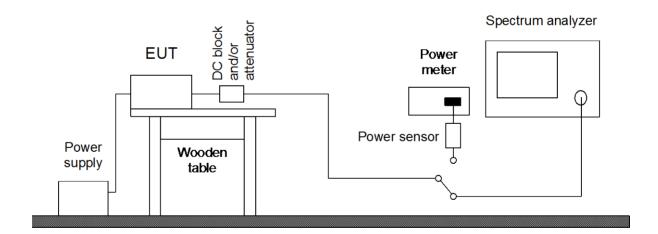
⁴ Ports shall be classified as ac power, dc power or signal/control port


Configuration	Configuration of test samples (Liquid)			
Configuration	Module	Antenna	Flange	Housing
K1	FMR 50	FMR 50 Horn 40 mm / 1.5", PVDF gekapselt, (19.1 dBi)		GT 19
K2	FMR 56	FMR 56 Horn 100 mm / 4", PP plattiert, (25.4 dBi)	Adapterring + Uniflange DN 100	GT 19
K3	FMR 51	FMR 51 Horn 100 mm / 4", (24.3 dBi)	Flange DN 150	GT 19
K3, small antenna	FMR 51	FMR 51 Horn 40 mm / 1.5", (18.8 dBi)	Flange DN 150	GT 19
K4	FMR 52	FMR 52 Horn 80 mm / 3", (24.5 dBi)	Flange DN 150	GT 19


Configuration	Configuration of test samples (Solid)			
Configuration	Module	Antenna	Flange	Housing
K1	FMR 50	FMR 50 Horn 40 mm / 1.5", PVDF gekapselt, (19.1 dBi)		GT 19
K2	FMR 56	FMR 56 Horn 100 mm / 4", PP plattiert, (25.4 dBi)	Adapterring + Uniflange DN 100	GT 19
K3	FMR 51	FMR 51 Horn 100 mm / 4", (24.3 dBi)	Flange DN 150	GT 19
K3, small antenna	FMR 51	FMR 51 Horn 40 mm / 1.5", (18.8 dBi)	Flange DN 150	GT 19
K4	FMR 52	FMR 52 Horn 80 mm / 3", (24.5 dBi)	Flange DN 150	GT 19
K5	FMR 57	FMR 57 Horn 100 mm / 4" (25.3 dBi)	Uniflange	GT 19
K6	FMR 57	FMR 57 Parabol 250 mm / 10" (33.0 dBi)	Uniflange	GT 19

Differences between "Liquid" and "Solid" Versions

"Solid" Version has a Low Noise Amplifier in the RX "Liquid" Version has a simple FET instead Signal path for enhanced dynamic range


6 Measurement Procedures

6.1 Conducted Output Power

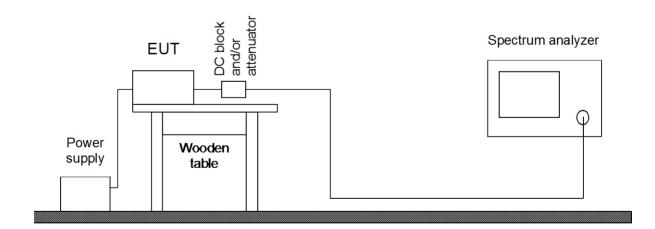
Measurement Procedure:	
Rules and specifications:	CFR 47 Part 2, section 2.1046(a) IC RSS-Gen Issue 3, section 4.8
Guide:	CFR 47 Part 2, section 2.1046 / IC RSS-Gen Issue 3

Conducted output power is measured at the RF output terminals (e.g. antenna connector if antenna is detachable) when the transmitter is adjusted in accordance with the tune-up procedure, if applicable. The RF output terminals are connected to a spectrum analyzer and/or a power meter with appropriate sensor. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). The electrical characteristics of the radio frequency load attached to the output terminals shall be stated, if applicable.

If a spectrum analyzer is used and no other settings are specified resolution bandwidth shall be selected according to the carrier frequency f_c and set to 10 kHz (150 kHz \leq f_c < 30 MHz), 100 kHz (30 MHz \leq f_c < 1 GHz) or 1 MHz ($f_c \geq$ 1 GHz). The video bandwidth shall be at least three times greater than the resolution bandwidth. The settings used have to be indicated within the appropriate test record(s).

Test instruments used:

	Туре	Designation	Invno.	Serial No. or ID	Manufacturer
\boxtimes	Spectrum analyzer	FSP30	1666	100036	Rohde & Schwarz
	EMI test receiver	ESPI7	1711	836914/0002	Rohde & Schwarz
	EMI test receiver	ESMI	1569	839379/013 839587/006	Rohde & Schwarz
	Power meter	NRVS	1264	836856/015	Rohde & Schwarz
	Peak power sensor	NRV-Z31	1701	8579604.03	Rohde & Schwarz
	Power sensor	NRV-Z52	1499	837901/030	Rohde & Schwarz
	Power sensor	NRV-Z4	1034	863828/015	Rohde & Schwarz
\boxtimes	DC-block	7006	1636	A2798	Weinschel
	Attenuator	4776-10	1638	9412	Narda
	Attenuator	4776-20	1639	9503	Narda


6.2 Bandwidth Measurements

Measurement Procedure:	Measurement Procedure:		
Rules and specifications:	CFR 47 Part 2, section 2.202(a) CFR 47 Part 15, section 15.215(c) IC RSS-Gen Issue 3, sections 4.6.1 and 4.6.2 IC RSS-210 Issue 8, section A1.1.3 ANSI C63.4, annex H.6		
Guide:	ANSI C63.4 / IC RSS-Gen Issue 3, sections 4.6.1 and 4.6.2		
Measurement setup:	☐ Conducted: See below☐ Radiated: Radiated Emission in Fully or Semi Anechoic Room (6.6)		

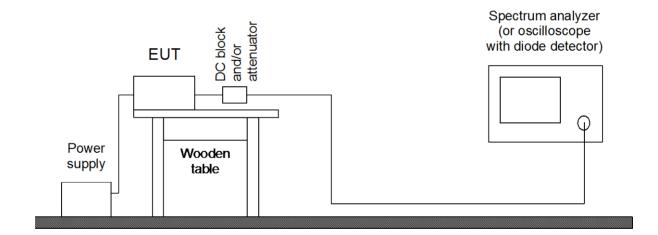
If antenna is detachable bandwidth measurements shall be performed at the antenna connector (conducted measurement) when the transmitter is adjusted in accordance with the tune-up procedure, if applicable. The RF output terminals are connected to a spectrum analyzer. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). The electrical characteristics of the radio frequency load attached to the output terminals shall be stated, if applicable.

If radiated measurements are performed the same test setups and instruments are used as with radiated emission measurements for the appropriate frequency range.

The analyzer settings are specified by the test description of the appropriate test record(s).

Test instruments used for conducted measurements:

	Туре	Designation	Invno.	Serial No. or ID	Manufacturer
\boxtimes	Spectrum analyzer	FSP30	1666	100036	Rohde & Schwarz
	EMI test receiver	ESPI7	1711	836914/0002	Rohde & Schwarz
	EMI test receiver	ESMI	1569	839379/013 839587/006	Rohde & Schwarz
	Power meter	NRVS	1264	836856/015	Rohde & Schwarz
	Peak power sensor	NRV-Z31	1701	8579604.03	Rohde & Schwarz
	Power sensor	NRV-Z52	1499	837901/030	Rohde & Schwarz
	Power sensor	NRV-Z4	1034	863828/015	Rohde & Schwarz
\boxtimes	DC-block	7006	1636	A2798	Weinschel
	Attenuator	4776-10	1638	9412	Narda
	Attenuator	4776-20	1639	9503	Narda


6.3 Pulse Train Measurement

Measurement Procedure:					
Rules and specifications:	CFR 47 Part 15, section 15.35(c) IC RSS-Gen Issue 3, section 4.5				
Guide:	ANSI C63.4				
Measurement setup:	☐ Conducted: See below (direct connection or via test fixture)☐ Radiated: Radiated Emission in Fully or Semi Anechoic Room (6.6)				

If antenna is detachable pulse train measurements shall be performed at the antenna connector (conducted measurement). The RF output terminals are connected to a spectrum analyzer or to a diode detector in combination with an oscilloscope. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). The electrical characteristics of the radio frequency load attached to the output terminals shall be stated, if applicable. If antenna is not detachable a test fixture may be used instead of direct connection to RF output terminals.

If radiated measurements are performed similar test setups and instruments are used as with radiated emission measurements for the appropriate frequency range. However, the spectrum analyzer may be

replaced by a diode detector connected to an oscilloscope.

TÜV SÜD Product Service GmbH Äußere Frühlingstraße 45 94315 Straubing Germany

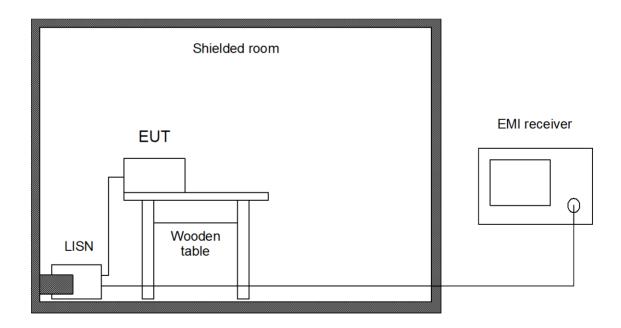
Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de

Test instruments used:

	Туре	Designation	Invno.	Serial No. or ID	Manufacturer
	Spectrum analyzer	FSP30	1666	100036	Rohde & Schwarz
	EMI test receiver	ESPI7	1711	836914/0002	Rohde & Schwarz
	EMI test receiver	ESMI	1569	839379/013 839587/006	Rohde & Schwarz
\boxtimes	Diode detector negative	8473D	1581	01492	Hewlett Packard
	Oscilloscope	54602B	1535	US35060304	Hewlett Packard
\boxtimes	Digital oscilloscope	Wave Surfer 452	1796	LCRY0301J11938	LeCroy
	Test probe	TP 01	1628	001	TÜV SÜD PS
	DC-block	7006	1636	A2798	Weinschel
	Attenuator	4776-10	1638	9412	Narda
	Attenuator	4776-20	1639	9503	Narda

6.4 Conducted AC Powerline Emission

Measurement Procedure:				
Rules and specifications:	CFR 47 Part 15, section 15.207 IC RSS-GEN Issue 3, section 7.2.4			
Guide:	ANSI C63.4 / CISPR 22			


Conducted emission tests in the frequency range 150 kHz to 30 MHz are performed using Line Impedance Stabilization Networks (LISNs). To simplify testing with quasi-peak and average detector the following procedure is used:

First the whole spectrum of emission caused by the equipment under test (EUT) is recorded with detector set to peak using CISPR bandwidth of 10 kHz. After that all emission levels having less margin than 10 dB to or exceeding the average limit are retested with detector set to quasi-peak.

If average limit is kept with quasi-peak levels no additional scan with average detector is necessary. In cases of emission levels between quasi-peak and average limit an additional scan with detector set to average is performed.

According to ANSI C63.4, section 13.1.3.1, testing of intentional radiators with detachable antenna shall be performed using a suitable dummy load connected to the antenna output terminals. Otherwise, the tests shall be made with the antenna connected and, if adjustable, fully extended.

Testing with dummy load may be necessary to distinguish (unintentional) conducted emissions on the supply lines from (intentional) emissions radiated by the antenna and coupling directly to supply lines and/or LISN. Usage of dummy load has to be stated in the appropriate test record(s) and notes should be added to clarify the test setup.

TÜV SÜD Product Service GmbH Äußere Frühlingstraße 45 94315 Straubing Germany

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de

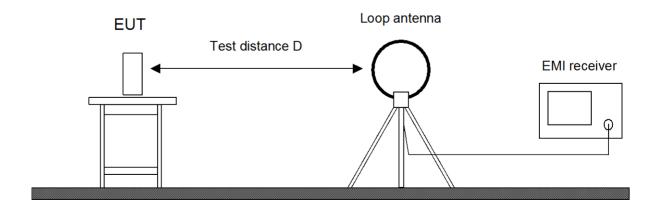
Test instruments used:

	Туре	Designation	Invno.	Serial No. or ID	Manufacturer
\boxtimes	Test receiver	ESHS 10	1028	860043/016	Rohde & Schwarz
\boxtimes	V-network	ESH 3-Z5	1059	894785/005	Rohde & Schwarz
	V-network	ESH 3-Z5	1218	830952/025	Rohde & Schwarz
	Artificial mains network	ESH 2-Z5	1536	842966/004	Rohde & Schwarz
\boxtimes	Shielded room	No. 1	1451		Albatross
	Shielded room	No. 4	1454	3FD 100 544	Euroshield

6.5 Radiated Emission Measurement 9 kHz to 30 MHz

Measurement Procedure:					
Rules and specifications:	CFR 47 Part 15, sections 15.205 and 15.209 IC RSS-GEN Issue 3, sections 7.2.2 and 7.2.5				
Guide:	ANSI C63.4				

Radiated emission in the frequency range 9 kHz to 30 MHz is measured using an active loop antenna. First the whole spectrum of emission caused by the equipment is recorded at a distance of 3 meters in a fully or semi anechoic room with the detector of the spectrum analyzer or EMI receiver set to peak. This configuration is also used for recording the spectrum of intentional radiators.


Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

If worst case emission of the EUT cannot be recorded with EUT in standard position and loop antenna in vertical polarization the EUT (or the radiating part of the EUT) is rotated by 90 degrees instead of changing the loop antenna to horizontal polarization. This procedure is selected to minimize the influence of the environment (e.g. effects caused by the floor especially with longer distances).

Final measurement is performed at a test distance D of 30 meters using an open field test site. In case the regulation requires testing at other distances, the result is extrapolated by either making measurements at an additional distance D of 10 meters to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). In cases of very low emissions measurements are performed at shorter distances and results are extrapolated to the required distance. The provisions of CFR 47 Part 15 sections 15.31(d) and (f)(2) apply. According to CFR 47 Part 15 section 15.209(d) final measurement is performed with detector function set to quasi-peak except for the frequency bands 9 to 90 kHz and 110 to 490 kHz where, for non-pulsed operation, average detector is employed.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

TÜV SÜD Product Service GmbH Äußere Frühlingstraße 45 94315 Straubing Germany

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de

Test instruments used:

	Туре	Designation	Invno.	Serial No. or ID	Manufacturer
\boxtimes	Spectrum analyzer	FSP30	1666	100036	Rohde & Schwarz
	EMI test receiver	ESMI	1569	839379/013 839587/006	Rohde & Schwarz
	Test receiver	ESHS 10	1028	860043/016	Rohde & Schwarz
\boxtimes	Preamplifier Cabin no. 2	CPA9231A	1716	3557	Schaffner
\boxtimes	Loop antenna	HFH2-Z2	1016	882964/1	Rohde & Schwarz
\boxtimes	Fully anechoic room	No. 2	1452		Albatross
	Semi anechoic room	No. 3	1453		Siemens
	Semi anechoic room	No. 8	2057		Albatross

6.6 Radiated Emission in Fully or Semi Anechoic Room

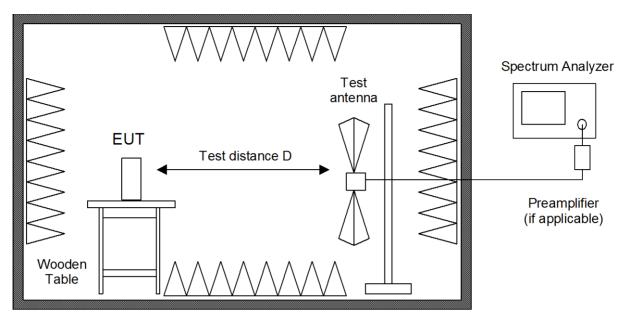
Measurement Procedure:				
Rules and specifications:	CFR 47 Part 15, section 15.209 IC RSS-GEN Issue 3, section 7.2.5			
Guide:	ANSI C63.4			

Radiated emission in fully or semi anechoic room is measured in the frequency range from 30 MHz to the maximum frequency as specified in CFR 47 Part 15 section 15.33.

Measurements are made in both the horizontal and vertical planes of polarization using a spectrum analyzer with the detector function set to peak and resolution as well as video bandwidth set to 100 kHz (below 1 GHz) or 1 MHz (above 1 GHz).

Testing up to 1 GHz is performed with a linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna"). For testing above 1 GHz horn antennas are used.

All tests below 8.2 GHz are performed at a test distance D of 3 meters. For higher frequencies the test distance may be reduced (e.g. to 1 meter) due to the sensitivity of the measuring instrument(s) and the test results are calculated according to CFR 47 Part 15 section 15.31(f)(1) using an extrapolation factor of 20 dB/decade. If required, preamplifiers are used for the whole frequency range. Special care is taken to avoid overload, using appropriate attenuators and filters, if necessary.


If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing. During testing the EUT is rotated all around to find the maximum levels of emissions. Equipment and cables

are placed and moved within the range of position likely to find their maximum emissions.

For final testing below 1 GHz a semi anechoic room complying with the NSA requirements of ANSI C63.4 for alternative test sites is used (see 6.7). If prescans are recorded in fully anechoic room they are indicated appropriately.

Fully or semi anechoic room

Test instruments used:

	Туре		Designation	Invno.	Serial No. or ID	
	Spectrum analyzer		FSP30	1666	100036	Rohde & Schwarz
ΙĦ	EMI test receiver	Cabin no. 3	ESPI7	2010	101018	Rohde & Schwarz
	EMI test receiver		ESU8	2044	100232	Rohde & Schwarz
	EMI test receiver		ESMI	1569	839379/013 839587/006	Rohde & Schwarz
\boxtimes	Preamplifier	Cabin no. 2	CPA9231A	1716	3557	Schaffner
	Preamplifier		R14601	1142	13120026	Advantest
\boxtimes	Preamplifier (1 - 8 G	iHz)	AFS3-00100800-32-LN	1684	847743	Miteq
	Preamplifier (0.5 - 8	GHz)	AMF-4D-005080-25-13P	1685	860149	Miteq
\boxtimes	Preamplifier (8 - 18	GHz)	ACO/180-3530	1484	32641	CTT
\boxtimes	External Mixer		WM782A	1576	845881/005	Tektronix
\boxtimes	External Mixer		WM780U	2085	B030121	Tektronix
\boxtimes	External Mixer		WM782V	2140	B030132	Tektronix
\boxtimes	External Mixer		WM782W	2181	B010193	Tektronix
\boxtimes	Harmonic Mixer Acc	essories	FS-Z30	1577	624413/003	Rohde & Schwarz
\boxtimes	Trilog antenna	Cabin no. 2	VULB 9163	1722	9163-188	Schwarzbeck
	Trilog antenna	Cabin no. 3	VULB 9163	1802	9163-214	Schwarzbeck
	Trilog antenna	Cabin no. 8	VULB 9163	2058	9163-408	Schwarzbeck
\boxtimes	Horn antenna		3115	1516	9508-4553	EMCO
	Horn antenna		3160-03	1010	9112-1003	EMCO
	Horn antenna		3160-04	1011	9112-1001	EMCO
\boxtimes	Horn antenna		3160-05	1012	9112-1001	EMCO
\boxtimes	Horn antenna		3160-06	1013	9112-1001	EMCO
\boxtimes	Horn antenna		3160-07	1014	9112-1008	EMCO
\boxtimes	Horn antenna		3160-08	1015	9112-1002	EMCO
\boxtimes	Horn antenna		3160-09	1265	9403-1025	EMCO
	Horn antenna		3160-10	1575	399185	EMCO
	Horn antenna		24240-20	2086	157845	Flann Microwave
	Horn antenna		25240-25	2180	205900	Flann Microwave
	Horn antenna		27240-25	2182	204260	Flann Microwave
	Fully anechoic room	1	No. 2	1452		Albatross
	Semi anechoic room		No. 3	1453		Siemens
	Semi anechoic room	า	No. 8	2057		Albatross

6.7 Radiated Emission at Alternative Test Site

Measurement Procedure:				
Rules and specifications:	CFR 47 Part 15, section 15.209 IC RSS-GEN Issue 3, section 7.2.5			
Guide:	ANSI C63.4			

Radiated emission in the frequency range 30 MHz to 1 GHz is measured within a semi-anechoic room with groundplane complying with the NSA requirements of ANSI C63.4 for alternative test sites. A linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna") is used. The measurement bandwidth of the test receiver is set to 120 kHz with quasi-peak detector selected.

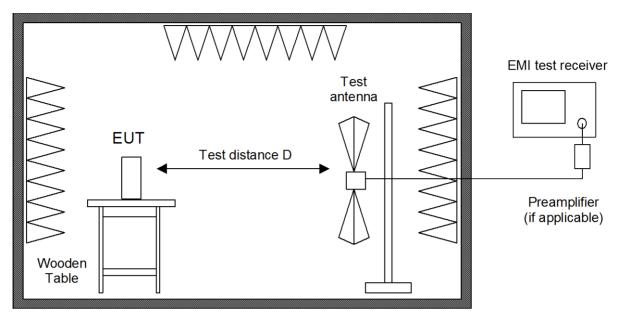
If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are tested in the position producing the highest emission relative to the limit as verified by prescans in fully anechoic room.

If no prescan in a fully anechoic room is used first a peak scan is performed in four positions to get the whole spectrum of emission caused by EUT with the measuring antenna raised and lowered from 1 to 4 m to find table position, antenna height and antenna polarization for the maximum emission levels.

Data reduction is applied to these results to select those levels having less margin than 10 dB to or exceeding the limit using subranges and limited number of maximums. Further maximization is following.

With detector of the test receiver set to quasi-peak final measurements are performed immediately after frequency zoom (for drifting disturbances) and maximum adjustment.


Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

In cases where prescans in a fully anechoic room are taken (e. g. if EUT is operating for a short time only or battery is dircharged quickly) final measurements with quasi-peak detector are performed manually at frequencies indicated by prescan with EUT rotating all around and receiving antenna raising and lowering within 1 meter to 4 meters to find the maximum levels of emission.

Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

For measuring emissions of intentional radiators and receivers a test distance D of 3 meters is selected. Testing of unintentional radiators is performed at a distance of 10 meters. If limits specified for 3 meters shall be used for measurements performed at 10 meters distance the limits are calculated according to CFR 47 Part 15 section 15.31(d) and (f)(1) using an inverse linear-distance extrapolation factor of 20 dB/decade.

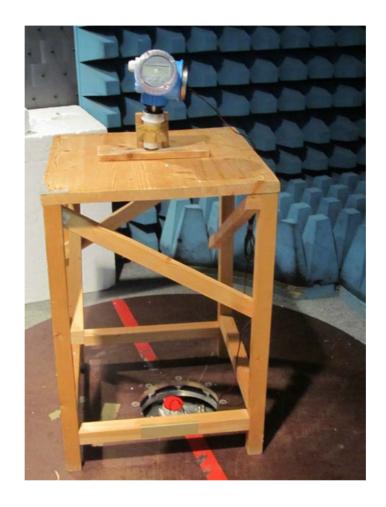
Alternate test site (semi anechoic room)

Test instruments used:

	Туре	Designation	Invno.	Serial No. or ID	Manufacturer
\boxtimes	EMI test receiver	ESU8	2044	100232	Rohde & Schwarz
\boxtimes	Trilog antenna Cabin no. 8	VULB 9163	2058	9163-408	Schwarzbeck
\boxtimes	Semi anechoic room	No. 8	2057		Albatross

7 Photographs Taken During Testing

Test setup for conducted DC powerline emission measurement


Test setup for radiated emission measurement 9 kHz - 30 MHz

Test setup for radiated emission measurement (fully anechoic room)

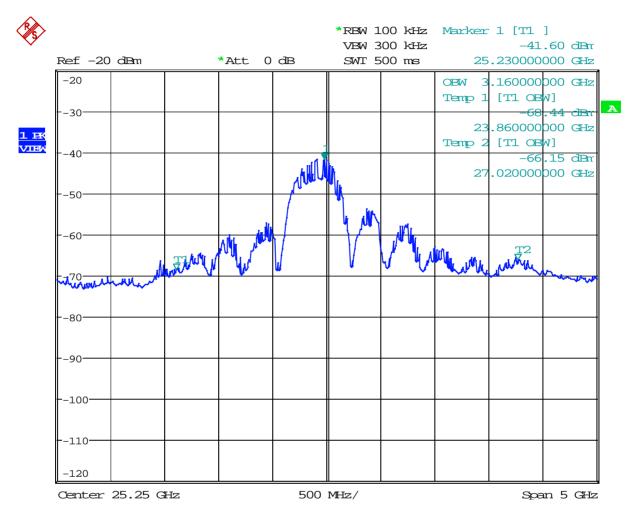
Test setup for radiated emission measurement (fully anechoic room) - continued -

Test setup for radiated emission measurement (fully anechoic room) - continued -

8 Test Results

FCC CFR 47 Parts 2 and 15					
Section(s)	Test	Page	Result		
2.1046(a)	Conducted output power				
2.202(a)	Occupied bandwidth	32	Recorded		
2.201, 2.202	Class of emission	38	Calculated		
15.35(c)	Pulse train measurement for pulsed operation	39	Recorded		
15.205(a)	Restricted bands of operation	42	Test passed		
15.207	Conducted AC powerline emission 150 kHz to 30 MHz	44	Test passed		
15.205(b) 15.209	Radiated emission 9 kHz to 30 MHz	45	Test passed		
15.205(b) 15.209	Radiated emission 30 MHz to 100 GHz	47	Test passed		

IC RSS-GEN Issue 3			
Section(s)	Test	Page	Result
4.8	Transmitter output power (conducted)		
4.6.1	Occupied Bandwidth	32	Recorded
8	Designation of emissions	38	Calculated
4.5	Pulsed operation	39	Recorded
7.2.4	Transmitter AC power lines conducted emissions 150 kHz to 30 MHz	44	Test passed
7.2.2	Restricted bands and unwanted emission frequencies	42	Test passed
7.2.2(b)(c) 7.2.5	Unwanted emissions 9 kHz to 30 MHz	45	Test passed
7.2.2(b)(c) 7.2.5	Unwanted emissions 30 MHz to 100 GHz	47	Test passed
5.6	Exposure of Humans to RF Fields	55	Exempted from SAR and RF evaluation


8.1 Occupied Bandwidth

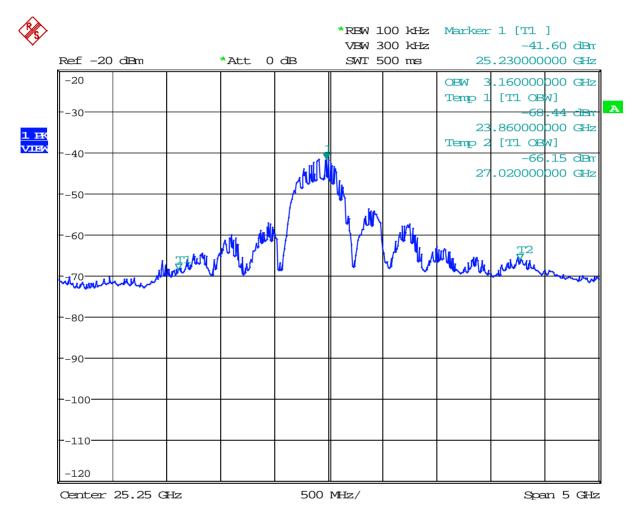
Rules and specifications:	CFR 47 Part 2, section 2.202(a) ANSI C63.4, annex H.6	
Guide:	ANSI C63.4	
Description:	The occupied bandwidth according to CFR 47 Part 2, section 2.202(a), is measured as the 99% emission bandwidth, i.e. below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5% of the total mean power radiated by a given emission.	
	The occupied bandwidth according to ANSI C63.4, annex H.6; is measured as the frequency range defined by the points that are 26 dB down relative to the maximum level of the modulated carrier.	
	The resolution bandwidth of the spectrum greater than 5.0% of the allowed bandware given, the following guidelines are	width. If no bandwidth specifications
	Fundamental frequency	Minimum resolution bandwidth
	9 kHz to 30 MHz	1 kHz
	30 MHz to 1000 MHz	10 kHz
	1000 MHz to 40 GHz	100 kHz
	The video bandwidth shall be at least the bandwidth.	hree times greater than the resolution
Measurement procedure:	Bandwidth Measurements (6.2)	

Comment:	
Date of test:	July 20, 2012
Test site:	Fully anechoic room, cabin no. 2

Occupied Bandwidth (99 %):

Date: 20.JUL.2012 15:17:00

Occupied Bandwidth (99 %): 3.16 GHz


Occupied Bandwidth (continued)

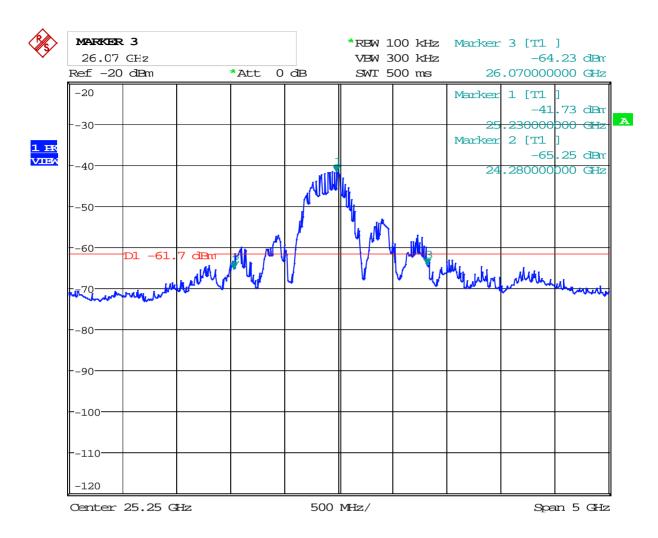
Rules and specifications:	IC RSS-Gen Issue 3, section 4.6.1
Guide:	IC RSS-Gen Issue 3, section 4.6.1
Description:	If not specified in the applicable RSS the occupied bandwidth is measuredas the 99% emission bandwidth. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is also recorded. The span between the two recorded frequencies is the occupied bandwidth.
Measurement procedure:	Bandwidth Measurements (6.2)

Comment:	
Date of test:	July 20, 2012
Test site:	Fully anechoic room, cabin no. 2

Occupied Bandwidth (99 %):

Date: 20.JUL.2012 15:17:00

Occupied Bandwidth (99 %): 3.16 GHz



8.2 Bandwidth of the Emission

Rules and specifications:	CFR 47 Part 15, section 15.209 IC RSS-GEN Issue 3, section 7.2.5	
Guide:	ANSI C63.4	
Description:		
	Fundamental frequency	Minimum resolution bandwidth
	9 kHz to 30 MHz	1 kHz
	30 MHz to 1000 MHz	10 kHz
	1000 MHz to 40 GHz	100 kHz
	The video bandwidth shall be at least resolution bandwidth.	three times greater than the
Measurement procedure:	Bandwidth Measurements (6.2)	

Comment:	
Date of test:	July 20, 2012
Test site:	Fully anechoic room, cabin no. 2

Date: 20.JUL.2012 15:19:52

|--|

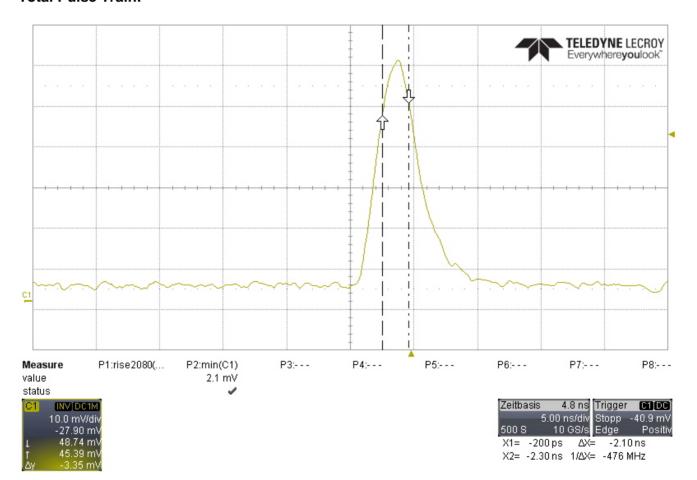
8.3 Designation of Emissions

Rules and specifications:	CFR 47 Part 2, sections 2.201 and 2.202 IC RSS-Gen Issue 3, sections 8
Guide:	ANSI C63.4 / TRC-43

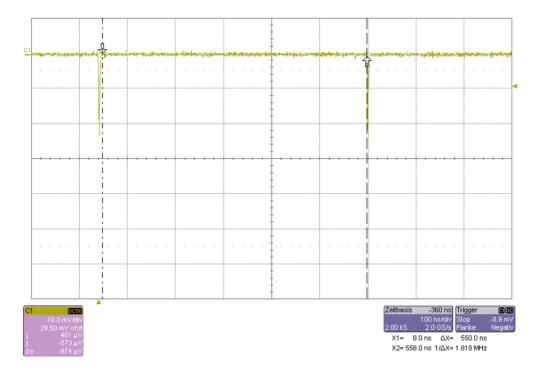
Type of modulation:	Unmodulated Pulse Emission			

B _n = Necessary Bandwidth	$B_n = 2K/t$
t = Pulse duration at half amplitude	t = 2 ns
K = Overall numerical factor	K = 1.5
Calculation:	$B_n = 2 \cdot 1.5 / 2 \text{ ns} = 1.5 \text{ GHz}$

ignation of Emissions:	ation of	f Emissions: 1G50P0NAN
------------------------	----------	------------------------



8.4 Pulse Train Measurement


Rules and specifications:	CFR 47 Part 15, section 15.35(c) IC RSS-Gen Issue 3, section 4.5	
Guide:	ANSI C63.4	
Measurement procedure:	Pulse Train Measurement (6.3)	

Comment:	
Date of test:	June 29, 2012
Test site:	Fully anechoic room, cabin no. 2

Total Pulse Train:

Calculation of peak to average correction factor:

TX-On-Time:	T _{on}	=	2.04 ns
Period Time:	T_{period}	=	558.54 ns
Peak to Average Correction:	C _{pt}	=	20 · Log(T _{on} / T _{period}) dB
		=	-48.74 dB

8.5 Desensitization of pulsed Emissions

Since the EUT transmits pulsed energy, the desensitization factor α has been calculated and included in the calculation for the final peak value. The provisions of Public Notice DA 04-3946: have been applied.

In the HP Application Note 150-2 the analyzer settings to measure a line spectrum are defined as follows:

- a) Bandwidth B < 0.3 x PRF
- J. Scan time Ts > Fs / B²

With the pulse repetition frequency (PRF) of the EUT of 1.8 MHz and the selected measuring bandwith of B =0.3 MHz the requirement a) was observed.

The scan width of Fs = 3 GHz and Bandwidth of B = 0.3 MHz leads to following values:

$$Fs/B^2 = 3 GHz / (0.3 MHz)^2 = 0.033 s$$

The selected scan time of Ts= 85 ms meets requirement b). Hence, a line spectrum was measured, which could be seen, when the Pseudo-Noise-mode of the EUT was switched off (no influence on the measured amplitudes) and the frequency scale of the analyser zoomed.

The desensitization factor α_l was calculated according to HP Application note 150-2:

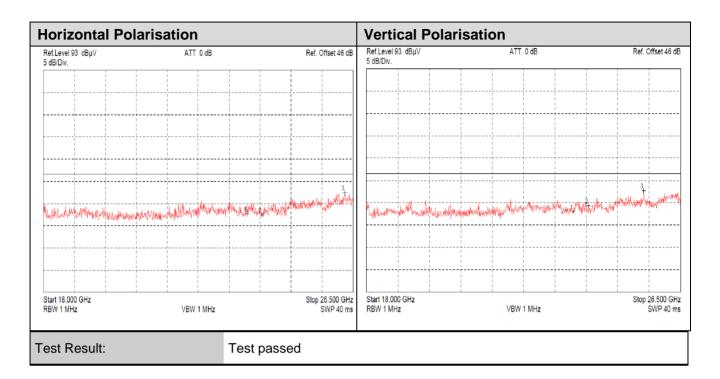
$$\alpha_{l}$$
 = 20log (τ eff / T) = -48.74 dB

The calculation based on the pulse width τ eff = 2.04 ns and the pulse period T= 558.54 ns, which have been supplied by the applicant.

To avoid overloading the spectrum analyzer the internal preselector has been activated during final testing. A linearity check by adding a 3 dB attenuator to the input was used to ensure integrity of the test data.

Sample Calculation of Field Strength values for pulsed systems:

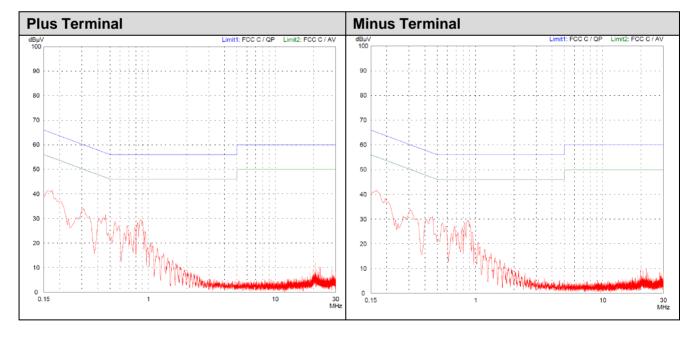
- 1) Measure Peak value with analyzer RBW set to 0.3 MHz, VBW set to 1 MHz, Ts set to 85 ms
- 2) Calculate Field Strength by adding antenna correction factor
- 3) Calculate True Peak Field Strength by adding Desensitization Factor
 Apply provisions according to section 15.35 (b)of the FCC Rules for limiting peak emissions
- 4) Calculate Average value by subtracting Duty Cycle Correction Factor from True Peak Field Strength Value



8.6 Restricted Bands of Operation

Rules and specifications:	CFR 47 Part 15, section 15.205(a) IC RSS-210 Issue 8, section 7.2.2(a)			
Guide:	ANSI C63.4			
Limit:	Only spurious emissions are CFR 47 Part 15, section 15.2	Only spurious emissions are permitted in any of the frequency bands listed in CFR 47 Part 15, section 15.205(a) or IC RSS-210 Issue 7, section 2.2(a).		
	MHz	MHz	MHz	GHz
	0.090-0.110 10.495-0.505 2.1735-2.1905 4.125-4.128 4.17725-4.17775 4.20725-4.20775 6.215-6.218 6.26775-6.26825 6.31175-6.31225 8.291-8.294 8.362-8.366 8.37625-8.38675 8.41425-8.41475 12.29-12.293	16.42–16.423 16.69475–16.69525 16.80425–16.80475 25.5–25.67 37.5–38.25 73–74.6 74.8–75.2 108–121.94 123–138 149.9–150.05 156.52475–156.52525 162.0125–167.17	399.9-410 608-614 960-1240 1300-1427 1435-1626.5 1645.5-1646.5 1660-1710 1718.8-1722.2 2200-2300 2310-2390 2483.5-2500 2690-2900 3260-3267 3332-3339	4.5-5.15 5.35-5.46 7.25-7.75 8.025-8.5 9.0-9.2 9.3-9.5 10.6-12.7 13.25-13.4 14.47-14.5 15.35-16.2 17.7-21.4 22.01-23.12 23.6-24.0 31.2-31.8
	MHz	MHz	MHz	GHz
	12.51975–12.52025 12.57675–12.57725 13.36–13.41.	240–285 322–335.4	3345.8–3358 3600–4400	36.43–36.5 (²)
Measurement procedure:	Radiated Emission in Fully or	Semi Anechoic R	oom (6.6)	

Comment:	Plots overleaf show test setup K1 which has worst case spurious emissions		
Date of test:	July 19, 2012		
Test site:	Fully anechoic room, cabin no. 2		
Test distance:	3 meters		



8.7 Conducted Powerline Emission Measurement 150 kHz to 30 MHz

Rules and specifications:	CFR 47 Part 15, section 15.207 IC RSS-GEN Issue 3, section 7.2.4			
Guide:	ANSI C63.4 / CISPR 22			
Limit:	Frequency of Emission (MHz)	Conducted Limit (dBµV)		
		Quasi-peak	Average	
	0.15 - 0.5	66 to 56	56 to 46	
	0.5 - 5	56	46	
	5 - 30	60	50	
Measurement procedure:	Conducted AC Powerline Emission (6.4)			

Comment:	Test performed with 50 Ω terminator	
Date of test:	July 18, 2012	
Test site:	Shielded room, cabin no. 4	

est Result: Test passed

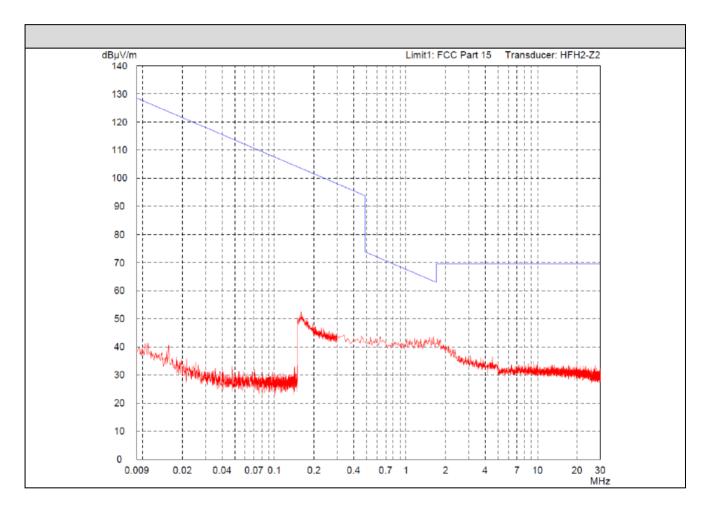
All emissions showed more than 20 dB margin to the limit

Sample calculation of final values:

Final Value ($dB\mu V$) = Reading Value ($dB\mu V$) + Correction Factor (dB)

8.8 Radiated Emission Measurement 9 kHz to 30 MHz

Rules and specifications:	CFR 47 Part 15, sections 15.205 and 15.209 IC RSS-GEN Issue 3, sections 7.2.2 and 7.2.5						
Guide:	ANSI C63.4						
Limit:	Frequency of Emission (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance d (meters)			
	0.009 - 0.490 0.490 - 1.705	2400/F(kHz) 24000/F(kHz)	67.6 - 20 · log(F(kHz)) 87.6 - 20 · log(F(kHz))	300 30			
	1.705 - 30.000	30	29.5	30			
	Additionally, the level of any unwanted emissions shall not exceet the fundamental emission.						
Measurement procedure:	Radiated Emission Measurement 9 kHz to 30 MHz (6.5)						


Test Result:	Test passed
--------------	-------------

Comment: Test performed for configuration K1
Date of test: July 9, 2012

Test site:

Test Result: Test passed

No emissions above noise level detected

Sample calculation of final values:

Extrapolation Factor (dB) = $(Log(d) - Log(d_1)) \cdot Extrapolation Factor (dB/decade)$

Final Value ($dB\mu V/m$) = Reading Value d_1 ($dB\mu V$) + Correction Factor (dB/m)

+ Extrapolation Factor (dB) + Pulse Train Correction (dB)

Note: Extrapolation factor (dB) and final value (dBµV/m) are relating to distance d.

8.9 Radiated Emission Measurement 30 MHz to 100 GHz

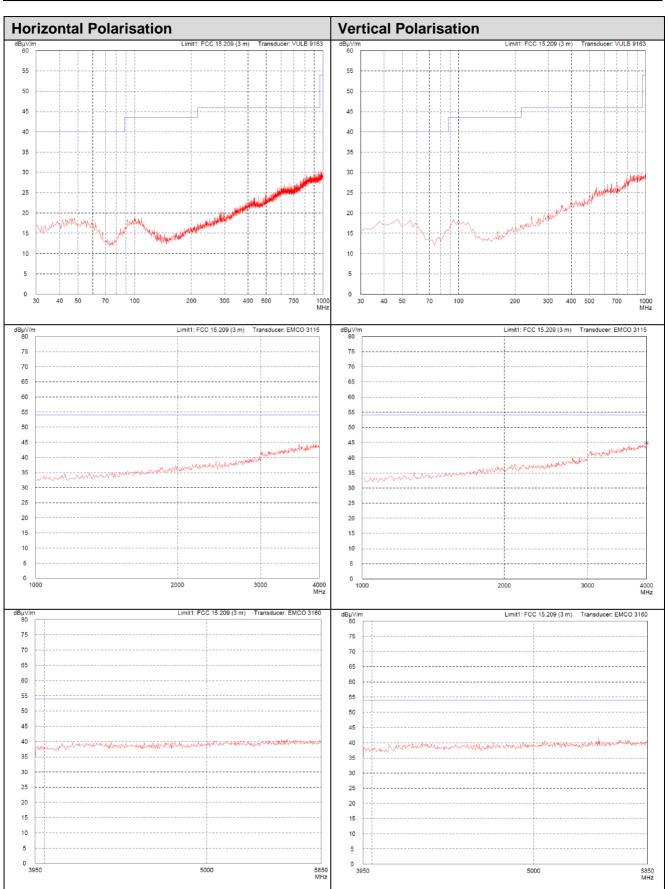
Rules and specifications:	CFR 47 Part 15, section 15.209 IC RSS-GEN Issue 3, section 7.2.5					
Guide:	ANSI C63.4					
Limit:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	30 - 88	40.0				
	88 - 216 150 43.5					
	216 - 960	46.0				
	Above 960	500	54.0			
	Additionally, the level of any unwanted emissions shall not exceed the level of the fundamental emission.					
Measurement procedures:	Radiated Emission in Fully or Semi Anechoic Room (6.6) Radiated Emission at Alternative Test Site (6.7)					
Note:	Plots overleaf show configuration K1 which represents worst case emission profile. Final results are given for all configurations.					

Date of test:	July 9, 2012; July 18, 2012; July 19, 2012				
Test site:	Frequencies ≤ 1 GHz: Semi-anechoic room, cabin no. 8 Frequencies > 1 GHz: Fully anechoic room, cabin no. 2				
Test distance:	Frequencies \leq 8.2 GHz: Frequencies > 8.2 GHz and \leq 18 GHz: Frequencies > 18 GHz and \leq 40 GHz: Frequencies > 40 GHz and \leq 60 GHz: Frequencies > 50 GHz and \leq 75 GHz:: Frequencies > 75 GHz:	0.5 meters 0.3 meters			

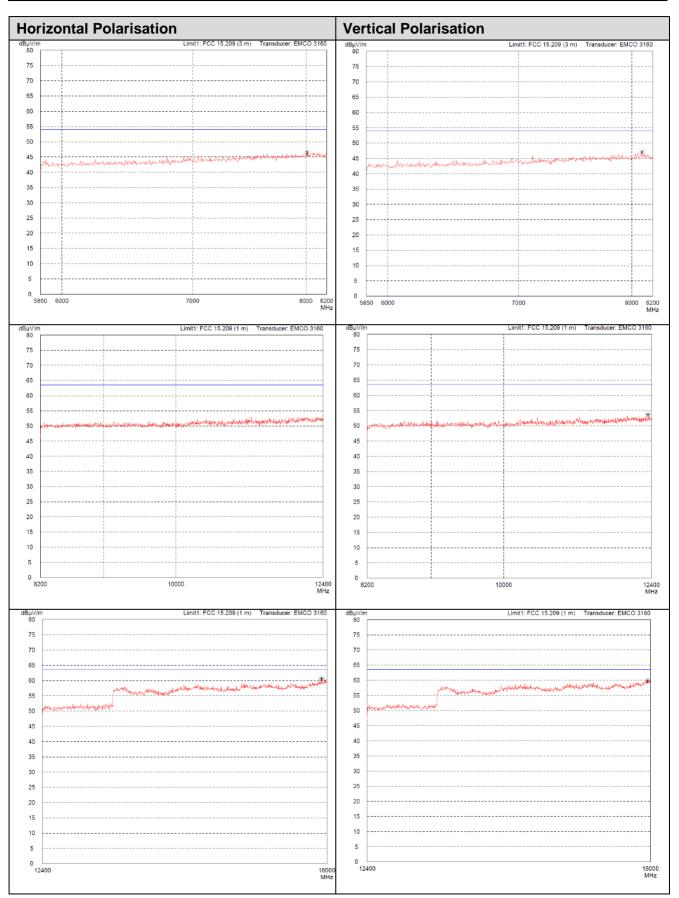
Test Result: Test passed, see detailed results overleaf

				Distance	Preamplifier	Antenna Correction	Pulse Desenstitizatio n Factor	Peak-Field Strength
Frequency (MHz)	Polarization	Detector	Reading (dBµV)	correction (dB)	Gain (dB)	(dB/m	(dB)	(dBµV/m)
K1 Liquid								
25.558,340	vertical	Peak	12,9	15,5	20,0	42,9	48,7	69,0
26.058,720	horizontal	Peak	15,3	15,5	20	42,9	48,74	71,4
K2 Liquid								
25.115,000	horizontal	Peak	14,4	15,5	20	42,8	48,74	70,4
25.205,000	vertical	Peak	15,7	15,5	20	42,8	48,74	71,7
K3 Liquid								
25.645,000	vertical	Peak	14,7	15,5	20	42,9	48,74	70,8
25.668,000	horizontal	Peak	14,9	15,5	20	42,9	48,74	71,0
K4 Liquid								
25.625,320	horizontal	Peak	14,3	15,5	20	42,9	48,74	70,4
25.739,580	vertical	Peak	15,7	15,5	20	42,9	48,74	71,8
K1 Solid								
25.177,778	horizontal	Peak	11,4	15,5	20	42,9	48,74	67,5
26.178,900	vertical	Peak	10,6	15,5	20	42,9	48,74	66,7
K2 Solid								
25.177,778	horizontal	Peak	11,4	15,5	20	42,9	48,74	67,5
26.178,900	vertical	Peak	10,6	15,5	20	42,9	48,74	66,7
K3 Solid								
25.177,778	horizontal	Peak	11,4	15,5	20	42,9	48,74	67,5
26.178,900	vertical	Peak	10,6	15,5	20	42,9	48,74	66,7
K4 Solid								
25149,444	vertical	Peak	13,9	15,5	20	42,9	48,74	70,0
25395,000	horizontal	Peak	13,7	15,5	20	42,9	48,74	69,8
K5 Solid								
25149,444	vertical	Peak	13,9	15,5	20	42,9	48,74	70,0
25395,000	horizontal	Peak	13,7	15,5	20	42,9	48,74	69,8
K6 Solid								
25149,444	vertical	Peak	13,9	15,5	20	42,9	48,74	70,0
25395,000	horizontal	Peak	13,7	15,5	20	42,9	48,74	69,8

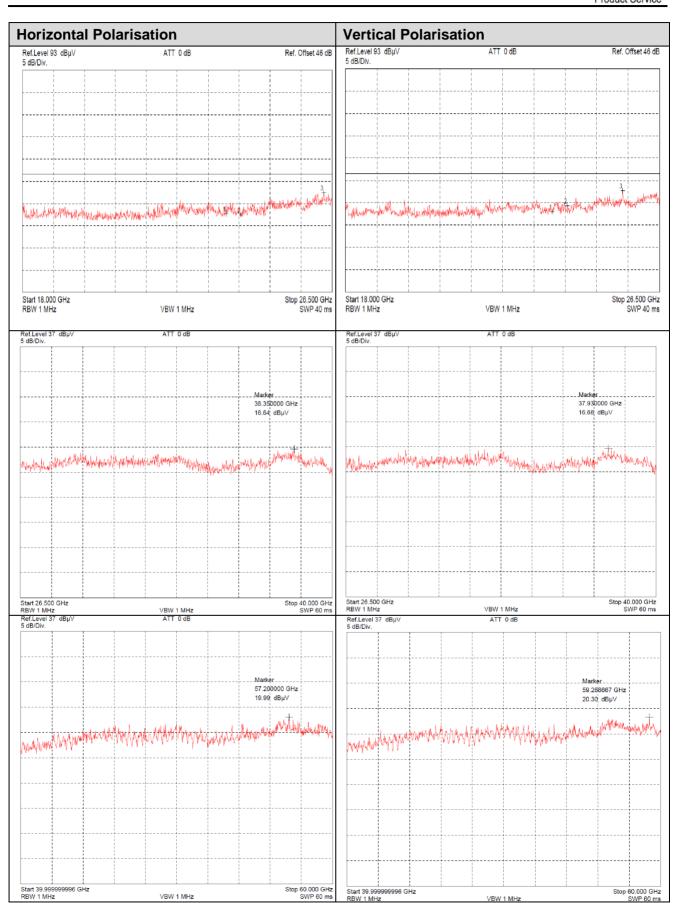
Frequency			Peak-Field Strength	Limit	Margin
(MHz)	Polarization	Detector	(dBµV/m)	(dB)	(dB)
K1 Liquid					
25.558,340	vertical	Peak	69,0	74	5,0
26.058,720	horizontal	Peak	71,4	74	2,6
K2 Liquid					
25.115,000	horizontal	Peak	70,4	74	3,6
25.205,000	vertical	Peak	71,7	74	2,3
K3 Liquid					
25.645,000	vertical	Peak	70,8	74	3,2
25.668,000	horizontal	Peak	71,0	74	3,0
K4 Liquid					
25.625,320	horizontal	Peak	70,4	74	3,6
25.739,580	vertical	Peak	71,8	74	2,2
K1 Solid					
25.177,778	horizontal	Peak	67,5	74	6,5
26.178,900	vertical	Peak	66,7	74	7,3
K2 Solid					
25.177,778	horizontal	Peak	67,5	74	6,5
26.178,900	vertical	Peak	66,7	74	7,3
K3 Solid					
25.177,778	horizontal	Peak	67,5	74	6,5
26.178,900	vertical	Peak	66,7	74	7,3
K4 Solid					
25149,444	vertical	Peak	70,0	74	4,0
25395,000	horizontal	Peak	69,8	74	4,2
K5 Solid					
25149,444	vertical	Peak	70,0	74	4,0
25395,000	horizontal	Peak	69,8	74	4,2
K6 Solid					
25149,444	vertical	Peak	70,0	74	4,0
25395,000	horizontal	Peak	69,8	74	4,2

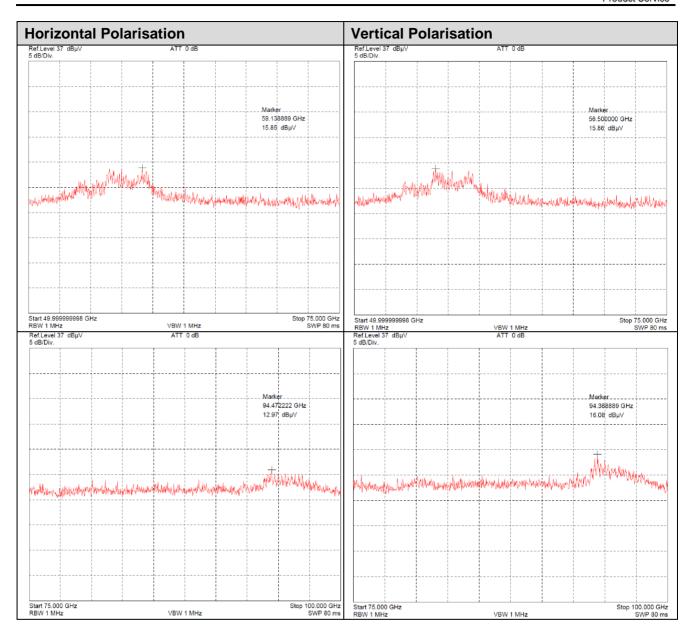


			Peak-Field	Duty Cycle Correction	Average-Field		
Frequency			Strength	Factor	Strength	Limit	Margin
(MHz)	Polarization	Detector	(dBµV/m)	(dB)	(dBµV/m)	dBμV/m	(dB)
K1 Liquid				Τ	Г		T
25.558,340	vertical	Peak	69,0	48,74	20,3	54,0	33,7
26.058,720	horizontal	Peak	71,4	48,74	22,7	54,0	31,3
K2 Liquid							T
25.115,000	horizontal	Peak	70,4	48,74	21,7	54,0	32,3
25.205,000	vertical	Peak	71,7	48,74	23,0	54,0	31,0
K3 Liquid							
25.645,000	vertical	Peak	70,8	48,74	22,1	54,0	31,9
25.668,000	horizontal	Peak	71,0	48,74	22,3	54,0	31,7
K4 Liquid							
25.625,320	horizontal	Peak	70,4	48,74	21,7	54,0	32,3
25.739,580	vertical	Peak	71,8	48,74	23,1	54,0	30,9
K1 Solid							
25.177,778	horizontal	Peak	67,5	48,74	18,8	54,0	35,2
26.178,900	vertical	Peak	66,7	48,74	18,0	54,0	36,0
K2 Solid							
25.177,778	horizontal	Peak	67,5	48,74	18,8	54,0	35,2
26.178,900	vertical	Peak	66,7	48,74	18,0	54,0	36,0
K3 Solid						·	
25.177,778	horizontal	Peak	67,5	48,74	18,8	54,0	35,2
26.178,900	vertical	Peak	66,7	48,74	18,0	54,0	36,0
K4 Solid			,	,		•	
25149,444	vertical	Peak	70,0	48,74	21,3	54,0	32,7
25395,000	horizontal	Peak	69,8	48,74	21,1	54,0	32,9
K5 Solid			,	,		,	
25149,444	vertical	Peak	70,0	48,74	21,3	54,0	32,7
25395,000	horizontal	Peak	69,8	48,74	21,1	54,0	32,9
K6 Solid			,	,		,	
25149,444	vertical	Peak	70,0	48,74	21,3	54,0	32,7
25395,000	horizontal	Peak	69,8	48,74	21,1	54,0	32,9


Sample Calculation of Field Strength values for pulsed systems:

- 1) Measure Peak value with analyzer RBW set to 0.3 MHz, VBW set to 1 MHz, Ts set to 85 ms
- 2) Calculate Field Strength by adding antenna correction factor
- 3) Calculate True Peak Field Strength by adding Desensitization Factor Apply provisions according to section 15.35 (b)of the FCC Rules for limiting peak emissions
- 4) Calculate Average value by subtracting Peak-to-Average Correction Factor from True Peak Field Strength Value





TÜV SÜD Product Service GmbH Äußere Frühlingstraße 45 94315 Straubing Germany Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.de

8.10 Exposure of Humans to RF Fields

Rules and specifications:	IC RSS-Gen Issue 3, se	ection 5.6				
Guide:	IC RSS-102 Issue 4, se	ection 2.5				
Expos	Applicable	Declared by applicant	Measured	Exemption		
The antenna is						
detachable						
The conducted out connector:	put power (CP in watts) i	s measured at the antenna				
connector.	<i>CP</i> =	W				
The effective isotro	ppic radiated power (EIRF	o in watts) is calculated using				
the numerical	•	<i>G</i> =				
<u></u>		$EIRP = \dots W$				
the field streng	gth ⁵ in V/m:	$FS = \dots V/m$				
$EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = \dots \mathbf{W}$						
with:						
Distance betw	een the antennas in m:	D = m			Ш	
not detachable						
	asurement is used to det RP in watts) given by ⁵ :	termine the effective isotropic				
,	$EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow E$	TIRP = 199.9 nW				
with:						
Field strength in V	m:	FS = 73.8 dBμV/m = 4.898 mV/m			\boxtimes	
Distance between	the two antennas in m:	D = 0.5 m			\boxtimes	
Selection of output power						
The output power TP is the power (e.i.r.p.):	ne higher of the conducte	d or effective isotropic radiated				

TP = 199.9 nW

⁵ The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses. If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.

TÜV SÜD Product Service GmbH Äußere Frühlingstraße 45 94315 Straubing Germany

Exposure of Humans to RF Fields (continued)	Applicable	Declared by applicant	Measured	Exemption
Separation distance between the user and the transmitting device is				
☐ less than or equal to 20 cm ☐ greater than 20 cm		\boxtimes		
Transmitting device is				
☐ in the vicinity of the human head ☐ body-worn		\boxtimes		
SAR evaluation				
SAR evaluation is required if the separation distance between the user and the device is less than or equal to 20 cm.				
☐ The device operates from 3 kHz up to 1 GHz inclusively and with output power (i.e. the higher of the conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power) that is less than or equal to 200 mW for general public use and 1000 mW for controlled use.				
 □; □ The device operates above 1 GHz and up to 2.2 GHz inclusively and with output power (i.e. the higher of the conducted or radiated (e.i.r.p.) source-based, time-averaged output power) that is less than or equal to 100 W for general public use and 500 W for controlled use. 				
☐ The device operates above 2.2 GHz and up to 3 GHz inclusively and with output power (i.e. the higher of the conducted or radiated (e.i.r.p.) source-based, time-averaged output power) that is less than or equal to 20 mW for general public use and 100 mW for controlled use.				
 ☐ The device operates above 3 GHz and up to 6 GHz inclusively and with output power (i.e. the higher of the conducted or radiated (e.i.r.p.) source-based, time-averaged output power) that is less than or equal to 10 mW for general public use and 50 mW for controlled use. ☐ SAR evaluation is documented in test report no				
RF exposure evaluation			!	
RF exposure evaluation is required if the separation distance between the user and the device is greater than 20 cm.				
☐ The device operates below 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 2.5 W.				
The device operates at or above 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 5 W.				\boxtimes
RF exposure evaluation is documented in test report no				1

9 Referenced Regulations

All tests were performed with reference to the following regulations and standards:

CFR 47 Part 2	Code of Federal Regulations Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)	October 1, 2012
CFR 47 Part 15	Code of Federal Regulations Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)	October 1, 2012
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	December 11, 2003 (published on January 30, 2004)
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	June 7, 2009 (published on September 15, 2009)
RSS-Gen	Radio Standards Specification RSS-Gen Issue 3 containing General Requirements and Information for the Certification of Radiocommunication Equimpment, published by Industry Canada	December 2010
RSS-210	Radio Standards Specification RSS-210 Issue 8 for Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, published by Industry Canada	December 2010
RSS-310	Radio Standards Specification RSS-310 Issue 3 for Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category II Equipment, published by Industry Canada	December 2010
RSS-102	Radio Standards Specification RSS-102 Issue 4: Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), published by Industry Canada	March 2010, footnote 13 updated December 2010
ICES-003	Interference-Causing Equipment Standard ICES-003 Issue 4 for Digital Apparatus, published by Industry Canada	February 7, 2004
CISPR 22	Third Edition of the International Special Committee on Radio Interference (CISPR), Pub. 22, "Information Technology Equipment – Radio Disturbance Characteristics – Limits and Methods of Measurement"	1997

TÜV SÜD Product Service GmbH Äußere Frühlingstraße 45 94315 Straubing Germany

CAN/CSA- CEI/IEC CISPR 22	Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment	2002	
	CAN/CSA CISPR 22-10 Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement (Adopted IEC CISPR 22:2008, sixth edition, 2008-09)		
CAN/CSA CISPR 22-10	Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement (Adopted IEC CISPR 22:2008, sixth edition, 2008-09)	2010	
TRC-43	Notes Regarding Designation of Emissions (Including Necessary Bandwidth and Classification), Class of Station and Nature of Service, published by Industry Canada	October, 2008	

10 Test Equipment List with Calibration Data

Туре	InvNo.	Type Designation	Serial Number	Manufacturer	Calibration Organization	Last Calibration	Next Calibration
EMI test receiver	1028	ESHS10	860043/016	Rohde & Schwarz	Rohde & Schwarz	04/2012	10/2013
EMI test receiver	1569	ESMI	839379/013	Rohde & Schwarz	Rohde & Schwarz	10/2009	10/2012
EMI test receiver	2044	ESU8	100232	Rohde & Schwarz	Rohde & Schwarz	01/2011	07/2012
Spectrum analyser	1666	FSP30	100063	Rohde & Schwarz	Rohde & Schwarz	05/2011	11/2012
Preamplifier	1484	ACO/180-3530	32641	СТТ	TÜV SÜD PS-EMC- STR	06/2011	12/2012
Preamplifier	1684	AFS3-00100800-32-LN	847743	MITEQ	TÜV SÜD PS-EMC- STR	10/2011	04/2013
Preamplifier	1716	CPA9231A	3557	Schaffner Electrotest	TÜV SÜD PS-EMC- STR	01/2011	07/2012
V-network	1059	ESH3-Z5	894785/005	Rohde & Schwarz	Rohde & Schwarz	08/2011	08/2013
Loop antenna	1016	HFH2-Z2	882964/0001	Rohde & Schwarz	Rohde & Schwarz	05/2011	11/2012
Double ridged waveguide horn antenna	1516	3115	9508-4553	EMCO Elektronik	Seibersdorf Laboratories	10/2010	10/2012
TRILOG broadband antenna	1722	VULB 9163	9163-188	Schwarzbeck	Rohde & Schwarz	03/2012	09/2013
TRILOG Broadband Antenna	2058	VULB 9163	9163-408	Schwarzbeck	Rohde & Schwarz	05/2011	11/2012
Horn antenna	1010	3160-03	9112 -1003	EMCO Elektronik		see note 1	
Horn antenna	1011	3160-04	9112-1001	EMCO Elektronik		see note 1	
Horn antenna	1012	3160-05	9112-1001	EMCO Elektronik		see note 1	
Horn antenna	1013	3160-06	9112-1001	EMCO Elektronik		see note 1	
Horn antenna	1014	3160-07	9112-1008	EMCO Elektronik		see note 1	
Horn antenna	1015	3160-08	9112-1002	EMCO Elektronik		see note 1	
Horn antenna	1265	3160-09	9403-1025 (931941- 010)	EMCO Elektronik		see note 1	
Horn antenna	1575	3160-10	399185	EMCO Elektronik		see note 1	

Туре	InvNo.	Type Designation	Serial Number	Manufacturer	Calibration Organization	Last Calibration	Next Calibration
Horn antenna	2086	24240-20	157845	Flann		see note 1	
Horn antenna	2180	25240-25	205900	Flann		see note 1	
Horn antenna	2182	27240-25	204260	Flann		see note 1	
Waveguide mixer	1576	WM782A, FS-Z40	845881/005	Tektronix	Rohde & Schwarz	09/2009	09/2012
Waveguide mixer	2085	WM780U	B030121	Tektronix	Rohde & Schwarz	09/2009	09/2012
Waveguide mixer	2140	WM782V	B030132	Tektronix	Rohde & Schwarz	09/2009	09/2012
Waveguide mixer	2181	WM782W	B010193	Tektronix	Rohde & Schwarz	09/2009	09/2012
LO amplifier	1577	LO-AMP, FS-Z30	624413/003	Rohde & Schwarz	Rohde & Schwarz	09/2009	09/2012

Note 1: No calibration required.

Note 2: Not calibrated separately but with the whole test system when recording calibration data.

Note 3: No calibration required. Devices are checked before use.

Note 4: No calibration required. Devices are checked by calibrated equipment during test.

11 Revision History

Revision History					
Edition	Date	Issued by	Modifications		
1	02.10.12	Martin Steindl (gz)	First Edition		
2	27.04.2013	J. Roidt	Pulse desentization factor calculation detailed		
3	24.07.2013	J. Roidt	Page 40: Plot updated		