

 Kongswinker for

 32825 Blomberg, Germany

 Phone:
 +49 (0) 52 35 / 95 00-0

 Fax:
 +49 (0) 52 35 / 95 00-10

 office@phoenix-testlab.de
 www.phoenix-testlab.de

Test Report

Report Number:

F172289E6

Equipment under Test (EUT):

BT10 inside FMR50

Applicant:

Endress+Hauser SE+Co. KG

Manufacturer:

Endress+Hauser SE+Co. KG

Deutsche Akkreditierungsstelle D-PL-17186-01-01 D-PL-17186-01-02 D-PL-17186-01-03

References

- [1] ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
- [2] FCC CFR 47 Part 15, Radio Frequency Devices
- [3] RSS-210 Issue 9 August 2016 (Amendment), Spectrum Management and Telecommunications Radio Standards Specification Licence-Exempt Radio Apparatus: Category I Equipment
- [4] RSS RSS-Gen Issue 4 November 2014, Spectrum Management and Telecommunications Radio Standards Specification General Requirements for Compliance of Radio Apparatus

Test Result

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test.

The complete test results are presented in the following.

Test engineer	Thomas KÜHN	t. Li	03/13/2018
	Name	Signature	Date
Authorized reviewer:	Bernd STEINER Name	B. Sluer Signature	03/13/2018 Date

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.

This test report is valid in hardcopy form as well as in electronic form.

Contents:

Page

Ide	ntification	4
1.1	Applicant	4
1.2	Manufacturer	4
1.3	Test Laboratory	4
1.4	EUT (Equipment Under Test)	5
1.5	Technical Data Of Equipment	5
1.6	Dates	6
Ор	erational States	6
Add	litional Information	7
Ove	erview	7
Res	sults	8
5.1	Radiated emissions	8
5.1	1 Method of measurement (radiated emissions)	8
5.1	2 Test results (radiated emissions)	.14
5.	1.2.1 Preliminary radiated emission measurement	.14
Tes	t equipment and ancillaries used for tests	.19
Rep	port history	.20
List	of Annexes	.20
	1.1 1.2 1.3 1.4 1.5 1.6 Ove Res 5.1 5.1 5.1 5.1	1.2 Manufacturer

1 Identification

1.1 Applicant

Name:	Endress+Hauser SE+Co. KG
Address:	Hauptstr. 1, 79689 Maulburg
Country:	Germany
Name for contact purposes:	Mr. Ralph STIB
Phone:	+49 76 22 28 – 19 43
eMail Address:	ralph.stib@pcm.endress.com
Applicant represented during the test by the following person:	None

1.2 Manufacturer

Name:	Endress+Hauser SE+Co. KG
Address:	Hauptstr. 1, 79689 Maulburg
Country:	Germany
Name for contact purposes:	Mr. Ralph STIB
Phone:	+49 76 22 28 – 19 43
eMail Address:	ralph.stib@pcm.endress.com
Manufacturer represented during the test by the following person:	None

1.3 Test Laboratory

The tests were carried out by: PHOENIX TESTLAB GmbH Königswinkel 10 32825 Blomberg Germany

Accredited by *Deutsche Akkreditierungsstelle GmbH* in compliance with DIN EN ISO/IEC 17025 under Reg. No. *D-PL-17186-01-02*.

1.4 EUT (Equipment Under Test)

Test object: *	BT10 inside Level probing radar (host)
Type designation / model name: *	BT10 inside FMR50 (host)
FCC ID: *	LCGBT10 (wireless adaptor), LCGFMR5XK (LPR)
IC: *	2519A-BT10 (wireless adaptor), 2519A-5K (LPR)

*: Declared by the applicant.

Ports / Connectors:

Identification	Со	L on oth	
Identification	EUT	Ancillary	Length
DC in	Fixed	-	2.0 m
4 20 mA	Fixed	-	Not used
-	-	-	-
-	-	-	-

All lines were unshielded.

1.5 Technical Data Of Equipment (wireless adaptor)

BT10					
SAP numb	er: 7137735	5			
BTM_3_00)1				
71374363	Index 3				
BTM_3					
V00.63.00	and DTM So	oftware Nord	lic		
Bluetooth I	ow energy (only)			
PCB					
None					
2.15 dBi					
None					
DC by the LPR (host)					
U _{nom} =	4.5 V DC	U _{min} =	3.0 V DC	U _{max} =	5.5 V DC
GFSK					
2402 MHz to 2480 MHz					
39					
-40 °C to +80 °C					
	SAP numb BTM_3_00 71374363 BTM_3 V00.63.00 Bluetooth I PCB None 2.15 dBi None DC by the Unom = GFSK 2402 MHz 39	SAP number: 7137735 BTM_3_001 71374363 Index 3 BTM_3 V00.63.00 and DTM So Bluetooth Iow energy (d PCB None 2.15 dBi None DC by the LPR (host) Unom = 4.5 V DC GFSK 2402 MHz to 2480 MHz	SAP number: 71377355 BTM_3_001 71374363 Index 3 BTM_3 V00.63.00 and DTM Software Nord Bluetooth Iow energy (only) PCB None 2.15 dBi None DC by the LPR (host) Unom = 4.5 V DC GFSK 2402 MHz to 2480 MHz 39	SAP number: 71377355 BTM_3_001 71374363 Index 3 BTM_3 V00.63.00 and DTM Software Nordic Bluetooth low energy (only) PCB None 2.15 dBi None DC by the LPR (host) Unom = 4.5 V DC Q402 MHz to 2480 MHz 39	SAP number: 71377355 BTM_3_001 71374363 Index 3 BTM_3 V00.63.00 and DTM Software Nordic Bluetooth Iow energy (only) PCB None 2.15 dBi None DC by the LPR (host) Unom = 4.5 V DC Umin = 3.0 V DC Q402 MHz to 2480 MHz 39

*: Declared by the applicant

Model number:*	Micropilot	
Order number:*	FMR50-3W70/0	
Serial number:*	LC00C201133	
PCB identifier:*	Not available (identification with serial number possible)	
Hardware version:*	Dev.Ref.: 3	
Software version:*	01.02.zz, HART 7, DevRev03	
Antenna type: *	Horn 40mm/1-1/2", PVDF gekapselt, -40130oC/-40266oF	
Antenna connector: *	None	
Type of modulation: *	1G50P0NAN	
Data rate:*	None	
Operating frequency range:*	24.05 GHz to 29.0 GHz	
Operating frequency:*	25.2 GHz	
Number of channels: *	1	
Channel spacing: *	None (on channel operation only)	
Power supply – EUT: *	U _{nom} = 24.0 V DC U _{min} = 12 V DC U _{max} = 30.0 V DC	
Temperature range: *	-20 °C to 50 °C	
*: Declared by the applicant		

1.6 Technical Data Of Equipment (LPR (host))

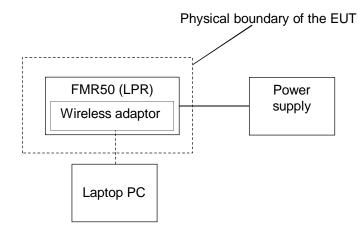
*: Declared by the applicant

1.7 Dates

Date of receipt of test sample:	01/23/2018
Start of test:	02/28/2018
End of test:	03/01/2018

2 Operational States

All tests were carried out with an unmodified sample. The EUT is a Level Probing Radar (host) which could be equipped with a wireless adaptor.


During all tests the LPR was supplied with 24 V DC, which was provided by an external power supply. The wireless adaptor was powered by the LPR.

In order to configure wireless adaptor a "BT Testsoftware" (provided by the applicant) was used to configure the RF parameter of the wireless adaptor (maximum output power and transmit continuously with pseudo random bit sequence on mid channel (2439 MHz)) via a controlling laptop and a USB connection. This connection was removed after adjusting the operation mode.

All emission tests were carried out in two positions of the host: Position 1 is the normal installation position (antenna shows downwards), for position 2 measurement the antenna shows sidewards (antenna boresight). For details of the positions refer also the photographs in annex A of this test report. The plots in the following showing the maximum results of both measurements.

The physical boundaries of the Equipment Under Test are shown below.

3 Additional Information

During the tests neither the LPR nor the wireless adaptor was labeled as required by the FCC rules.

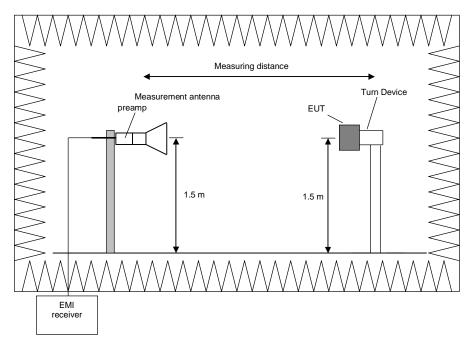
This test report shows the emissions of the combination of two transceivers, which were both, tested and certified individually and which are able to transmit simultaneously. The distance between the two transceivers is less than 20 cm. In respect to the operation frequencies of the transceivers the tests were carried out in the frequency range 1 GHz to 100 GHz

4 Overview

Application	Frequency range	FCC 47 CFR Part 15 section [2]	RSS-210 [3] or RSS-Gen, Issue 4 [4]	Status	Refer page
Unwanted emissions	1 GHz to 100 GHz	15.209	4.1 [3], 8.9 [4], 8.10 [4]	Passed	8 et seq.

5 Results

5.1 Radiated emissions


5.1.1 Method of measurement (radiated emissions)

The radiated emission measurement is subdivided into six stages.

- A preliminary measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 1 GHz to 12 GHz.
- A final measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 1 GHz to 12 GHz.
- A preliminary measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 12 GHz to 40 GHz.
- A final measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 12 GHz to 40 GHz.
- A preliminary measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 40 GHz to 100 GHz.
- A final measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 40 GHz to 100 GHz.

Preliminary and final measurement (1 GHz to 12 GHz)

This measurement will be performed in a fully anechoic chamber. Table top devices will set up on a nonconducting turn device on the height of 1.5 m. The set-up of the Equipment under test will be in accordance to [1].

Preliminary measurement (1 GHz to 12 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The spectrum analyser set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 °. This measurement is repeated after raising the EUT in 30 ° steps according 6.6.5.4 in [1].

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
1 GHz to 4 GHz	1 MHz
4 GHz to 12 GHz	1 MHz

Procedure preliminary measurement:

Prescans were performed in the frequency range 1 to 12 GHz.

The following procedure will be used:

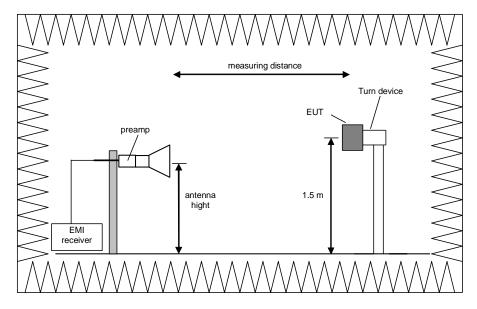
- 1. Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 2. Rotate the EUT by 360° to maximize the detected signals.
- 3. Repeat 1) to 2) with the vertical polarisation of the measuring antenna.
- 4. Make a hardcopy of the spectrum.
- 5. Repeat 1) to 4) with the EUT raised by an angle of 90°.
- 6. Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 7. The measurement antenna polarisation, with the according EUT position (Turntable and Turn device) which produces the highest emission for each frequency will be used for the final measurement. The six closest values to the applicable limit will be used for the final measurement.

Final measurement (1 GHz to 12 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1 MHz. The measurement will be performed by rotating the turntable through 0 to 360° in the worst-case EUT orientation which was obtained during the preliminary measurements.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
1 GHz to 4 GHz	1 MHz
4 GHz to 12 GHz	1 MHz


Procedure of measurement:

The measurements were performed in the frequency ranges 1 GHz to 4 GHz and 4 GHz to 12 GHz. The following procedure will be used:

- 1) Set the turntable and the turn device to obtain the worst-case emission for the first frequency identified in the preliminary measurements.
- 2) Set the measurement antenna polarisation to the orientation with the highest emission for the first frequency identified in the preliminary measurements.
- 3) Set the spectrum analyser to EMI mode with peak and average detector activated.
- 4) Rotate the turntable from 0° to 360° to find the EUT angle that produces the highest emissions.
- 5) Note the highest displayed peak and average values
- 6) Repeat the steps 1) to 5) for each frequency detected during the preliminary measurements.

Preliminary and final measurement (12 GHz to 40 GHz)

This measurement will be performed in a fully anechoic chamber. Table top devices will set up on a nonconducting turn device on the height of 1.5 m. The set-up of the Equipment under test will be in accordance to [1].

Preliminary measurement (1 GHz to 40 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The spectrum analyser set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 °. This measurement is repeated after raising the EUT to 90 °.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
12 GHz to 18 GHz	1 MHz
18 GHz to 26.5 GHz	1 MHz
26.5 GHz to 40 GHz	1 MHz

Procedure preliminary measurement:

Prescans were performed in the frequency range 1 to 40 GHz. The following procedure will be used:

- 8. Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 9. Rotate the EUT by 360° to maximize the detected signals.
- 10. Repeat 1) to 2) with the vertical polarisation of the measuring antenna.
- 11. Make a hardcopy of the spectrum.
- 12. Repeat 1) to 4) with the EUT raised by an angle of 90°.
- 13. Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 14. The measurement antenna polarisation, with the according EUT position (Turntable and Turn device) which produces the highest emission for each frequency will be used for the final measurement. The six closest values to the applicable limit will be used for the final measurement.

Final measurement (12 GHz to 40 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1 MHz. The measurement will be performed by rotating the turntable through 0 to 360° in the worst-case EUT orientation which was obtained during the preliminary measurements.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
12 GHz to 18 GHz	1 MHz
18 GHz to 25 / 26.5 GHz	1 MHz
26.5 GHz to 40 GHz	1 MHz

Procedure of measurement:

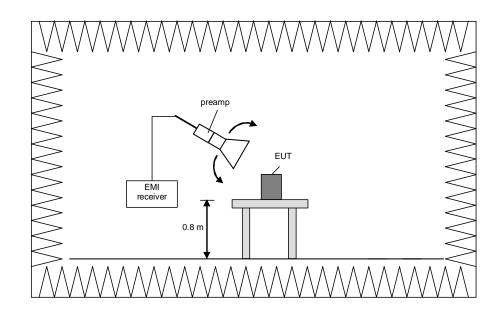
The measurements were performed in the frequency ranges 1 GHz to 4 GHz, 4 GHz to 12 GHz, 12 GHz to 18 GHz, 18 GHz to 26.5 GHz and 26.5 GHz to 40 GHz.

The following procedure will be used:

- 7) Set the turntable and the turn device to obtain the worst-case emission for the first frequency identified in the preliminary measurements.
- 8) Set the measurement antenna polarisation to the orientation with the highest emission for the first frequency identified in the preliminary measurements.
- 9) Set the spectrum analyser to EMI mode with peak and average detector activated.
- 10) Rotate the turntable from 0° to 360° to find the EUT angle that produces the highest emissions.
- 11) Note the highest displayed peak and average values
- 12) Repeat the steps 1) to 5) for each frequency detected during the preliminary measurements.

Preliminary and final measurement (40 GHz to 100 GHz)

This measurement will be performed in a fully anechoic chamber. Tabletop devices will set up on a nonconducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The setup of the Equipment under test will be in accordance to [1].

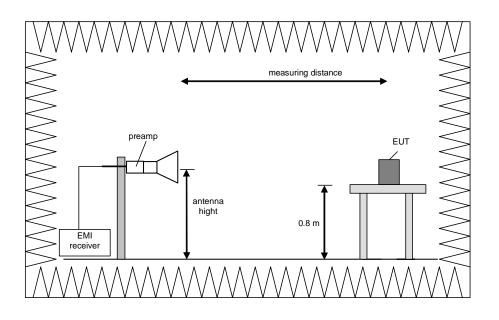


Preliminary measurement (40 GHz to 100 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The spectrum analyser set to MAX Hold mode and a resolution bandwidth of 1 MHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna, the antenna close to the EUT and while moving the antenna over all sides of the EUT. With the spectrum analyser in CLEAR / WRITE mode the cone of the emission should be found and than the measuring distance will be set to documented measuring distance with the receiving antenna moving in this cone of emission. At this position the final measurement will be carried out.

Frequency range	Resolution bandwidth
40 GHz to 60 GHz	1 MHz
50 GHz to 75 GHz	1 MHz
75 GHz to 110 GHz	1 MHz

The resolution bandwidth of the EMI Receiver will be set to the following values:


Final measurement (40 GHz to 100 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1 MHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 ° in order to have the antenna inside the cone of radiation.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
40 GHz to 60 GHz	1 MHz
50 GHz to 75 GHz	1 MHz
75 GHz to 110 GHz	1 MHz

Procedure of measurement:

The measurements were performed in the frequency range 40 GHz to 60 GHz, 60 GHz to 75 GHz and 75 GHz to 100 GHz.

The following procedure will be used:

- 1) Monitor the frequency range at horizontal polarisation and move the antenna over all sides of the EUT (if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarisation and repeat 1) with vertical polarisation.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear / Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to the final measuring distance and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarisation and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

Step 1) to 6) are defined as preliminary measurement.

5.1.2 Test results (radiated emissions)

5.1.2.1 Preliminary radiated emission measurement

Ambient temperature	Ambient temperature			Relative humidity	10 %			
Position of EUT:	ition of EUT: The EUT was set-up on a turn device of a height of 1.5 m. The distance between EUT and antenna was 3 m.							
Test record:	All res	ults are shown ir	n the follow	ing.				
Supply voltage:) all measuremer supply.	nts the EUT	was supplied with 24 V D	C by an external			
Remark:	is the positio For de test re	All emission tests were carried out in two positions of the EUT: Position 1 s the normal installation position (antenna shows downwards), for position 2 measurement the antenna shows sideward (boresight view). For details of the positions refer also the photographs in annex A of this test report. The plots in the following showing the maximum results from poth measurements.						

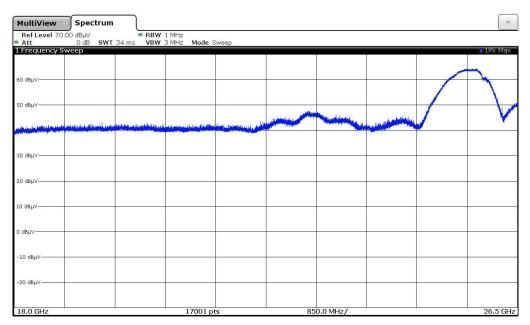
172289 200.jpeg: Spurious emissions from 1 GHz to 4 GHz:

MultiView									
Ref Level 70. Att	00 dBµV 0 dB SWT	● RBW 6.01 ms VBW	1 MHz 3 MHz Mode	Sweep					
1 Frequency Sv	weep							1	●1Pk Max
60 dBµV									
50 dBµV				1					
40 dBµV									
30 dBµV									
a the another is a stand a second	and best for product and allowed and a	Allowith white land	All and the second states	nder and the second second and	the the state of the second states of the second st	al de vision of a low of the low of the log	A la collected a designation of the second	المتعالية والمدعاتين والمعصوفا والمعالية	مصل منهود وبالأمن وملال وريدا بل
20 dBµV									
10 dBµV									
0 dBµV									
-10 dBµV									
and the second se									
-20 dBµV									
co app i									
1.0 GHz			6001 pts	5	30	0.0 MHz/			4.0 GHz

No emission above noise floor of the measuring system (61 dBµV/m measured with peak detector with 3 m measuring distance) except the wanted signal of the Bluetooth Low Energy device found in this frequency range.

I Frequency Sweep 1Pk Max so dspv	MultiView								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	🗢 Att	0 dB SWT		weep					o t Dia Mara
S0 dbµv Image: product of produ	1 Frequency S	weep							IPK Max
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60 dBµY								
a0 daµv Image: set of the	50 dBµY		-						
a0 daµv Image: set of the	40 dBuV	white the second second	-	addin or a burget of the	And the second designed the second designed and the se	and a start and	Provide Line had a straight	-	where the state of
20 dBµV Image: Sector of the	Production and the second								
10 dbµv	30 dBµV								
0 dbμν	20 dBµV								
10 dBμν	10 dBµV					0			
20 dBµV	0 dвµV					o			
	-10 dBµV								
	-20 dBµV								
4.0 GHz 16001 pts 800.0 MHz/ 12.0 GHz	4.0 GHz					0.0 MHz/			12.0 GHz

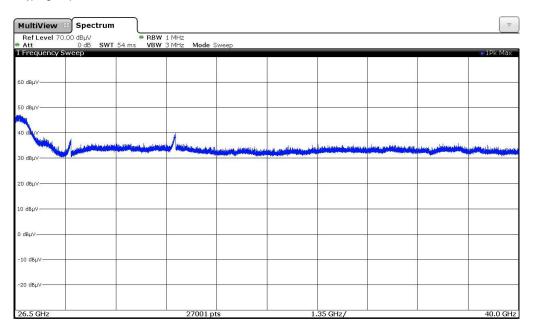
172289 201.jpeg: Spurious emissions from 4 GHz to 12 GHz:


No emission above noise floor of the measuring system (50.2 dB μ V/m) measured with peak detector with 3 m measuring distance) found in this frequency range.

172289_202.jpeg: Spurious emissions from 12 GHz to 18 GHz:

MultiView 88	Spectrum							
Ref Level 70.0	OdBµV OdB SWT ∶	RBW 24 ms VBW	1 MHz 3 MHz Mode 9	weep				
1 Frequency Sw	еер							●1Pk Max
60 dBµV							 	
50 dBµV								
		î ă		un stala, konstantin in series	and the first			
40 dBµV	welf al manager (1911	A block on board to be a	Asterior and a subset	ante alle de mer ette som stort dat		The state of the state	a to be the state of the state	and and a ball of the providence of the second s
30 dBuV	- 14 - 24 - 24 - 24 - 24 - 24 - 24 - 24	V				Constant Mart March 198		
20 dBµV			-					
10 dBμV							 	
0 dBµV						8 6		
-10 dBµV								
10 ubp v								
-20 dBµV								
12.0 GHz			12001 pt	S	60	0.0 MHz/		18.0 GHz

No emission above noise floor of the measuring system (45 dB μ V/m measured with peak detector with 3 m measuring distance) found in this frequency range.



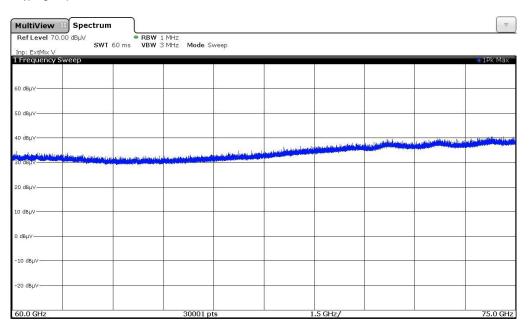
172289 203.jpeg: Spurious emissions from 18 GHz to 26.5 GHz:

No emission above noise floor of the measuring system (48 dB μ V/m measured with peak detector with 3 m measuring distance) except the wanted signal of the LPR device found in this frequency range.

172289_204.jpeg: Spurious emissions from 26.5 GHz to 40 GHz:

No emission above noise floor of the measuring system (56 $dB\mu V/m$ measured with peak detector with 1 m measuring distance) found in this frequency range.

Remark: The peaks at 28 GHz and 30 GHz caused be the measuring system and not by the EUT.



	ctrum							
Ref Level 70.00 dBµV	SWT 80 ms VBW 3 MHz Mode Sweep							
1 Frequency Sweep				1				●1Pk Max
60 dBµV								
50 dBµV								
40 dBµV								
40 dbp1								
a the backallow as the backet of the large start	all and a second all all and a second all a	ليبلغس المراجع	edimination		المراجع المحمد وحمد والمحاد	م الله الم الم	A STATE OF CONTRACTOR	
				dusta status da Astra	dalah kasada kasa			and site of a private the sur
20 dBµV								
10								
10 dBµV			4		· · · · · · · · · · · · · · · · · · ·			
0 dBµV								
-10 dBµV								
10 00pv								
-20 dBµV								
40.0 GHz		40001 pt			2.0 GHz/			60.0 GHz

172289 205.jpeg: Spurious emissions from 40 GHz to 60 GHz:

No emission above noise floor of the measuring system (77.1 $dB\mu V/m$ measured with peak detector with 0.1 m measuring distance) found in this frequency range.

172289_206.jpeg: Spurious emissions from 60 GHz to 75 GHz:

No emission above noise floor of the measuring system (69 dB μ V/m measured with peak detector with 0.1 m measuring distance) found in this frequency range.

MultiView 🕄 Spectrun	ı]							
Ref Level 70.00 dBµV SWT Inp: ExtMix W	RBW 11 100 ms VBW 31	MHZ MHZ Mode S	weep					
1 Frequency Sweep								●1Pk Max
60 dBµV								
All desident and see a								
60 dBµV- 1 huld the hul 50 dBµV- 40 dBuV-		and the state of the	and the second second second	Survey and constrained the		adhar har a shi ha an	A ALL DE LEINE ANTOPHY .	and an high dates a sol at a
40 dBµV								Sec. Sec. Sec.
30 dвµv								
20 d8µV								
10 dBµV								
0 d8µV								
-10 dBµV					-			
-20 dBµV								
22								
75.0 GHz		50001 pt	s	2	.5 GHz/			100.0 GHz

172289 207.jpeg: Spurious emissions from 75 GHz to 100 GHz:

No emission above noise floor of the measuring system (105 $dB\mu V/m$ measured with peak detector with 0.03 m measuring distance) found in this frequency range.

Test equipment used (refer clause 6):

6 Test equipment and ancillaries used for tests

No.	Test equipment	Туре	Manufacturer	Serial No.	PM. No.	Cal. Date	Cal. due
1	Spectrum Analyzer	FSW	Rohde & Schwarz	100586	481720	02/24/2016	02/2018
2	Power supply	TOE8752-32	Toellner	31566	480010	Calibration no	t necessary
3	Fully anechoic chamber M20	-	Albatross Projects	B83107-E2439- T232	480303	Calibration no	t necessary
4	Measuring receiver	ESW44	Rohde & Schwarz	101635	482467	06/22/2017	06/2019
5	Controller	MCU	Maturo	MCU/043/971107	480832	Calibration no	t necessary
6	Turntable	DS420HE	Deisel	420/620/80	480315	Calibration no	t necessary
7	Antenna support	AS615P	Deisel	615/310	480187	Calibration no	t necessary
8	Positioner	TDF 1.5- 10Kg	Maturo	15920215	482034	Calibration no	t necessary
9	Antenna	HL050	Rohde & Schwarz	100438	481170	10/09/2017	10/2020
10	Standard Gain Horn 11.9 GHz – 18 GHz	18240-20	Flann Microwave	483	480294	Calibration no	t necessary
11	Standard Gain Horn 17.9 GHz – 26.7 GHz	20240-20	Flann Microwave	411	480297	Calibration no	t necessary
12	Standard Gain Horn 17.9 GHz – 26.7 GHz	20240-20	Flann Microwave	410	480296	Calibration no	t necessary
13	Standard Gain Horn 26.4 GHz – 40.1 GHz	22240-20	Flann Microwave	468	480298	Calibration no	t necessary
14	RF-cable No. 3	Sucoflex 106B	Suhner	0563/6B	480670	Calibration no	t necessary
15	RF-cable No. 40	Sucoflex 106B	Suhner	0708/6B	481330	Calibration no	t necessary
16	Preamplifier	AFS6-00101600- 23-10P-6-R	Miteq	2011215	482333	11/23/2016	11/2018
17	Preamplifier	JS3-12001800- 16-5A	Miteq	571667	480343	02/18/2016	02/2018
18	Preamplifier	JS3-18002600- 20-5A	Miteq	658697	480342	02/17/2016	02/2018
19	Preamplifier	JS3-26004000- 25-5A	Miteq	563593	480344	02/18/2016	02/2018
20	Standard Gain Horn 40 GHz – 60 GHz	24240-20	Flann Microwave	133313	480481	Calibration no	tnecessary
20	Harmonic Mixer 4060 GHz	FS-Z60	Rohde & Schwarz	100071	400401	Calibration no	Theeessary
21	Standard Gain Horn 50 GHz – 75 GHz	25240-20	Flann Microwave	135181	480480	Calibration no	tnecessary
21	Harmonic Mixer 5075 GHz	FS-Z75	Rohde & Schwarz	100045	400400		
22	Standard Gain Horn 75 GHz – 110 GHz	27240-20	Flann Microwave	132148	480482	Calibration no	t necessary
22	Harmonic Mixer 75110 GHz	FS-Z110	Rohde & Schwarz	100049	400462		
23	RF cable	KPS-1533-800- KPS	Insulated Wire		480302	Calibration no	t necessary
24	Multimeter	971A	Hewlett Packard	JP39009358	480721	01/31/2018	01/2019

7 pages

3 pages

1 page

7 Report history

Report Number	Date	Comment
F172289E6	03/13/2018	Initial test report
-	-	-
-	-	-

8 List of Annexes

Annex A Test setup photographs

172289_201.JPG: BT10 inside FMR50, test setup fully anechoic chamber (pos. 1)
172289_202.JPG: BT10 inside FMR50, test setup fully anechoic chamber (pos. 2)
172289_203.JPG: BT10 inside FMR50, test setup fully anechoic chamber (1 GHz to 12 GHz)
172289_204.JPG: BT10 inside FMR50, test setup fully anechoic chamber (12 GHz to 26.5 GHz)
172289_205.JPG: BT10 inside FMR50, test setup fully anechoic chamber (26.5 GHz to 40 GHz)
172289_206.JPG: BT10 inside FMR50, test setup fully anechoic chamber (pos. 1, 40 GHz to 100 GHz)
172289_207.JPG: BT10 inside FMR50, test setup fully anechoic chamber (pos. 2, 40 GHz to 100 GHz)

Annex B External photographs

172289_f.JPG:	BT10 inside FMR50, external view 1
172289_g.JPG:	BT10 inside FMR50, external view 2
172289_h.JPG:	BT10 inside FMR50, type plate view

Annex C Internal photographs

172289_e.JPG: BT10 inside FMR50, internal view to mounted wireless adaptor (display removed)