

Test Report

Report Number: 30748871 **Project Number: 3074887** Report Date: April 29, 2005

Testing performed on the HiPer XT with UHF, GSM and Bluetooth modules Model Number: 01-860801-03 FCC ID: LCB-860801 to

FCC Part 90

for **Topcon Positioning Systems, Inc.**

A2LA Certificate Number: 1755-01

Test Performed by:

Intertek Testing Services NA, Inc 1365 Adams Court Menlo Park, CA 94025

Test Authorized by:

Topcon Positioning Systems, Inc. 7400 National Drive Livermore, CA 94551 USA

Prepared by:

Date: April 29, 2005

Date: April 29, 2005

Reviewed by:

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

EMC Report for Topcon Positioning Systems on the model: 01-860801-03 File: 30748871

Page 1 of 54

Report No. 30748871

Equipment Under Test: Hiper	XT with UHF.	, GSM and Bluetooth m	ıodules
-----------------------------	--------------	-----------------------	---------

Trade Name: Topcon Positioning Systems

 Model No.:
 01-860801-03

 Serial No.:
 Not Labeled

 FCC ID:
 LCB-860801

Applicant: Topcon Positioning Systems, Inc.

Contact: Mr. Kent Mizuide Address: 7400 National Drive

Livermore, CA 94551

Country USA

Tel. number: 925-245-8376 **Fax number**: 925-245-8594

Tel. number: 925-245-8300 **Fax number**: 925-245-8594

Applicable Regulation: FCC Part 90

Test Site Location: ITS - Site 1

1365 Adams Drive Menlo Park, CA 94025

Date of Test: April 4 - 15, 2005

We attest to the accuracy of this report:

David Chernomordik

EMC Technical Manager

Ollie Moyrong

EMC Department Manager

TABLE OF CONTENTS

1.0	Intro	oduction	5
	1.1	Product Description	5
	1.2	Summary of Test Results	6
	1.3	Test Configuration	
		1.3.1 Support Equipment	7
		1.3.2 Block diagram of Test Setup	
	1.4	Related Submittal(s) Grants	
2.0	RF I	Power Output	8
	2.1	Test Procedure	8
	2.2	Test Equipment	8
	2.3	Test Results	8
3.0	Radi	iated Power	15
	3.1	Requirement	
	3.2	Test Procedure	
	3.3	Test Equipment	
	3.4	Test Results	
4.0	Occup	pied Bandwidth	16
	4.1	Test Procedure	
	4.2	Test Equipment	
	4.3	Test Results	16
5.0	Emiss	sion Mask	21
	5.1	Requirement	21
	5.2	Test Procedure	21
	5.3	Test Equipment	21
	5.4	Test Results	21
6.0	Out o	f Band Emissions at Antenna Terminals	26
	6.1	Requirement	
	6.2	Test Procedure	26
	6.3	Test Equipment	
	6.4	Test Results	27
7.0	Spui	rious Radiation	43
	7.1	Requirement	
	7.2	Test Procedure	
	7.3	Test Equipment	
	7.4	Test Results	44
8.0	Trai	nsient Frequency behavior	45
	8.1	Requirement	45

	8.2	Procedure	
	8.3	Test results	46
9.0	Fred	quency Stability vs Temperature and Voltage	50
	9.1	Requirement	
	9.2	Test Procedure	50
	9.3	Test Equipment	50
	9.4	Test Results	51
10.0	RF I	Exposure evaluation	52
11.0	List	of Test Equipment	53
12.0	Doc	ument History	54

1.0 Introduction

1.1 Product Description

The Equipment under Test (EUT), model: 01-860801-03 is a dual-frequency GPS+ receiver with UHF modem, GSM module, and Bluetooth module.

The GSM module is FCC certified, FCC ID: IHDT56DB1 (modular approval).

For more information about the radios, refer to the attached product description.

Use of Product	surveying, construction, commercial mapping etc.			
Whether quantity (>1) production is planned	yes			
Speci	fication of the radio mod	ules installed	into the produc	t
Type	UHF radio	GSM	1 radio	Bluetooth radio
Rated RF Output Power	2 W	0.631W	0.809W	1 mW
Frequency Ranges, MHz	450 - 470	824.2-848.8	1850.2-1909.8	2402 - 2480
Type of emissions	F1D	GXW	GXW	FHSS
Type of modulation	GMSK, FM-4	-	-	GFSK
Channel bandwidth and	25kHz at 19200 (FM-4)	250kHz	250kHz	782 kHz
maximum data rate	12.5kHz at 9600 (FM-4)			
Antenna & Gain	Whip, 3 dBi	Whip, 3 dBi	Whip, 3 dBi	Omnidirectional,
				0.5 dBi, internal
Detachable antenna?	yes	yes		no
External input	data	data		data
Operating temperature	From -30° C to $+50^{\circ}$ C			
FCC approval status	In the process of being	Certified module,		Certified with the
	certified	FCC ID: IHDT56DB1		Hiper Plus product,
				FCC ID: LCB-40801

Note: According to the user's manual, UHF and GSM transmitters do not transmit simultaneously.

EUT receive date: April 1, 2005

EUT receive condition: The prototype version of the EUT was received in good condition with no

apparent damage. As declared by the Applicant it is identical to the

production units.

Test start date: April 4, 2005 **Test completion date:** April 14, 2005

EMC Report for Topcon.Positioning Sys on the model: 01-860801-03

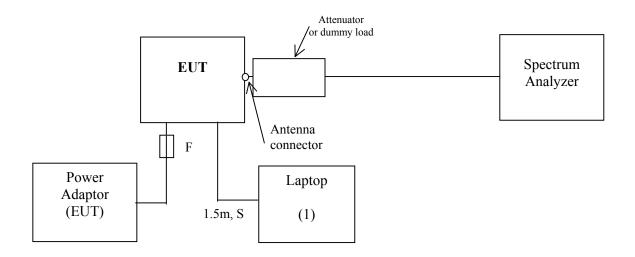
File: 30748871

Page 5 of 54

1.2 Summary of Test Results

FCC Rule	Description of Test	Result	Page
2.1046	RF Power Output	Complies	8
90.205(h)	ERP	Complies	15
2.1047	Modulation characteristics	Not Applicable	-
2.1049, 90.209	Occupied Bandwidth	Complies	16
90.210	Emission masks	Complies	21
2.1051, 90.210	Out of Band Emissions at Antenna Terminals	Complies	26
2.1053, 90.210	Spurious Radiation	Complies	43
2.1055, 90.213	Frequency Stability vs. Temperature and Voltage	Complies	50
90.214	Transient frequency behavior	Complies	45
2.1091	RF Exposure evaluation	Complies	52

Page 6 of 54



1.3 Test Configuration

1.3.1 Support Equipment

Item #	Description	Model No.	S/N
1	Compaq Laptop	Armada 7400	7933CY570119

1.3.2 Block diagram of Test Setup

S = Shielded	F = With Ferrite
U = Unshielded	\mathbf{m} = Length in Meters

1.4 Related Submittal(s) Grants

None

EMC Report for Topcon.Positioning Sys on the model: 01-860801-03
File: 30748871
Page 7 of 54

2.0 RF Power Output FCC 2.1046

2.1 Test Procedure

The EUT RF output was connected as shown on the diagram in sec.1.3.2. The EUT was setup to transmit continuously the maximum power.

The spectrum analyzed was setup to measure a peak power.. The attenuation and cable loss were added to the spectrum analyzed reading by using OFFSET function.

Measurements were performed at three frequencies (low, middle, and high channels) for both type of modulation

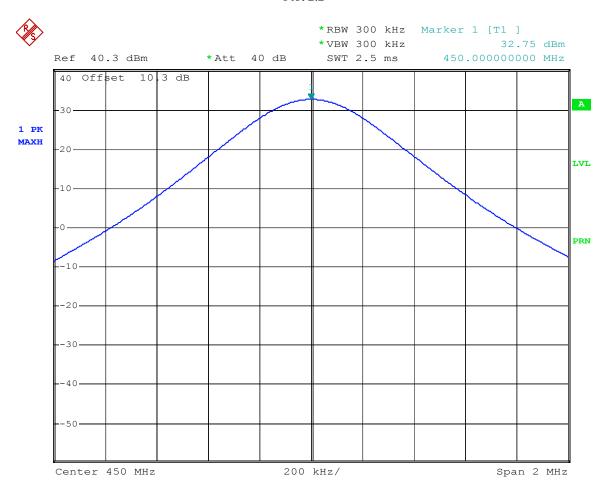
2.2 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer

2.3 Test Results

Frequency	Modulation/dat	Measured Output Power	Measured Output Power	Plot
(MHz)	a rate	(dBm)	(Watt)	
450	FM-4/19200	32.8	1.91	2.1
450	GMSK/9600	32.8	1.91	2.2
460	FM-4/19200	32.5	1.78	2.3
460	GMSK/9600	32.5	1.78	2.4
470	FM-4/19200	32.3	1.70	2.5
470	GMSK/9600	32.3	1.70	2.6

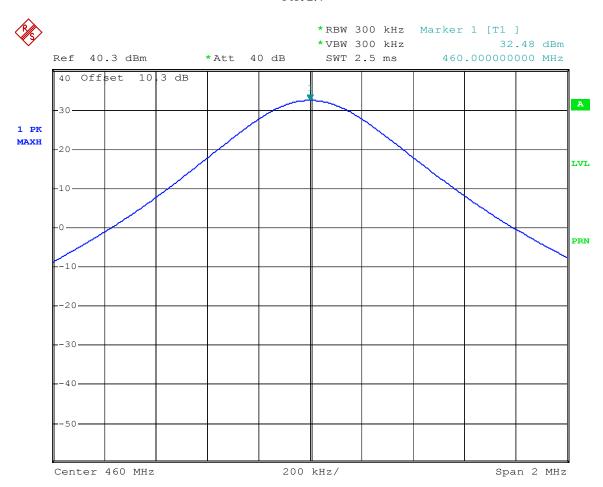
For more details refer to the attached plots.


Plot 2.1

Comment: Output Power, low channel, mod FM-4, rate 19200 Date: 4.APR.2005 16:53:07

Plot 2.2

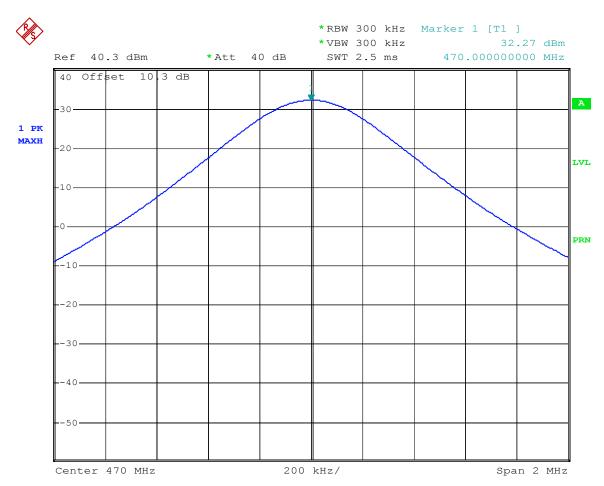
Comment: Output Power, low channel, mod GMSK, rate 9600 Date: 4.APR.2005 17:03:16


Plot 2.3

Comment: Output Power, middle channel, mod FM-4, rate 19200 Date: 4.APR.2005 16:55:23

Plot 2.4

Comment: Output Power, middle channel, mod GMSK, rate 9600 Date: $4.\text{APR.}2005 \quad 16:57:03$


Plot 2.5

Comment: Output Power, high channel, mod FM-4, rate 19200 Date: 4.APR.2005 16:59:15

Plot 2.6

Comment: Output Power, high channel, mod GMSK, rate 9600 Date: 4.APR.2005 17:01:33

3.0 Radiated Power

3.1 Requirement

FCC 90.205(h)

The maximum Effective Radiated Power (ERP) is 500 Watts.

3.2 Test Procedure

The ERP was calculated by adding the antenna gain to the output power in dBm.

$$ERP = P_{max} + G_{dBd}$$

3.3 Test Equipment

None

3.4 Test Results

According to the Installation Guide, a typical 3 dBi (0.9 dBd) gain antenna is used with the EUT. Therefore, the calculated peak radiated power is:

Result

Complies

EMC Report for Topcon.Positioning Sys on the model: 01-860801-03 File: 30748871

4.0 Occupied Bandwidth

FCC 2.1049, 90.209(b)(5)

4.1 Test Procedure

The EUT RF output was connected as shown on the diagram in sec.1.3.2. The EUT was setup to transmit the maximum power.

The spectrum analyzed was setup to measure the Occupied Bandwidth (defined as the 99% Power Bandwidth). The Occupied Bandwidth was measured at middle channel for both types of modulation.

4.2 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer

4.3 Test Results

Frequency (MHz)	Modulation/dat a rate	Measured Occupied Bandwidth (kHz)	Emission Designator	Plot
		/ /	12772717	
460	FM-4/19200 *	13.2	13K2F1D	4.1
460	GMSK/9600 *	10.4	10K0F1D	4.2
460	FM-4/9600 **	6.3	6K30F1D	4.3
460	GMSK/4800 **	5.1	5K10F1D	4.4

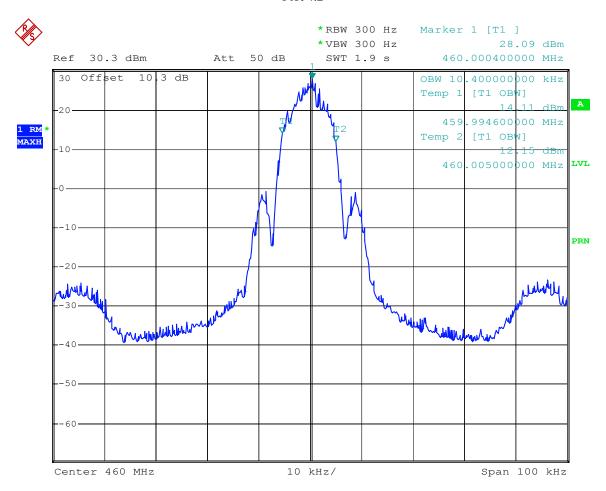
^{*} May be authorized at 20 kHz bandwidth


For more details refer to the attached plots.

EMC Report for Topcon.Positioning Sys on the model: 01-860801-03
File: 30748871
Page 16 of 54

^{**} May be authorized at 11.25 kHz bandwidth

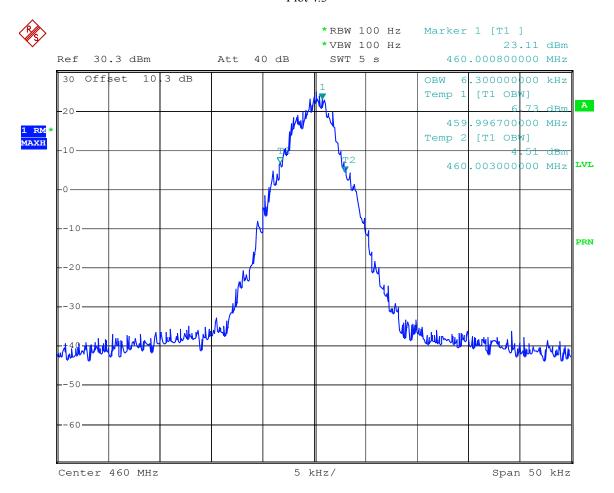
Plot 4.1



Comment: Occupied bandwidth, middle channel, mod FM-4, rate 19200, 20

Comment: kHz authorized bandwidth Date: 7.APR.2005 14:30:46

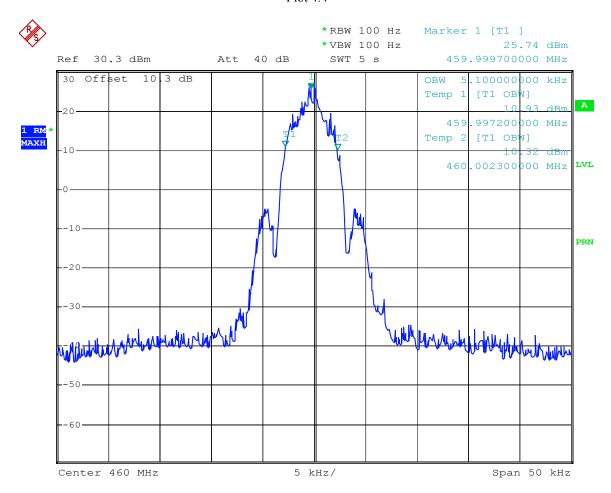
Plot 4.2



Comment: Occupied bandwidth, middle channel, mod GMSK, rate 9600, 20

Comment: kHz authorized bandwidth Date: 7.APR.2005 14:28:03

Plot 4.3



Comment: Occupied bandwidth, middle channel, mod FM-4, rate 9600, 11.

Comment: 25 kHz authorized bandwidth Date: 7.APR.2005 14:35:57

Plot 4.4

Comment: Occupied bandwidth, middle channel, mod GMSK, rate 4800, 11.

Comment: 25 kHz authorized bandwidth Date: 7.APR.2005 14:38:30

5.0 Emission Mask

FCC 90.210

5.1 Requirement

Equipment designed to operate with a 25 kHz channel bandwidth must meet the requirements of Emission Mask C (for equipment without audio low pass filter).

Equipment designed to operate with a 12.5 kHz channel bandwidth must meet the requirements of Emission Mask D.

5.2 Test Procedure

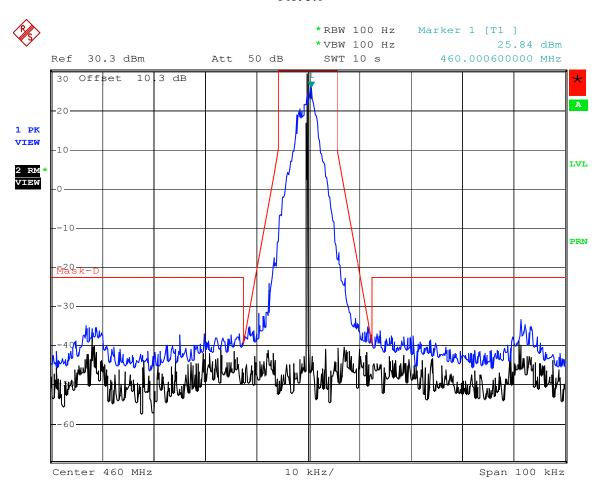
The EUT RF output was connected as shown on the diagram in sec.1.3.2. The EUT was setup to transmit the maximum power.

The spectrum analyzed was setup to measure the Emission Mask at frequencies \pm 50 kHz from the fundamental frequency. The Emission Mask was measured at middle channel for both types of modulation.

5.3 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer

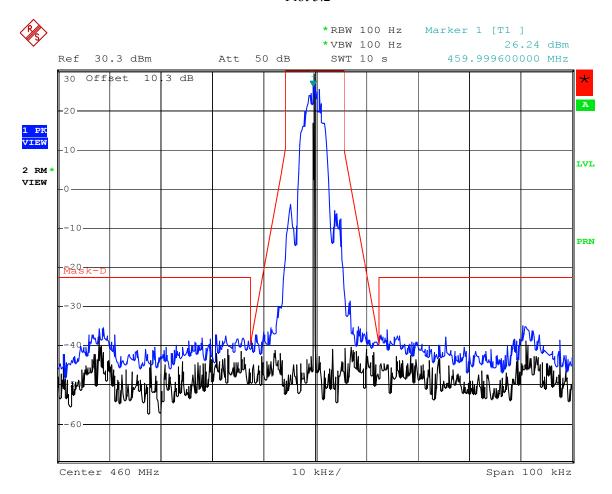
5.4 Test Results


Complies with Emission Mask Requirements. For more details refer to the attached plots: 5.1 - 5.4.

EMC Report for Topcon.Positioning Sys on the model: 01-860801-03

File: 30748871 Page 21 of 54

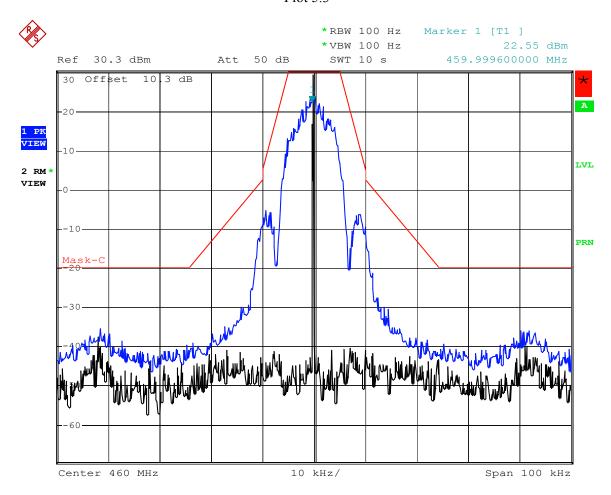
Plot 5.1



Comment: Emission mask, middle channel, mod FM-4, rate 9600, 11.25 kH

Comment: z authorized bandwidth Date: 6.APR.2005 16:42:25

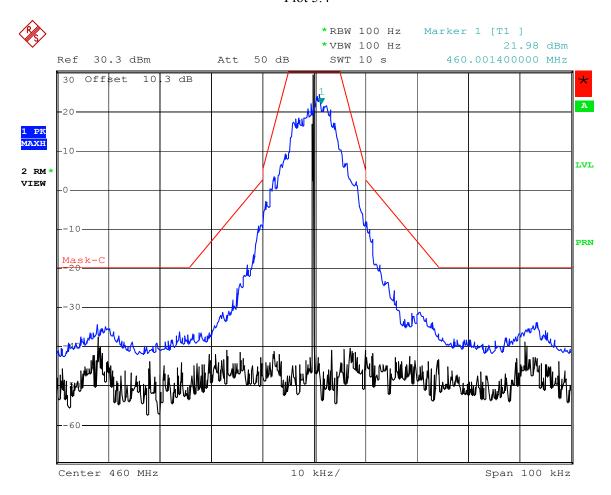
Plot 5.2



Comment: Emission mask, middle channel, mod GMSK, rate 4800, 11.25 kH

Comment: z authorized bandwidth Date: 6.APR.2005 16:48:34

Plot 5.3



Comment: Emission mask, middle channel, mod GMSK, rate 9600, 20 kHz a

Comment: uthorized bandwidth
Date: 6.APR.2005 16:56:15

Plot 5.4

Comment: Emission mask, middle channel, mod FN-4, rate 19200, 20 kHz

Comment: authorized bandwidth
Date: 6.APR.2005 17:12:37

6.0 Out of Band Emissions at Antenna Terminals

FCC 2.1051, 90.210

6.1 Requirement

Emission Mask C

The power of any emissions must be attenuated below the unmodulated carrier output power (P) on any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: at least $(43 + 10 \log P) dB$.

Note: That corresponds to the level of -13 dBm for any out-of-band and spurious emissions.

Emission Mask D

The power of any emissions must be attenuated below the unmodulated carrier output power (P) on any frequency removed from the center of the authorized bandwidth by more than 12.5 kHz: at least $(50 + 10 \log P)$ dB or 70 dB, whichever is lesser attenuation.

Note: Attenuation of (50 + 10 log P) dB corresponds to the level of -20 dBm for any out-of-band and spurious emissions.

6.2 Test Procedure

The EUT RF output was connected as shown on the diagram in sec.1.3.2. The EUT was setup to transmit the maximum power.

For measurements at frequencies below 1 GHz, the spectrum analyzed resolution bandwidth was set to 10 kHz. For measurements at frequencies above 1 GHz, the spectrum analyzed resolution bandwidth was set to 1 MHz

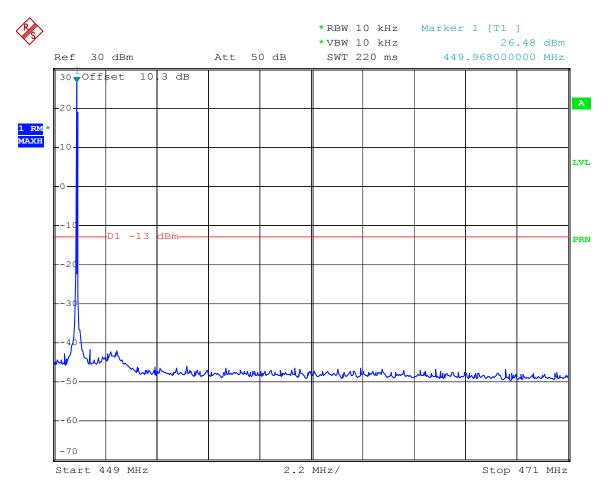
Measurements were performed at three frequencies (low, middle, and high channels).

Sufficient scans were taken to show the out-of-band emissions up to 10th harmonic.

6.3 Test Equipment

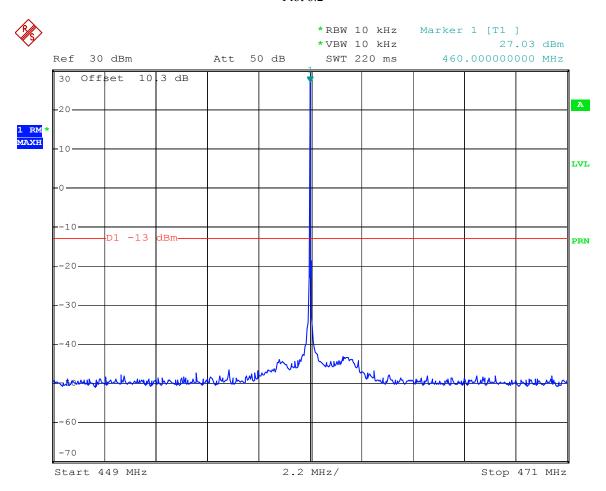
Rohde & Schwarz FSP40 Spectrum Analyzer

EMC Report for Topcon.Positioning Sys on the model: 01-860801-03 File: 30748871

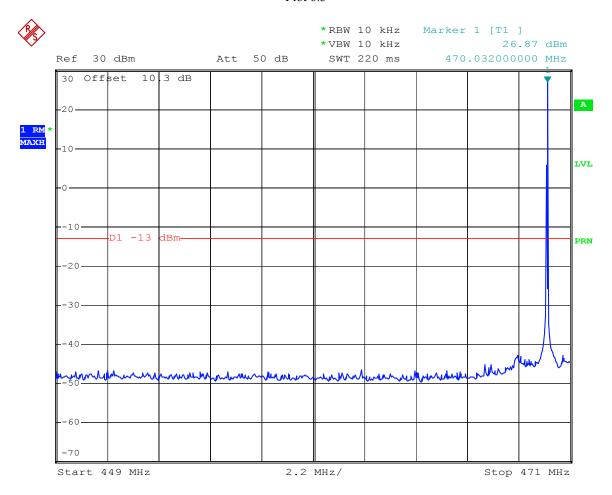

6.4 **Test Results**

Complies	Refer to the following plots
----------	------------------------------

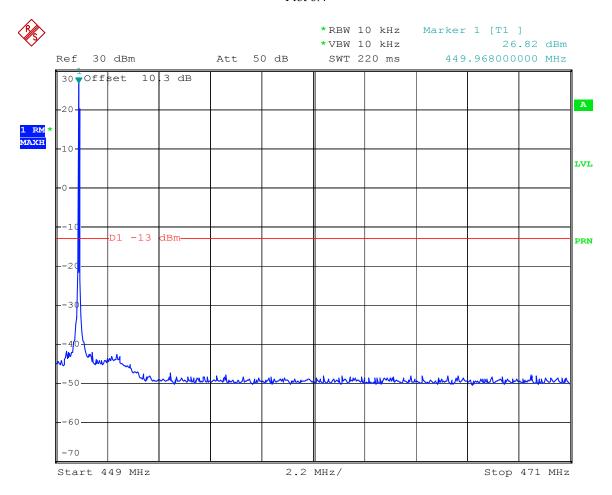
Page 27 of 54


Plot 6.1

Comment: Out-of-band emissions, low channel, mod GMSK, rate 4800 Date: $7.\text{APR.}2005 \quad 16:05:17$


Plot 6.2

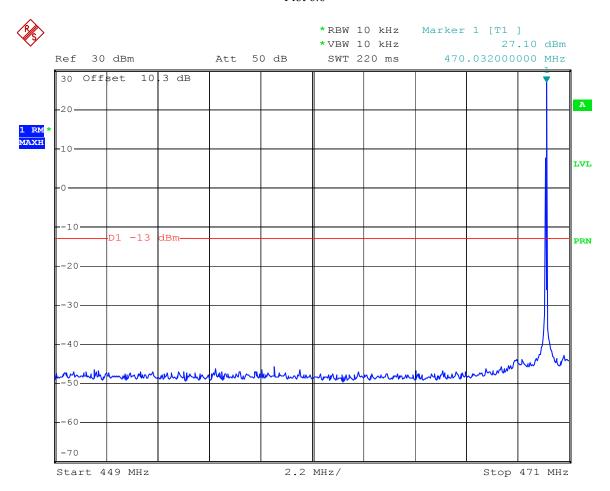
Comment: Out-of-band emissions, middle channel, mod GMSK, rate 4800 Date: $7.\text{APR.}2005 \quad 16\text{:}13\text{:}52$


Plot 6.3

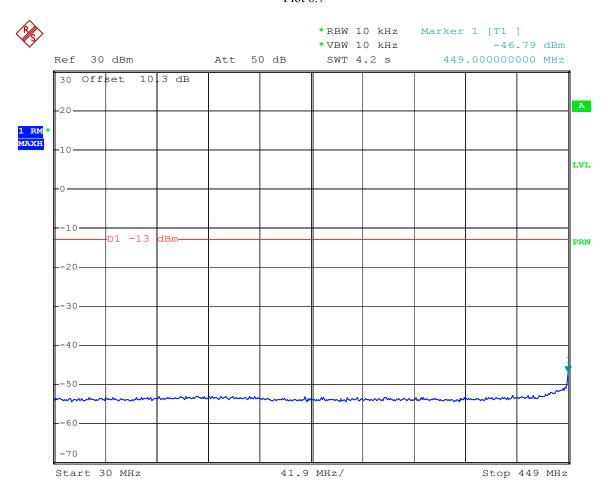
Comment: Out-of-band emissions, high channel, mod GMSK, rate 4800 Date: $7.\text{APR.}2005 \quad 16:06:55$


Plot 6.4

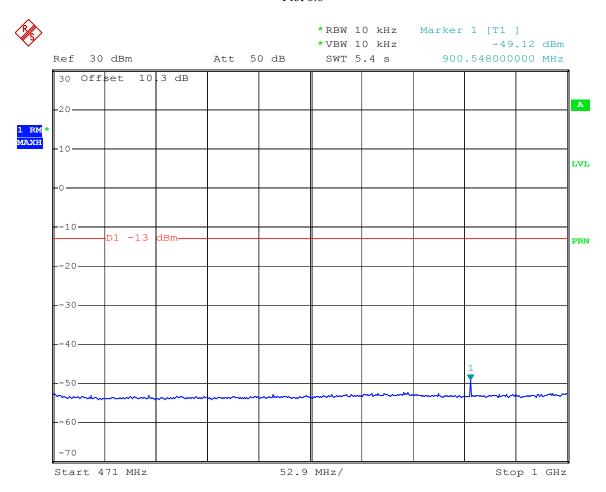
Comment: Out-of-band emissions, low channel, mod FM-4, rate 9600 Date: $8.\text{APR.}2005 \quad 09:48:45$


Plot 6.5

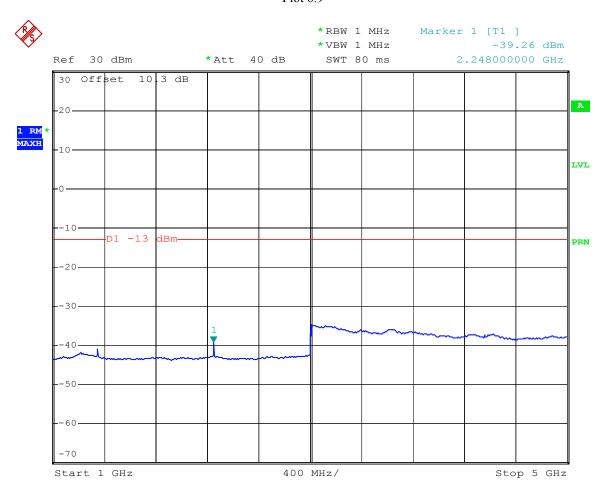
Comment: Out-of-band emissions, middle channel, mod FM-4, rate 9600 Date: 7.APR.2005 16:11:26


Plot 6.6

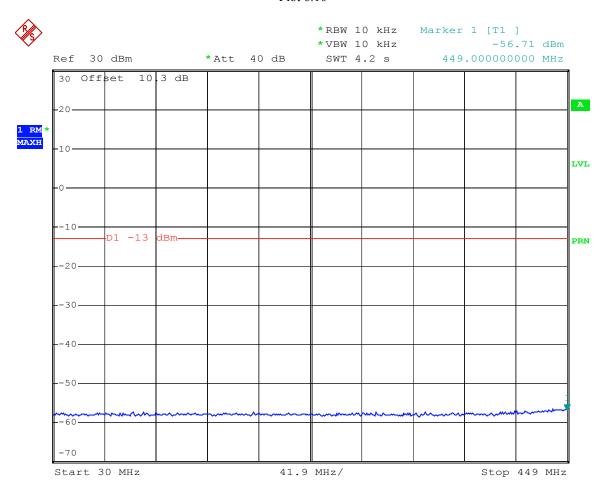
Comment: Out-of-band emissions, high channel, mod FM-4, rate 9600 Date: 7.APR.2005 16:08:37


Plot 6.7

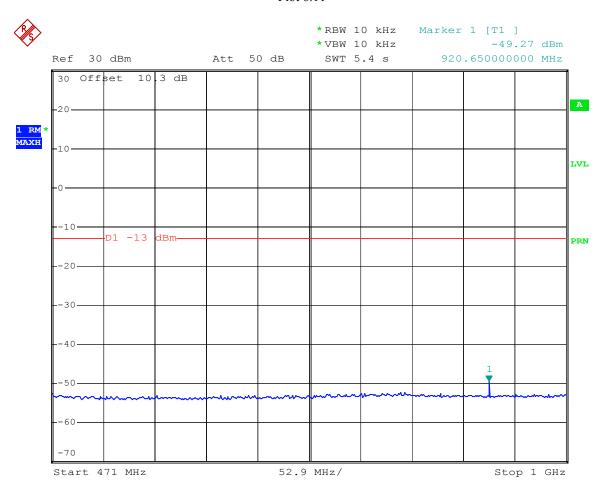
Comment: Out-of-band emissions, low channel, mod FM-4, rate 9600 Date: $7.\text{APR.}2005 \quad 16:17:39$


Plot 6.8

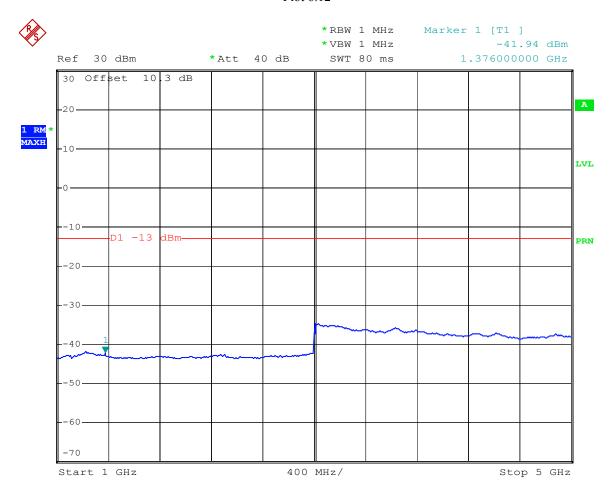
Comment: Out-of-band emissions, low channel, mod FM-4, rate 9600 Date: $7.\text{APR.}2005 \quad 16:19:50$


Plot 6.9

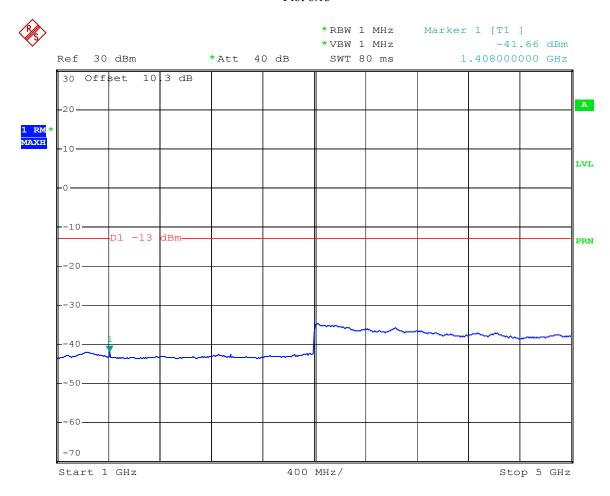
Comment: Out-of-band emissions, low channel, mod FM-4, rate 9600 Date: $7.\text{APR.}2005 \quad 16:21:50$


Plot 6.10

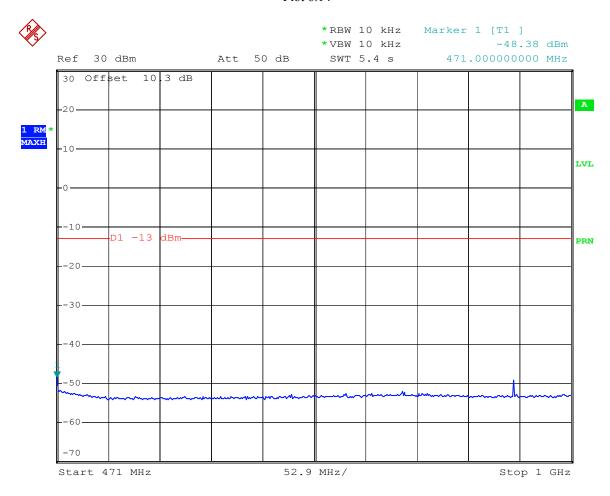
Comment: Out-of-band emissions, middle channel, mod FM-4, rate 9600 Date: 7.APR.2005 - 16:25:32


Plot 6.11

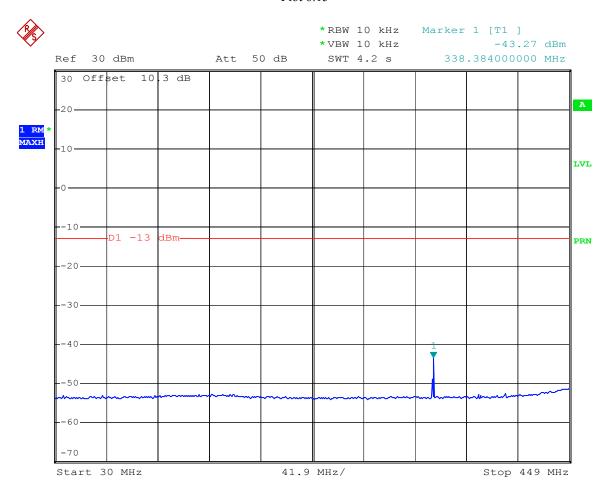
Comment: Out-of-band emissions, middle channel, mod FM-4, rate 9600 Date: 7.APR.2005 16:27:23


Plot 6.12

Comment: Out-of-band emissions, middle channel, mod FM-4, rate 9600 Date: 7.APR.2005 16:29:31


Plot 6.13

Comment: Out-of-band emissions, high channel, mod FM-4, rate 9600 Date: 7.APR.2005 16:31:41


Plot 6.14

Comment: Out-of-band emissions, high channel, mod FM-4, rate 9600 Date: 7.APR.2005 16:33:58

Plot 6.15

Comment: Out-of-band emissions, high channel, mod FM-4, rate 9600 Date: 7.APR.2005 16:39:19

7.0 Spurious Radiation FCC 2.1053, 90.210

7.1 Requirement

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(50 + 10 \log P) dB$.

Note: That corresponds to the level of -20 dBm for any out-of-band and spurious emissions.

7.2 Test Procedure

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to 10th harmonic of each of the three fundamental frequency (low, middle, and high channels) was investigated. The worst case of emissions was reported.

For spurious emissions attenuation, the substitution method was used. The EUT was substituted by a reference antenna (half-wave dipole - below 1 GHz, or Horn antenna - above 1GHz), connected to a signal generator. The signal generator output level (V_g in dBm) was adjusted to obtain the same reading as from EUT. The ERP at the spurious emissions frequency was calculated as follows.

$$ERP_{(dBm)} = V_g + G_{(dBd)}$$

The spurious emissions attenuation is the difference between ERP at the fundamental frequency (see section 3) and at the spurious emissions frequency.

7.3 Test Equipment

Roberts Antenna EMCO 3115 Horn Antennas Rohde & Schwarz FSP40 Spectrum Analyzer Low Pass Filter Preamplifiers

EMC Report for Topcon.Positioning Sys on the model: 01-860801-03
File: 30748871
Page 43 of 54

7.4 Test Results

Spurious Radiated Emissions

Frequency	SA Reading (from EUT)	Signal Generator Output required to have the same SA Reading	ERP*	ERP Limit	ERP Margin
	(110111 201)	as from EUT		231111	1,1,11,1,5,111
MHz	dB(μV)	$V_{\rm g}{ m dBm}$	dBm	dBm	dB
Tx 450 MH	Z				
900.0	61.2	-30.6	-30.6	-20	-10.6
1350.0	45.9	-54.9	-50.9	-20	-30.9
2250.0	44.0	-53.0	-46.7	-20	-26.7
Tx 460 MHz	Z				
920.0	61.2	-30.8	-30.8	-20	-10.8
1380.0	44.4	-56.6	-51.9	-20	-31.9
1840.0	43.7	-54.6	-49.0	-20	-29.0
2300.0	41.7	-54.7	-48.7	-20	-28.7
3680.0	40.0	-52.0	-44.5	-20	-24.5
Tx 470 MHz					
940.0	63.4	-28.8	-28.8	-20	-8.8
1410.0	47.0	-54.5	-49.7	-20	-29.7
1880.0	41.5	-56.2	-50.7	-20	-30.7
2820.0	41.0	-53.0	-45.8	-20	-25.8

^{*} ERP is calculated as: $ERP_{(dBm)} = V_{g(dBm)} + G_{(dBd)}$

All other emissions not reported are more than 20 dB below the limit.

Result	Complies by 8.8 dB
--------	--------------------

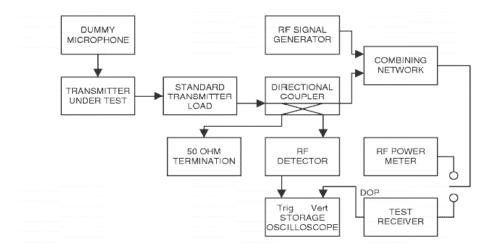
EMC Report for Topcon.Positioning Sys on the model: 01-860801-03
File: 30748871
Page 44 of 54

8.0 Transient Frequency behavior

FCC 90.214

8.1 Requirement

Time interval	Maximum frequency difference	Time
Transient Frequency F	Behavior for equipment designed to	o operate on 25 kHz channels
t1 *	±25 kHz	10 ms
t 2	±12.5 kHz	25 ms
t3 *	±25 kHz	10 ms
Transient Frequency Bo	ehavior for equipment designed to	operate on 12.5 kHz channels
t1 *	±12.5 kHz	10 ms
t 2	±6.25 kHz	25 ms
t3 *	±12.5 kHz	10 ms


ton is the instant when a 1 kHz test signal is completely suppressed

- t1 is time period immediately following ton
- t2 is time period immediately following t1
- t3 is time period from the instant when the transmitter is turned off until toff

toff is the instant when the 1 kHz test signal start to rise

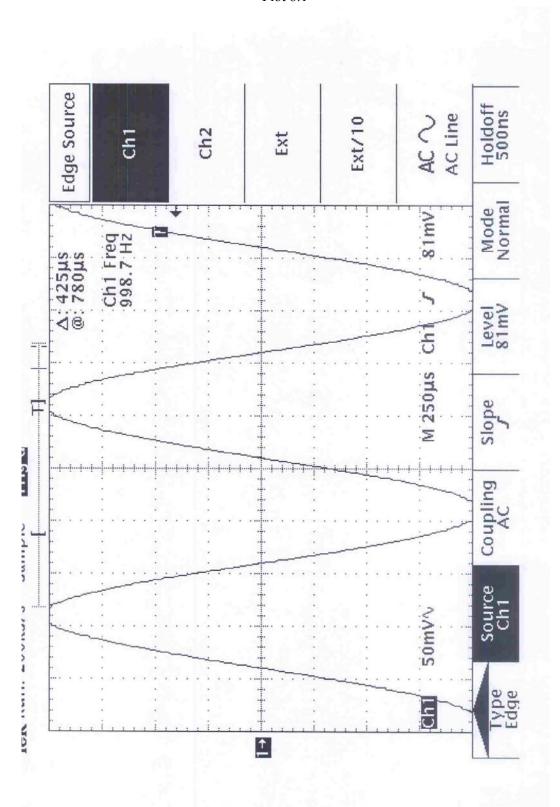
8.2 Procedure

Test was performed according to the block diagram below.

EMC Report for Topcon.Positioning Sys on the model: 01-860801-03 File: 30748871

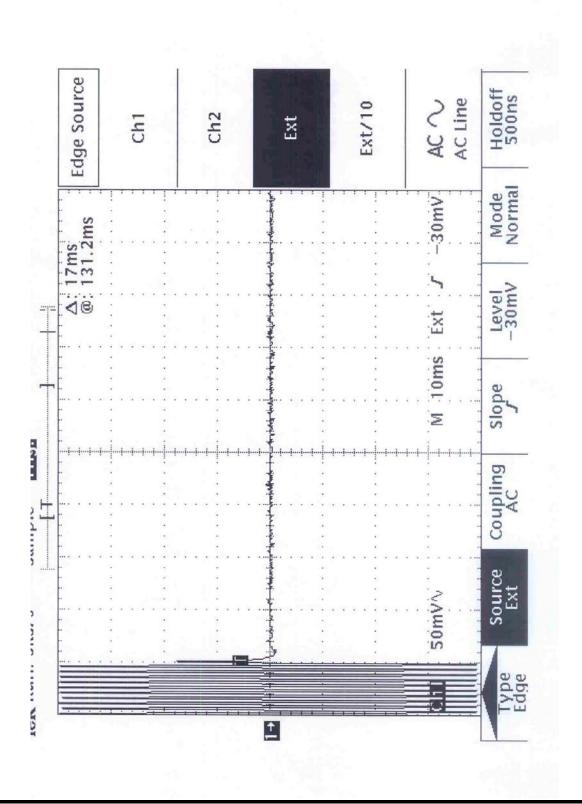
^{*} If the transmitter carrier output power rating is 6 Watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

8.3 Test results

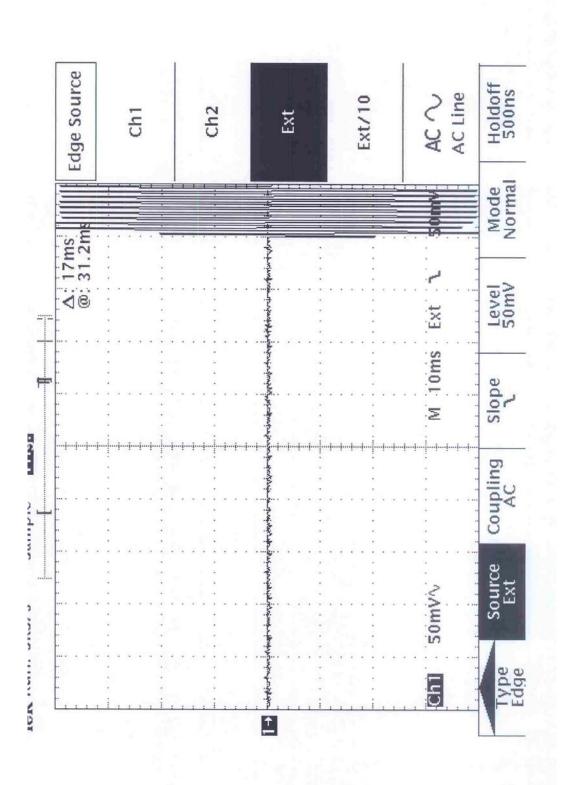

For more details refer to the attached plots:

- Plot 8.1 1 kHz signal applied from the Signal Generator (FM signal with 25 kHz deviation)
- Plot 8.2 Transient behavior when transmitter was turned ON
- Plot 8.3 Transient behavior when transmitter was turned OFF

Result	Complies
--------	----------



Plot 8.1



Plot 8.2

Plot 8,3

9.0 Frequency Stability vs Temperature and Voltage FCC 2.1055, 90.213

9.1 Requirement

Mobile stations designed to operate with a 25 kHz channel bandwidth must have a frequency stability of 5.0 ppm.

Mobile stations designed to operate with a 12.5 kHz channel bandwidth must have a frequency stability of 2.5 ppm.

9.2 Test Procedure

The EUT was placed inside the temperature chamber. The RF power output was connected to frequency counter. The EUT was setup to transmit the maximum power.

After the temperature stabilized for approximately 20 minutes, the transmitting frequency was measured by the frequency counter and recorded.

At the room temperature, the frequency was measured when the EUT was powered with the nominal voltage and with 85% and 115% of the nominal voltage.

9.3 Test Equipment

Temperature Chamber Frequency counter

EMC Report for Topcon.Positioning Sys on the model: 01-860801-03
File: 30748871
Page 50 of 54

9.4 Test Results

Nominal frequency: 460 MHz

Temperature (°C)	Measured frequency,	Maximum deviation from nominal,	Maximum deviation from nominal,
	MHz	Hz	ppm
-30	459.999996	4	<0.1
-20	459.999870	130	0.3
-10	459.999840	160	0.3
0	459.999830	170	0.4
10	459.999800	200	0.4
20	459.999760	240	0.5
30	459.999750	250	0.5
40	459.999770	230	0.5
50	459.999800	200	0.4

AC Voltage, V	Measured frequency, MHz	Maximum deviation from nominal, Hz	Maximum deviation from nominal, ppm
138	459.999750	250	0.5
120	459.999760	240	0.5
102	459.999760	240	0.5

esult

EMC Report for Topcon.Positioning Sys on the model: 01-860801-03
File: 30748871
Page 51 of 54

10.0 RF Exposure evaluation FCC 2.1091

The EUT is a wireless device used in a mobile application, at least 20 cm from any body part of the user or nearby persons.

The maximum calculated peak EIRP is 3.8 W, and the maximum calculated peak ERP is 2.3 W.

As declared by the Applicant, in normal operation the EUT transmit the signal with a worst-case Duty Cycle of 49% (see Operational description for Duty Cycle calculation). Therefore, the average radiated power is not to exceed: EIRP = 1.90 W; ERP= 1.13 W.

Using the formula for the Power Density $S = EIRP/4\pi D^2$, the distance D, where the Maximum Permissible Exposure (MPE) satisfies the FCC 1.1310 limit for General Population/Uncontrolled Exposure, can be calculated as:

$$D \ge \sqrt{(EIRP/4\pi S)}$$

The MPE Limit at 450 MHz is 3 W/m², therefore $D \ge 0.22$ m

The Statement that a minimum separation distance of 25 cm between the antenna and persons must be maintained is included in the User's manual.

Note, that since the ERP is less than 1.5 W, the device is excluded from routine environmental evaluation for RF exposure, according to FCC 2.1091.

EMC Report for Topcon.Positioning Sys on the model: 01-860801-03 File: 30748871

11.0 List of Test Equipment

Measurement equipment used for compliance testing utilized the equipment on the following list:

Equipment	Manufacturer	Model/Type	Serial #	Cal Int	Cal Due
BI-Log Antenna	EMCO	3143	9509-1164	12	4/26/05
Double-ridged Horn Antenna	EMCO	3115	9170-3712	12	6/18/05
Dipole Antenna	CDI	Roberts	331	12	5/09/05
Double-ridged Horn Antenna	EMCO	3115	8812-3049	12	4/14/05
RF Filter Section	Hewlett Packard	85460A	3448A00267	12	9/10/05
EMI Receiver	Hewlett Packard	8546A	3710A00373	12	9/10/05
Spectrum Analyzer	Rohde & Schwarz	FSP40	036612004	12	9/15/05
Signal Generator	Hewlett Packard	83732A	322A00119	12	3/21/06
Signal Generator	Hewlett Packard	8663A	2537A00214	12	7/16/05
Power Meter	Booton	4300	21402DC	12	8/26/05
Pre-Amplifier	Sonoma Inst.	310	185634	12	4/25/05
Pre-Amplifier	Miteq	AMF-4D-001180-	799159	12	4/25/05
		24-10P			
Oscilloscope	Tektronix	TDS 380	BI05549	12	2/18/06
Digital Counter	Leader	LDC-825	1010046	12	8/30/05
Directional Coupler	Krytar	101020020	70798	12	3/22/05

12.0 Document History

Revision/ Job Number	Writer Initials	Date	Change
1.0 / 3074887	DC	April 29, 2005	Original document

Page 54 of 54