

ADDENDUM TO FC02-054

FOR THE

METER READER, VERSA PROBE

FCC PART 15 SUBPART C SECTIONS 15.207 \& 15.209

COMPLIANCE

DATE OF ISSUE: JULY 25, 2002

PREPARED FOR:

Northrop Grumman Corporation
3910 Sorrento Valley Blvd., Suite A San Diego, CA 92121
P.O. No.: 58890 U
W.O. No.: 78304

PREPARED BY:

Mary Ellen Clayton
CKC Laboratories, Inc.
5473A Clouds Rest
Mariposa, CA 95338
Date of test: June 24-28, 2002

Report No.: FC02-054A

This report contains a total of 43 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS
Administrative Information 4
Summary of Results 5
Conditions for Compliance. 5
Approvals. 5
Equipment Under Test (EUT) Description 6
15.31 Number Of Channels 6
15.33 Frequency Ranges Tested 6
15.35 Analyzer Bandwidth Settings Per Frequency Range 6
15.203 Antenna Requirements 6
15.205 Restricted Bands 6
Eut Operating Frequency 6
Equipment Under Test 7
Peripheral Devices 7
Report of Measurements 8
Table 1: 15.209 - Fundamental Emission Levels 8
Table 2: 15.31(e) - Voltage Variations 9
Table 3: 15.207-Six Highest Conducted Emission Levels 10
Table 4: 15.209-Six Highest Radiated Emission Levels 11
15.205 Band Edge Ambient 12
15.205 Band Edge Fundamental 13
Measurement Uncertainty. 14
EUT Setup 14
Correction Factors 14
Table A: Sample Calculations 14
Test Instrumentation and Analyzer Settings 15
Spectrum Analyzer Detector Functions 15
Peak 15
Quasi-Peak 15
Average 15
EUT Testing 16
Mains Conducted Emissions 16
Radiated Emissions 16
Appendix A: Test Setup Photographs 17
Photograph Showing Voltage Variations 18
Photograph Showing Mains Conducted Emissions 19
Photograph Showing Mains Conducted Emissions 20
Photograph Showing Radiated Emissions 21
Photograph Showing Radiated Emissions 22
Photograph Showing Radiated Emissions 23
Photograph Showing Radiated Emissions 24

Photograph Showing Radiated Emissions ... 25
Photograph Showing Radiated Emissions .. 26
Appendix B: Test Equipment List.. 27
Appendix C: Measurement Data Sheets.. 28

```
CKC Laboratories, Inc. has received Certificates of Accreditation from the following agencies:
A2LA (USA); DATech (Germany); BSMI (Taiwan); Nemko (Norway); and GOST (Russia).
CKC Laboratories, Inc has received test site Registration Acceptance from the following agencies:
FCC (USA); VCCI (Japan); and Industry Canada.
CKC Laboratories, Inc. has received Letters of Acceptance through an MRA for the following agencies:
ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); Radio Communications Agency (RA); HOKLAS (Hong
Kong); Bakom (Swiss); BIPT (Belgium); Denmark Telestyrelsen; RvA (Netherlands); SEE (Luxembourg) SITTEL (Bolivia);
and UKAS (UK).
```


ADMINISTRATIVE INFORMATION

DATE OF TEST:

DATE OF RECEIPT:

PURPOSE OF TEST:

TEST METHOD:

MANUFACTURER:

REPRESENTATIVE:

TEST LOCATION:

June 24-28, 2002

June 24, 2002

To demonstrate the compliance of the Meter Reader, Versa Probe with the requirements for FCC Part 15 Subpart C Sections 15.207 \& 15.209 devices. The purpose of Addendum A is to revise the restricted band and add the operating channels on page 6 .

ANSI C63.4 (1992)

Northrop Grumman Corporation
3910 Sorrento Valley Blvd., Suite A
San Diego, CA 92121

David Willms

CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92621

SUMMARY OF RESULTS

As received, the Northrop Grumman Corporation Meter Reader, Versa Probe was found to be fully compliant with the following standards and specifications:

United States

$>$ FCC Part 15 Subpart C Sections $15.207 \& 15.209$
$>$ ANSI C63.4 (1992) method

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply.

APPROVALS

QUALITY ASSURANCE:

Steve Behm, Director of Engineering Services

Joyce Walker, Quality Assurance Administrative Manager

Septimiu Apahidean, EMC/Lab Manager

TEST PERSONNEL:

Eddie Wong, EMC Engineer

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The Meter Reader tested by CKC Laboratories was representative of a production unit. The EUT is a handheld automatic water meter reading transceiver.

15.31(m) Number Of Channels

This device was tested on a single channel.
15.33(a) Frequency Ranges Tested
15.207 Conducted Emissions: $450 \mathrm{kHz}-30 \mathrm{MHz}$
15.209 Radiated Emissions: $9 \mathrm{kHz}-1000 \mathrm{MHz}$

FCC SECTION 15.35:			
ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST		BEGINNING FREQUENCY	ENDING FREQUENCY
CONDUCTED EMISSIONS	450 kHz	30 MHz	BANDWIDTH SETTING
RADIATED EMISSIONS	9 kHz	150 kHz	9 kHz
RADIATED EMISSIONS	150 kHz	30 MHz	200 Hz
RADIATED EMISSIONS	30 MHz	1000 MHz	9 kHz

15.203 Antenna Requirements

The antenna is an integral part of the EUT and is non-removable; therefore the EUT complies with Section 15.203 of the FCC rules.

15.205 Restricted Bands

The factory preset transmit frequency was stepped through. The transmit frequencies are: 10.2 $\mathrm{kHz}, 14.3 \mathrm{kHz}, 16.6 \mathrm{KHz}, 19.2 \mathrm{kHz}, 25.6 \mathrm{kHz}, 28.6 \mathrm{kHz}$ and 153.6 kHz . The EUT was found to be compliant by not transmitting the restricted band of $90 \mathrm{kHz}-110 \mathrm{kHz}$.

Eut Operating Frequency

The EUT was operating from $10 \mathrm{kHz}-160 \mathrm{kHz}$.

EQUIPMENT UNDER TEST

Meter Reader

Manuf: Northrop Grumman Corporation
Model: Versa Probe
Serial: VP13A1342
FCC ID: (pending)

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Power Supply

Manuf:	Friwa
Model:	FW7207/12
Serial:	NA
FCC ID:	NA

Handheld Computer
Manuf: Logicon
Model: MC-V
Serial: 9406-062012722
FCC ID: DoC

REPORT OF MEASUREMENTS

The following tables report the worst case emissions levels recorded during the tests performed on the Meter Reader, Versa Probe. All readings taken were peak readings unless otherwise stated. The data sheets from which the emissions tables were compiled are contained in Appendix C.

Table 1: 15.209 - Fundamental Emission Levels											
	METER	CORRECTION FACTORS				CORRECTED READING $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	SPEC LIMIT $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	MARGIN dB	NOTES		
FREQUENCY MHz	$\begin{aligned} & \text { READING } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{Ant} \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \hline \text { Dist } \\ \mathrm{dB} \end{gathered}$	Cable dB	$\begin{gathered} 15.31 \\ \mathrm{~dB} \end{gathered}$						
0.026	86.8	13.5	-19.0	0.1	-80.0	1.4	39.4	-38.0	N		
Test Method:	ANSI C63.4 (1992) FCC Part 15 Subpart C Section 15.209 1 Meter					NOTES:	$\mathrm{N}=$ No Polarization $\mathrm{V}=$ Vertical Polarization				
Spec Limit:											
Test Distance:											

COMMENTS: EUT is placed on the wooden table, set in TX freq of 25.6 kHz CW . Communication port is connected to hand held computer acting as a load. Range of measurement: Fundamental $9 \mathrm{kHz}-150 \mathrm{kHz}: \mathrm{RBW}=\mathrm{VBW}=200 \mathrm{~Hz} .7 .2$ VDC battery Power. $21^{\circ} \mathrm{C}, 51 \%$ relative humidity.
dBuV to Power conversion.

Measured field strength $=100.4 \mathrm{dBuV}$ (corrected) @ 1 meter,

$$
=81.4 \mathrm{dBuV} @ 3 \text { meter (} 19 \mathrm{~dB} \mathrm{H} \text { field attenuation). }
$$

Field strength level of 81.4 dBuV into a $50 \mathrm{Ohm}=\mathbf{0} \mathbf{0} 000003$ watts.
$V=10^{-6} \mathrm{x}$ anti $\log \frac{\mathrm{dB} \mu \mathrm{V}}{20}$

Power $=\frac{\mathrm{V}^{2}}{\mathrm{R}}$

Table 2: 15.31(e) - Voltage Variations					
	CORRECTED	CORRECTED	CORRECTED		
FREQUENCY	READING	READING	READING	SPEC	
$\mathbf{M H z}$	$\mathbf{d B \mu} \mathbf{V} / \mathbf{m}$	$\mathbf{d B \mu} / \mathbf{m}$	$\mathbf{d B \mu} / \mathbf{m}$	$\mathbf{\text { LIMIT }}$	
0.026	$\mathbf{8 5 \%}$	$\mathbf{1 0 0 \%}$	$\mathbf{1 1 5 \%}$	$\mathbf{d B \mu} \mathbf{V} / \mathbf{m}$	

Test Method: ANSI C63.4 (1992)
NOTES: $\quad \mathrm{N}=$ No Polarization
Spec Limit: \quad FCC Part 15 Subpart C Sections 15.31(e)
Test Distance: 1 Meter

COMMENTS: EUT is placed on the wooden table, set in TX freq of 25.6 kHz CW . Communication port is connected to hand held computer acting as a load. Range of measurement: Fundamental $9 \mathrm{kHz}-150 \mathrm{kHz}:$ RBW=VBW=200Hz. 7.2 VDC (100\%), 6.12 VDC (85\%) 8.28 VDC (115\%). $21^{\circ} \mathrm{C}$, 51% relative humidity.

Table 3: 15.207-Six Highest Conducted Emission Levels									
	METER	CO	ECT	FA	RS	CORRECTED	SPEC		
FREQUENCY MHz	$\begin{aligned} & \text { READING } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { Lisn } \\ \text { dB } \end{gathered}$	dB	dB	dB	$\begin{aligned} & \text { READING } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { LIMIT } \\ & \text { dB } \mu \mathrm{V} \end{aligned}$	$\begin{aligned} & \text { MARGIN } \\ & \text { dB } \end{aligned}$	NOTES
0.654726	32.0	0.0				32.0	48.0	-16.0	B
2.392548	32.1	0.0				32.1	48.0	-15.9	B
2.453862	33.6	0.0				33.6	48.0	-14.4	B
2.515176	34.0	0.0				34.0	48.0	-14.0	B
2.576490	32.8	0.0				32.8	48.0	-15.2	B
2.637804	31.4	0.0				31.4	48.0	-16.6	B

Test Method: ANSI C63.4 (1992) NOTES: B = Black Lead Spec Limit: \quad FCC Part 15 Subpart C Section 15.207

COMMENTS: EUT is placed on the wooden table. Communication port is connected to a DC power supply. Range of measurement: $450 \mathrm{kHz}-30 \mathrm{MHz}$. Mode: Charging $450 \mathrm{kHz}-30 \mathrm{kHz}$: $\mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz} .21^{\circ} \mathrm{C}, 51 \%$ relative humidity.

Table 4: 15.209 - Six Highest Radiated Emission Levels									
	METER	CORRECTION FACTORS				CORRECTED READING $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	SPEC LIMIT $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	MARGIN dB	NOTES
$\begin{gathered} \text { FREQUENCY } \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & \text { READING } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{Ant} \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \text { Amp } \\ \mathrm{dB} \end{gathered}$	Cable dB	dB				
324.481	42.8	20.6	-28.2	3.7		38.9	46.0	-7.1	H-RS
324.483	44.2	20.6	-28.2	3.7		40.3	46.0	-5.7	H-TX
339.227	44.2	19.5	-28.2	3.8		39.3	46.0	-6.7	H-TX
648.888	39.8	20.8	-27.8	5.5		38.3	46.0	-7.7	V-RS
648.925	40.3	20.8	-27.8	5.5		38.8	46.0	-7.2	V-TX
663.657	39.2	21.4	-27.9	5.5		38.2	46.0	-7.8	V-RS

Test Method: Spec Limit: Test Distance

ANSI C63.4 (1992)
FCC Part 15 Subpart C Section 15.209 3 Meters

$$
\begin{array}{ll}
\text { NOTES: } & \mathrm{H}=\text { Horizontal Polarization } \\
& \mathrm{V}=\text { Vertical Polarization } \\
& \mathrm{TX}=\text { Transmit } \\
& \mathrm{RS}=\text { RS232 }
\end{array}
$$

COMMENTS: EUT is placed on the wooden table. Communication port is connected to hand held computer acting as a load. Range of measurement: $9 \mathrm{kHz}-1000 \mathrm{MHz}$. Mode: RS232 Data Transfer. $9 \mathrm{kHz}-150 \mathrm{kHz}:$ RBW=VBW=200 Hz. $150 \mathrm{kHz}-30 \mathrm{kHz}:$ RBW=VBW=9 kHz. 30 $\mathrm{MHz}-1000 \mathrm{MHz}:$ RBW=VBW=120 kHz. 7.2 VDC battery Power. $21^{\circ} \mathrm{C}, 51 \%$ relative humidity.

15.205 BAND EDGE AMBIENT

15.205 BAND EDGE FUNDAMENTAL

Page 13 of 43

MEASUREMENT UNCERTAINTY

Measurement uncertainty associated with data in this report is a $\pm 2.94 \mathrm{~dB}$ for radiated emissions and $\pm 1.56 \mathrm{~dB}$ for conducted emissions.

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The radiated and conducted emissions data of the Meter Reader, Versa Probe, was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TABLE A: SAMPLE CALCULATIONS

	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$
+	Antenna Factor	(dB)
+	Cable Loss	(dB)
-	Distance Correction	(dB)
-	Preamplifier Gain	(dB)
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Appendix B were used to collect both the radiated and conducted emissions data. For radiated measurements from 9 kHz to 30 MHz , the magnetic loop antenna was used. For radiated measurements below 300 MHz , the biconical antenna was used. For frequencies from 300 to 1000 MHz , the \log periodic antenna was used. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of $97 \mathrm{~dB} \mu \mathrm{~V}$, and a vertical scale of 10 dB per division.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

EUT TESTING

Mains Conducted Emissions

During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT was located has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test.

For conducted emissions testing, a 30 to 50 second sweep time was used for automated measurements in the frequency bands of 450 kHz to $1.705 \mathrm{MHz}, 1.705 \mathrm{MHz}$ to 3 MHz , and 3 MHz to 30 MHz . All readings within 20 dB of the limit were recorded. At frequencies where the recorded emissions were close to the limit, further investigation was performed manually at a slower sweep rate.

Radiated Emissions

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters.

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. For radiated measurements from 9 kHz to 30 MHz , the magnetic loop antenna was used. The frequency range of 30 MHz to 88 MHz was scanned with the biconical antenna located about 1.5 meter above the ground plane in the vertical configuration. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. The frequency range of 100 to 300 MHz was then scanned in the same manner using the biconical antenna and the peaks recorded. Lastly, a scan of the FM band from 88 to 110 MHz was made, using a reduced resolution bandwidth and frequency span. The biconical antenna was changed to the horizontal polarity and the above steps were repeated. After changing to the log periodic antenna in the horizontal configuration, the frequency range of 300 to 1000 MHz was scanned. The log periodic antenna was changed to the vertical polarity and the frequency range of 300 to 1000 MHz was again scanned Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable as needed. The test engineer maximized the readings with respect to the table rotation, antenna height, and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.

APPENDIX A

TEST SETUP PHOTOGRAPHS

PHOTOGRAPH SHOWING VOLTAGE VARIATIONS

Voltage Variations

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Front View

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Back View

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View - Loop Antenna

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View - Loop Antenna

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View - Bicon and Log Periodic Antennas

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View - Bicon and Log Periodic Antennas

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View - H-Probe Antenna

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View - H-Probe Antenna

APPENDIX B

TEST EQUIPMENT LIST

FCC 15.205, Radiated Band Edge Plots

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	$8566 B$	$2532 A 02509$	092801	092802
QP Adapter	01437	HP	$85650 A$	$3303 A 01884$	092801	092802
H-Field Probe	NA	Mark Chase	NA	NA	NA	NA

FCC 15.209, Radiated Emissions, Spur, RF Power.

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566 B	2532 A02509	092801	092802
QP Adapter	01437	HP	85650 A	$3303 A 01884$	092801	092802
Pre-amp	00309	HP	8447 D	1937 A 02548	090501	090502
Antenna cable	NA	NA	RG214	Cable\#15	122001	122002
Pre-amp to SA cable	NA	Harbour	RG223/U	Cable\#10	071601	071602
9KHz- 30 MHz						
Loop Antenna	00314	EMCO	6502	2014	073101	073102
$\mathbf{3 0 ~ M H z - 1 0 0 M H z ~}$						092401
Bicon Antenna	306	AH	SAS200/540	220	092402	
Log Periodic Antenna	331	AH	SAS 00/516	330	092401	092402

FCC 15.207, Conducted Emissions

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566 B	2532 A 02509	092801	092802
QP Adapter	01437	HP	85650 A	3303 A 01884	092801	092802
LISN	02128	EMCO	$3816 / 2 \mathrm{NM}$	$9809-1090$	032002	032003

APPENDIX C: MEASUREMENT DATA SHEETS

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, Ca 92823 • (714) 993-6130

Customer:	Northrup Grunnmen Technology		
Specification:	FCC 15.209		
Work Order \#:	78304	Date: $06 / 27 / 2002$	
Test Type:	Radiated Scan	Time: $08: 49: 12$	
Equipment:	Meter Reader	Sequence\#:	1
Manufacturer:	Northrop Grumman Corp.	Tested By: Eddie Wong	
Model:	Versa Probe		
S/N:	VP13A1342		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Meter Reader*	Northrop Grumman Corp.	Versa Probe	VP13A1342
Support Devices: S/N Function Manufacturer Model \# $9406-062012722$ Hand Held Computer Logicon MC-V \mathbf{l}			

Test Conditions / Notes:

EUT is placed on the wooden table, set in TX freq of 25.6 kHz CW . Communication port is connected to hand held computer acting as a load. Range of measurement: Fundamental $9 \mathrm{kHz}-150 \mathrm{kHz}$: RBW=VBW=200 Hz. 7.2 VDC battery Power. $21^{\circ} \mathrm{C}, 51 \%$ relative humidity.

Transducer Legend:

T1 $=$ Active Loop Antenna	T2=Cable \#15 120602
T3=15.31 40dB/Dec Correction	

Measu	nt Dat	Reading listed by margin.					Test Distance: 1 Meter				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
1	25.684 k	86.8	+13.5	+0.1	-80.0		-19.0	1.4	39.4 Fundamen	-38.0	None

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, Ca 92823 • (714) 993-6130

Customer:	Northrop Grumman Corp.		
Specification:	FCC 15.209		
Work Order \#:	78304	Date: $06 / 27 / 2002$	
Test Type:	Radiated Scan	Time: $09: 48: 47$	
Equipment:	Meter Reader	Sequence\#:	1
Manufacturer:	Northrop Grumman Corp.	Tested By: Eddie Wong	
Model:	Versa Probe		
S/N:	VP13A1342		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Meter Reader*	Northrop Grumman Corp.	Versa Probe	VP13A1342
Support Devices:			
Function	Manufacturer	Model \#	S/N

Test Conditions / Notes:

EUT is placed on the wooden table, set in TX freq of 25.6 kHz CW . Communication port is connected to hand held computer acting as a load. Range of measurement: Fundamental $9 \mathrm{kHz}-150 \mathrm{kHz}: \mathrm{RBW}=\mathrm{VBW}=200 \mathrm{~Hz} .7 .2$ VDC (100%), $6.12 \mathrm{VDC}(85 \%) 8.28 \mathrm{VDC}(115 \%) .21^{\circ} \mathrm{C}, 51 \%$ relative humidity.

Transducer Legend:

T1=Active Loop Antenna	T2=Cable \#15 120602
T3=15.31 40dB/Dec Correction	

Measu	nent Data	Reading listed by margin.					Test Distance: 1 Meter				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
1	25.680k	86.8	+13.5	+0.1	-80.0		-19.0	1.4	$\begin{gathered} 39.4 \\ 8.28 \mathrm{Vdc} \end{gathered}$	-38.0	None
2	25.672k	86.7	+13.5	+0.1	-80.0		-19.0	1.3	$\begin{gathered} 39.4 \\ 6.12 \mathrm{Vdc} \end{gathered}$	-38.1	None
3	25.674 k	86.7	+13.5	+0.1	-80.0		-19.0	1.3	$\begin{array}{r} 39.4 \\ 7.2 \mathrm{Vdc} \end{array}$	-38.1	None

Test Location:	CKC Laboratories, Inc. •110 N. Olinda Place • Brea, Ca 92823 • (714) 993-6130		
Customer:	Northrop Grumman Corp.		
Specification:	FCC 15.207	Date:	$06 / 28 / 2002$
Work Order \#:	$\mathbf{7 8 3 0 4}$	Time:	$4: 14: 42 \mathrm{PM}$
Test Type:	Conducted Emissions	Sequence\#:	3
Equipment:	Meter Reader	Tested By: Eddie Wong	
Manufacturer:	Northrop Grumman Corp.		110 V 60 Hz
Model:	Versa Probe		
S/N:	VP13A1342		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Meter Reader*	Northrop Grumman Corp.	Versa Probe	VP13A1342
Support Devices:			
Function	Manufacturer	Model \#	S/N
Power Supply	Friwa	FW7207/12	NA

Test Conditions / Notes:

EUT is placed on the wooden table. Communication port is connected to a DC power supply. Range of measurement: $450 \mathrm{kHz}-30 \mathrm{MHz}$. Mode: Charging $450 \mathrm{~Hz}-30 \mathrm{kHz}: \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz} .21^{\circ} \mathrm{C}, 51 \%$ relative humidity.

Transducer Legend:

Measu	ment Data	Reading listed by margin.					Test Lead: Black				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	dB	dB	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	2.515 M	34.0					+0.0	34.0	48.0	-14.0	Black
2	2.454M	33.6					+0.0	33.6	48.0	-14.4	Black
3	2.576M	32.8					+0.0	32.8	48.0	-15.2	Black
4	2.393M	32.1					+0.0	32.1	48.0	-15.9	Black
5	654.726k	32.0					+0.0	32.0	48.0	-16.0	Black
6	2.638 M	31.4					+0.0	31.4	48.0	-16.6	Black
7	2.337M	31.1					+0.0	31.1	48.0	-16.9	Black
8	848.460k	30.0					+0.0	30.0	48.0	-18.0	Black
9	1.024 M	29.8					+0.0	29.8	48.0	-18.2	Black
10	1.797M	29.7					+0.0	29.7	48.0	-18.3	Black
11	2.275M	29.4					+0.0	29.4	48.0	-18.6	Black

12	1.203 M	29.2	+0.0	29.2	48.0	-18.8	Black
13	1.678 M	28.7	+0.0	28.7	48.0	-19.3	Black
14	1.733 M	28.6	+0.0	28.6	48.0	-19.4	Black
15	1.857 M	28.5	+0.0	28.5	48.0	-19.5	Black

CKC Laboratories, Inc. Date: 06/28/2002 Time: 4:14:42 PM Northrop Grumman Corp. WO\#: 78304 FCC 15.207 Test Lead: Black 110V 60Hz Sequence\#: 3

—— Sweep Data ——— FCC 15.207

Page 32 of 43

Test Location:	CKC Laboratories, Inc. •110 N. Olinda Place • Brea, Ca 92823 • (714) 993-6130		
Customer:	Northrop Grumman Corp.		
Specification:	FCC 15.207	Date:	$06 / 28 / 2002$
Work Order \#:	$\mathbf{7 8 3 0 4}$	Time:	$4: 19: 00$ PM
Test Type:	Conducted Emissions	Sequence\#:	4
Equipment:	Meter Reader	Tested By: Eddie Wong	
Manufacturer:	Northrop Grumman Corp.		110 V 60 Hz
Model:	Versa Probe		
S/N:	VP13A1342		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Meter Reader*	Northrop Grumman Corp.	Versa Probe	VP13A1342
Support Devices:			
Function	Manufacturer	Model \#	S/N
Power Supply	Friwa	FW7207/12	NA

Test Conditions / Notes:

EUT is placed on the wooden table. Communication port is connected to a DC power supply. Range of measurement: $450 \mathrm{kHz}-30 \mathrm{MHz}$. Mode: Charging $450 \mathrm{kHz}-30 \mathrm{kHz}: \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz} .21^{\circ} \mathrm{C}, 51 \%$ relative humidity.

Transducer Legend:

Measu	ment Data:	Reading listed by margin.					Test Lead: White				
\#	Freq MHz	$\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$	dB	dB	dB	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \\ \hline \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	2.638 M	30.2					+0.0	30.2	48.0	-17.8	White
2	4.416M	30.0					+0.0	30.0	48.0	-18.0	White
3	6.088M	30.0					+0.0	30.0	48.0	-18.0	White
4	2.576 M	29.9					+0.0	29.9	48.0	-18.1	White
5	4.483 M	29.9					+0.0	29.9	48.0	-18.1	White
6	658.848k	29.8					+0.0	29.8	48.0	-18.2	White
7	848.460k	29.8					+0.0	29.8	48.0	-18.2	White
8	2.694 M	29.8					+0.0	29.8	48.0	-18.2	White
9	5.436 M	29.8					+0.0	29.8	48.0	-18.2	White
10	6.149 M	29.8					+0.0	29.8	48.0	-18.2	White
11	2.755 M	29.7					+0.0	29.7	48.0	-18.3	White

12	4.544 M	29.7	+0.0	29.7	48.0	-18.3	White
13	5.012 M	29.7	+0.0	29.7	48.0	-18.3	White
14	5.486 M	29.7	+0.0	29.7	48.0	-18.3	White
15	5.553 M	29.6	+0.0	29.6	48.0	-18.4	White

CKC Laboratories, Inc. Date: 06/28/2002 Time: $4: 19: 00 \mathrm{PM}$ Northrop Grumman Corp. WO\#: 78304 FCC 15.207 Test Lead: White 110 V 60 Hz Sequence\#: 4

— Sweep Data 1 -FCC 15.207

Page 34 of 43

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, Ca 92823 • (714) 993-6130

Customer:	Northrop Grumman Corp.		
Specification:	FCC 15.209		
Work Order \#:	78304	Date:	06/28/2002
Test Type:	Maximized emission	Time:	15:39:39
Equipment:	Meter Reader	Sequence\#:	3
Manufacturer:	Northrop Grumman Corp.	Tested By: Eddie Wong	
Model:	Versa Probe		
S/N:	VP13A1342		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Meter Reader*	Northrop Grumman Corp.	Versa Probe	VP13A1342
Support Devices:			
Function	Manufacturer	Model \#	S/N
Hand Held Computer	Logicon	MC-V	$9406-062012722$

Test Conditions / Notes:

EUT is placed on the wooden table. Communication port is connected to hand held computer acting as a load. Range of measurement: $9 \mathrm{kHz}-1000 \mathrm{MHz}$. Mode: RS232 Data Transfer. $9 \mathrm{kHz}-150 \mathrm{kHz}: \mathrm{RBW}=\mathrm{VBW}=200$ Hz. $150 \mathrm{kHz}-30 \mathrm{kHz}:$ RBW=VBW=9 kHz. $30 \mathrm{MHz}-1000 \mathrm{MHz}:$ RBW=VBW=120 kHz. 7.2 VDC battery Power. $21^{\circ} \mathrm{C}, 51 \%$ relative humidity.
Transducer Legend:

T1=Active Loop Antenna	T2=Cable \#15 120602
T3=15.31 40dB/Dec Correction	T4=Bicon 092401
T5=Log 331 092401	T6=Cable \#10 071601
T7=Cable \#15 120602	T8=Preamp 8447D 090501

Measurement Data:			Reading listed by margin.				Test Distance: 3 Meters				
\#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
1	324.481 M	42.8	+0.0	+0.0	+0.0	+0.0	+0.0	38.9	46.0	-7.1	Horiz
			+20.6	+0.3	+3.4	-28.2					
2	648.925M	40.3	+0.0	+0.0	+0.0	+0.0	+0.0	38.8	46.0	-7.2	Vert
			+20.8	+0.4	+5.1	-27.8					
3	663.657M	39.2	+0.0	+0.0	+0.0	+0.0	+0.0	38.2	46.0	-7.8	Vert
			+21.4	+0.4	+5.1	-27.9					
4	368.737M	43.5	+0.0	+0.0	+0.0	+0.0	+0.0	36.7	46.0	-9.3	Horiz
			+17.5	+0.3	+3.6	-28.2					
5	295.013 M	39.4	+0.0	+0.0	+0.0	+21.8	+0.0	36.5	46.0	-9.5	Horiz
			+0.0	+0.3	+3.3	-28.3					
6	324.486M	39.7	+0.0	+0.0	+0.0	+0.0	+0.0	35.8	46.0	-10.2	Vert
			+20.6	+0.3	+3.4	-28.2					
7	471.930 M	42.0	+0.0	+0.0	+0.0	+0.0	+0.0	34.5	46.0	-11.5	Vert
			+16.5	+0.4	+4.2	-28.6					
8	353.969M	40.4	+0.0	+0.0	+0.0	+0.0	+0.0	34.5	46.0	-11.5	Vert
			+18.5	+0.3	+3.5	-28.2					
9	619.395M	37.3	+0.0	+0.0	+0.0	+0.0	+0.0	34.4	46.0	-11.6	Horiz
			+19.7	+0.4	+5.0	-28.0					

10	678.397 M	34.7	$\begin{array}{r} +0.0 \\ +21.9 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$+0.0$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	+0.0	34.4	46.0	-11.6	Vert
11	530.939M	40.5	+0.0	+0.0	+0.0	+0.0	+0.0	34.4	46.0	-11.6	Vert
			+17.6	+0.4	+4.5	-28.6					
12	648.919M	35.7	+0.0	+0.0	+0.0	+0.0	+0.0	34.2	46.0	-11.8	Horiz
			+20.8	+0.4	+5.1	-27.8					
13	589.928 M	38.5	+0.0	+0.0	+0.0	+0.0	+0.0	34.2	46.0	-11.8	Vert
			+18.7	+0.4	+4.8	-28.2					
14	486.692M	41.1	+0.0	+0.0	+0.0	+0.0	+0.0	33.9	46.0	-12.1	Vert
			+16.7	+0.4	+4.3	-28.6					
15	530.950M	39.8	+0.0	+0.0	+0.0	+0.0	$+0.0$	33.7	46.0	-12.3	Horiz
			+17.6	+0.4	+4.5	-28.6					
16	663.652M	34.6	+0.0	+0.0	+0.0	+0.0	+0.0	33.6	46.0	-12.4	Horiz
			+21.4	+0.4	+5.1	-27.9					
17	693.125M	33.4	+0.0	+0.0	+0.0	+0.0	+0.0	33.6	46.0	-12.4	Vert
			+22.5	+0.5	+5.2	-28.0					
18	398.209M	42.0	+0.0	+0.0	+0.0	+0.0	+0.0	33.5	46.0	-12.5	Horiz
			+15.6	+0.4	+3.8	-28.3					
19	634.155M	35.6	+0.0	+0.0	+0.0	+0.0	+0.0	33.4	46.0	-12.6	Vert
			+20.3	+0.4	+5.0	-27.9					
20	486.681M	40.5	+0.0	+0.0	+0.0	+0.0	$+0.0$	33.3	46.0	-12.7	Horiz
			+16.7	+0.4	+4.3	-28.6					
21	339.225M	38.2	+0.0	+0.0	+0.0	+0.0	+0.0	33.3	46.0	-12.7	Horiz
			+19.5	+0.3	+3.5	-28.2					
22	280.248M	37.3	+0.0	+0.0	+0.0	+20.6	+0.0	33.0	46.0	-13.0	Horiz
			+0.0	+0.3	+3.1	-28.3					
23	560.414M	37.9	+0.0	+0.0	+0.0	+0.0	+0.0	32.7	46.0	-13.3	Vert
			+18.2	+0.4	+4.7	-28.5					
24	870.093M	31.1	+0.0	+0.0	+0.0	+0.0	+0.0	32.5	46.0	-13.5	Horiz
			+22.6	+0.6	+5.9	-27.7					
25	678.383M	32.8	+0.0	+0.0	+0.0	+0.0	+0.0	32.5	46.0	-13.5	Horiz
			+21.9	+0.5	+5.2	-27.9					
26	958.570M	29.3	+0.0	+0.0	+0.0	+0.0	+0.0	32.4	46.0	-13.6	Horiz
			+23.8	+0.6	+6.4	-27.7					
27	457.206M	40.1	+0.0	+0.0	+0.0	+0.0	+0.0	32.2	46.0	-13.8	Horiz
			+16.3	+0.4	+4.1	-28.7					
28	457.206M	40.0	+0.0	+0.0	+0.0	+0.0	+0.0	32.1	46.0	-13.9	Vert
			+16.3	+0.4	+4.1	-28.7					
29	501.429 M	38.7	+0.0	+0.0	+0.0	+0.0	+0.0	31.9	46.0	-14.1	Horiz
			+16.9	+0.4	+4.4	-28.5					
30	634.148M	34.0	+0.0	+0.0	+0.0	+0.0	+0.0	31.8	46.0	-14.2	Horiz
			+20.3	+0.4	+5.0	-27.9					
31	294.961M	34.7	+0.0	+0.0	+0.0	+21.8	+0.0	31.8	46.0	-14.2	Vert
			+0.0	+0.3	+3.3	-28.3					
32	442.435 M	39.8	+0.0	+0.0	+0.0	+0.0	+0.0	31.7	46.0	-14.3	Horiz
			+16.1	+0.4	+4.0	-28.6					
33	309.718M	34.6	+0.0	+0.0	+0.0	+0.0	+0.0	31.6	46.0	-14.4	Horiz
	QP		+21.7	+0.3	+3.3	-28.3					
\wedge	309.742 M	38.4	+0.0	+0.0	+0.0	+0.0	+0.0	35.4	46.0	-10.6	Horiz
			+21.7	+0.3	+3.3	-28.3					

Page 36 of 43

35	752.125 M	31.4	$\begin{array}{r} +0.0 \\ +22.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -27.9 \end{array}$	+0.0	31.6	46.0	-14.4	Vert
36	811.093M	31.1	+0.0	+0.0	+0.0	+0.0	$+0.0$	31.5	46.0	-14.5	Horiz
			+21.7	+0.6	+5.7	-27.6					
37	501.468 M	38.3	+0.0	+0.0	+0.0	+0.0	$+0.0$	31.5	46.0	-14.5	Vert
			+16.9	+0.4	+4.4	-28.5					
38	162.267 M	37.1	+0.0	+0.0	+0.0	+17.6	$+0.0$	29.0	43.5	-14.5	Horiz
			+0.0	+0.3	+2.3	-28.3					
39	722.631 M	31.2	+0.0	+0.0	+0.0	+0.0	$+0.0$	31.4	46.0	-14.6	Horiz
			+22.4	+0.5	+5.3	-28.0					
40	471.941M	38.9	+0.0	+0.0	+0.0	+0.0	$+0.0$	31.4	46.0	-14.6	Horiz
			+16.5	+0.4	+4.2	-28.6					
41	693.126M	31.1	+0.0	+0.0	+0.0	+0.0	$+0.0$	31.3	46.0	-14.7	Horiz
			+22.5	+0.5	+5.2	-28.0					
42	177.016M	37.0	+0.0	+0.0	+0.0	+17.3	+0.0	28.8	43.5	-14.7	Horiz
			+0.0	+0.3	+2.4	-28.2					
43	899.589M	29.1	+0.0	+0.0	+0.0	+0.0	$+0.0$	31.1	46.0	-14.9	Vert
			+23.0	+0.6	+6.0	-27.6					
44	737.365M	30.7	+0.0	+0.0	+0.0	+0.0	+0.0	30.9	46.0	-15.1	Horiz
			+22.2	+0.5	+5.4	-27.9					
45	427.714M	39.2	+0.0	+0.0	+0.0	+0.0	+0.0	30.9	46.0	-15.1	Vert
			+15.9	+0.4	+3.9	-28.5					
46	368.743M	37.6	+0.0	+0.0	+0.0	+0.0	$+0.0$	30.8	46.0	-15.2	Vert
			+17.5	+0.3	+3.6	-28.2					
47	442.443M	38.8	+0.0	+0.0	+0.0	+0.0	+0.0	30.7	46.0	-15.3	Vert
			+16.1	+0.4	+4.0	-28.6					
48	132.794M	37.7	+0.0	+0.0	+0.0	+16.5	$+0.0$	28.1	43.5	-15.4	Horiz
			+0.0	+0.2	+2.1	-28.4					
49	427.712M	38.8	+0.0	+0.0	+0.0	+0.0	+0.0	30.5	46.0	-15.5	Horiz
			+15.9	+0.4	+3.9	-28.5					
50	398.236M	39.0	+0.0	+0.0	+0.0	+0.0	+0.0	30.5	46.0	-15.5	Vert
			+15.6	+0.4	+3.8	-28.3					
51	353.975M	36.3	+0.0	+0.0	+0.0	+0.0	$+0.0$	30.4	46.0	-15.6	Horiz
			+18.5	+0.3	+3.5	-28.2					
52	589.824 M	34.2	+0.0	+0.0	+0.0	+0.0	+0.0	29.9	46.0	-16.1	Horiz
			+18.7	+0.4	+4.8	-28.2					
53	811.120 M	29.5	+0.0	+0.0	+0.0	+0.0	+0.0	29.9	46.0	-16.1	Vert
			+21.7	+0.6	+5.7	-27.6					
54	737.402M	29.7	+0.0	+0.0	+0.0	+0.0	+0.0	29.9	46.0	-16.1	Vert
			+22.2	+0.5	+5.4	-27.9					
55	899.576M	27.8	+0.0	+0.0	+0.0	+0.0	+0.0	29.8	46.0	-16.2	Horiz
			+23.0	+0.6	+6.0	-27.6					
56	280.260 M	34.0	+0.0	+0.0	+0.0	+20.6	+0.0	29.7	46.0	-16.3	Vert
			+0.0	+0.3	+3.1	-28.3					
57	383.460 M	37.1	+0.0	+0.0	+0.0	+0.0	+0.0	29.4	46.0	-16.6	Horiz
			+16.5	+0.4	+3.7	-28.3					
58	250.764 M	36.5	+0.0	+0.0	+0.0	+17.9	+0.0	29.4	46.0	-16.6	Horiz
			+0.0	+0.3	+2.9	-28.2					
59	545.659 M	35.0	+0.0	+0.0	+0.0	+0.0	+0.0	29.3	46.0	-16.7	Vert
			+17.9	+0.4	+4.6	-28.6					

Page 37 of 43

60	339.236M	33.4	+0.0	+0.0	+0.0	+0.0	+0.0	28.5	46.0	-17.5	Vert
			+19.5	+0.3	+3.5	-28.2					
61	766.858M	28.1	+0.0	+0.0	+0.0	+0.0	+0.0	28.3	46.0	-17.7	Horiz
			+21.9	+0.5	+5.6	-27.8					
62	206.536M	34.3	+0.0	+0.0	+0.0	+16.9	+0.0	25.7	43.5	-17.8	Horiz
			+0.0	+0.3	+2.6	-28.4					
63	840.614M	27.2	+0.0	+0.0	+0.0	+0.0	+0.0	28.0	46.0	-18.0	Horiz
			+22.1	+0.6	+5.8	-27.7					
64	412.956M	35.9	+0.0	+0.0	+0.0	+0.0	+0.0	27.5	46.0	-18.5	Vert
			+15.7	+0.4	+3.9	-28.4					
65	383.496M	34.8	+0.0	+0.0	+0.0	+0.0	+0.0	27.1	46.0	-18.9	Vert
			+16.5	+0.4	+3.7	-28.3					
66	265.452M	32.9	+0.0	+0.0	+0.0	+19.2	+0.0	27.1	46.0	-18.9	Vert
			+0.0	+0.3	+3.0	-28.3					
67	235.982M	34.6	+0.0	+0.0	+0.0	+17.5	+0.0	26.9	46.0	-19.1	Horiz
			+0.0	+0.3	+2.8	-28.3					
68	516.152M	33.1	+0.0	+0.0	+0.0	+0.0	+0.0	26.7	46.0	-19.3	Horiz
			+17.2	+0.4	+4.5	-28.5					
69	619.317M	29.6	+0.0	+0.0	+0.0	+0.0	+0.0	26.7	46.0	-19.3	Vert
			+19.7	+0.4	+5.0	-28.0					
70	221.271M	34.7	+0.0	+0.0	+0.0	+17.3	+0.0	26.7	46.0	-19.3	Horiz
			+0.0	+0.3	+2.7	-28.3					
71	560.439 M	31.8	+0.0	+0.0	+0.0	+0.0	+0.0	26.6	46.0	-19.4	Horiz
			+18.2	+0.4	+4.7	-28.5					
72	412.972M	34.7	+0.0	+0.0	+0.0	+0.0	+0.0	26.3	46.0	-19.7	Horiz
			+15.7	+0.4	+3.9	-28.4					
73	545.658M	31.9	+0.0	+0.0	+0.0	+0.0	+0.0	26.2	46.0	-19.8	Horiz
			+17.9	+0.4	+4.6	-28.6					
74	118.024M	34.9	+0.0	+0.0	+0.0	+15.0	+0.0	23.6	43.5	-19.9	Horiz
			+0.0	+0.2	+1.9	-28.4					
75	236.041M	33.3	+0.0	+0.0	+0.0	+17.5	+0.0	25.6	46.0	-20.4	Vert
			+0.0	+0.3	+2.8	-28.3					
76	308.867M	28.3	+0.0	+0.0	+0.0	+0.0	+0.0	25.4	46.0	-20.6	Vert
			+21.8	+0.3	+3.3	-28.3					
77	206.502M	31.4	+0.0	+0.0	+0.0	+16.9	+0.0	22.8	43.5	-20.7	Vert
			+0.0	+0.3	+2.6	-28.4					
78	516.175M	31.6	+0.0	+0.0	+0.0	+0.0	+0.0	25.2	46.0	-20.8	Vert
			+17.2	+0.4	+4.5	-28.5					
79	253.678M	31.0	+0.0	+0.0	+0.0	+18.2	+0.0	24.2	46.0	-21.8	Vert
			+0.0	+0.3	+2.9	-28.2					
80	221.258M	29.5	+0.0	+0.0	+0.0	+17.3	+0.0	21.5	46.0	-24.5	Vert
			+0.0	+0.3	+2.7	-28.3					
81	18.960M	18.1	+10.4	+0.8	-40.0	+0.0	-19.0	-29.7	29.5	-59.2	None
			+0.0	+0.0	+0.0	+0.0					

Page 38 of 43

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, Ca 92823 • (714) 993-6130

Customer:	Northrop Grumman Corp.		
Specification:	FCC 15.209		
Work Order \#:	78304	Date:	$06 / 27 / 2002$
Test Type:	Maximized emission	Time:	17:12:26
Equipment:	Meter Reader	Sequence\#:	2
Manufacturer:	Northrop Grumman Corp.	Tested By: Eddie Wong	
Model:	Versa Probe		
S/N:	VP13A1342		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Meter Reader*	Northrop Grumman Corp.	Versa Probe	VP13A1342
Support Devices: S/N Function Manufacturer Model \# $9406-062012722$ Hand Held Computer Logicon MC-V \mathbf{l}			

Test Conditions / Notes:

EUT is placed on the wooden table. Communication port is connected to hand held computer acting as a load. Range of measurement: $9 \mathrm{kHz}-1000 \mathrm{MHz}$ Mode: Transmit 26.5 kHz CW. $9 \mathrm{kHz}-150 \mathrm{kHz}:$ RBW=VBW=200 Hz. $150 \mathrm{kHz}-30 \mathrm{kHz}:$ RBW=VBW=9 kHz $30 \mathrm{MHz}-1000 \mathrm{MHz}:$ RBW=VBW=120 kHz. 7.2 VDC battery Power. $21^{\circ} \mathrm{C}, 51 \%$ relative humidity.
Transducer Legend:

T1=Active Loop Antenna	T2=Cable \#15 120602
T3=15.31 40dB/Dec Correction	T4=----------------------------------1501
T5=Bicon 092401	T6=Log 331 092401
T7=Cable \#10 071601	T8=Cable \#15 120602
T9=Preamp 8447D 090501	T10=Dipole\#4 110902

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Measu \& ement Data: \& \multicolumn{4}{|r|}{Reading listed by margin.} \& \multicolumn{6}{|c|}{Test Distance: 3 Meters}

\hline \multirow[t]{3}{*}{-} \& \multirow[t]{3}{*}{Freq

MHz} \& \multirow[t]{2}{*}{Rdng} \& T1 \& T2 \& T3 \& T4 \& Dist \& Corr \& Spec \& \multirow[t]{2}{*}{Margin} \& \multirow[t]{2}{*}{Polar}

\hline \& \& \& T5 \& T6 \& T7 \& T8 \& \& \& \& \&

\hline \& \& $\mathrm{dB} \mu \mathrm{V}$ \& \[
$$
\begin{aligned}
& \text { T9 } \\
& \text { dB }
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{T} 10 \\
\mathrm{~dB}
\end{gathered}
$$
\] \& dB \& dB \& Table \& $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ \& $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ \& dB \& Ant

\hline \multirow[t]{3}{*}{1} \& 324.483 M \& 44.2 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& 40.3 \& 46.0 \& -5.7 \& Horiz

\hline \& \& \& +0.0 \& +20.6 \& +0.3 \& +3.4 \& \& \& \& \&

\hline \& \& \& -28.2 \& +0.0 \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{2} \& 339.227M \& 44.2 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& 39.3 \& 46.0 \& -6.7 \& Horiz

\hline \& \& \& +0.0 \& +19.5 \& +0.3 \& +3.5 \& \& \& \& \&

\hline \& \& \& -28.2 \& +0.0 \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{3} \& 648.888M \& 39.8 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& 38.3 \& 46.0 \& -7.7 \& Vert

\hline \& \& \& +0.0 \& +20.8 \& +0.4 \& +5.1 \& \& \& \& \&

\hline \& \& \& -27.8 \& +0.0 \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{4} \& 309.714M \& 40.8 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& 37.8 \& 46.0 \& -8.2 \& Horiz

\hline \& \& \& +0.0 \& +21.7 \& +0.3 \& +3.3 \& \& \& \& \&

\hline \& \& \& -28.3 \& +0.0 \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{5} \& 324.491M \& 41.6 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& 37.7 \& 46.0 \& -8.3 \& Vert

\hline \& \& \& +0.0 \& +20.6 \& +0.3 \& +3.4 \& \& \& \& \&

\hline \& \& \& -28.2 \& +0.0 \& \& \& \& \& \& \&

\hline
\end{tabular}

6	353.962M	42.9	$\begin{gathered} +0.0 \\ +0.0 \\ -28.2 \end{gathered}$	$\begin{array}{r} +0.0 \\ +18.5 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.5 \end{aligned}$	+0.0	37.0	46.0	-9.0	Horiz
7	280.253 M	41.0	$\begin{array}{r} +0.0 \\ +20.6 \\ -28.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \end{aligned}$	+0.0	36.7	46.0	-9.3	Horiz
8	619.425M	39.5	$\begin{gathered} +0.0 \\ +0.0 \\ -28.0 \end{gathered}$	$\begin{array}{r} +0.0 \\ +19.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.0 \end{aligned}$	+0.0	36.6	46.0	-9.4	Vert
9	339.208M	41.5	$\begin{gathered} +0.0 \\ +0.0 \\ -28.2 \end{gathered}$	$\begin{array}{r} +0.0 \\ +19.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.5 \end{aligned}$	+0.0	36.6	46.0	-9.4	Vert
10	678.373M	36.1	$\begin{array}{r} +0.0 \\ +0.0 \\ -27.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.2 \end{aligned}$	+0.0	35.8	46.0	-10.2	Vert
11	353.966M	41.0	$\begin{array}{r} +0.0 \\ +0.0 \\ -28.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +18.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.5 \end{aligned}$	+0.0	35.1	46.0	-10.9	Vert
12	530.914M	41.1	$\begin{gathered} +0.0 \\ +0.0 \\ -28.6 \end{gathered}$	$\begin{array}{r} +0.0 \\ +17.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +4.5 \end{aligned}$	$+0.0$	35.0	46.0	-11.0	Vert
13	368.727 M	41.7	$\begin{array}{r} +0.0 \\ +0.0 \\ -28.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +17.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.6 \end{aligned}$	+0.0	34.9	46.0	-11.1	Horiz
14	368.727 M	41.6	$\begin{array}{r} +0.0 \\ +0.0 \\ -28.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +17.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.6 \end{aligned}$	+0.0	34.8	46.0	-11.2	Horiz
15	294.967 M	37.5	$\begin{array}{r} +0.0 \\ +21.8 \\ -28.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.3 \end{aligned}$	+0.0	34.6	46.0	-11.4	Horiz
16	589.931 M	38.1	$\begin{array}{r} +0.0 \\ +0.0 \\ -28.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +4.8 \end{aligned}$	+0.0	33.8	46.0	-12.2	Vert
17	309.715M	36.7	$\begin{gathered} +0.0 \\ +0.0 \\ -28.3 \end{gathered}$	$\begin{array}{r} +0.0 \\ +21.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.3 \end{aligned}$	+0.0	33.7	46.0	-12.3	Vert
18	560.400 M	38.1	$\begin{array}{r} +0.0 \\ +0.0 \\ -28.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +18.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +4.7 \end{aligned}$	+0.0	32.9	46.0	-13.1	Vert
19	958.569M	29.2	$\begin{array}{r} +0.0 \\ +0.0 \\ -27.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +23.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +6.4 \end{aligned}$	$+0.0$	32.3	46.0	-13.7	Vert
20	250.751 M	39.3	$\begin{array}{r} +0.0 \\ +17.9 \\ -28.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.9 \end{aligned}$	+0.0	32.2	46.0	-13.8	Horiz
21	294.976M	34.6	$\begin{array}{r} +0.0 \\ +21.8 \\ -28.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.3 \end{aligned}$	+0.0	31.7	46.0	-14.3	Vert
22	368.729 M	38.1	$\begin{array}{r} +0.0 \\ +0.0 \\ -28.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +17.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.6 \end{aligned}$	+0.0	31.3	46.0	-14.7	Vert

23	265.506 M	37.0	$\begin{array}{r} +0.0 \\ +19.3 \\ -28.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \end{aligned}$	+0.0	31.3	46.0	-14.7	Horiz
24	840.593M	30.4	$\begin{array}{r} +0.0 \\ +0.0 \\ -27.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +22.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	+0.0	31.2	46.0	-14.8	Vert
25	634.129M	33.4	$\begin{array}{r} +0.0 \\ +0.0 \\ -27.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +20.3 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.0 \end{aligned}$	+0.0	31.2	46.0	-14.8	Vert
26	899.623M	29.1	$\begin{array}{r} +0.0 \\ +0.0 \\ -27.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +23.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +6.0 \end{aligned}$	+0.0	31.1	46.0	-14.9	Vert
27	811.120M	30.7	$\begin{array}{r} +0.0 \\ +0.0 \\ -27.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +21.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.7 \end{aligned}$	+0.0	31.1	46.0	-14.9	Vert
28	737.367 M	30.7	$\begin{array}{r} +0.0 \\ +0.0 \\ -27.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +22.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.4 \end{aligned}$	+0.0	30.9	46.0	-15.1	Vert
29	177.023 M	36.1	$\begin{array}{r} +0.0 \\ +17.3 \\ -28.2 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \end{aligned}$	+0.0	27.9	43.5	-15.6	Horiz
30	280.260 M	34.5	$\begin{array}{r} +0.0 \\ +20.6 \\ -28.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \end{aligned}$	+0.0	30.2	46.0	-15.8	Vert
31	501.412 M	36.9	$\begin{array}{r} +0.0 \\ +0.0 \\ -28.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +16.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +4.4 \end{aligned}$	+0.0	30.1	46.0	-15.9	Vert
32	722.629 M	29.6	$\begin{array}{r} +0.0 \\ +0.0 \\ -28.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +22.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.3 \end{aligned}$	+0.0	29.8	46.0	-16.2	Vert
33	383.465M	37.4	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ -28.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +16.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.7 \end{aligned}$	+0.0	29.7	46.0	-16.3	Vert
34	442.460 M	37.7	$\begin{gathered} +0.0 \\ +0.0 \\ -28.6 \end{gathered}$	$\begin{array}{r} +0.0 \\ +16.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	+0.0	29.6	46.0	-16.4	Vert
35	766.992M	29.0	$\begin{array}{r} +0.0 \\ +0.0 \\ -27.8 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +21.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.6 \end{aligned}$	+0.0	29.2	46.0	-16.8	Vert
36	235.994M	36.8	$\begin{array}{r} +0.0 \\ +17.5 \\ -28.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.8 \end{aligned}$	+0.0	29.1	46.0	-16.9	Horiz
37	398.210M	37.5	$\begin{array}{r} +0.0 \\ +0.0 \\ -28.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +15.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.8 \end{aligned}$	+0.0	29.0	46.0	-17.0	Vert
38	796.332M	28.6	$\begin{array}{r} +0.0 \\ +0.0 \\ -27.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +21.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.7 \end{aligned}$	+0.0	28.8	46.0	-17.2	Vert
39	693.142M	28.6	$\begin{array}{r} +0.0 \\ +0.0 \\ -28.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +22.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.2 \end{aligned}$	+0.0	28.8	46.0	-17.2	Vert

40	486.925M	35.7	$\begin{gathered} +0.0 \\ +0.0 \\ -28.6 \end{gathered}$	$\begin{array}{r} +0.0 \\ +16.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +4.3 \end{aligned}$	+0.0	28.5	46.0	-17.5	Vert
41	457.200M	36.4	$\begin{array}{r} +0.0 \\ +0.0 \\ -28.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +16.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +4.1 \end{aligned}$	+0.0	28.5	46.0	-17.5	Vert
42	177.021M	33.7	$\begin{array}{r} +0.0 \\ +17.3 \\ -28.2 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \end{aligned}$	+0.0	25.5	43.5	-18.0	Vert
43	427.730M	36.1	$\begin{array}{r} +0.0 \\ +0.0 \\ -28.5 \end{array}$	$\begin{array}{r} +0.0 \\ +15.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.9 \end{aligned}$	$+0.0$	27.8	46.0	-18.2	Vert
44	265.474 M	33.4	$\begin{array}{r} +0.0 \\ +19.2 \\ -28.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \end{aligned}$	+0.0	27.6	46.0	-18.4	Vert
45	265.516 M	33.2	$\begin{array}{r} +0.0 \\ +19.3 \\ -28.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \end{aligned}$	+0.0	27.5	46.0	-18.5	Vert
46	132.791M	34.2	$\begin{array}{r} +0.0 \\ +16.5 \\ -28.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.1 \end{aligned}$	$+0.0$	24.6	43.5	-18.9	Horiz
47	250.730 M	33.7	$\begin{array}{r} +0.0 \\ +17.9 \\ -28.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.9 \end{aligned}$	$+0.0$	26.6	46.0	-19.4	Vert
48	412.960 M	34.9	$\begin{array}{r} +0.0 \\ +0.0 \\ -28.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +15.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.9 \end{aligned}$	+0.0	26.5	46.0	-19.5	Vert
49	516.190M	32.8	$\begin{array}{r} +0.0 \\ +0.0 \\ -28.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +17.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +4.5 \end{aligned}$	$+0.0$	26.4	46.0	-19.6	Vert
50	206.505M	32.0	$\begin{array}{r} +0.0 \\ +16.9 \\ -28.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$+0.0$	23.4	43.5	-20.1	Horiz
51	545.678 M	31.3	$\begin{array}{r} +0.0 \\ +0.0 \\ -28.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +17.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +4.6 \end{aligned}$	+0.0	25.6	46.0	-20.4	Vert
52	206.498M	31.3	$\begin{array}{r} +0.0 \\ +16.9 \\ -28.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$+0.0$	22.7	43.5	-20.8	Vert
53	988.082M	28.9	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ -27.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +24.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +6.9 \end{aligned}$	$+0.0$	32.7	54.0	-21.3	Vert
54	988.111 M	28.4	$\begin{array}{r} +0.0 \\ +0.0 \\ -27.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +24.2 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +6.9 \end{aligned}$	+0.0	32.2	54.0	-21.8	Vert
55	118.024M	32.9	$\begin{array}{r} +0.0 \\ +15.0 \\ -28.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.9 \end{aligned}$	+0.0	21.6	43.5	-21.9	Horiz
56	236.003 M	31.4	$\begin{array}{r} +0.0 \\ +17.5 \\ -28.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.8 \end{aligned}$	+0.0	23.7	46.0	-22.3	Vert

57	199.700 k	56.6	+11.2	+0.1	-80.0	-19.0	-31.1	21.6	-52.7	None
58	250.800 k	52.8	+11.3	+0.1	-80.0	-19.0	-34.8	19.6	-54.4	None
59	354.100 k	48.6	+11.2	+0.1	-80.0	-19.0	-39.1	16.6	-55.7	None
60	301.200 k	49.9	+11.3	+0.1	-80.0	-19.0	-37.7	18.0	-55.7	None
61	404.500 k	45.9	+11.2	+0.1	-80.0	-19.0	-41.8	15.5	-57.3	None
62	81.900 k	54.9	+11.5	+0.1	-80.0	-19.0	-32.5	29.3	-61.8	None
63	133.000 k	47.1	+11.3	+0.1	-80.0	-19.0	-40.5	25.1	-65.6	None

