To: C. Lam (Continental Conair Limited)

From: Sandy Haase FCC Application Processing Branch

Date: May 1, 1998 FCC ID: LBBFF925

Applicant Name: C. Lam

Subject: Form 731 Confirmation Number

The items indicated below must be submitted before processing can continue on the above referenced application. Failure to provide the requested information within 60 days may result in application dismissal pursuant to Section 2.917(c) and forfeiture of the filing fee pursuant to Section 1.1106

We have logged the above referenced application into the Equipment Authorization System data base. The Confirmation Number assigned is:

EA89116

Please use this number, together with the FCC ID to determine the status of your pending application. Kindly disregard the correspondence Reference Number as no response to this correspondence is required.

DO NOT Reply to this email by using the 'Reply' button. In order for your response to be processed expeditiously, you must upload your response via the Internet at https://dettifoss.fcc.gov/beta/oet/index.html

Replies to this letter MUST contain the Reference Number: 134

LIST OF EXHIBITS

INTRODUCTION

EXHIBIT 1: General Description

EXHIBIT 2: System Test Configuration

EXHIBIT 3: Emission Results

EXHIBIT 4: Equipment Photographs

EXHIBIT 5: Product Labelling

EXHIBIT 6: Technical Specifications

EXHIBIT 7: Instruction Manual

EXHIBIT 8: Security Code Information

MEASUREMENT/TECHNICAL REPORT

Continental Conair Limited - MODEL: FF925(XXX) FCC ID: LBBFF925

This report concerns (check one:) Origin	nal Grant <u>X</u>	Class II Change
Equipment Type: Low Power Transceiver (e	xample: computer, mod	dem, transmitter, etc.)
Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? Yes	No_X
		er until :date
Company Name agrees to notify the Commis	ssion by: date	
of the intended date of announcement of th	e product so that the g	rant can be issued or
that date.	e product so that the g Yes	
of the intended date of announcement of the that date. Transition Rules Request per 15.37? If no, assumed Part 15, Subpart C for intended Edition] provision.	Yes	No_X

Table of Contents

	2
.0 General Description	ے ث
1.1 Product Description	2
1.2 Related Submittal(s) Grants	
1.3 Test Methodology	د
1.4 Test Facility	
	5
2.0 System Test Configuration	
2.1 Justification	
2.2 EUT Exercising Software	ل
2.3 Support Equipment List and Description	
2.4 Equipment Modification	/
	c
3.0 Emission Results	10
3.1 Field Strength Calculation	10
3.2 Radiated Emission Configuration Photograph - Base Unit	
3.3 Radiated Emission Data - Base Unit	1d 10
3.4 Radiated Emission Configuration Photograph - Handset	18
3.5 Radiated Emission Data - Handset	20
3.6 Radiated Emission on the bandedge	24
3.7 Line Conducted Configuration Photograph - Base Unit	27
3.8 Line Conducted Data - Base Unit	30
	35
4.0 Equipment Photographs	
5.0 Product Labelling	40
5.1 Label Artwork	41
5.2 Label Location	42
6.0 <u>Technical Specifications</u>	'1'
7.0 Instruction Manual	48
8.0 Security Code Information	

List of Figures

Eigura 5 1	FCC ID Label Artwork	4
riguic 5.1	FCC ID Label Location	42
Figure 5.2	FCC ID Laber Location.	4
Figure 6.1	Cordless Telephone Block Diagram	44
Figure 6.2	Cordless Telephone Circuit Diagram	40

EXHIBIT 1 GENERAL DESCRIPTION

1.0 General Description

1.1 Product Description

The FF925(XXX) is a 40 Channel Analog Modulation Cordless Phone with Digital Answering Machine. The unit is capable of either tone or pulse dialing. The internal power supply's isolation is accomplished through a power transformer having an adequate dielectric rating. The circuit wiring is consistent under the requirement of part 68.

The handset unit consists of a keypad with twelve standard keys (0, ..., 9, *, #), five function keys (memo, redial, flash, remote and intercom), and one channel switch key. A talk key is provided to control pick/release telephone line in a toggle base.

The base unit has a page/intercom key, which is used to page and talk with the handset unit.

The circuit description is listed in the following page.

Connection between the device and the telephone network is accomplished through the use of USOC RJ11C in the 2-wire loop calling central office line.

1. CIRCUIT DESCRIPTION

1.1. GENERAL

A. BASE UNIT

- 1). RECEIVER
- 2). DIGITAL SIGNAL
- 3). VOICE SIGNAL
- 4). TRANSMITTER
- 5). RINGER DETECTOR
- 6). POWER SUPPLY CIRCUIT

B. REMOTE UNIT

- 1). RECEIVER
- 2). DIGITAL SIGNAL
- 3). VOICE SIGNAL
- 4). TRANSMITTER
- 5). DIALING SIGNAL
- 6). BATTERY SAVING OPERATION

1.2. SYSTEM OPERATION

- 1). INCOMING CALL
- 2). OUTGOING CALL
- 3). DIALING
- 4). DIGITAL SECURITY CODING

The second secon

REFERENCE TO THE BLOCK DIAGRAM WILL BE OF CONSIDERABLE HELP IN UNDERSTANDING THE OPERATION OF THE FF925 CIRCUITRY. PLEASE REFER TO THE SCHEMATIC DIAGRAM FOR SPECIFIC COMPONENT DETAILS.

- 1. 1 GENERAL
- A. BASE UNIT

1). RECEIVER

THE RF SIGNAL FROM THE ANTENNA IS FED THROUGH THE ANTENNA DUPLEXER DUP 1 TO THE RF AMPLIFIER Q1.

THE AMPLIFIED RF SIGNAL IS THEN HETERODYNED BY IST MIXER Q2 WITH THE IST LOCAL SIGNAL SUPPLIED FROM PLL (PHASE-LOCKED-LOOP) FREQUENCY SYNTHESIZER CONSISTING OF RX VCO AND PLL IC IC2, PRODUCING A FIRST IF SIGNAL (10.6875MIz).

THE 1ST IF SIGNAL IS THEN AMPLIFIED BY Q2 THROUGH CERAMIC FILTER CF1 AND CF2 WHICH SUPPRESSES THE 2ND IF IMAGE SIGNAL, AND FED TO 2ND MIXER WITHIN ICI, WHERE THE 1ST IF SIGNAL HETERODYNED WITH 2ND LOCAL SIGNAL SUPPLIED FROM CPU CLOCK OSCILLATOR (8. OMHz), PRODUCING A 2. 6875KHz 2ND IF.

THE 2ND IF SIGNAL IS FED TO THE IF LIMITTER AMPLIFIER WITHIN IC1. THE AMPLIFIED 2ND IF SIGNAL IS THEN DELIVERED TO THE DISCRIMINATOR WITHIN IC1 WHICH PRODUCES AN AUDIO OUTPUT IN RESPONSE TO A CORRESPONDING CHANGE IN THE FREQUENCY OF THE 2ND IF SIGNAL.

THE DISCRIMINATOR OUTPUT SIGNAL CONSISTS OF DIGITAL AND VOICE SIGNALS.

2). DIGITAL SIGNAL

THE DIGITAL SIGNAL WITH "TALK-ON", "TALK-OFF", DIAL DIGIT, FLASH, CHANNEL CHANGE, AND SECURITY CODE IS SHAPED WAVE FROM BY DATA SHAPER WITHIN ICI, AND THEN FED TO THE CPU IC101. THE CPU DECODES THE DIGITAL SIGNAL TO REFORM REQUIRED OPERATION.

3). VOICE SIGNAL

THE VOICE SIGNAL IS FED TO THE EXPANDER WITHIN IC1 TO BE RETURNED ITS ORIGINAL DYNAMIC RANGE. THE VOICE SIGNAL IS THEN DELIVERED TO THE TELEPHONE LINE THROUGH THE AMPLIFIER WITHIN Q102, HYBRID CIRCUIT Q104, AND THE ISOLATION TRANSFORMER T101.

4). TRANSMITTER

THE VOICE SIGNAL FROM THE TELEPHONE LINE THROUGH THE HYBRID CIRCUIT Q104 IS AMPLIFIED BY Q103 AND FED TO THE COMPRESSOR WITHIN IC1 TO COMPRESS ITS DYNAMIC RANGE. THE COMPRESSED VOICE SIGNAL IS APPLIED TO THE VARACTOR D2 FOR FREQUENCY MODULATION. A 903MHz CARRIER IS PRODUCED BY PLL CIRCUIT CONSISTING OF VCO AND PLL IC 1C2. THE MODULATED CARRIER IS AMPLIFIED BY Q4 AND TRANSMITTED INTO THE ANTENNA THROUGH THE DUPLEXER DUP1.

5) RINGER DETECTOR

THE INCOMING RING SIGNAL IS DETECTED BY THE PHOTO COUPLER PC101 WHICH OUTPUT IS CONNECTED PIN 9 OF CPU AND CHECKED ITS FREQUENCY BY CPU. THE "RING" CODE IS THEN GENERATED AND DELIVERED TO THE VARACTOR D2 FOR MODULATION.

6). POWER SUPPLY CIRCUIT

THE POWER SUPPLY CIRCUIT IS COMPOSED OF RIPPLE REJECTION CIRCUIT Q108, 5V REGULATOR CIRCUIT IC207 & IC208, AND REMOTE BATTERY CHARGE REGULATOR CIRCUIT Q109 & D107.

B. REMOTE UNIT

1). RECEIVER

THE RF SIGNAL FROM THE ANTENNA IS FED THROUGH THE ANTENNA DUPLEXER DUP401 TO THE RF AMPLIFIER Q401.

THE AMPLIFIED RF SIGNAL IS THEN HETERODYNED BY 1ST MIXER Q403 WITH THE FIRST LOCAL SIGNAL SUPPLIED FROM PLL FREQUENCY SYNTHESIZER CONSISTING OF RX VCO AND PLL IC IC402, PRODUCING A FIRST IF SIGNAL (10.6875MHz).

THE 1ST IF SIGNAL IS THEN AMPLIFIED BY Q405 THROUGH CERAMIC FILTER CF402 AND CF403 WHICH SUPPRESES THE 2ND IF IMAGE SIGNAL, AND FED TO 2ND MIXER WITHIN 1C401, WHERE THE 1ST IF SIGNAL IS HETERODYNED WITH 2ND LOCAL SIGNAL (12.375MHz) SUPPLIED FROM THE TRIPLED CPU CLOCK OSCILLATOR (4.125MHz), PRODUCING A 1.6875MHz 2ND IF.

THE 2ND IF SIGNAL IS FED TO THE IF LIMITER AMPLIFIER WITHIN 1C401. THE AMPLIFIED 2ND IF SIGNAL THEN DELIVERED TO THE DISCRIMINATOR WITHIN IC401 AND PRODUCES AS AUDIO OUTPUT IN RESPONSE TO A CORRESPONDING CHANGE IN THE FREQUENCY OF THE 2ND IF SIGNAL.

THE DISCRIMENATOR OUTPUT SIGNAL CONSISTS OF DIGITAL AND VOICE SIGNALS.

2). DIGITAL SIGNAL

THE DIGITAL SIGNAL WITH INCOMING CALL, PAGING CALL, OR A SECURITY CODE IS SHAPED WAVE FORM BY DATA SHAPER WITHIN IC401 AND THEN FED TO THE CPU IC403. THE CPU DECODES THE DIGITAL SIGNAL AND DRIVES THE BUZZER.

3). VOICE SIGNAL

THE VOICE SIGNAL IS FED TO THE EXPANDER WITHIN IC401 TO BE RETURNED ITS ORIGINAL DYNAMIC RANGE. THE VOICE SIGNAL IS THEN DELIVERED TO THE SPEAKER THROUGH THE DRIVE CIRCUIT Q407.

4). TRANSMITTER

THE VOICE SIGNAL ENTERED FROM THE MICROPHONE IS AMPLIFIED BY Q406 AND FED TO THE COMPRESSOR WITHIN 1C401 TO BE COMPRESSED ITS DYNAMIC RANGE. THE COMPRESSED VOICE SIGNAL IS APPLIED TO THE VARACTOR D402 FOR FREQUENCY MODULATION. THE 926MHz CARRIER IS PRODUCED BY PLL CIRCUIT CONSISTING OF TX VCO AND PLL IC IC402. THE MODULATED CARRIER IS AMPLIFIED BY Q402 AND TRANSMITTED INTO THE ANTENNA THROUGH THE DUPLEXER DUP401.

5). DIALING SIGNAL

WHEN THE "TALK" KEY IS PRESSED, THE TRANSMITTE CIRCUIT IS ACTIVATED. THEN THE "TALK-ON" DIGITAL DATA WITH ID CODE IS DELIVERED TO THE VARACTOR D402 FOR MODULATION. AFTER THAT THE DIGIT KEY DATA IS SENT TO THE BASE UNIT.

6). BATTERY SAVING OPERATION

THE RECEIVER CIRCUIT UNDER STAND BY MODE WORKS PERIODICALLY TO EXTEND BATTERY LIFE. THE PERIODICAL DC POWER TO THE RECEIVER IS CONTROLLED BY CPU.

1). INCOMING CALL

WHEN INCOMING RING SIGNAL IS DETECTED BY RINGER DETECTOR, THE TRANSMITTER IS ACTIVATED, AND "RING" CODE IS SENT TO THE REMOTE UNIT ALONG WITH ID CODE FROM PIN 19 OF BASE CPU UNTIL THE RING SIGNAL STOPS.

WHEN "RING" CODE IS DEMODULATED IN THE REMOTE UNIT, THE REMOTE CPU WILL DECODE IT AND GENERATE RING TONE TO THE BUZZER THROUGH THE DRIVE CIRCUIT Q411.

2). OUTGOING CALL

WHEN "TALK" KEY ON THE REMOTE UNIT IS PRESSED, PIN 17 OF REMOTE CPU GOES "LOW", CAUSING TX B+ SWITCH Q409 TO TURN ON. THEN THE TRANSMITTER IS ACTIVATED AND "TALK-ON" CODE IS SENT TO THE BASE UNIT ALONG WITH ID CODE GENERATED FROM PIN 19 OF CPU.

WHEN THE BASE CPU DECODES "TALK-ON" CODE AND THE REMOTE 1D CODE COINCIDE WITH THE BASE ID CODE, PIN.23 OF THE BASE CPU GOES "HIGH". AND THEN THE TEL. LINE LOOP RELAY RLY101 IS ACTIVATED.

3). DIALING

THE DIAL SIGNAL IS SENT TO THE BASE UNIT ACCORDING TO THE PRESSED KEY.

UPON RECEIPT OF DIAL SIGNAL, THE BASE UNIT GENERATES EITHER PULSE DIAL SIGNAL OR DTMF TONE SIGNAL ACCORDING TO THE TEL. LINE MODE SELECT SWITCH SW101 POSITION.

UPON RECEIPT OF "*" SIGNAL AT PULSE MODE, THE BASE UNIT CHANGES DIAL MODE TO TONE MODE UNTIL THE LINE IS TERMINATED.

UPON RECEIPT OF "FLASH" SIGNAL, THE BASE UNIT OPENS THE TEL. LINE LOOP FOR A MOMENT.

UPON RECEIPT OF "REDIAL" SIGNAL, THE BASE UNIT OUTPUTS THE SAME DIAL DIGIT AS THE LAST DIAL WHICH STORED IN BASE CPU MEMORY.

UPON RECEIPT OF "MEMORY" + "LOCATION NO." SIGNAL, THE BASE UNIT RECALL THE DIAL DIGITS WHICH STORED IN THE BASE CPU MEMORY AND OUTPUTS THEM TO THE TEL. LINE.

2. Part list

BASE

REF. No.	DESCRIPTION	VENDER		
CF1	DTELEC. BPF B69812-N9266-A803	SIEMENS		
CF2	CER. FILTER SFE10.7MJA10-A	MURATA		
CF3	CER. FILTER SFE10.7MS2-A	MURATA		
D1	DIODE CHIP DAN217	ROHM		
D2/3	DIODE CHIP VARACTOR HVU202A	HITACHI		
D107	DIODE ZENER MTZJ8. 2B	ROHM		
DUP1	SAW DUPLEXER B4008	SIEMENS		
[C]	IC 1F/COMPANDOR TK10762V	ТОКО		
1C2	IC PLL TB31216FN	TOSHIBA		
TC101	IC CPU TMP87P808M	TOSHIBA		
IC207/208	TC REGULATOR KA7805	SAMSUNG		
L4	COIL 7PLY 2.6875MHz	ТОКО		
L9	CHIP INDUCTOR 2. 7uH	TATYO YUDEN		
L15	CHTP_INDUCTOR_3.9uH	TATYO YUDEN		
PC101/201	PHOTO COUPLER PS2501-1	NEC		
Q1	CHIP TRANSISTOR NPN 2SC4899YII			
Q2/3/4	CHTP TRANSISTOR NPN 2SC4570T73	NEC		
Q102/103/104	CHIP TRANSISTOR NPN BC846BLT1	MOTOROLA		
Q109	TRANSISTOR NPN LM8050J			
T101	HYBRID TRANS EI-24 AEC-789/922	ALPHA		
TC1/2	CHIP TRIMMER TC13C060C 6pF	SCIMAREC		

REMOTE

REF. No.	DESCRIPTION	VENDER		
CF401	DIELEC. BPF B69812-N9046-A803 SIEMENS			
CF402	CER. FULTER SFE10.7MJA10-A MURATA			
CF403	CER. FILTER SFE10. 7MS2-A MURATA			
D401/402	DIODE CHIP VARACTOR HVU202A HITACHI			
DUP401	SAW DUPLEXER B4009	SIEMENS		
IC401	IC IF/COMPANDOR TK10762V	ТОКО		
IC402	TC PLL TB31216FN	TOSHTBA		
IC403	IC CPU TMP87P808M	TOSHIBA		
IC404	REG. IC 3V TK11230BM	ТОКО		
L412	CHIP INDUCTOR 3. 3ull	TATYO YUDEN		
L413	COIL 7PLY 1.6875MHz TOKO			
L415	CHIP INDUCTOR TOUL	TATYO YUDEN		
1.416	CHIP INDUCTOR 6, 8uH	TAIYO YUDEN		
Q401	CHIP TRANSISTOR 2SC4899YH	HITACHI		
Q402/403/405	CHIP TRANSISTOR NPN 2SC4570T73	NEC		
Q406/407/410	CHIP TRANSISTOR NPN BC846BLT1	T1 MOTOROLA		
Q411/Q412				
Q409	CHIP TRANSISTOR PNP BC856BLT1 MOTOROLA			
TC401/402	O2 CHIP TRIMMER TC13C060C 6pF SCIMAREC			

3. THE PROTECTION FROM UNINTENTIONAL ACCESS

AS EXPLAINED AT THE ITEM 1.2 4) DIGITAL SECURITY CODING OF THE CIRCUIT DESCRIPTION.

THE FF925 INCORPORATES THE 16-BITS DIGITAL SECURITY CODE. ACCESS TO THE TELEPHONE NETWORK OCCURS ONLY IF THE CODE TRANSMITTED BY THE HANDSET MATCHES CODE SET IN THE BASE UNIT. SIMILARLY, RINGING OF THE HANDSET OCCURS ONLY IF THE CODE TRANSMITTED BY THE BASE UNIT MATCHES THE CODE SET IN THE HANDSET.

4. Description of ch scanning

- 1) CHANNEL FREQUENCY PLAN REFER TO TABLE 1.
- 2) CHANNEL FREQUENCY MAP & CHANNEL ADVANCE SEQUENCE REFER TO TABLE 2.
- 3) CONTROL CHANNEL
- (1) CONTROL CHANNEL IS THE CHANNEL WHICH BOTH REMOTE AND BASE UNIT WILL USE FOR CONNECTION CONTROL. IN STANDBY MODE THE BOTH UNITS WILL STAY ON THIS CHANNEL. AS LONG AS THE CONTROL CHANNEL IS EMPTY (NOT OCCUPIED), IT IS USED FOR THE VOICE CHANNEL ALSO.
- (2) THE CONTROL CHANNEL IS SELECTED RANDOMLY BY BASE UNIT AT SET UP SEQUENCE WHEN REMOTE UNIT IS CRADLED ON BASE UNIT. THE CONTROL CHANNEL IS SELECTED FROM CHI ~ CH36, AND THE CH40 IS USED FOR THE
- (3) BASE UNIT WILL AUTOMATICALLY SCAN THE EMPTY CHANNELS ON STANDBY MODE AS DESCRIBED IN ITEM 4. THE NEW CHANNEL INFORMATION SELECTED AS A NEW CONTROL CHANNEL WILL BE SENT TO REMOTE UNIT DURING THE OUTGOING CALL SEQUENCE OR THE INCOMING CALL SEQUENCE.
- 4) AUTO SCAN AND CHANNEL SELECT
- (1) BÁSÉ UNIT WILL NOT START SCÁN OTHER CHANNELS AS LONG AS THE CURRENT CONTROL CHANNEL IS EMPTY.
- (2) IF THE RF CARRIER IS DETECTED ON THE CONTROL CHANNEL, THE OUTGOING CALL SIGNAL FROM REMOTE UNIT IS MONITORED FOR 300msec.
- (3) IF THE CONTROL CHANNEL IS OCCUPIED, BASE UNIT WILL START TO SCAN OTHER CHANNELS. THE CHANNEL SCANNING SEQUENCE IS SHOWN IN TABLE 2.
- (4) THE CHANNEL WHICH IS FOUND OUT AS A EMPTY CHANNEL WHILL BE MEMORIZED AS A NEW VOICE CHANNEL IN BASE UNIT.
- (5) THE NEW VOICE CHANNEL WILL BE SCANNED TO CHECK THE EMPTINESS IN EVERY 500msec.

	BASE				REMOTE				
011	TV Casa	TX VCO	RX Freq.	RX VCO	TX Freq.	TX VCO	RX Freq.	RX VCO	
CH	TX Freq.		925.3125	914.6250	925.3125	925.3125	902.2500	912.9375	
1	902.2500	902.2500	925,3750	914.6875	925.3750	925.3750	902.3125	913,0000	
2	902.3125	902.3125	925.4375	914.7500	925.4375	925.4375	902.3750	913.0625	
3	902.3750	902,3750		914.8125	925.5000	925.5000	902.4375	913.1250	
4	902.4375	902.4375	925.5000	914.8750	925.5625	925.5625	902.5000	913.1875	
5	902.5000	902.5000	925.5625	914.9375	925.6250	925.6250	902.5625	913.2500	
6	902.5625	902.5625	925.6250	915.0000	925.6875	925.6875	902.6250	913.3125	
7	902.6250	902.6250	925.6875	915.0625	925.7500	925.7500	902.6875	913.3750	
8	902.6875	902.6875	925.7500		925.8125	925.8125	902.7500	913.4375	
9	902.7500	902.7500	925.8125	915.1250	925.8750	925.8750	902.8125	913.5000	
10	902.8125	902.8125	925.8750	915.1875	925.9375	925.9375	902.8750	913.5625	
11	902.8750	902.8750	925.9375	915.2500	926.0000	926.0000	902.9375	913.6250	
12	902.9375	902.9375	926.0000	915.3125		926.0625	903.0000	913.6875	
13	903.0000	903.0000	926.0625	915.3750	926.0625	926.1250	903.0625	913.7500	
14	903.0625	903.0625	926,1250	915.4375	926.1250	926.1236	903.1250	913.8125	
15	903.1250	903.1250	926.1875	915.5000	926.1875	926.2500	903.1875	913.8750	
16	903.1875	903.1875	926.2500	915.5625	926.2500	926.2300	903.2500	913.937	
17	903.2500	903.2500	926.3125	915.6250	926.3125		903.3125	914.0000	
18	903.3125	903.3125	926.3750	915.6875	926.3750	926.3750	903.3750	914.062	
19	903.3750	903.3750	926.4375	915.7500	926.4375	926.4375	903.4375	914.1250	
20	903.4375	903.4375	926.5000	915.8125	926.5000	926,5000	903.5000	914.187	
21	903.5000	903.5000	926.5625	915.8750	926.5625	926.5625	903.5625	914.250	
22	903.5625	903,5625	926.6250	915.9375	926.6250	926.6250	903.6250	914.312	
23	903.6250	903.6250	926.6875	916.0000	926.6875	926.6875	903.6875	914.375	
24	903.6875	903.6875	926.7500	916.0625	926.7500	926.7500	903.7500	914.437	
25	903.7500	903.7500	926.8125	916.1250	926.8125	926.8125	·	914.500	
26	903.8125	903.8125	926.8750	916.1875	926,8750	926.8750	903.8125	914.562	
27	903.8750	903.8750	926.9375	916.2500	926.9375	926.9375	903.8750	914.625	
28	903.9375	903.9375	927.0000	916.3125	927.0000	927.0000	903.9375		
29	904.0000	904.0000	927.0625	916.3750	+	927.0625	904.0000	914.687	
30	904.0625	904.0625	927.1250	916.4375	927.1250	927.1250	904.0625	914.750	
31	904.1250	904.1250	927.1875	916.5000	927.1875	927.1875	904.1250	914.812	
32	904.1875	904.1875	927.2500	916.5625	927.2500	927.2500	904.1875	914.875	
33	904.2500	904.2500	927.3125	916.6250	927.3125	927.3125	904.2500	914.937	
34	904.3125	904.3125	927.3750	916.6875	927.3750	927.3750	904.3125	915.000	
35	904.3750	904.3750	927.4375	916.7500	927.4375	927.4375	904.3750	915,062	
36	904.4375	904.4375	927.5000	916.8125	927.5000	927.5000	904.4375	915.125	
37	904.5000	904.5000	927.5625		927.5625	-	904.5000	915.187	
38	904.5625	904.5625	927.6250	916.9375	927.6250		904.5625	915.250	
39	904.6250	· · · · · · · · · · · · · · · · · · ·	927.6875		927.6875		904.6250	915.312	
40	904.6875		927.7500	917.0625	927.7500		904.6875	915.375	
CPU CLK	8.0000			4.125					
2ND LO.			0000			12.375			
1ST IF			.6875		10.6875				
2ND IF			6875		1.6875				

1.2 Related Submittal(s) Grants

This is an Application for Certification of a cordless telephone system. Two transmitters are included in this Application. This specific report details the emission characteristics of each transmitter. The receivers are subject to the verification authorization process, in accordance with 15.101(b). A verification report has been prepared for the receiver sections of each device. The device is also subject to Part 68 Registration.

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (1992). All measurements were performed in Open Area Test Sites. Preliminary scans were performed in the Open Area Test Sites only to determine worst case modes. For each scan, the procedure for maximizing emissions in Appendices D and E were followed. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been fully placed on file with the FCC.