FCC ID: L9G646100SP-VT

Technical Description:

The brief circuit description is listed as follows:

- BF2520 and associated circuit act as Filter.
- RTC6701 and associated circuit act as Modulator and Frequency Mixer.
- VC0702NJSD and associated circuit act as Video Encoder.
- VA6251 and associated circuit act as Digital Image Sensor.
- AT24C16 and associated circuit act as EEPROM.

Type of Modulation:

Frequency Modulation (FM)

Antenna Used:

An internal integral antenna has been used.

V(0) 4

Data Sheet

MAY 2006

RTC6701 CMOS 2.4GHz FM/FSK Transmitter

Product Description

The RTC6701 is a FM/FSK transmitter intended for application on 2.4GHz ISM band analog FM or digital FSK transmission. The chip includes a RF modulator, two channels of audio modulator and a power amplifier with up to +11.5dBm power output. The RF modulator block, which is frequency-synthesizer based with an integrated 2.4GHz VCO, generates the 2.4GHz FM signal modulated from stereo audio L(left)/R(left) signals. On-chip two audio modulators with stereo audio input signals provide the FM audio modulated signal at 6 MHz and 6.5MHz, respectively. Monaural application is also possible by turning off one of two audio modulators.

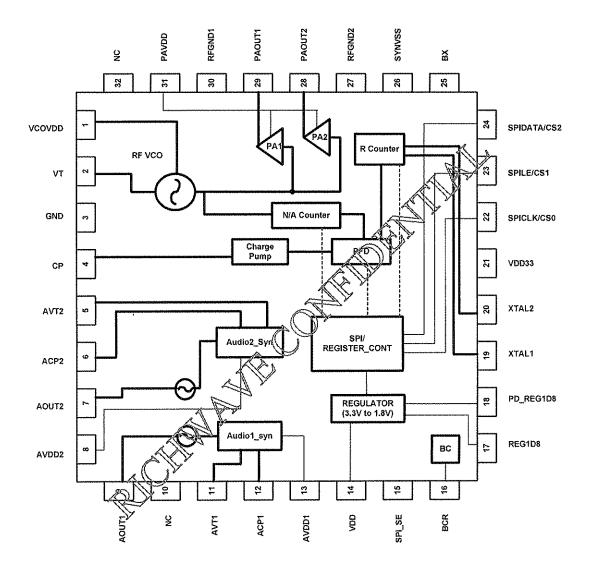
Transmission frequency can be set by internal register via SPI programming, or by selecting among 4 fixed channels using three dedicated pins. Output power of 1.5 Bm or +11.5 dBm can be configured via pins 28 and 29 to fit CE/FCC requirement earns. The device is available in a 32-pin QFN package.

Features

- 3.3V power supply
- 2.4GHz ISM band FM modulator
- FM/FSK transmitter operation
- Simple three digital pins setting a xed channels to eliminate external micro-controller
- Output Power +1.5dBm or + DadBm, selected by pin connection
- FM sound carriers at 6 and 5.5MHz
- CMOS technology
- On-chip VCO and PL
- Transmitter frequency programmability by SPI
- 32-pin leadles QFN package

Application

- AV Sender
- FSK transmitter
- Baby Monitor
- Wireless Camera
- Wireless Audio
- Wireless Earphone


www.richwave.com.tw Specifications subject to change without notice Rev V0.4

RichWave

RTC6701

V0.4 Data Sheet MAY 2006

Block Diagram

RichWave

RTC6701

MAY 2006 Data Sheet V0.4

Pin Descriptions

	rescriptions		
PIN	NAME	I/O	FUNCTION
1	VCOVDD	Supply In	VDD for VCO ¹
2	VT	Analog In	Vtune for VCO
3	GND	Analog GND	Analog GND
4	CP	Analog Out	Synthesizer charge pump output
5	AVT2	Analog In	Vtune for audio 2 PLL
6	ACP2	Analog Out	Charge pump for audio 2
7	AOUT2	Analog Out	FM modulated audio 2 output
8	AVDD2	Supply In	3.3V power supply for audio 2 modulator
9	AOUT1	Analog Out	FM modulated audio 1 output
10	NC	NC	NC \\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
11	AVT1	Analog In	Vtune for audio 1 PLL
12	ACP1	Analog Out	Charge pump for audio 1
13	AVDD1	Supply In	3.3V power supply for audio 1 produtator
14	VDD	Supply In	3.3V Digital DC power supply
15	SPI_SE	Digital In	Switch mode or SPI selection (Internal pull high)
16	BCR	Analog I/O	Reference current by connecting 10k resistor
17	REG1D8	Analog Out	Regulator OUT 1.8 regulator output
18	PD_REG1D8	Digital In	Power down for V regulator 1: Power Down 9: Power On
19	XTAL1	Analog I/O	Crystal compection
20	XTAL2	Analog I/O	Crystal connection
21	VDD33	Supply In	3.3 DC power supply for digital circuits
22	CS0	Digital In	Easy channel selection ² (Internal pull high)
22	SPICLK	Digital In	SP bus clock input
22	CS1	Digital In	Easy Channel selection ² (Internal pull high)
23	SPILE	Digital Ia	SPI bus latch enable input
24	CS2	Digitation	Easy Channel selection ² (Internal pull high)
24	SPIDATA	Digital in	SPI bus data input
25	BX	ADEital In	Alternative band selection ² (Internal pull high)
26	SYNVSS 🙏	Digital GND	Digital GND for synthesizer
27	RFGND2	Analog GND	RF GND
28	PAOUT2	Analog Out	Connect with PAOUT1 for +12dBm output
29	PAOUT1	Analog Out	PA output for 0dBm
30	RFGND1	Analog GND	RF GND
31	PAVDD	Supply In	3.3V VDD for PA ESD
32	NC	NC	NC
	3 37 5	to the second and second	

Note 1. Connect to 3.3V supply through a resistor. Nominal voltage at this pin=2.5V.

Note 2. Digital pins (15, 22, 23, 24, 25) with internal pull-high circuits can be left floating for logical high.

ELECTRICAL SPECIFICATIONS

(1) Absolute Maximum Ratings

SYMBOL	PARAMETER	Ratings	UNIT
Tstr	Storage Temperature Range	-65 to +150	°C
Totr	Operating Temperature Range	-40 to +85	°C
Vdd	Supply Voltage	-0.5 to +5	V
Vlog	Logic control signal	-0.5 to +5	V

The maximum rating must not be exceeded at any time. Do not operate the device under conditions outside the above ratings.

(2) DC Electrical Characteristics

SYMBOL	PARAMETER	CONDITION	MIN.	TYP	MAX.	UNIT
Tj	Temperature Range	-	-40	A25 V	85	°C
VDD	Supply Voltage		3.1	(3.3)	3.5	V
I_RF	Power consumption for chip (+12dBm output)	TT 25C, 3.3V		49		mA
I_module	Power consumption for module	TT 25C, 3.3V		54		mΑ
I_pd	Power down current leakage	TT 25C, 3.334		1	10	uA
Fref	Oscillator operating frequency		7	8		MHz
Λ ^I IH	High Level Input Voltage for Digital Interface	V_10-3/V	0.7xV_IO		V_IO+0.3	V
V_IL	Low Level Input Voltage for Digital Interface	OY .	-0.3		0.3xV_IO	V

(3) Transmitter Specifications

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Fc	Frequency Range		2.37		2.51	GHz
Pout_H*	Maximum output power at high power mode	Connect PAOUT1 and PAOUT2	10.5	11.5	12.5	dBm
Pout_L*	Maximum output power at low power mode	Connect PAOUT1 only	0.5	1.5	2.5	dBm
2ndH_H*	The 2 nd Harmonic referenced with the fundamental signal at high power mode	With reference filter design		-30		dBc
PN	The phase noise at 2414GHz	100KHz offset 1MHz offset		-85 -110		dBc/Hz
3rdH_H*	The 3 rd Harmonic referenced with the fundamental signal at high power mode	With reference filter design		-40		dBc
2ndH_L*	The 2 nd Harmonic referenced with the fundamental signal at low power mode	With reference filter design		-30		dBc
3rdH_L*	The 3 rd Harmonic referenced with the fundamental signal at low power mode	With reference filter design		-40		dBc
* All with pro	per match at the PA output, before further of	eramic filtering.				

www.richwave.com.tw Specifications subject to change without notice Rev V0.4

Rich Wave

RTC6701

VO.4 Data Sheet MAY 2006

(3) Transmitter Specifications (continued)


PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Video input impedance (as reference design)			75		Ω
Video peak to peak input voltage (as reference design)	75 ohm load		1		Vpp
Video carrier to audio carrier ratio (as reference design)	No video and audio signal in	24	27	30	dBc
Audio carrier frequency	Left sound Right sound	-	6 6.5	***************************************	MHz
Audio peak to peak voltage at audio Vtune pin	@1KHz tone input with ±25KHz frequency deviation		33 A		m∨pp
Total harmonic distortion measurement by RTC6711 receiver	@1KHz tone input with ±25KHz frequency deviation		0.6	0.9	%
3dB corner frequency of pre-emphasis (as reference design)		DE LA	4		kHz
Audio SNR (as reference design,) With pre-emphasis/ de-emphasis,	@1KHz tone input with ±25KHz frequency deviation	45	47	**************************************	dΒ
	Video input impedance (as reference design) Video peak to peak input voltage (as reference design) Video carrier to audio carrier ratio (as reference design) Audio carrier frequency Audio peak to peak voltage at audio Vtune pin Total harmonic distortion measurement by RTC6711 receiver 3dB corner frequency of pre-emphasis (as reference design) Audio SNR (as reference design,) With pre-emphasis/de-emphasis,	Video input impedance (as reference design) Video peak to peak input voltage (as reference design) Video carrier to audio carrier ratio (as reference design) Audio carrier frequency Audio peak to peak voltage at audio Vtune pin Total harmonic distortion measurement by RTC6711 receiver 3dB corner frequency of pre-emphasis (as reference design) Audio SNR (as reference design)	Video input impedance (as reference design) Video peak to peak input voltage (as reference design) Video carrier to audio carrier ratio (as reference design) Audio carrier frequency Audio peak to peak voltage at audio Vtune pin Total harmonic distortion measurement by RTC6711 receiver 3dB corner frequency of pre-emphasis (as reference design) Audio SNR (as reference design) 45 frequency deviation	Video input impedance (as reference design) Video peak to peak input voltage (as reference design) Video carrier to audio carrier ratio (as reference design) Audio carrier frequency Audio peak to peak voltage at audio Vtune pin Total harmonic distortion measurement by RTC6711 receiver 3dB corner frequency of pre-emphasis (as reference design) Audio SNR (as reference design) 45 47 47 47	Video input impedance (as reference design) Video peak to peak input voltage (as reference design) Video carrier to audio carrier ratio (as reference design) Audio carrier frequency Left sound Right sound Audio peak to peak voltage at audio Vtune pin Total harmonic distortion measurement by RTC6711 receiver 3dB corner frequency of pre-emphasis (as reference design) Audio SNR (as reference design) Audio Pakt tone input with ±25KHz (as tone the tone t

V0.4

Data Sheet

MAY 2006

(4) SPI Digital Timing Diagram

ŀ	Parameter	Min.	Typ.	May	Unit
	tl	20	- (ns
	t2	20	- 🙈	9 -	ns
	t3	30	<u></u>		ns
Γ	14	30 4		-	ns
	t5	100	9 .	-	ns
Γ	t6	2027	-	-	ns
	17	1200,	-	-	ns
*	A	7	*		

Note:

1.) On the rising edge of the clock, one bit of data is transferred into the shirt register.

2.) LE should be *L* when the data is transferred into the shirt register.

RichWave

RTC6701

V0.4

Data Sheet

MAY 2006

Channel Selection

There are two principle modes for channel selection.

SPI_SE (Pin 7)	High	Low
Mode	SPI Mode	Easy Channel Selection Mode

(1) Easy channel selection mode

When pin 15 (SPI_SE) is set at low (0V), the chip operates in easy channel selection mode. Operation frequency can be selected by the pins 25(BX), 24(CS2), 23(CS1) and 22(CS0). The selected channel frequencies are listed in the table below.

BX=0

Pin25 (BX) is pulled to low for normal ISM band, and operation frequency table show as following Table.

BX	SPI SE		Pin22/Pin/23/ CS0/CSA/C	Pin24 282	
		011	(1997) Y	110	111
0	0	2414MHz	02432MHz	2450MHz	2468MHz

BX=1

Reserved for alternative band selection

(2) SPI mode

When pin 15 (SPI_SE) is set at high (3.5V), the chip works as in the SPI mode and the pins 24(SPIDATA), 23(SPILE) and 32(SPICLK) are used for 'SPI' inputs for 3-wire programming interface. The BX is "don't care"

SPI REGISTER DEFINITION

Address 00: Synthesizer Register A

A A 47						7																		
Bits	23		21	20_	10	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	-	0
Name				$\langle \langle \rangle \rangle$			Syn	RF_R	Res	7								Syn	RF A	Reg	ž		addr	ess
PIN		R13				R9	R8	R7	R6	R5	R4		R2	R1	R0	A6	A5	A4	A3	A2	A1	A0		
Default	0	0	0	0 '	0	0	1	1	0	0	1	0	0	0	0	0	1]	1	1	0	0	0	0

Syn_RF_R_Reg: R counter divider ratio control register [14:0] Syn_RF_A_Reg: A counter divider ratio control register [6:0]

R14=MSB, R0=LSB

For integer N Synthesizer, the RF LO frequency is calculated by $(N*64+A)*f_{ref}/R$, where f_{ref} is the frequency of external reference oscillator (8 MHz). Ex for channel 1 operation (f = 2414MHz)

Default: R=400; N=1885; A=60 2414MHz=(1885*64+60)*8MHz/400

www.richwave.com.tw Specifications subject to change without notice Rev V0.4

RTC6701

MAY 2006 Data Sheet V(0)-23

Address 01: Synthesizer Register B

				<u></u>															******		~~~~~			
Bits	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	l	0
Name						Syn_	RF_N	I_Re	g						CP_R	F	SC _trl		N	lot us	ed		add	ress
PIN	N12	NII	NIO	N9	N8	N7	N6	N5	N4	N3	N2	Nl	N0		Ι.									
Default	0	0	1	1	1	0	1	0	1	1	I	0	1	0	0	1	0	X	Х	X	Х	X	0	1

Syn_RF_N_Reg: N counter divider ratio control register [12:0] (default R ratio=400) CP_RF [2:0] RF charge pump current control (from 50uA to 6mA, default=100uA)

SC_ctrl: external/internal SC_select control pin (LOW=internal). If set "1" in RTC67 series then charge pump will enter the testing mode ----Only for internal testing

Address 10: Synthesizer Register C

11441	000	ı v.	ω_{j}	TT CYT.	COL	· · ·			. ~															
Bits	23	22	21	20		18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		ot Us		T			N	ot Us					M	out	PRI	5 CO1	itrol	N	ot us	ed	PA_	Byas	addre	ess
PIN	T			8	7	6	5	4	3	2	1	0	1	0	2	1	0			L	1	W	L <u>»</u>	
Default	X	X	X	X	X	X	Х	X	Х	X	X	Х	0	0	1	0	I	X	Х	X	1	1.0	7 1	0

: Multi-function output select Mout

(00,01,11,10)=(gnd, lock in detect, RF divider output, reference clk output)

PRE_control[2:0]: prescalar current control (20~140uA)

PA_Bias[1:0]: PA bias resistor selection

Address 11: Synthesizer Register D

1 14441			~,					~~ + + -								_	<u> </u>	3.t						
Bits	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	W	16	5	4	3	2	1	0
Name			-	•	N	ot Us							osc	FD		>>	idio_	div		Not use d	A	CP	addre	288
PIN	T	T			T	Ι	T	1	T	Т	T	1	T Q	1	\ 7	6	5	4	3	2	1	0		
Default		X	X	X	X	X	X	X	X	X	X	1	Ţά	19)	120	1	0	0	1	0	0	0	1	1

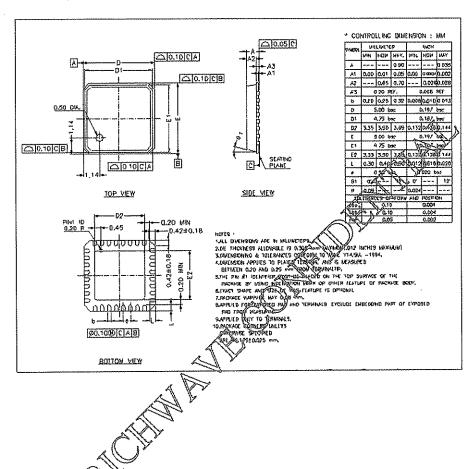
VCOSC[1:0]: 2-bit RF VCO switch capacitor control in RFC6701

PA_PD 1: PA power down control, 0 for power on and 1 for power down

Audio_div[5:0]: Reference clock division ratio in audio carrier frequency synthesizer.

ACP[1:0]: Audio charge pump current control (default 00:20uA, 01:50uA, 10: 110uA, 11: 140uA)

www.richwave.com.tw Specifications subject to change without notice Rev V_{0.4}


V04

Data Sheet

MAY 2006

PACKAGE

QFN 5X5 32 pins

