NDI<IA

Nokia MetroSite EDGE Base Station

Solution Accessories

The information in this documentation is subject to change without notice and describes only the product defined in the introduction of this documentation. This documentation is intended for the use of Nokia's customers only for the purposes of the agreement under which the documentation is submitted, and no part of it may be reproduced or transmitted in any form or means without the prior written permission of Nokia. The documentation has been prepared to be used by professional and properly trained personnel, and the customer assumes full responsibility when using it. Nokia welcomes customer comments as part of the process of continuous development and improvement of the documentation.
The information or statements given in this documentation concerning the suitability, capacity, or performance of the mentioned hardware or software products cannot be considered binding but shall be defined in the agreement made between Nokia and the customer. However, Nokia has made all reasonable efforts to ensure that the instructions contained in the documentation are adequate and free of material errors and omissions. Nokia will, if necessary, explain issues which may not be covered by the documentation.
Nokia's liability for any errors in the documentation is limited to the documentary correction of errors. NOKIA WILL NOT BE RESPONSIBLE IN ANY EVENT FOR ERRORS IN THIS DOCUMENTATION OR FOR ANY DAMAGES, INCIDENTAL OR CONSEQUENTIAL (INCLUDING MONETARY LOSSES), that might arise from the use of this documentation or the information in it.
This documentation and the product it describes are considered protected by copyright according to the applicable laws.
NOKIA logo is a registered trademark of Nokia Corporation.
Other product names mentioned in this documentation may be trademarks of their respective companies, and they are mentioned for identification purposes only.

Copyright © Nokia Corporation 2002. All rights reserved.

	Hereby, Nokia Corporation, declares that this product is in compliance with the essential requirements and other relevant provisions of Directive: 1999/5/EC. The product is marked with the CE marking and Notified Body number according to the Directive 1999/5/EC.
FCC §15.21 - Information to user - This product is used as an intentional radiated	
equipment and any changes or modifications on the equipment without any approval	
by Nokia could void the user's authority to operate the equipment.	
	FCC §15.105 - Information to user - This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
	- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.	
- Connect the equipment into an outlet on a circuit different from that to which the	

Contents

Contents 5

List of tables 7

List of figures 9

Summary of changes 11

1 About this document 13

2
 Accessories and specifications 15

2.1

Flexbus accessories 15
2.1.1 Flexbus cable specifications 15
2.1.2 TNC male connector specifications (straight and right-angled) 17
2.2 Local Management Port accessories 20
2.2.1 Q1 LMP cable specifications 20
2.3 Abis PCM cable 21
2.3.1 PCM cable 75 ohm 22
2.3.2 PCM cable 120 ohm 22
2.3.3 BT43 plug 23
2.3.4 TQ plug 23
2.4 MetroSite antennas 23
2.4.1 MetroSite 130o panel antenna 24
2.4.2 MetroSite XX-pol panel antenna 26
2.4.3 Omni dual band antenna 31
2.4.4 Indoor omni multi-band antenna 34
2.4.5 Indoor multi-band panel antenna 35
2.4.6 Pole mounting clamps (50-115 mm pole diameter) 37
2.5 GSM/EDGE 900, 1800 and 1900 combiners 38
$2.6 \quad$ Antenna lines 42
2.6.1 Antenna line cables 42
2.6.2 $\quad N$ male connector: straight 45
2.6.3 N male connector: right angled 46
2.6.4 7-16 Straight Male connector 48
2.7 MetroSite Battery Backup Unit 49
2.7.1 Battery Backup Unit 49
2.7.2 Mains power cable (230 VAC) 49
2.7.3 230/110 VAC output cable 50
2.7.4 Alarm cable 51
2.7.5 Battery connection kit 52
2.8 Miscellaneous 53
2.8.1 Jumper cables 54
2.8.2 Grounding cable 54
2.8.3 \quad AC power cables for MetroSite BTS or MetroHub 55
2.8.4 DC power cable for MetroSite BTS or MetroHub 56
2.8.5 Optical Alignment Tool 57

3 Attachments 59

List of tables

Table 1. Flexbus accessories for the MetroSite EDGE Base Station 15
Table 2. Flexbus cable specifications 17
Table 3. LMP accessories for the MetroSite EDGE Base Station 20
Table 4. LMP cable connector specifications 20
Table 5. Abis PCM cable and accessories 21
Table 6. PCM cable 75Ω specifications 22
Table 7. PCM cable 120Ω specifications 22
Table 8. Antennas for the Nokia MetroSite EDGE Base Station 23
Table 9. Specifications for the 130o antenna 25
Table 10. Specifications for the MetroSite XX-pol 900/1800 MHz panel antenna 27
Table 11. Specifications for the MetroSite XX-pol 850/1900 MHz panel antenna 30
Table 12. Specifications for the omni-directional $900 / 1800 \mathrm{MHz}$ dual band antenna 31
Table 13. Specifications for the omni-directional $850 / 1900 \mathrm{MHz}$ dual band antenna 33
Table 14. Specifications for the indoor omni multi-band antenna 35
Table 15. Specifications for the indoor multi-band panel antenna 36
Table 16. Combiners for the Nokia MetroSite EDGE Base Station 38
Table 17. Specifications for the GSM/EDGE combiners 40
Table 18. Antenna line accessories for the Nokia MetroSite EDGE Base Station 42
Table 19. Sheath characteristics for the antenna line cable 43
Table 20. Cable characteristics for the antenna line cable 43
Table 21. Attenuation and power characteristics for the antenna line cable 44
Table 22. Specifications for the N male connector 46
Table 23. Specifications for the N male connector, right angled 47
Table 24. Specifications for the N male connector, right angled 48
Table 25. Specifications for the 230 VAC mains power cable 50
Table 26. Specifications for the 230/110 VAC mains power cable 51
Table 27. Specifications for the alarm cable 52

Table 28. Contents of the battery connection kit 52
Table 29. Miscellaneous accessories for the Nokia MetroSite EDGE Base Station 53
Table 30. Jumper cable accessories 54
Table 31. Grounding cable specifications 54
Table 32. Specifications for the 230 VAC power cable 55
Table 33. Specifications for the 110 VAC power cable 56
Table 34. Specifications for the DC power cable 56
Table 35. Specifications for the optical alignment tool 58

List of figures

Figure 1. Flexbus cable 16

Figure 2. TNC connectors 19
Figure 3. LMP cable and connectors 21
Figure 4. MetroSite 130o panel antenna 25
Figure 5. MetroSite XX-pol 900/1800 MHz panel antenna 27
Figure 6. MetroSite XX-pol 850/1900 MHz panel antenna 29
Figure 7. Omni-directional dual band $900 / 1800 \mathrm{MHz}$ antenna 31
Figure 8. Omni-directional dual band 850/1900 MHz antenna 33
Figure 9. Indoor omni multi-band antenna 34
Figure 10. Indoor multi-band panel antenna 36
Figure 11. Installing the indoor multi-band panel antenna 37
Figure 12. Antenna pole mounting clamp 38
Figure 13. GSM/EDGE combiner 39
Figure 14. Dimensions of the GSM/EDGE combiner 40
Figure 15. Antenna line cable 43
Figure 16. N male connector 45
Figure 17. N male connector, right angled 47
Figure 18. 7-16 Straight male connector 48
Figure 19. Battery connection kit 53
Figure 20. Optical alignment tool 57

Summary of changes

Version 1-0, $5^{\text {th }}$ March, 1999. Norman M. Thomas.

Version 2-0, $30^{\text {th }}$ August 2001. Tyrone Williams.
Version 3-0, August 2002. Kudos (Celia Pires, Mark Seymour). Added chaining extension cables into "Miscellaneous", made corrections to specifications following comments from Jan Ekman, Tomi Karvonen and Peter Berghall.

Version 3-0, October 2002. Kudos (Mark Seymour). Product codes updated. 800/1900 MHz antennas added.

About this document

This document lists the Nokia accessories which are available to support the Nokia MetroSite ${ }^{\mathrm{TM}}$ Base Station. Descriptions and specifications of the accessories are also included.

For more information and ordering of the accessories, contact your local Nokia customer services representative.

Accessories and specifications

2.1 Flexbus accessories

Table 1. Flexbus accessories for the MetroSite EDGE Base Station

Item	Product code
Jumper cable, 2.5 m, TNC (m) - TNC (f)	CS72450.10
RG223, 4 m , TNC-TNC straight	T36625.02
RG223, 8 m, TNC-TNC straight	T36625.03
RG223, 15 m , TNC-TNC straight	T36625.04
TNC male for flexbus cable straight (RG214)	T36630.01
TNC male for flexbus cable 90 degree (RG214)	T36631.01
TNC male for flexbus cable straight (RG223)	T36627.01
TNC male for flexbus cable 90 degree (RG223)	T36627.02
Flexbus cable, RG223, 500 m reel	T36626.01
Flexbus cable, RG214, 500 m reel	T36629.01

2.1.1 Flexbus cable specifications

Product codes: T36626.01 (RG223); T36629.01 (RG214)
This coaxial cable is suitable for both straight and right-angled BNC/TNC plug connector types. Flexbus uses 50Ω cable with TNC male connectors of both types, as applicable.

The cable is capable of handling frequencies up to 2.8 GHz and is, for example, used to connect the radio outdoor unit to the transmission unit.

Table 2 and Figure 1 identify the diameter of the cable attributes. The ' D ' and ' E ' min-max ranges allow for the different connectors used.

Cables, type RG223, of $4 \mathrm{~m}, 8 \mathrm{~m}$ and 15 m lengths terminated with TNC male straight connectors are available. The product code for each of these is identified in Table 1.

Figure 1. Flexbus cable

Table 2. Flexbus cable specifications

Parameter	RG214 cable	G223 cable
	Detail	
Inner Conductor	2.28 mm diameter Silver plated copper wires (7) $5.6 \Omega / \mathrm{km}$ at $20^{\circ} \mathrm{C}$ 50+/- 2Ω impedance $101 \mathrm{nf} / \mathrm{km}$ capacitance at 800 Hz $201 \mathrm{~g} / \mathrm{m}$ weight Attenuation: $23 \mathrm{~dB} / 100 \mathrm{~m}$ at 800 MHz . Specification: DIN 40500/T4	0.9 mm diameter Silver plated copper wire (single) $29.4 \Omega / \mathrm{km}$ at $20^{\circ} \mathrm{C}$ 50+/- 2Ω impedance $106 \mathrm{nf} / \mathrm{km}$ capacitance at 800 Hz $59 \mathrm{~g} / \mathrm{m}$ weight Attenuation: $69 \mathrm{~dB} / 100 \mathrm{~m}$ at 1000 MHz Specification: DIN 40500/T4
Dielectric Core	7.4 mm diameter PE Colour: neutral	3.05 mm diameter PE Colour: neutral
Outer conductor (layer 1)	Braided shield, silver plated copper wires Specification: DIN 40500/T4	Braided shield, silver plated copper wires Specification: DIN 40500/T4
Outer conductor (layer 2)	9.1 mm diameter maximum Braided shield, silver plated copper wires Specification: DIN 40500/T4	4.39 mm diameter maximum Braided shield, copper plated wires Specification: DIN 40500/T4
Sheath	10.9 mm diameter PVC Black Specification: DIN 53505	5.55-0.2 mm diameter PVC Black Specification: DIN 53505

2.1.2 TNC male connector specifications (straight and right-angled)

Product code: T36630.01 and T36631.01 (RG214); T36627.01 and T36627.02 (RG223)

RF one step TNC connectors are single piece assemblies for the centre conductor and the braid of a broad range of coaxial cables. The connectors are fully compliant with MIL-C-39012 connectors. In this case, 50Ω versions are used.

The features of these connectors include:

- exceptional cable retention force to withstand vibration and frequent connections and disconnections
- long term reliability
- usable with RG / U and Raychem Cheminax cables
- meets performance requirements of MIL-C-39012 up to 2.8 GHz

Only the right-angled connectors are used with type RG214 cable because of the cable's rigidity.

Figure 2. TNC connectors

2.2 Local Management Port accessories

Table 3. LMP accessories for the MetroSite EDGE Base Station

Item	Product code
Nokia Q1 LMP cable	T55270.01

2.2.1 Q1 LMP cable specifications

Product code: T55270.01

This is an RS232 cable terminated with a BQ bayonet type connector at one end and a 9-pin 'D' type (D9F) connector at the other end. The length of the cable is $2,5 \mathrm{~m}$ and is provided already assembled.

Table 4. LMP cable connector specifications

BQ Connector		'D' type Connector	
Pin No.	Function	Pin No.	Function
1	LMP in	3	TD
2	n/c	$1,4,6-9$	n / c
3	LMP out	2	RD
4	GND	5	GND

$\mathrm{RD}=$ Received Data
TD $=$ Transmitted Data

GND = Ground
$\mathrm{n} / \mathrm{c}=$ not connected

Note

The pins of each connector correlate as shown in Table 4. For example, pin 1 of connector BQ connects to pin 3 of the ' D ' type connector.

Figure 3. LMP cable and connectors

2.3 Abis PCM cable

Table 5. Abis PCM cable and accessories

Item	Product code
Abis PCM cable for MetroSite, $3 \mathrm{~m}, 120 \Omega$	T36612.01
Abis PCM cable for MetroSite, $15 \mathrm{~m}, 120$ Ω	T 36612.05
Abis PCM cable for MetroSite, $50 \mathrm{~m}, 120$ Ω	T 36612.04
Abis PCM cable, $75 \Omega / \mathrm{m}$	T36602.01
Abis PCM cable, $120 \Omega / \mathrm{m}$	T36614.01
BT43 plug, $75 \Omega, 6$ pieces for ABC cable	T36601.01
TQ plug, $120 \Omega, 1$ piece	CS73214.02

2.3.1 PCM cable 75 ohm

Product Code: T36602.01

The 75Ω PCM cable is used for 2 Mbit transmission between the Nokia MetroSite EDGE Base Station and a BSC. This high quality coaxial cable consists of a plain copper inner conductor, polyethylene dielectric material, two copper braids, and a PVC outer jacket.

Table 6. PCM cable 75Ω specifications

Characteristic impedance	$75+/-4 \Omega$
Mutual capacitance	$67 \mathrm{pF} / \mathrm{m}$
Wave attenuation 1 MHz	$2.3 \mathrm{~dB} / 100 \mathrm{~m}$
Wave attenuation 4 MHz	$4.5 \mathrm{~dB} / 100 \mathrm{~m}$
Wave attenuation 20 MHz	$9.2 \mathrm{~dB} / 100 \mathrm{~m}$
Operating voltage	300 V rms
Minimum bending radius	18 mm
Diameter	3.55 mm
Colour	Black

2.3.2 PCM cable 120 ohm

Product Code: T36614.01

The 120Ω PCM cable is used for 2 Mbit transmission between the Nokia MetroSite EDGE Base Station and a BSC. This high quality cable consists of four bare copper wires, polyethylene wire insulation, intermediate plastic tape insulation, tinned copper wire gauze, and a halogen-free outer sheath.

The cables available are $3 \mathrm{~m}, 15 \mathrm{~m}$, and 50 m , terminated with a TQ plug at each end.

Table 7. PCM cable 120Ω specifications

Characteristic impedance	$120+/-10 \Omega$
Mutual capacitance	$40 \mathrm{nF} / \mathrm{km}$
Wave attenuation 1 MHz	$1.7 \mathrm{~dB} / 100 \mathrm{~m}$
Wave attenuation 4 MHz	$3.5 \mathrm{~dB} / 100 \mathrm{~m}$

Table 7. \quad PCM cable 120Ω specifications (Continued)

Wave attenuation 20 MHz	$7.8 \mathrm{~dB} / 100 \mathrm{~m}$
Operating voltage	300 V rms
Minimum bending radius	30 mm
Diameter	4.1 mm
Colour	Grey

2.3.3 BT43 plug

Product code: T36601.01

This connector is used with the TZC5024 cable. For connection of this plug to the Abis 75Ω coaxial cable, refer to Attachment 1.

2.3.4 TQ plug

Product code: CS73214.02

This Abis 120Ω interface connector supports the use of cables with outer diameter of 4-13 mm and wires of dimension AWG 26-30.

For connection of this plug to the Abis 120Ω cable refer to Attachment 2. The cable is provided already assembled and is 2 m in length.

2.4 MetroSite antennas

Table 8. Antennas for the Nokia MetroSite EDGE Base Station

Item	Product code
MetroSite 130° panel antenna, dual band $870-960 / 1710-1880 \mathrm{MHz}, 5 \mathrm{dBi}, 2 \times \mathrm{N}$ female connectors	$\mathrm{CS72454.01}$
MetroSite XX-pol panel antenna, dual band $870-960 / 1710-1880 \mathrm{MHz}, 65^{\circ}$, $12.5 / 13.5 \mathrm{dBi}, 4$ port	$\mathrm{CS72180}$
MetroSite XX-pol panel antenna, dual band $824-960 / 1710-2170 \mathrm{MHz}, 65^{\circ}$, $14.5 / 17.5 \mathrm{dBi}$	$\mathrm{CS72763.01}$

Table 8. Antennas for the Nokia MetroSite EDGE Base Station (Continued)

Item	Product code
MetroSite omni antenna, dual band 870- $960 / 1710-1880 \mathrm{MHz}, 2 \mathrm{dBi}, 2 \times \mathrm{N}$ female connectors	$\mathrm{CS72187}$
MetroSite omni antenna, dual band 824- $960 / 1805-2170 \mathrm{MHz}, 2 \mathrm{dBi}, \mathrm{N}$ female	$\mathrm{CS72187.02}$
Indoor omni antenna, multi-band 824-960 / 1425-2170 MHz, $2 \mathrm{dBi}, 360^{\circ}, \mathrm{N}$ female	$\mathrm{CS72166}$
Indoor panel antenna, multi-band 824-960 / 1425-2170 MHz, $7 \mathrm{dBi}, 90^{\circ}, \mathrm{N}$ female	$\mathrm{CS72168}$
Single pole mounting clamp for 50-115 mm poles	$\mathrm{CS72196}$

2.4.1 MetroSite 130° panel antenna

Product code: CS72454.01

This antenna is a vertically polarised, dual band, two-port antenna providing 130° coverage with a gain of 6 dBi .

Figure 4. MetroSite 130° panel antenna

Table 9. Specifications for the 130° antenna

Item	GSM 900	GSM $\mathbf{1 8 0 0}$
Frequency range	$870-960 \mathrm{MHz}$	$1710-1880 \mathrm{MHz}$
VSWR	$<1: 1.7$	$<1: 1.7$
Gain	6 dBi	6 dBi
Impedance	50Ω	50Ω
Polarization	Vertical	Vertical
Front-to-back ratio (co- polar)	$>10 \mathrm{~dB}$	$>10 \mathrm{~dB}$
Half power beam width	Horizontal: 130° Vertical: 55°	Horizontal: 130° Vertical: 55°
Maximum power/input (at $\left.25^{\circ} \mathrm{C}\right)$	50 W	50 W

Table 9. Specifications for the 130° antenna (Continued)

Item	GSM 900	GSM 1800
Isolation	$>25 \mathrm{~dB}($ GSM 900 - GSM 900) on Tx band $>30 \mathrm{~dB}$ (GSM 1800-GSM 1800) $>30 \mathrm{~dB}(\mathrm{GSM} 900-\mathrm{GSM}$ $1800)$	
Input	$2 \times \mathrm{N}$ female	
Connector position	Bottom	
Weight	2.0 kg (without packaging)	
Wind load	Frontal: 27 N (at $150 \mathrm{~km} / \mathrm{h}$) Lateral: 16 N (at $150 \mathrm{~km} / \mathrm{h}$) Rear side: 63 N (at $150 \mathrm{~km} / \mathrm{h}$)	
Maximum wind velocity	$150 \mathrm{~km} / \mathrm{h}$	
Packing size	$480 \times 125 \times 110 \mathrm{~mm}$	
Height x width \times depth	$452 \times 95 \times 100 \mathrm{~mm}$	
Material	Reflector screen: painted aluminium Radome: ABS; grey NCS S $2500-\mathrm{N}$ screws and nuts: stainless steel	
Mounting	TBA	
Ice protection	The antenna remains operational during icy conditions	
Grounding	The metal parts of the antenna, including the mounting kit are DC grounded.	

2.4.2 MetroSite XX-pol panel antenna

Product codes: CS72180, CS72763.01

This is a four port, dual band antenna. Its output is cross polarised $+/-45^{\circ}$ and provides 65° coverage with a gain of 12.5 to 13.5 dBi for the $900 / 1800 \mathrm{MHz}$ antenna and 14.5 to 17.5 dBi for the $850 / 1900 \mathrm{MHz}$ antenna (see also the note below).

Note

Further variations of the Nokia MetroSite XX-pol panel 850/1900 MHz antennas are available. Please contact your Nokia representative.

900/1800 MHz XX-pol panel antenna (CS72180)

Figure 5. MetroSite XX-pol 900/1800 MHz panel antenna

Table 10. Specifications for the MetroSite XX-pol 900/1800 MHz panel antenna

Item	GSM 900	GSM 1800
Frequency range	$870-960 \mathrm{MHz}$	$1710-1880 \mathrm{MHz}$
VSWR	<1.5	<1.5
Impedance	50Ω	50Ω

Table 10. Specifications for the MetroSite XX-pol 900/1800 MHz panel antenna (Continued)

Item	GSM 900	GSM 1800
Polarization	$+45^{\circ} ;-45^{\circ}$	+ $45^{\circ} ;-45^{\circ}$
Front-to-back ratio (copolar)	$>30 \mathrm{~dB}$	$>30 \mathrm{~dB}$
Half power beam width	$+45^{\circ} /-45^{\circ}$ Horizontal: 65° Vertical: 28°	$+45^{\circ} /-45^{\circ}$ Horizontal: 65° Vertical: 28°
Maximum power/input (at $\left.50^{\circ} \mathrm{C}\right)$	250 W	150 W
Isolation	$\begin{aligned} & >30 \mathrm{~dB}(\text { GSM } 900-\text { GSM 900) > } 30 \mathrm{~dB}(\text { GSM } 1800- \\ & \text { GSM } 1800)>30 \mathrm{~dB}(\text { GSM } 900-\text { GSM 1800) } \end{aligned}$	
Input	4×7-16 female	
Connector position	Top or bottom	
Weight	7 kg	
Wind load (at $150 \mathrm{~km} / \mathrm{h}$)	Frontal: 110 N. Lateral: 60 N. Rearside: 240 N.	
Maximum wind velocity	$200 \mathrm{~km} / \mathrm{h}$	
Packing size	$782 \times 287 \times 165 \mathrm{~mm}$	
Height / width / depth	656 mm / $262 \mathrm{~mm} / 116 \mathrm{~mm}$	
Material	Reflector screen: weather proof aluminium Radome: fibreglass (white) Screws and nuts: stainless steel	
Mounting	Walls: using two mounting plates already attached to the antenna Masts: using two clamps suitable for the mast diameter	
Ice protection	The antenna remains operational under icy conditions	
Grounding	The metal parts of the antenna, including the mounting kit and the inner conductors are DC grounded.	

850/1900 MHz XX-pol panel antenna (CS72763.01)

Figure 6. MetroSite XX-pol 850/1900 MHz panel antenna

Table 11. Specifications for the MetroSite XX-pol 850/1900 MHz panel antenna

Item	GSM 850	GSM 1900
Frequency range	824-960 MHz	$1710-2170 \mathrm{MHz}$
VSWR	< 1.5	< 1.5
Impedance	50Ω	50Ω
Polarization	$+45^{\circ} ;-45^{\circ}$	+45 ${ }^{\circ}$; -45°
Front-to-back ratio (copolar)	> 28 dB	$>25 \mathrm{~dB}$
Half power beam width	$+45^{\circ} /-45^{\circ}$ Horizontal: 68-65 Vertical: 16-14.5 ${ }^{\circ}$	$+45^{\circ} /-45^{\circ}$ Horizontal: 65-63 Vertical: 7.5-6.5 ${ }^{\circ}$
Maximum power/input (at $\left.50^{\circ} \mathrm{C}\right)$	250 W	200 W
Isolation: intrasystem	$>30 \mathrm{~dB}$	
Isolation: intersystem	$>45 \mathrm{~dB}$	
Input	$4 \times 7-16$ female	
Connector position	Top or bottom	
Weight	16.5 kg	
Wind load (at $150 \mathrm{~km} / \mathrm{h}$)	Frontal: 230 N. Lateral: 180 N. Rearside: 430 N.	
Maximum wind velocity	$200 \mathrm{~km} / \mathrm{h}$	
Packing size	$1590 \times 287 \times 177 \mathrm{~mm}$	
Height / width / depth	1296 mm / $262 \mathrm{~mm} / 139 \mathrm{~mm}$	
Material	Reflector screen: weather proof aluminium Radome: fibreglass (white) Screws and nuts: stainless steel	
Mounting	Walls: using two mounting plates already attached to the antenna Masts: using two clamps suitable for the mast diameter	
Ice protection	The antenna remains operational under icy conditions	
Grounding	The metal parts of the antenna, including the mounting kit and the inner conductors are DC grounded. The inputs $824-960 \mathrm{MHz}$ are also DC grounded. The inputs $1710-2170 \mathrm{MHz}$ are coupled capacitively.	

2.4.3 Omni dual band antenna

Product codes: CS72187, CS72187.02

This is a dual port, dual band $900 / 1800$ or $850 / 1900 \mathrm{MHz}$ antenna. The output is omni-directional $\left(360^{\circ}\right)$ with a gain of 2 dBi and has two units (upper and lower).

900/1800 MHz omni-directional, dual band antenna (CS72187)

Figure 7. Omni-directional dual band 900/1800 MHz antenna

Table 12. Specifications for the omni-directional $900 / 1800 \mathrm{MHz}$ dual band antenna

Input	$2 \times \mathrm{N}$ female
Frequency range	$870-960 \mathrm{MHz}$ and $1710-1880 \mathrm{MHz}$ for the upper and lower units
VSWR	<1.8
Gain	2 dBi
Impedance	50Ω

Table 12. Specifications for the omni-directional $900 / 1800 \mathrm{MHz}$ dual band antenna (Continued)

Polarization	Vertical
Isolation	$>25 \mathrm{~dB}$
Maximum power/input	50 W at $50^{\circ} \mathrm{C}$ ambient temperature
Weight	1.2 kg
Radome diameter	30 mm
Wind load	30 N at $150 \mathrm{~km} / \mathrm{h}$
Maximum wind load	$200 \mathrm{~km} / \mathrm{h}$
Packing size	$700 \times 80 \times 80$ mm (approximately)
Height	500 mm Material Radiator: copper, brass Radome: fibreglass (grey) Base: weatherproof aluminium Mounting clamp and screws: stainless steel
Mounting	Attached laterally at the tip of a tubular mast of $40-70$ mm diameter. The connecting cable (not supplied) runs outside the mast.
Range of application	Urban areas, preferably in places around buildings at low or medium heights above ground level or light poles or short masts on rooftops. The antenna shape reduces the optical impact.
Grounding	All metal parts of the antenna and the mounting kit (excluding the inner conductor of the upper unit) are DC grounded.

850/1900 MHz omni-directional, dual band antenna (CS72187.02)

Figure 8. Omni-directional dual band $850 / 1900 \mathrm{MHz}$ antenna

Table 13. Specifications for the omni-directional $850 / 1900 \mathrm{MHz}$ dual band antenna

Input	$2 \times \mathrm{N}$ female
Frequency range	$824-960 \mathrm{MHz}$ and $1805-2170 \mathrm{MHz}$ for the upper and lower units
VSWR	<2.0
Gain	2 dBi
Impedance	50Ω
Polarization	Vertical
Maximum power/input	50 W at $50^{\circ} \mathrm{C}$ ambient temperature
Weight	250 g
Radome diameter	20 mm

Table 13. Specifications for the omni-directional $850 / 1900 \mathrm{MHz}$ dual band antenna (Continued)

Height	216 mm
Material	Radiator: brass Radome: fibreglass (white) Base: weatherproof aluminium Mounting clamp and screws: stainless steel
Mounting	One hole mounting (16 mm) to surfaces of maximum 10 mm thickness or attached laterally at the tip of a tubular mast of 40-70 mm diameter.
Range of application	Urban areas, preferably in places around buildings at low or medium heights above ground level or light poles or short masts on rooftops. The antenna shape reduces the optical impact.
Grounding	All metal parts of the antenna and the mounting kit (excluding the inner conductor of the upper unit) are DC grounded.

2.4.4 Indoor omni multi-band antenna

Product code: CS72166

This is a single port, multi-band 850/900/1800/1900 MHz antenna. This antenna is vertically polarised and the horizontal radiation pattern is omni-directional $\left(360^{\circ}\right)$ with a gain of 2 dBi . The antenna can be operated in all frequency ranges simultaneously, and needs no additional groundplane.

Figure 9. Indoor omni multi-band antenna

Table 14. Specifications for the indoor omni multi-band antenna

Input	N female
Frequency range	824-960 MHz and 1425-2170 MHz
VSWR	$\begin{aligned} & <2.0: 824-960 \mathrm{MHz} \\ & <2.0: 1425-1710 \mathrm{MHz} \\ & \text { < 1.6: } 1710-1990 \mathrm{MHz} \\ & \text { < 2.0: } 1990-2170 \mathrm{MHz} \end{aligned}$
Gain	2 dBi
Input	$1 \times \mathrm{N}$ female
Impedance	50Ω
Polarization	Vertical
Maximum power (at $50^{\circ} \mathrm{C}$)	$50 \mathrm{~W} / \mathrm{band}$
Weight	400 g
Diameter	260 mm
Height	78 mm (without connector)
Material	Base: aluminium Protective housing: high impact polystyrol Colour: white Additional painting is possible
Mounting	Three holes in the base to enable mounting on a ceiling. Two types of screws are supplied. N connector: a hole of 35 mm diameter needed in the ceiling.
Grounding	All metal parts including the inner conductor are DC grounded.

2.4.5 Indoor multi-band panel antenna

Product code: CS72168

This is a single port, multi-band indoor panel antenna. The antenna has a half power beam width of 90° with a gain of 7 dBi .

Figure 10. Indoor multi-band panel antenna

Table 15. Specifications for the indoor multi-band panel antenna

Input	Cable RG 223/CU of 1 m length; white; N female connector.
Frequency range	$824-960 \mathrm{MHz}$ and $1710-2170 \mathrm{MHz}$
VSWR	$870-960 \mathrm{MHz}$ and $1710-1900 \mathrm{MHz}:<1.6$ $824-960 \mathrm{MHz}$ and 1710-2170 MHz: <2.0
Gain	7 dBi approximately
Impedance	50Ω
Polarization	Vertical
Half power beam width	Horizontal; 90°
Maximum power (at $\left.50^{\circ} \mathrm{C}\right)$	25 W
Weight	500 g
Packing size	$321 \times 165 \times 50 \mathrm{~mm}$
Height x width \times depth	$205 \times 155 \times 42 \mathrm{~mm}$
Material	Radiator: brass Reflector: Aluminium Radome: ABS (white) Mounting plates: stainless steel
Grounding	Two holes of 6 mm diameter in the mounting plate.
Mounting	All metal parts and inner conductor DC grounded.

Installing the multi-band indoor panel antenna

1. Fix the attachment plate to the wall using two 4 mm diameter screws. See [1] in Figure 11.
2. Align the antenna over the attachment plate, keeping the cable in the middle of the plate. See [2] in Figure 11.
3. Pull the antenna downwards until it clicks into place. See [3] in Figure 11. Do not pull the antenna downwards with the antenna cable.

(3)

Figure 11. Installing the indoor multi-band panel antenna

2.4.6 Pole mounting clamps (50-115 mm pole diameter)

Product code: CS72196

This standard single unit clamp is suitable for standard Nokia antennas.
The number of clamps required depends upon the antenna.

Figure 12. Antenna pole mounting clamp

2.5 GSM/EDGE 900, 1800 and 1900 combiners

Table 16. Combiners for the Nokia MetroSite EDGE Base Station

Item	Product code
GSM/EDGE 900 BTS 2-to-1 combiner	CS72216.01
GSM/EDGE 1800 BTS 2-to-1 combiner	CS72216.02
GSM/EDGE 1900 BTS 2-to-1 combiner	CS72216.03

Product code: CS72216.01; CS72216.02; CS72216.03
The GSM/EDGE combiner is a cost-effective solution for combining two MetroSite TRXs into a single antenna and feeder system.

The GSM/EDGE combiner allows you to combine the transmit signals from the transceivers and also divide receive signals from the antenna to those transceivers.

The GSM/EDGE 900, 1800 and 1900 combiners function in an identical manner and are designed for mounting outdoors. The combiners are compact, lightweight, easy to install, and require no maintenance.

Figure 13. GSM/EDGE combiner

Figure 14. Dimensions of the GSM/EDGE combiner

Table 17. Specifications for the GSM/EDGE combiners

	GSM 900 Combiner	GSM 1800 Combiner	GSM 1900 Combiner
Transmit Path:			
Frequency range	$925-960 \mathrm{MHz}$	$1805-1880 \mathrm{MHz}$	$1930-1990 \mathrm{MHz}$
Impedance	50Ω	50Ω	50Ω
Insertion loss	3.5 dB maximum	3.5 dB maximum	3.5 dB maximum
Antenna port return loss	18 dB minimum	18 dB minimum	18 dB minimum
BTS port return loss	18 dB minimum	18 dB minimum	18 dB minimum
Isolation BTS port to BTS port (antenna port loaded to $50 ~$	25 dB minimum	25 dB minimum	25 dB minimum
Power handling	$2 \times 10 \mathrm{~W}$	$2 \times 10 \mathrm{~W}$	$2 \times 10 \mathrm{~W}$
Receive Path:			

Table 17. Specifications for the GSM/EDGE combiners (Continued)

	GSM 900 Combiner	GSM 1800 Combiner	GSM 1900 Combiner
Frequency range	880-915 MHz	1710-1785	1850-1910
Impedance	50Ω	50Ω	50Ω
Insertion loss	3.5 dB maximum	3.5 dB maximum	3.5 dB maximum
Antenna port return loss	18 dB minimum	18 dB minimum	18 dB minimum
BTS port return loss	18 dB maximum	18 dB maximum	18 dB maximum
Power division imbalance	0.5 dB maximum	0.5 dB maximum	0.5 dB maximum
Intermodulation: 2×10 W unmodulated carriers:			
Antenna port	$\begin{aligned} & 880-915 \mathrm{MHz}:- \\ & 100 \mathrm{dBm} \\ & \text { maximum } \end{aligned}$	1710-1785 MHz: - 100 dBm maximum	1850-1910 MHz: - 100 dBm maximum
BTS port	$\begin{aligned} & 880-915 \mathrm{MHz}:- \\ & 116 \mathrm{dBm} \\ & \text { maximum } \end{aligned}$	1710-1785 MHz: - 116 dBm maximum	1850-1910 MHz: - 116 dBm maximum
Outside the bands indicated	-38 dBm maximum	-38 dBm maximum	-38 dBm maximum
Mechanical:			
W x H x mm	$\begin{aligned} & 139 \times 117 \\ & \text { (including } \\ & \text { connectors) } \times 27 \\ & \mathrm{~mm} \end{aligned}$	139×117 (including connectors) $\times 27$ mm	139×117 (including connectors) $\times 27$ mm
Weight	680 g	680 g	680 g
Connectors	N type female (silver plated)	N type female (silver plated)	N type female (silver plated)
Enclosure	Aluminium; RAL 7047	Aluminium; RAL 7047	Aluminium; RAL 7047
Environmental:			
Protection	IP65	IP65	IP65
Operating temperature	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Lightning specification	IEC 1312-1	IEC 1312-1	IEC 1312-1

Table 17. Specifications for the GSM/EDGE combiners (Continued)

	GSM 900 Combiner	GSM 1800 Combiner	GSM 1900 Combiner
Storage	Class 1.3E ETSI $300010-1-1$	Class 1.3E ETSI $300010-1-1$	Class 1.3E ETSI $300010-1-1$
Transportation	Class 2.3 ETSI $300019-1-2$	Class 2.3 ETSI 300 $019-1-2$	Class 2.3 ETSI 300 $019-1-2$
MTBF	$>500,000$ hours	$>500,000$ hours	$>500,000$ hours

2.6 Antenna lines

Table 18. Antenna line accessories for the Nokia MetroSite EDGE Base Station

Item	Product code
N-male 3/8" straight connector	CS72683.20
N-male 3/8" angle connector	CS72683.21
$7-16$ male, 3/8" connector for superflex cable	CS72697
3/8" cable, RFF-50, telegrey, 250 m reel, superflex, UV	CS72259.10
3/8" cable, RFF-50, black, 250 m reel, superflex, UV	CS72258.10

2.6.1 Antenna line cables

Product code: CS72259.10 and CS72258.10
The inner conductor is copper clad aluminium wire contained in a cellular polyethylene dielectric. The outer conductor constitutes a corrugated copper tube.

The markings on the sheath consist of the manufacturer's name, cable type, week of manufacture, year of manufacture, and cable length in metres.

Figure 15. Antenna line cable

Table 19. Sheath characteristics for the antenna line cable

Sheath Characteristics		
Item	$3 / 8 "-50 ~ L D ~ G Y 7047 ~$ $($ (CS72259.10)	$\mathbf{3 / 8 " - 5 0 ~ (C S 7 2 2 5 8 . 1 0) ~}$
Jacket	Telegrey, LD polyethylene	Black, LD polyethylene
IEC754-1/-2 (halogen free, non- corrosive	Yes	Yes
IEC1034 (low smoke emission)	No	No
IEC332-3C (fire retardant)	No	No
UV retardant	Yes	Yes
Minimum installation temperature	$-20^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$

Table 20. Cable characteristics for the antenna line cable

Cable Characteristics	
Item	CS72258.10 and CS72259.10 $(3 / 8$ ")
Mechanical:	$130 \mathrm{~kg} / \mathrm{km}$
Weight	400 N
Maximum pulling force	$13 \mathrm{~mm} ; 25 \mathrm{~mm}$
Minimum bending radius: - single bending - repeated bending	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating temperature range	

Table 20. Cable characteristics for the antenna line cable (Continued)

Cable Characteristics	
Item	CS72258.10 and CS72259.10 $\mathbf{(3 / 8 ")}$
Electrical at $+20^{\circ} \mathrm{C}$	$50+1 \Omega$
Characteristic impedance	See table
Attenuation	0.81
Velocity factor	$82 \mathrm{pF} / \mathrm{m}$
Capacitance	15200 MHz
Cut-off frequency	3000 MHz
Maximum operating frequency	See table
Maximum power rating	1.04 kV
Peak RF voltage rating	11 kW
Peak power rating	$5.1 \Omega / \mathrm{km}$
DC resistance: inner conductor	$6.1 \Omega / \mathrm{m}$
DC resistance: outer conductor	

Table 21. Attenuation and power characteristics for the antenna line cable

Attenuation (maximum) and power rating			
	CS72258.10 and CS72259.10 (3/8")		
Frequency (MHz)	Attenuatio n at ambient temp. 20° C dB/100 m	Power rating at ambient temp. $40^{\circ} \mathrm{C}$ inner conductor $+70^{\circ} \mathrm{C}$ (kW)	Power rating at ambient temp. 40° C inner conducto $\mathrm{r}+100^{\circ} \mathrm{C}$ (kW)
700	12.1	0.32	0.69
800	13.0	0.30	0.64
850	13.4	0.29	0.62
900	13.9	0.29	0.60
950	14.3	0.28	0.58

Table 21. Attenuation and power characteristics for the antenna line cable

Attenuation (maximum) and power rating						
	CS72258.10 and CS72259.10 (3/8")			$	$	Frequency
:---						
(MHz)						

2.6.2 N male connector: straight

Product code: CS72683.20 (3/8")
This connector type is suitable for $3 / 8$ inch helical cable and facilitates solderless attachment of the inner wire of the connected cable.

Figure 16. N male connector

Table 22. Specifications for the N male connector

Item	CS72683.20 (3/8")
Frequency $\mathrm{f} / \mathrm{GHz}$	$0<\mathrm{f} \leq 1$
$1<\mathrm{f} \leq 2.7$	
VSWR	≤ 1.02 ≤ 1.03
Intermodulation (2x20W; 936/958MHz; 1770/1810 $\mathrm{MHz})$	$\leq-155 \mathrm{dBc}$
Assembly time	<2 minutes
Weight	70 g
$\mathrm{a} \mathrm{(mm)}$	47
$\mathrm{~b}(\mathrm{~mm})$	21

2.6.3 $\quad \mathrm{N}$ male connector: right angled

Product code: CS72683.21 (3/8")

This connector type is suitable for $3 / 8^{\prime \prime}$ helical cable and facilitates solderless attachment of the inner wire of the connected cable.

Figure 17. N male connector, right angled

Table 23. Specifications for the N male connector, right angled

Item	CS72683.21 (3/8")
Frequency $\mathrm{f} / \mathrm{GHz}$	$0<\mathrm{f} \leq 1$
	$1<\mathrm{f} \leq 2$
	$2<\mathrm{f} \leq 2.7$
	$2.7<\mathrm{f} \leq 3.7$
VSWR	≤ 1.02
	≤ 1.04
	≤ 1.06
	≤ 1.13
Intermodulation $(2 \times 20 \mathrm{~W} ;$	$\leq-155 \mathrm{dBc}$
936/958MHz; $1770 / 1810$	
MHz)	<2 minutes
Assembly time	145 g
Weight	

Table 23. Specifications for the N male connector, right angled (Continued)

Item	CS72683.21 (3/8")
$\mathrm{a}(\mathrm{mm})$	36
$\mathrm{~b}(\mathrm{~mm})$	38.3
$\mathrm{c}(\mathrm{mm})$	23

2.6.4 7-16 Straight Male connector

Product code: CS72697 (3/8")
This connector type is suitable for $3 / 8^{\prime \prime}$ helical cable and facilitates solderless attachment of the inner wire of the connected cable.

Figure 18. 7-16 Straight male connector

Table 24. Specifications for the N male connector, right angled

Item	CS72697 (3/8")
Frequency $\mathrm{f} / \mathrm{GHz}$	$0<\mathrm{f} \leq 1$
	$1<\mathrm{f} \leq 2.7$
	$2.7<\mathrm{f} \leq 3.7$
VSWR	≤ 1.02
	≤ 1.03
	≤ 1.06
Intermodulation (2x20W; 936/958MHz; $1770 / 1810$ $\mathrm{MHz})$	$\leq-155 \mathrm{dBc}$

Table 24. Specifications for the N male connector, right angled (Continued)

Item	CS72697 (3/8")
Assembly time	<2 minutes
Weight	105 g
a (mm)	39
b (mm)	21

2.7 MetroSite Battery Backup Unit

Product code: CS70401.01 for BBU (without batteries) and .02 for batteries

2.7.1 Battery Backup Unit

The MetroSite BBU is designed to provide 110 VAC or 230 VAC backup support for connected elements.

The MetroSite BBU is able to support a single MetroSite BTS or a single MetroHub and can be pole or wall mounted in almost any location, indoors or outdoors. Its appearance is identical to the MetroSite BTS and the MetroHub, consequently it can be readily integrated into a site location unobtrusively.

2.7.2 Mains power cable (230 VAC)

Note

This item is included in CS70401.01.

The 230 VAC power cables for AC connectivity are light and flexible. They can be installed in dry, damp and wet environments, both indoor and outdoor, in addition to fire-sensitive locations.

The cable has three conductors made of high quality copper insulated with EPDM-rubber.

One end of the cable is fitted with an IEC320 female connector and the other end with an appropriate three-pin male connector for connection to the mains power source (user defined).

Note

The MetroSite BTS or MetroHub mains power cable can be utilised for connecting the MetroSite BBU to the mains power source.

Table 25. Specifications for the 230 VAC mains power cable

Code	Detail
Cross section	$1.5 \mathrm{~mm}^{2}$
Nominal diameter	9.0 mm
Nominal voltage $\mathrm{U}_{0} / \mathrm{U}$	$300 \mathrm{~V} / 500 \mathrm{~V}$
Maximum continuous operating temperature	$+60^{\circ} \mathrm{C}$
Minimum recommended handling temperature	$-50^{\circ} \mathrm{C}$
Minimum bending radius	54 mm
Live wire colour	Brown
Neutral wire colour	Blue
Earthing cable colour	Green/yellow
Sheath colour	Black

2.7.3 230/110 VAC output cable

Note

This item is included in CS70401.01.

The 230/110 VAC power cables for AC connectivity are light and flexible. They can be installed in dry, damp and wet environments, both indoor and outdoor, in addition to fire-sensitive locations.

The cable has three conductors made of high quality tinned copper insulated with EPDM-rubber and is 2 metres in length.

One end of the cable is fitted with an IEC320 female connector and the other end with an IEC320 male connector. The former connects to the MetroSite BBU and the latter to a MetroSite BTS or MetroHub.

Table 26. Specifications for the 230/110 VAC mains power cable

Code	Detail
Cross section	$1.5 \mathrm{~mm}^{2}$
Nominal diameter	9.0 mm
Nominal voltage U_{0} / U	$300 \mathrm{~V} / 500 \mathrm{~V}$
Maximum continuous operating temperature	$+60^{\circ} \mathrm{C}$
Minimum recommended handling temperature	$-50^{\circ} \mathrm{C}$
Minimum bending radius	54 mm
Live wire colour	Brown
Neutral wire colour	Blue
Earthing cable colour	Green-yellow
Sheath colour	Black

2.7.4 Alarm cable

Note

This item is included in CS70401.01.

This cable facilitates the monitoring of the status of the various MetroSite BBU alarm outputs at a remote control centre via the MetroSite BTS.

The cable is fitted with an X3, mini D26 (EAC) connector at each end.

Table 27. Specifications for the alarm cable

Pin	Signal	Pin	Signal
1	EAC1	14	GND
2	EAC2	15	GND
3	EAC3	16	GND
4	EAC4	17	GND
5	EAC5	18	GND
6	EAC6	19	GND
7	EAC7	20	GND
8	EAC8	21	GND
9	EAC9	22	GND
10	EAC10	23	GND
11	CO1	24	CO3
12	+3 V	25	CO4
13	CO2	26	+5 V

2.7.5 Battery connection kit

Note

This item is included in CS70401.01.

The kit provides the connection busbars and the connector cable for the battery backup to the MetroSite BBU. The cable which connects the batteries to the MetroSite BBU is fitted with terminals for connection to the batteries and a common connector for connection to the MetroSite BBU -48 VDC connector.

Table 28. Contents of the battery connection kit

Item	Quantity
10-pin genderless connection cable	1
Short battery inter-connecting busbar	2
Long battery inter-connecting busbar	1

Figure 19. Battery connection kit

2.8 Miscellaneous

Table 29. Miscellaneous accessories for the Nokia MetroSite EDGE Base Station

Item	Product code
Earthing cable, $16 \mathrm{~mm}^{2}$	CS73174
Metro Hopper optical alignment tool	T55875.01
Alarm cable (between BTS and Hub)	CS72451.20
Pole mounting kit for MetroSite cabinet	CS72451.10
Power cable for BTS/Hub (230 VAC)	CS72452.50
Power cable for BTS/Hub (110 VAC)	CS72452.51
Power cable for BTS (DC)	CS72452.52
Power cable for Hub (DC)	CS72452.53
Clamp for $2 \times 3 / 8 "$ cable	CS72747.04
Two-pair, 120Ω cable, 305 m	CS72452

Table 29. Miscellaneous accessories for the Nokia MetroSite EDGE Base Station (Continued)

Item	Product code
Extension cable kit, 1 metre	469584 A
Extension cable kit, 3 metres	467614 A
Extension cable kit, 5 metres	469585 A
Extension adapter for PCM/clock cable	CS74814

2.8.1 Jumper cables

Table 30. Jumper cable accessories

Code	Description
CS72672	Jumper cable $2,5 \mathrm{~m}, 3 / 8^{\prime \prime} \mathrm{N}-\mathrm{m}$ angle/N-m telegrey
CS72680.06	Jumper cable $1,25 \mathrm{~m}, 3 / 8^{\prime \prime} \mathrm{N}-\mathrm{m}$ angle/N-m, telegrey
CS72680.07	Jumper cable $2 \mathrm{~m}, 3 / 8^{\prime \prime} \mathrm{N}-\mathrm{m}$ right-angle/7-16f, telegrey

2.8.2 Grounding cable

Product Code: CS73174

The grounding cable is plastic insulated copper wires with a yellow-green colour insulation cover identification.

Table 31. Grounding cable specifications

Code	Details
Cross-section	$16 \mathrm{~mm}^{2}$
Nominal diameter	7.2 mm
Nominal voltage $\mathrm{U}_{0} / \mathrm{U}$	$450 \mathrm{~V} / 750 \mathrm{~V}$
Maximum continuous operating temperature	$+60^{\circ} \mathrm{C}$

Table 31. Grounding cable specifications (Continued)

Code	Details
Minimum recommended handling temperature	$-50^{\circ} \mathrm{C}$
Minimum recommended bending radius (single bend)	22 mm
Colour	Yellow-green

2.8.3 AC power cables for MetroSite BTS or MetroHub

The power cables for AC connectivity are light and flexible. They can be installed in dry, damp and wet environments, both indoor and outdoor, in addition to firesensitive locations.

The cables have three conductors made of high quality tinned copper insulated with EPDM-rubber and are 10 m in length.

One end of the cable is fitted with an IEC320 three-pin male connector and the other end with an appropriate three-pin male connector for connection to the mains power source (user defined).

230 VAC power cable: CS72452.50

Table 32. \quad Specifications for the 230 VAC power cable

Code	Detail
Cross section	$1.5 \mathrm{~mm}^{2}$
Nominal diameter	9.0 mm
Nominal voltage U_{0} / U	$300 \mathrm{~V} / 500 \mathrm{~V}$
Maximum continuous operating temperature	$+60^{\circ} \mathrm{C}$
Minimum recommended handling temperature	$-50^{\circ} \mathrm{C}$
Minimum bending radius	54 mm
Live wire colour	Brown
Neutral wire colour	Blue
Earthing cable colour	Green-yellow
Sheath colour	Black

110 VAC power cable: CS72452.51

Table 33. Specifications for the 110 VAC power cable

Code	Detail
Cross section	$1.5 \mathrm{~mm}^{2}$
Nominal diameter	9.0 mm
Nominal voltage U_{0} / U	$300 \mathrm{~V} / 500 \mathrm{~V}$
Maximum continuous operating temperature	$+60^{\circ} \mathrm{C}$
Minimum recommended handling temperature	$-50^{\circ} \mathrm{C}$
Minimum bending radius	54 mm
Live wire colour	Brown
Neutral wire colour	Blue
Earthing cable colour	Green-yellow
Sheath colour	Black

2.8.4 DC power cable for MetroSite BTS or MetroHub

Product code: CS72452.52 (MetroSite); CS72452.53 (MetroHub)
The -48 VDC power cables for DC connectivity are light and flexible. They can be installed in dry, damp and wet environments, both indoor and outdoor, in addition to fire-sensitive locations.

Each cable type has three conductors made of high quality tinned copper insulated with EPDM-rubber and is 10 m in length.

Table 34. Specifications for the DC power cable

Code	Detail
Cross section	TBA
Nominal diameter	TBA
Nominal voltage U_{0} / U	$300 \mathrm{~V} / 500 \mathrm{~V}$
Maximum continuous operating temperature	$+60^{\circ} \mathrm{C}$
Minimum recommended handling temperature	$-50^{\circ} \mathrm{C}$
Minimum bending radius	TBA

Table 34. Specifications for the DC power cable (Continued)

Code	Detail
Live wire colour	Brown
Neutral wire colour	Blue
Earthing cable colour	Green-yellow
Sheath colour	Black

2.8.5 Optical Alignment Tool

Product code: T55875.01

The optical alignment tool is used to align the MetroHopper for optimum efficiency.

The optical alignment tool is fitted on the MetroHopper mounting assembly before the MetroHopper is fitted. Upon switching on, a red dot is visible through the eyepiece and this can be adjusted for brightness. A coarse then a fine alignment is carried using the red dot.

The red dot is aimed towards the centre of the far-end radio and the mounting assembly is aligned accordingly. During the course of alignment, appropriate screws are tightened to lock the mounting assembly in the aligned position.

When satisfied that alignment is complete, the optical alignment tool is switched off and removed from the MetroHopper mounting assembly. The MetroHopper can then be fitted to the mounting assembly.

Figure 20. Optical alignment tool

Table 35. Specifications for the optical alignment tool

Item	Details
Type	Optical red dot alignment sight. 'Aimpoint Comp' sight with a 90° viewing angle and a mounting base perpendicular to the optical axis of sight.
Manufacturer	Aimpoint AB, Sweden
Application	Used with MetroSite Alignment Unit, type T55850.01
Alignment ranges	Alignment range with 2x magnification lens, 0.5 to 1 km. $4 x$ magnification lens version: 1 km
Optical characteristics	Red dot size 3 MOA
Calibration	Factory calibrated with the optical axis set perpendicular to the base within 10 MOA. The unit can be re-calibrated as necessary.
Power source	Battery operated. One lithium DL1/3N battery or similar. Battery life: 150-250 h (average)
Mechanical characteristics	Base has mechanical interface to alignment unit (T55850.01)
Materials and surface treatment	Anodised/painted aluminium; stainless steel
Required tools	One 6 mm Allen key.

3
 Attachments

Attachment 1: Installation instructions for the Abis 75-ohm interface of Nokia MetroSite with TZC75024 cable

For installation the following listed tools are needed:

- CS74863 Peeling Tool
- CS74862 Centre Contact Crimp Tool
- CS77550.01 Crimp Tool

The connector consists of three parts: a ferrule, a jack and a body.

Completed Installation

Instructions:

1. Slide the shrinking sleeve and the ferrule onto the un-peeled part of the cable.
2. Peel the cable as shown in the picture. The lengths of the peeled parts are: 21 mm ($\left.0.8277^{\prime \prime}\right), 13 \mathrm{~mm}\left(0.512^{\prime \prime}\right)$ and 4.5 mm ($\left.0.177^{\prime \prime}\right)$.
3. Position the jack on the end of the cable. Push the cable into the crimping tool so that the jack is inside the crimping hole, and crimp the jack onto the conductor.
4. Push the body onto the cable so that the braid is outside the thinnest part of the body.
5. Pull the ferrule over the braid onto the body so that the ferrule touches the thick part of the body.
6. Crimp the ferrule onto the body with the crimping tool CS77550.01. Use the gap '4.52' on the tool.
7. Draw the shrinking sleeve over the ferrule and warm it to cause it to shrink onto the ferrule.

Attachment 2: Installation configuration for the Abis $\mathbf{1 2 0}$-ohm interface of Nokia MetroSite.

Note

This cable is provided already assembled but is shown here to identify all the parts constituting an Abis 120 -ohm interface.

A TQ connector is fitted to both ends of the cable. The wires connecting the TQ connectors are coloured as follows (see figure):

OUT+ (pin 4): White stripe
OUT- (pin 3): White
$\mathrm{IN}+$ (pin 2): Blue stripe
IN- (pin 1): Blue

ViemA

Viem B

Attachment 3: Installation instructions for the AC power plug for Nokia MetroSite.

The power feeder is a flexible rubber insulated cable with three multi-wire conductors having dimensions of: $1.5 \mathrm{~mm}^{2}$ or $2.5 \mathrm{~mm}^{2}$ (AWG 15.5-13.5).

For installation the following listed tools are needed:

- \quad Screwdriver (flat)
- \quad Screwdriver (Philips)

DN99259765

Instructions:

1. Strip the power feeder cable from its main insulation $20 \mathrm{~mm}(0.787$ ").
2. Strip the inner conductors and cut them so that the blue and brown wires are $20 \mathrm{~mm}\left(0.787^{\prime \prime}\right)$ long and the yellow/green wire is slightly longer, at 25 $\mathrm{mm}\left(1{ }^{\prime \prime}\right)$. The stripped area is $4 \mathrm{~mm}\left(0.157^{\prime \prime}\right)$ long.
3. Undo the screw holding the body parts together and store the screw, nut and washer in a safe place. Separate the two parts of the body.
4. Remove the sleeve then feed the cable (exposed end) through the sleeve from the rear.
5. Pull the cable through sufficiently to enable the wires to be attached to the plug connectors.
6. Undo each plug connector screw sufficiently to enable the cable wire to be inserted and insert the wires in each connector.

Note

The brown (live) wire to be inserted in the right-hand connector as viewed from the front. The blue (neutral) wire is inserted into the left-hand connector, and the yellow/green (earth) wire to the centre connector.
7. Tighten each screw in turn to fix the wires in the connectors.
8. Align the sleeve on the cable so that the raised end can be inserted into the slot.
9. Place the two body parts together, making sure they are aligned, the wires are clear of the body fixing hole and the sleeve is properly located in the slot.
10. Fix the body parts together with the screw, nut and washer.
11. This procedure is to be repeated for the other end of the cable if the power cable is to connect the MetroSite BBU to a MetroSite BTS.

If the cable is to be connected to a MetroHub, repeat steps 1 and 2 for the other end of the cable. Connect that end to the MetroHub as described in the MetroHub User Manual (Installation).

If the cable is to be connected to the mains power source then this is user defined.

Attachment 4: Installation instructions for the DC power plug for Nokia MetroSite

The power feeder is a flexible rubber insulated cable with three multi-wire conductors having dimensions of: $1.5 \mathrm{~mm}^{2}$ or $2.5 \mathrm{~mm}^{2}$ (AWG 15.5-13.5).

Instructions:

1. Strip the power feeder cable from its main insulation ' X ' mm (TBA).
2. Strip the inner conductors and cut them so that they are of equal length.
3. Strip each wire insulation to ' Y ' mm (TBA) length using a sharp blade, taking care not to cut any strands of wire.
4. Insert each wire, in turn, into a contact and using the crimping tool, crimp the contact around the wire.
5. Undo the cable clamp to enable the cable to be inserted.
6. Push the contacts into the connector in their correct positions.It is very important that the contacts are in the correct order in the connector.
7. If the cable is to connect the DC supply to a MetroSite BTS, the procedure is to be repeated for the other end of the cable. If the cable is to connect the DC supply to a MetroHub, refer to the MetroHub User Manual (Installation)for the connection of the other end of the cable.
