

APPLICATION CERTIFICATION FCC Part 15C On Behalf of Koss Corporation

Bluetooth Headset Model No.: BT539i V2

FCC ID: L76-BT539IV2

Prepared for Address	:	Koss Corporation 4129 North Port Washington Avenue Milwaukee Wisconsin 53212 United States
Prepared by Address	:	Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
		Tel: (0755) 26503290

Fax: (0755) 26503296

Report No.	:	ATE20181147
Date of Test	:	July 3-July 4, 2018
Date of Report	:	July 5, 2018

TABLE OF CONTENTS

Test Report Certification

T.	ABLE	OF CONTENTS	2
1.	GF	ENERAL INFORMATION	5
	1.1.	Description of Device (EUT)	5
	1.2.	Accessory and Auxiliary Equipment	
	1.3.	Description of Test Facility	
	1.4.	Measurement Uncertainty	6
2.	M	EASURING DEVICE AND TEST EQUIPMENT	7
3.	OF	PERATION OF EUT DURING TESTING	8
	3.1.	Operating Mode	8
	3.2.	Configuration and peripherals	8
4.	FR	REQUENCY HOPPING SYSTEM REQUIREMENTS	9
	4.1.	Standard and Limit	
	4.2.	EUT Pseudorandom Frequency Hopping Sequence	9
	4.3.	Frequency Hopping System	
5.	TE	EST PROCEDURES AND RESULTS	
6.	20]	DB BANDWIDTH TEST	
	6.1.	Block Diagram of Test Setup	
	6.2.	The Requirement For Section 15.247(a)(1)	
	6.3.	EUT Configuration on Measurement	
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	
	6.6.	Test Result	
7.	CA	ARRIER FREQUENCY SEPARATION TEST	
	7.1.	Block Diagram of Test Setup	19
	7.2.	The Requirement For Section 15.247(a)(1)	
	7.3.	EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	
8.	NU	JMBER OF HOPPING FREQUENCY TEST	
	8.1.	Block Diagram of Test Setup	
	8.2.	The Requirement For Section 15.247(a)(1)(iii)	
	8.3.	EUT Configuration on Measurement	
	8.4.	Operating Condition of EUT	
	8.5.	Test Procedure	
•	8.6.	Test Result	
9.		VELL TIME TEST	
	9.1.	Block Diagram of Test Setup	
	9.2.	The Requirement For Section 15.247(a)(1)(iii)	
	9.3.	EUT Configuration on Measurement	
	9.4.	Operating Condition of EUT	

9.6. Test Result	
10. MAXIMUM PEAK OUTPUT POWER TEST	
10.1. Block Diagram of Test Setup	
10.2. The Requirement For Section 15.247(b)(1)	
10.3. EUT Configuration on Measurement	
10.4. Operating Condition of EUT	
10.5. Test Procedure	
10.6. Test Result	
11. RADIATED EMISSION TEST	
11.1. Block Diagram of Test Setup	
11.2. The Limit For Section 15.247(d)	
11.3. Restricted bands of operation	45
11.4. Configuration of EUT on Measurement	
11.5. Operating Condition of EUT	46
11.6. Test Procedure	46
11.7. Data Sample	47
11.8. The Field Strength of Radiation Emission Measurement Results	47
12. BAND EDGE COMPLIANCE TEST	60
12.1. Block Diagram of Test Setup	60
12.2. The Requirement For Section 15.247(d)	
12.3. EUT Configuration on Measurement	
12.4. Operating Condition of EUT	60
12.5. Test Procedure	61
12.6. Test Result	61
13. AC POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION	N 15.207(A)72
13.1. Block Diagram of Test Setup	72
13.2. Power Line Conducted Emission Measurement Limits	
13.3. Configuration of EUT on Measurement	
13.4. Operating Condition of EUT	
13.5. Test Procedure	73
13.6. Data Sample	
13.7. Power Line Conducted Emission Measurement Results	74
14. ANTENNA REQUIREMENT	79
14.1. The Requirement	
14.2. Antenna Construction	

Test Report Certification

Applicant	: Koss Corporation
Manufacturer	: Dongguan Baizhenrong Limited
EUT Description	: Bluetooth Headset
Model No.	: BT539i V2
Brand Name	: KOSS

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test : Date of Report :	July 3-July 4, 2018 July 5, 2018
Test Engineer :	Star Yang
	(Star Yang, Engineer)
Prepared by :	S + LECHNOLOG
	(St APPROVED r)
Approved & Authorized Signer :	Tenne
	(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

Model Number	:	BT539i V2
Bluetooth version	:	V 4.2
Frequency Range	:	2402MHz-2480MHz
Number of Channels	:	79
Antenna Gain(Max)	:	0 dBi
Antenna type	:	Integral Antenna
Modulation mode	:	GFSK, $\pi/4$ DQPSK, 8DPSK
Power supply	:	DC 3.7V (Powered by Lithium battery) or DC 5V (Powered by USB port)
Hardware version	:	KOSS BT539i
Software version	:	AB1522S V4.2
Applicant Address	:	Koss Corporation 4129 North Port Washington Avenue Milwaukee Wisconsin 53212 United States
Manufacturer Address	:	Dongguan Baizhenrong Limited 3 Xin Yuan Street, Ju-zhou No.2 Industrial Zone, Shijie Town, DongGuan, GuangDong Province, P.R.C

1.2. Accessory and Auxiliary Equipment

AC/DC Power Adapter	:	Model:TEKA006-0501000UKU
(provided by laboratory)		Input: 100-240V~50/60Hz 0.3A
		Output: DC 5V/1A

1.3.Description of Test Facility

EMC Lab	:	Recognition of accreditation by Federal Communications Commission (FCC) The Designation Number is CN1189 The Registration Number is 708358
		Listed by Innovation, Science and Economic Development Canada (ISEDC)
		The Registration Number is 5077A-2
		Accredited by China National Accreditation Service for Conformity Assessment (CNAS) The Registration Number is CNAS L3193
		Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01
Name of Firm	:	Shenzhen Accurate Technology Co., Ltd.
Site Location	•	1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 06, 2018	1 Year
EMI Test Receiver	Rohde& Schwarz	ESR	101817	Jan. 06, 2018	1 Year
Spectrum Analyzer	Rohde&Schwarz	FSV40	101495	Jan. 06, 2018	1 Year
Pre-Amplifier	Rohde&Schwarz	CBLU1183540-01	3791	Jan. 06, 2018	1 Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 06, 2018	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 06, 2018	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 06, 2018	1 Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 06, 2018	1 Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 06, 2018	1 Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18G-10S S	N/A	Jan. 06, 2018	1 Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2485-2 375/2510-60/11SS	N/A	Jan. 06, 2018	1 Year
RF COAXIAL CABLE	SUHNER	N-5m(Frequency range:9KHz-26.5GHz)	NO.3	Jan. 06, 2018	1 Year
RF COAXIAL CABLE	SUHNER	N-5m(Frequency range:9KHz-26.5GHz)	NO.4	Jan. 06, 2018	1 Year
RF COAXIAL CABLE	SUHNER	N-1m(Frequency range:9KHz-26.5GHz)	NO.5	Jan. 06, 2018	1 Year
RF COAXIAL CABLE	SUHNER	N-1m(Frequency range:9KHz-26.5GHz)	NO.6	Jan. 06, 2018	1 Year
Temporary antenna connector	NTGS	14AE	N/A	July 4, 2018	N/A

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

3. OPERATION OF EUT DURING TESTING

3.1.Operating Mode

The mode is used: Transmitting mode Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz Hopping

Note: The equipment under test (EUT) was tested under fully-charged battery. The Bluetooth has been tested under continuous transmission mode.

EUT is connected to a computer through the usb-serial controller tool and Use test software to set the test mode. Test software is (Airoha.AB152x_verC_LabTestTool)

3.2. Configuration and peripherals

EUT	
Figure 1 Setup: Transmitting mode	

4. FREQUENCY HOPPING SYSTEM REQUIREMENTS

4.1.Standard and Limit

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

4.2.EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 34, 51, 72, 09, 01, 64, 22, 33, 41, 32, 47, 65, 73, 53, 69, 06, 17, 04, 20, 36, 52, 38, 66, 70, 78, 68, 76, 21, 29, 10, 26, 49, 00, 58, 44, 59, 75, 13, 03, 14, 11, 35, 43, 37, 50, 61, 77, 55, 71, 02, 23, 07, 27, 39, 54, 46, 48, 15, 63, 62, 67, 25, 31, 12, 28, 19, 60, 42, 57, 74, 16, 05, 18, 30, 45, etc.

The system receiving have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

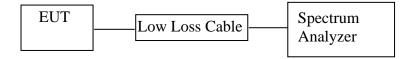
4.3. Frequency Hopping System

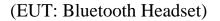
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with a bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements FCC Part 15.247 rule.


5. TEST PROCEDURES AND RESULTS


FCC Rules	Description of Test	Result
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.207	AC power-line conducted emissions limits Test	Compliant
Section 15.203	Antenna Requirement	Compliant

6. 20DB BANDWIDTH TEST

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

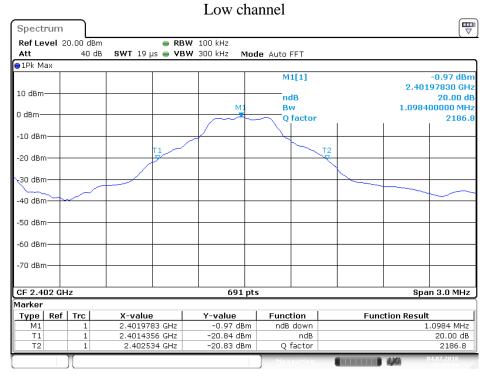
6.4. Operating Condition of EUT

- 6.4.1.Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2.Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

6.5.Test Procedure

- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 6.5.3.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

6.6.Test Result


Test Lab: Shielding room Test Engineer: Star

	Fraguanay	GFSK	∏/4-DQPSK	8DPSK	
Channel	Frequency (MHz)	20dB Bandwidth	20dB Bandwidth	20dB Bandwidth	Result
		(MHz)	(MHz)	(MHz)	
Low	2402	1.098	1.411	1.376	Pass
Middle	2441	1.103	1.407	1.372	Pass
High	2480	1.133	1.424	1.389	Pass

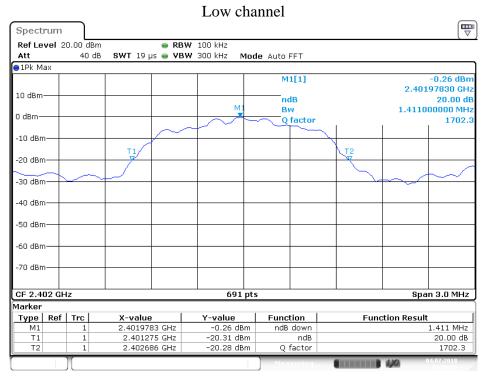
The spectrum analyzer plots are attached as below.

GFSK Mode

Date: 4.JUL.2018 10:04:19

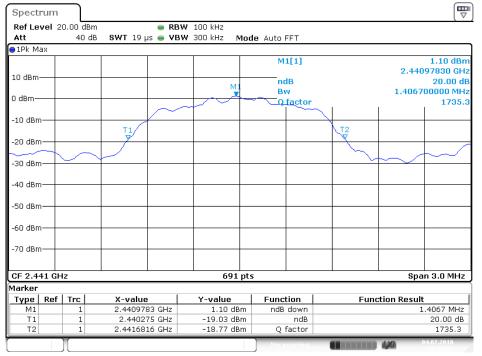
Middle channel

					maare	onum	UI			
Spectr	um									
Ref Lev	el 20	1.00 dB	m	😑 RBV	/ 100 kHz					
Att		40 c				1ode Aut	o FFT			
∋1Pk Ma	x									
							M1[1]			0.40 dBn
										2.44097830 GH
10 dBm-							ndB			20.00 dE
o					MI		Bw		1	.102700000 MHz
0 dBm—						\sim	Q factor			2213.5
-10 dBm-										
-10 uBin-				T1 /			~	TO		
-20 dBm-				y v				T2 V		
-20 08111-										
√30 dBm-										
20 00.00		\sim								~~~
-40 dBm-	\rightarrow									
-50 dBm-					_					
-60 dBm-										
-70 dBm-	-				_		_			
CF 2.44	1 GH	z	- 1		691	pts		I	I	Span 3.0 MHz
Marker						•				
	Ref	Trc	X-value		Y-value	Fu	nction	1	Function F	Result
M1		1	2.440978		0.40 dB		dB down			1.1027 MHz
Τ1		1	2.44043:		-19.56 dB		ndB			20.00 dB
T2		1	2.44153	34 GHz	-19.69 dB	m	Q factor			2213.5
						[] M	easuring.			04.07.2018


Date: 4.JUL.2018 10:03:57

High channel ඐ Spectrum RBW 100 kHz SWT 19 μs VBW 300 kHz Ref Level 20.00 dBm 40 dB Mode Auto FFT Att 🔵 1 Pk Max M1[1] 1.55 dBr 2.47997830 GH: 10 dBm· ndB 20.00 dB M Bw 1.133100000 MH: 0 dBm Q factor 2188.6 -10 dBm <u>₹</u>2 -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm--70 dBm· CF 2.48 GHz Span 3.0 MHz 691 pts Marker Function Type Ref Trc Function Result X-value Y-value 2.4799783 GHz 1.55 dBm 1.1331 MHz Μ1 1 ndB down ndB Q factor Τ1 1 2.4794182 GHz -18.45 dBm 20.00 dB 2.4805514 GHz -18.50 dBm 2188.6 Τ2

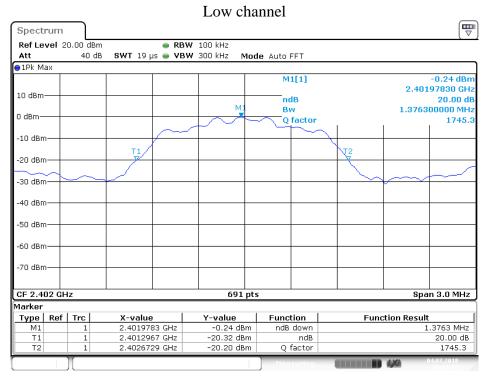
Date: 4.JUL.2018 10:03:29


∏/4-DQPSK Mode

Date: 4.JUL.2018 10:00:19

Middle channel

Date: 4.JUL.2018 09:59:55


High channel

				Ingn	Cha	IIIICI				
Spectr	um									
Ref Lev	/el 2	0.00 dBi	m 😑	RBW 100 kHz						(
Att		40 d			Mod	e Auto FFT				
●1Pk Ma	x									
-					—	M1[1]				2.23 dBm
									2.479	97830 GHz
10 dBm-					41	ndB				20.00 dB
					T.	Bw			1.4240	00000 MHz
0 dBm—							r			1741.5
							$\overline{}$			
-10 dBm·	-		T1		+			T2		
								V		
-20 dBm-	-				+					
\sim		\sim	\checkmark							
-30 dBm-	-				+				~	
-40 dBm·	-				+					
-50 dBm·	-				+					
-60 dBm·	_									
-70 dBm·	-				+					
CF 2.48					1 pts					n 3.0 MHz
Marker	GHZ			09	r prs				aha	11 3.0 MF1Z
	Ref	Tur	X-value	Y-value	- 1	F	1	F		
Type M1	кет	Trc 1	2.4799783 GH		10 m	Function ndB down		Func	tion Result	1.424 MHz
T1		1	2.4799783 GH 2.4792663 GH			nub uown ndB				20.00 dB
T2		1	2.4806903 GH			Q factor	_			1741.5
			211000500 dri			2,0000	-			107.0040
		Л				Measuring			120	09:50:08

Date: 4.JUL.2018 09:59:08

8DPSK Mode

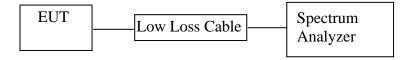
Date: 4.JUL.2018 10:01:19

Middle channel

					, induit	0 011		-				
Spect	rum											
Ref Le	vel 2	20.00 dBi	m e	RBW	100 kHz							
Att		40 d	B SWT 19 µs 🧉	VBW	300 kHz	Mode	a Auto F	FT				
●1Pk M	ax		· · · · ·									`
							M	1[1]				1.12 dBm
											2.440	97830 GHz
10 dBm						мі	nc					20.00 dB
0 dBm-						×.	B				1.3719	00000 MHz
U UBIII-					$\sim \neg$		<u></u>	factor				1779.2
-10 dBr				~~				\sim				
-10 UBI	-		τ1						Z	V 2		
-20 dBm			Ja							Ý		
-20 001												
-30 dBm		\sim								\sim		
00 40.	·											
-40 dBrr	ו—⊢											
-50 dBm	n——											
-60 dBrr	∩— -											
-70 dBr	י—+											
CF 2.4	41 CF	17			60	91 pts					Sna	n 3.0 MHz
Marker	11 01					1 pro					000	
Type	Ref	Trc	X-value	1	Y-value		Funct	tion		Euno	tion Result	1
M1		1	2,4409783 G	Hz	1.12			down		- i unc		.3719 MHz
T1		1	2.440301 G		-18.89		nab	ndB			-	20.00 dB
Т2		1	2.4416729 G	6Hz	-19.04	dBm	Qt	factor				1779.2
][Mea	suring.	-		4/4	4.07.2018

Date: 4.JUL.2018 10:01:54

High channel



Date: 4.JUL.2018 10:02:48

7. CARRIER FREQUENCY SEPARATION TEST

7.1.Block Diagram of Test Setup

(EUT: Bluetooth Headset)

7.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1.Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz. Adjust Span to 2MHz.
- 7.5.3.Set the adjacent channel of the EUT Maxhold another trace.

7.5.4.Measurement the channel separation

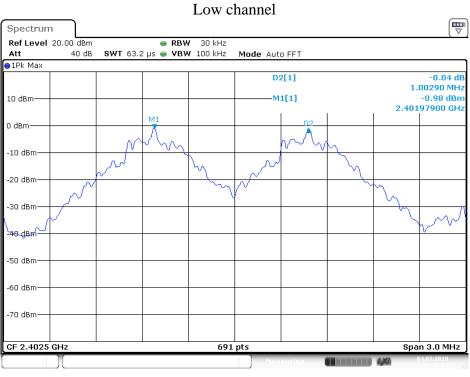
7.6.Test Result

Test Lab: Shielding room Test Engineer: Star

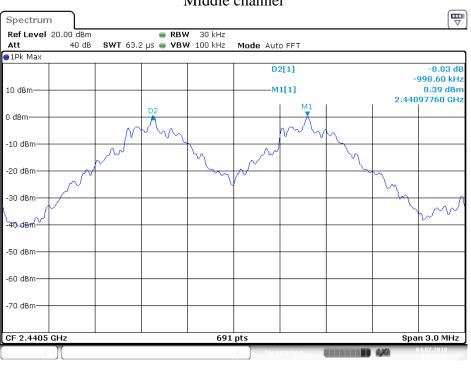
GFSK Mode

OI DIL MIOU	*					
Channel	Frequency	Channel	Limit	Result		
Channel	(MHz) Separation(MHz		(MHz)	Kesult		
Low	2402	1.0029	25KHz or 2/3*20dB	Dece		
Low	2403	1.0029	bandwidth	Pass		
Middle	2440	0.9986	25KHz or 2/3*20dB	Dece		
Middle	2441	0.9980	bandwidth	Pass		
Iliah	2479	1.0029	25KHz or 2/3*20dB	Dece		
High	2480	1.0029	bandwidth	Pass		

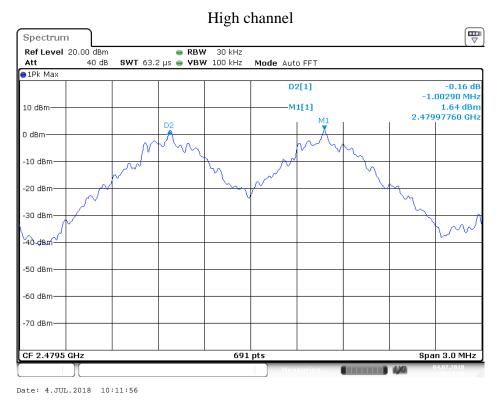
∏/4-DQPSK Mode

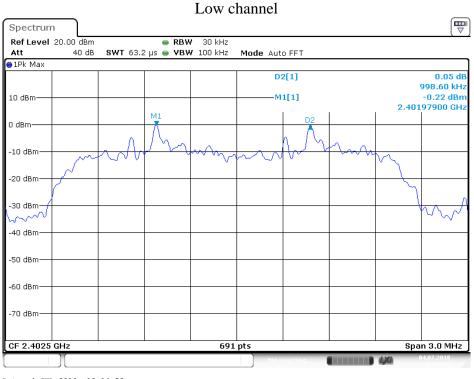

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result		
Low	2402	0.9986	25KHz or 2/3*20dB	Pass		
LOW	2403	0.7700	bandwidth	1 455		
Middle	2440	1.0072	25KHz or 2/3*20dB	Pass		
winduic	2441	1.0072	bandwidth	1 455		
Uigh	2479	1.0029	25KHz or 2/3*20dB	Pass		
High	2480	1.0029	bandwidth	r a88		

8DPSK Mode

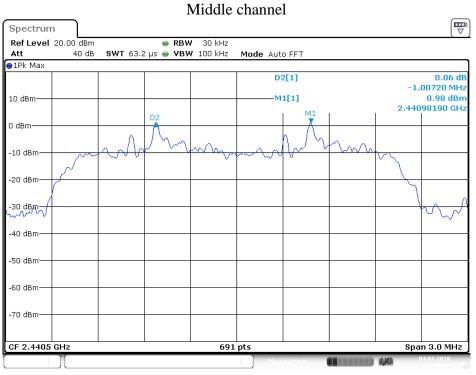

Channel	Frequency	Channel	Limit	Result	
Chaimer	(MHz) Separation(MH		(MHz)	Rebuit	
Low	2402	0.9986	25KHz or 2/3*20dB	Pass	
	2403	0.9980	bandwidth	F 888	
Middle	2440	0.9986	25KHz or 2/3*20dB	Dece	
windule	2441	0.9980	bandwidth	Pass	
Iliah	2479	0.9986	25KHz or 2/3*20dB	Daga	
High	2480	0.9980	bandwidth	Pass	

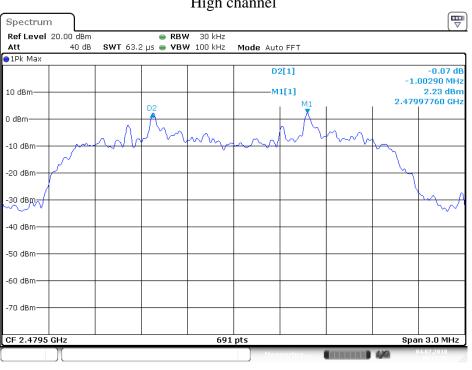
GFSK Mode


Date: 4.JUL.2018 10:08:54

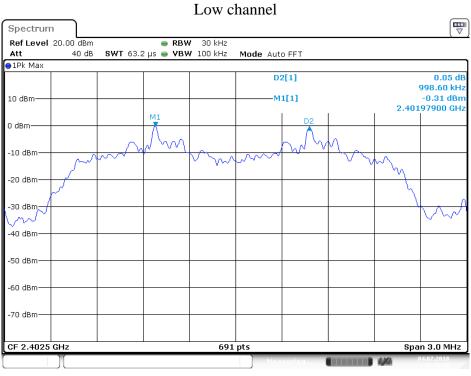

Middle channel

Date: 4.JUL.2018 10:10:42

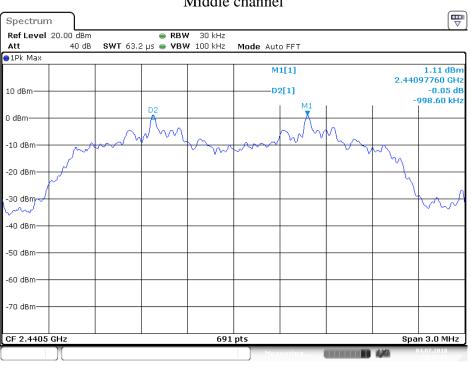



Π /4-DQPSK Mode

Date: 4.JUL.2018 10:14:00



High channel


Date: 4.JUL.2018 10:12:48

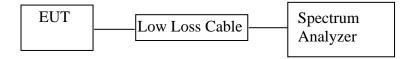
8DPSK Mode

Date: 4.JUL.2018 10:15:43

Middle channel

Date: 4.JUL.2018 10:16:28

Spectrum ● RBW 30 kHz SWT 63.2 µs ● VBW 100 kHz Ref Level 20.00 dBm Att 40 dB Mode Auto FFT ⊖1Pk Max -0.03 dB -998.60 kHz 2.21 dBm 2.47997760 GHz D2[1] 10 dBm· -M1[1] M1 D2 A 0 dBm- \sim -10 dBmh -20 dBm -30 dBm 200 -40 dBm· -50 dBm· -60 dBm--70 dBm· Span 3.0 MHz CF 2.4795 GHz 691 pts


Date: 4.JUL.2018 10:17:10

High channel

8. NUMBER OF HOPPING FREQUENCY TEST

8.1.Block Diagram of Test Setup

(EUT: Bluetooth Headset)

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

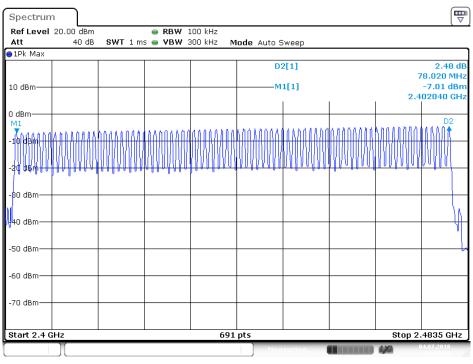
8.4.1.Setup the EUT and simulator as shown as Section 8.1.

8.4.2.Turn on the power of all equipment.

8.4.3.Let the EUT work in TX (Hopping on) modes measure it.

8.5.Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set the spectrum analyzer as RBW=100 kHz, VBW=300 kHz.
- 8.5.3.Max hold, view and count how many channel in the band.



8.6.Test Result

Test Lab: Shielding room Test Engineer: Star

Total number of	Measurement result(CH)	Limit(CH)	Result
hopping channel	79	≥15	Pass

The spectrum analyzer plots are attached as below.

Number of hopping channels(GFSK Mode)

Date: 4.JUL.2018 10:19:20

Rof Louol	20.00 dBr	n	-	RBW :	100 /42						
Att	40 d			VBW 3		lode Auto S	Sweep				
1Pk Max											
10 dBm						D2[1] M1[1]			2.51 dB 78.020 MHz -6.34 dBm 2.402040 GHz		
0 dBm M1 Հիቢለկիլ	ηλκηληλη	AKRANAK	() / () ()	NAKKAA	4.66.67.67	ANAAAAA	NAAAAAAA	ለለስለለአለ	NAAAAAA)		
-រហូ <i>ចូង្កា</i> កូក -20 dBm—	1000000	heanana	<u></u>								
-30 dBm										, d	
-40 dBm—											
50 dBm—										(
-60 dBm—											
Start 2.4	CH7				601	pts			Stor 2	.4835 GHz	

Number of hopping channels(Π /4-DQPSK Mode)

Date: 4.JUL.2018 10:20:52

Number of hopping channels(8DPSK Mode)

Spectrum	1 I								
Ref Level Att	20.00 dBm 40 dB	0WT 1 m	● RBW 3 5 ● VBW 3						
ALL 1Pk Max	40 UB	SWIIM	5 - 90 79 3	500 KHZ (14)	ode Auto S	weep			
10 dBm	D2[1]					2.45 dB 78.020 MHz -6.31 dBm 2.402040 GHz			
	717U/17U	י אממא אחמי	השטעטעו	NANAAAA	המעעעעע עעעעעעע		NAKNAAA	NAAAAW	
-20 dBm	1999999999999	1.1.1.1.1.1.1	00108004	10(1-080)		1.00.00			
-30 dBm									h
-50 dBm									w
-60 dBm									
-70 dBm—									
Start 2.4 G	iHz			691	pts Mea	suring		stop 2.	4835 GHz

Date: 4.JUL.2018 10:21:43

9. DWELL TIME TEST

9.1.Block Diagram of Test Setup

(EUT: Bluetooth Headset)

9.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1.Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2.Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 9.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 15ms. Get the pulse time.
- 9.5.4.Repeat above procedures until all frequency measured were complete.

9.6.Test Result

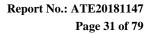
PASS.

Test Lab: Shielding room Test Engineer: Star

GFSK Mode (Worst case)

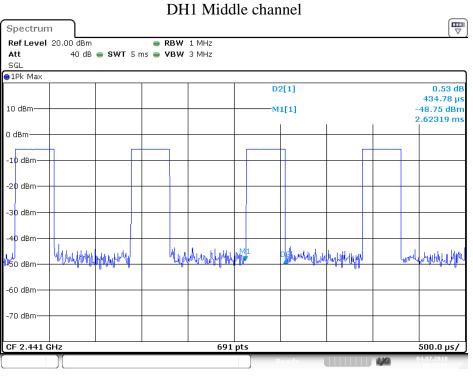
Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)		
DH1	2441	0.435	139.200	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$						
DH3	2441	1.710	273.600	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$						
DH5	2441	2.993	319.253	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$						

Π /4-DQPSK Mode (Worst case)

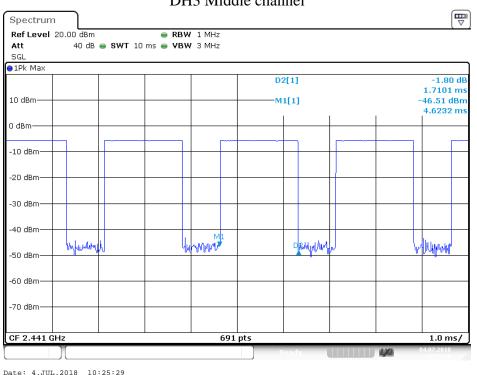

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)		
DH1	2441	0.449	143.680	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$						
DH3	2441	1.710	273.600	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$						
DH5	2441	2.993	319.253	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$						

8DPSK Mode (Worst case)

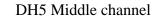
Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
DH1	2441	0.449	143.680	400	
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$					
DH3	2441	1.696	271.360	400	
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$					
DH5	2441	2.978	317.653	400	
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$					

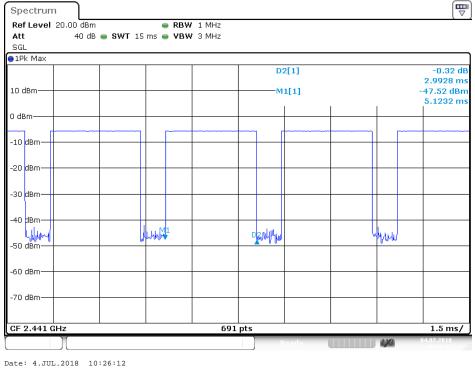

Note: We tested GFSK mode and $\Pi/4$ -DQPSK & 8DPSK mode the low, middle and high channel and recorded the worst case data for all test mode.

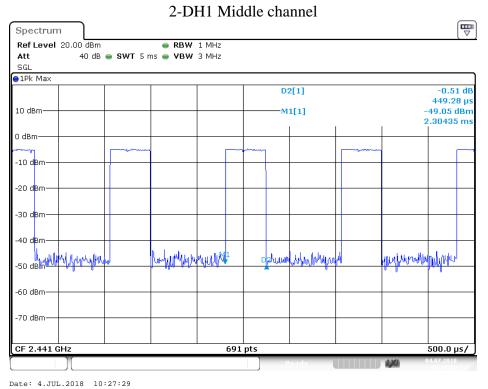
The spectrum analyzer plots are attached as below.

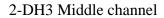


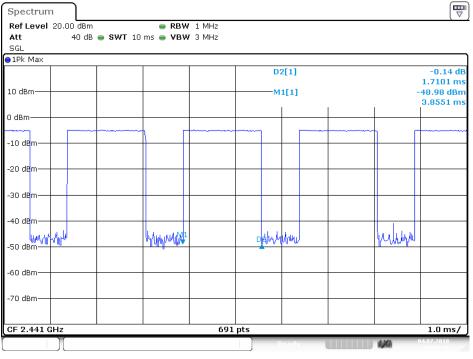
GFSK Mode



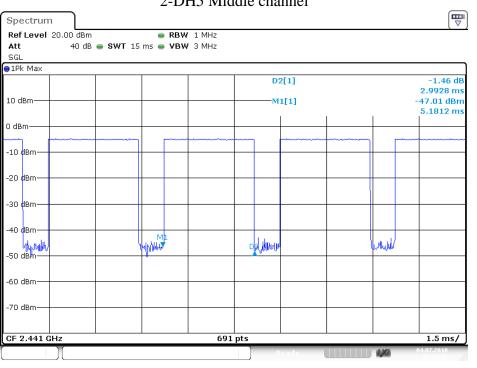

Date: 4.JUL.2018 10:24:11

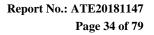

DH3 Middle channel



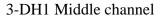


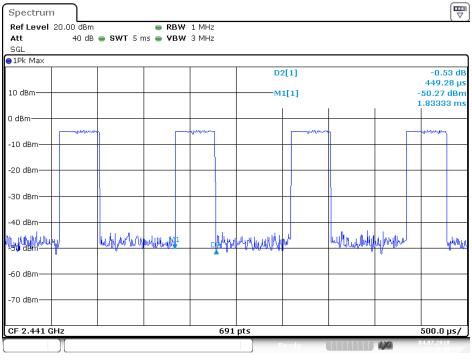
Π /4-DQPSK Mode

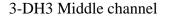


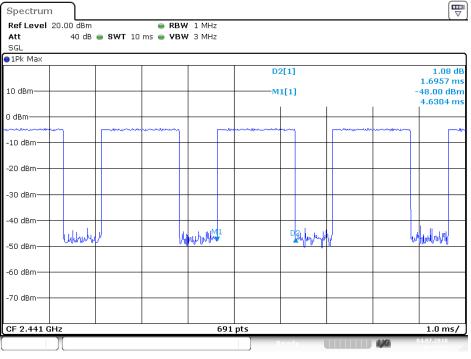


Date: 4.JUL.2018 10:28:35

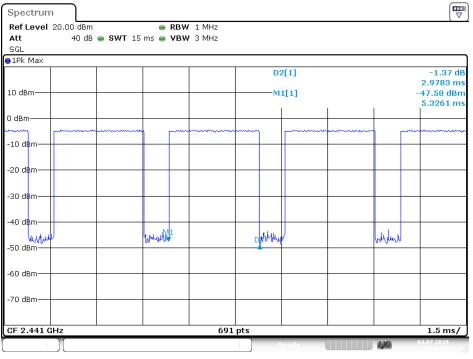

2-DH5 Middle channel


Date: 4.JUL.2018 10:29:38




8DPSK Mode

Date: 4.JUL.2018 10:30:49



Date: 4.JUL.2018 10:31:39

Date: 4.JUL.2018 10:32:20

10.MAXIMUM PEAK OUTPUT POWER TEST

10.1.Block Diagram of Test Setup

(EUT: Bluetooth Headset)

10.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

10.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.4. Operating Condition of EUT

- 10.4.1.Setup the EUT and simulator as shown as Section 10.1.
- 10.4.2.Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

10.5.Test Procedure

- 10.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 10.5.2.Set RBW of spectrum analyzer to 3MHz and VBW to 3MHz.
- 10.5.3.Measurement the maximum peak output power.

10.6.Test Result

Test Lab: Shielding room Test Engineer: Star

GFSK Mode

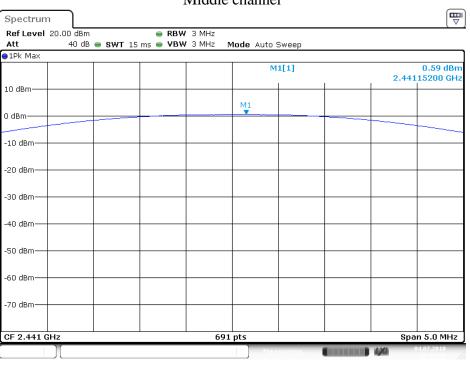
Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W	Result
Low	2402	-0.70/0.0009	21 / 0.125	Pass
Middle	2441	0.59/0.0011	21 / 0.125	Pass
High	2480	1.78/0.0015	21 / 0.125	Pass

∏/4-DQPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W	Result
Low	2402	0.45/0.0011	21 / 0.125	Pass
Middle	2441	1.79/0.0015	21 / 0.125	Pass
High	2480	2.96/0.0020	21 / 0.125	Pass

8DPSK Mode

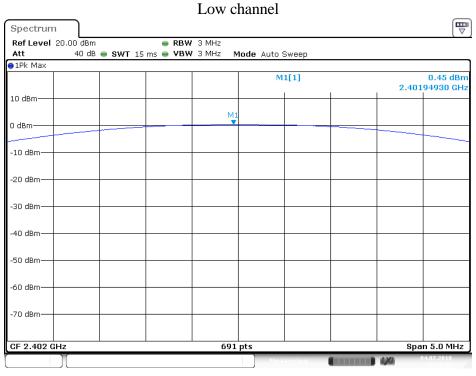
Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W	Result
Low	2402	0.60/0.0011	21 / 0.125	Pass
Middle	2441	1.91/0.0016	21 / 0.125	Pass
High	2480	3.08/0.0020	21 / 0.125	Pass


The spectrum analyzer plots are attached as below.

GFSK Mode

Low channel Spectrum 0 dBm **• RBW** 3 MHz 40 dB **• SWT** 15 ms **• VBW** 3 MHz Ref Level 20.00 dBm Att Mode Auto Sweep ⊖1Pk Max -0.70 dBn 2.40201450 GH M1[1] 10 dBm Þ 0 dBm--10 dBm--20 dBm -30 dBm 40 dBm -50 dBm -60 dBm -70 dBm CF 2.402 GHz 691 pts Span 5.0 MHz **1**

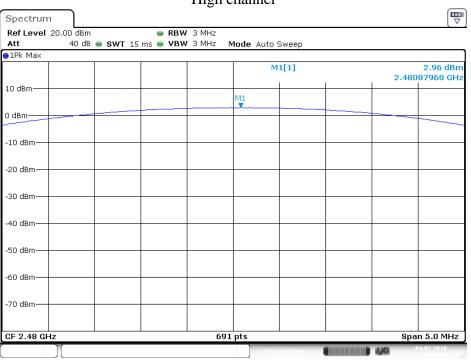
Date: 4.JUL.2018 10:34:14


Middle channel

Date: 4.JUL.2018 10:34:55

High channel Spectrum 0 dBm ● **RBW** 3 MHz 40 dB ● **SWT** 15 ms ● **VBW** 3 MHz Ref Level 20.00 dBm Mode Auto Sweep Att ●1Pk Max 1.78 dBm 2.48008680 GHz M1[1] 10 dBm M1 0 dBm--10 dBm -20 dBm -30 dBm -40 dBm -50 dBm 60 dBm -70 dBm Span 5.0 MHz 691 pts CF 2.48 GHz **Constants** LX. Date: 4.JUL.2018 10:35:32

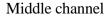
Π /4-DQPSK Mode

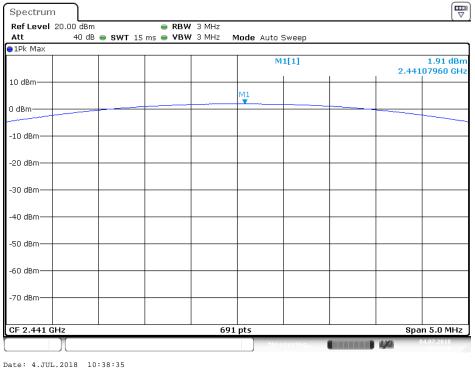

Date: 4.JUL.2018 10:37:12

Middle channel

				white	chunn				_
Spectrum									
Ref Level 20	.00 dBm		👄 RBW	3 MHz					
Att	40 dB	SWT 19	ims 👄 VBW	/ 3 MHz	Mode Auto) Sweep			
●1Pk Max									
					l	M1[1]		2.441	1.79 dBn 07240 GH:
10 dBm								-	
					M1				
0 dBm					- · · ·				
-10 dBm						-			
-20 dBm									
-30 dBm							_		
-40 dBm						_			
-50 dBm									
oo abiii									
-60 dBm									
-00 ubill									
-70 dBm									
-/0 uBin									
CF 2.441 GHz	2			69:	Lpts			Spa	n 5.0 MHz
	(Me	asuring		4/4	04.07.2018
								-	

Date: 4.JUL.2018 10:36:41

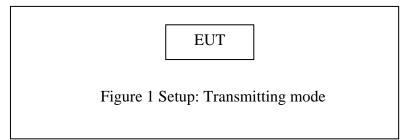

High channel

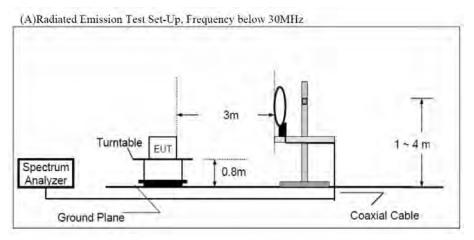

Date: 4.JUL.2018 10:36:02

8DPSK Mode

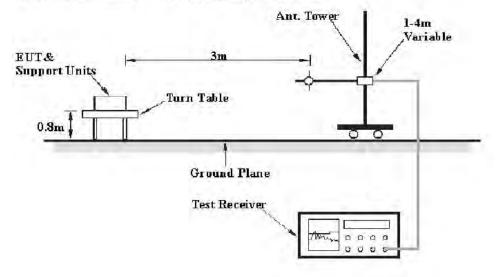
Low channel Spectrum 0 dBm **• RBW** 3 MHz 40 dB **• SWT** 15 ms **• VBW** 3 MHz Ref Level 20.00 dBm Att Mode Auto Sweep ⊖1Pk Max 0.60 dBn 2.40206510 GH M1[1] 10 dBm 41 T 0 dBm--10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm -70 dBm Span 5.0 MHz CF 2.402 GHz 691 pts **1** Date: 4.JUL.2018 10:37:55

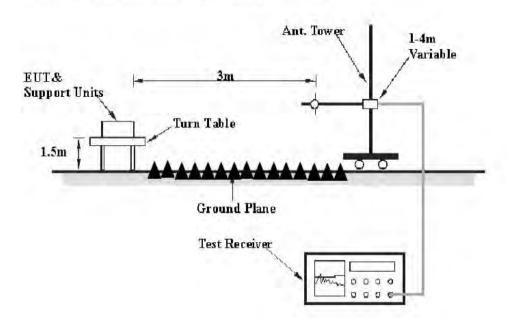
High channel Spectrum Ref Level 20.00 dBm ■ RBW 3 MHz Att 40 dB • SWT 15 ms • VBW 3 MHz Mode Auto Sweep ⊖1Pk Max 3.08 dBm 2.47999280 GHz M1[1] 10 dBm М 0 dBm--10 dBm -20 dBm -30 dBm--40 dBm -50 dBm -60 dBm -70 dBm-Span 5.0 MHz CF 2.48 GHz 691 pts 4/4


Date: 4.JUL.2018 10:39:11


11.RADIATED EMISSION TEST

11.1.Block Diagram of Test Setup


11.1.1.Block diagram of connection between the EUT and peripherals


11.1.2.Semi-Anechoic Chamber Test Setup Diagram

(B)Radiated Emission Test Set-Up, Frequency 30MHz-1GHz

(C) Radiated Emission Test Set-Up. Frequency above 1GHz

11.2.The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.Restricted bands of operation

11.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

0.111	nited in any of the neede	ney builds listed below.	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

 2 Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

11.4.Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.5. Operating Condition of EUT

- 11.5.1.Setup the EUT and simulator as shown as Section 11.1.
- 11.5.2.Turn on the power of all equipment.
- 11.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

11.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

11.7.Data Sample	
------------------	--

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	48.69	-13.35	35.34	46	-10.66	QP

Frequency(MHz) = Emission frequency in MHz

 $\begin{aligned} & \text{Reading}(dB\mu\nu) = \text{Uncorrected Analyzer/Receiver reading} \\ & \text{Factor}(dB/m) = \text{Antenna factor} + \text{Cable Loss} - \text{Amplifier gain} \\ & \text{Result}(dB\mu\nu/m) = \text{Reading}(dB\mu\nu) + \text{Factor}(dB/m) \\ & \text{Limit}(dB\mu\nu/m) = \text{Limit stated in standard} \\ & \text{Margin}(dB) = \text{Result}(dB\mu\nu/m) - \text{Limit}(dB\mu\nu/m) \\ & \text{QP} = \text{Quasi-peak Reading} \end{aligned}$

Calculation Formula: Margin(dB) = Result ($dB\mu V/m$)–Limit($dB\mu V/m$) Result($dB\mu V/m$)= Reading($dB\mu V$)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

11.8. The Field Strength of Radiation Emission Measurement Results

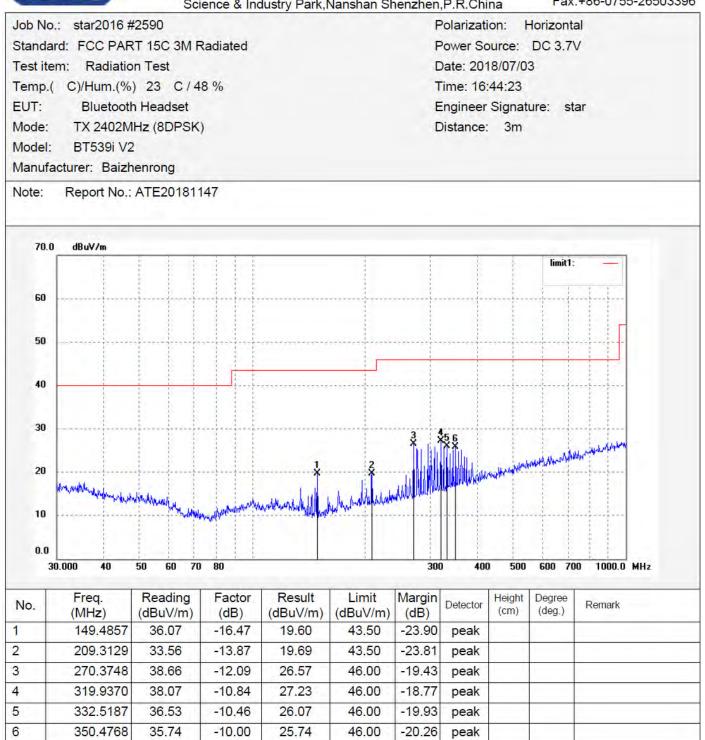
PASS.

Test Lab: 3m Anechoic chamber Test Engineer: Star

Note: 1.We tested GFSK mode, $\Pi/4$ -DQPSK & 8DPSK Mode and recorded the worst case data (8DPSK mode) for all test mode.

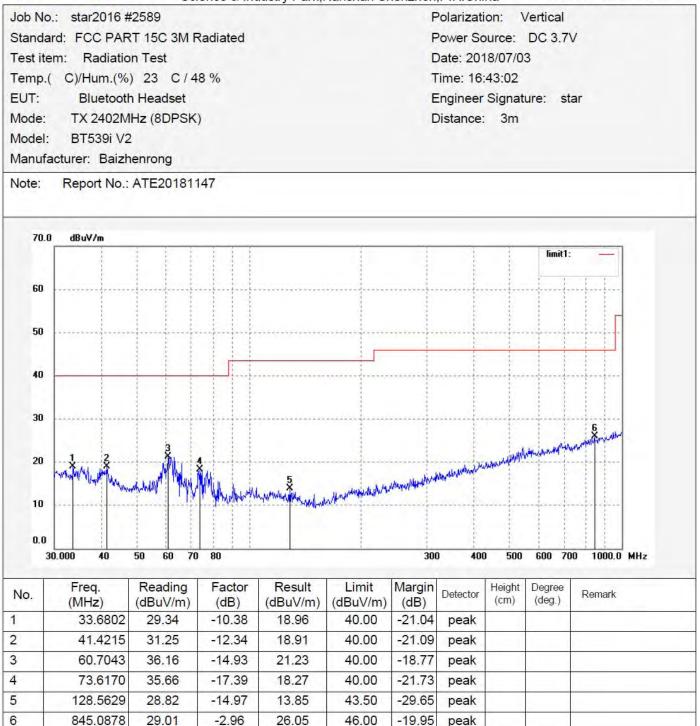
2. Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 3th Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

The measurements greater than 20dB below the limit from 9kHz to 30MHz and 18 to 26.5GHz.


The spectrum analyzer plots are attached as below.

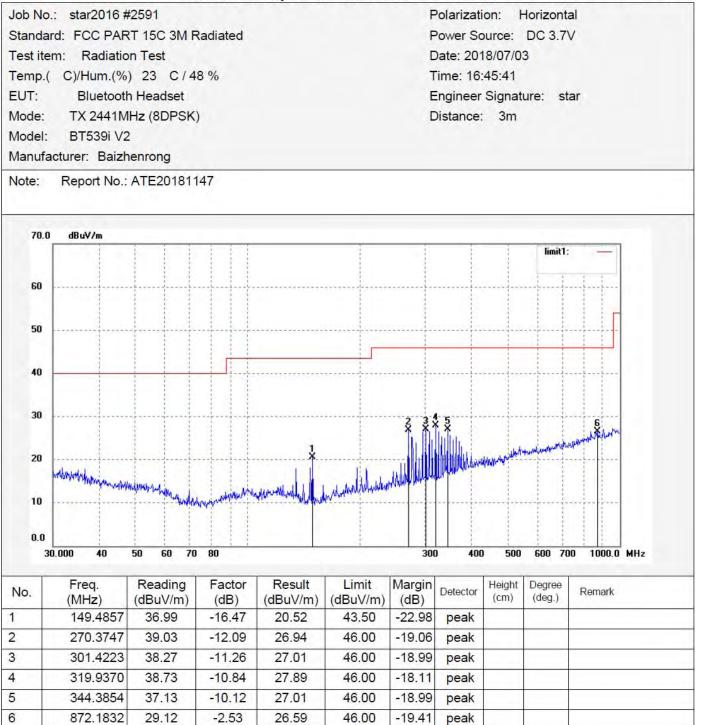
Below 1GHz

ACCURATE TECHNOLOGY CO., LTD.


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

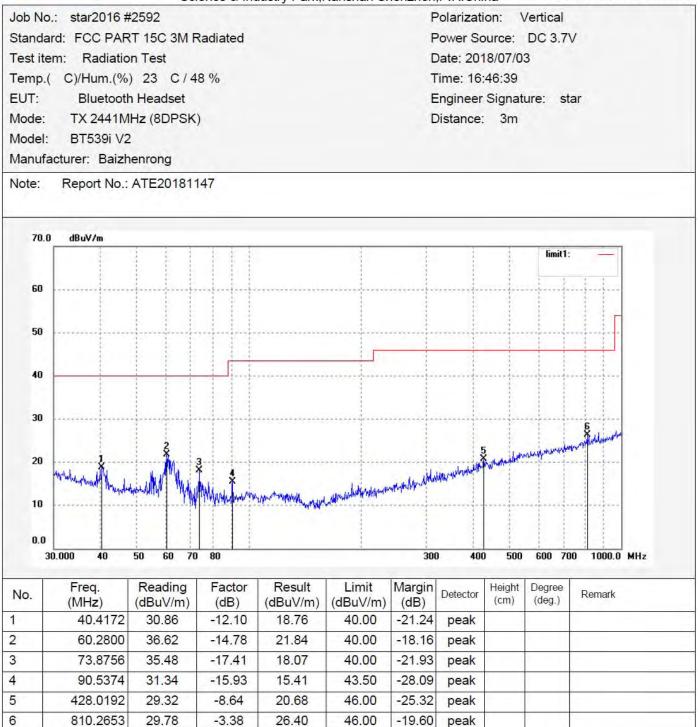
F1,Bldg,A,Changyuan New Material Port Keyuan Rd. Science & Industry Park, Nanshan Shenzhen, P.R.China Report No.: ATE20181147 Page 49 of 79

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396


46.00

-19.95

peak


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China Report No.: ATE20181147 Page 51 of 79

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

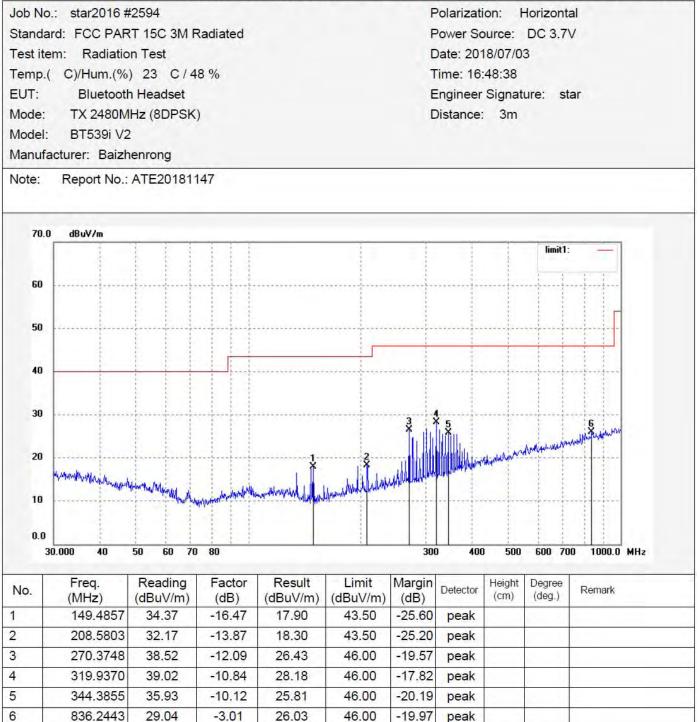
29.78

-3.38

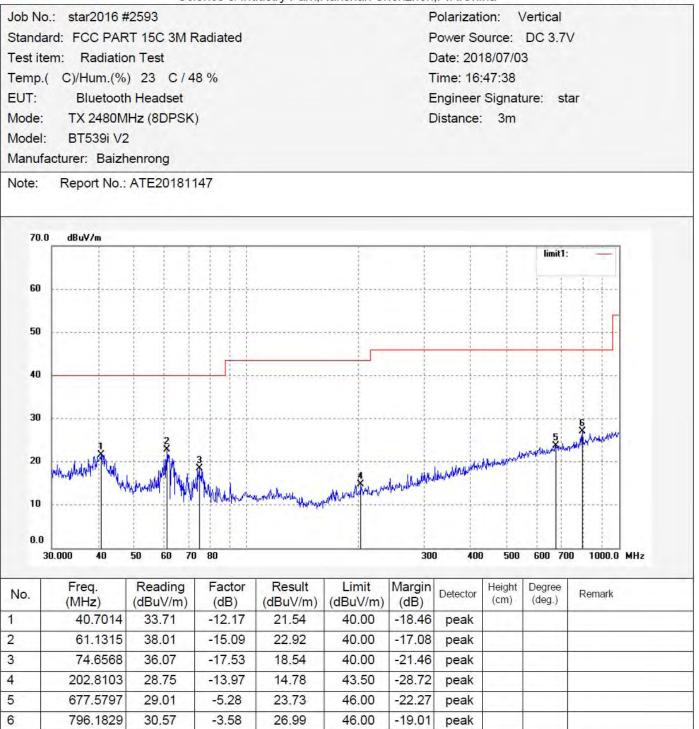
26.40

46.00

-19.60


peak

6


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Report No.: ATE20181147 Page 52 of 79

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd,

Site: 2# Chamber Tel:+86-0755-26503290 ÷. +86-0755-26503306

ob No.	: star2016 #	2595				F	Polarizat	ion: H	lorizonta	al	
Standar	d: FCC PAR	T 15C 3M F	Radiated			F	ower So	ource:	DC 3.7	V	
est iter	n: Radiatio	n Test				C	Date: 20	18/07/0	3		
emp.(C)/Hum.(%)) 23 C/4	8 %				Time: 16	56:29			
UT:		Headset				E	Engineer	Signat	ure: st	ar	
lode:	TX 2402M	Hz (8DPSK)				Distance				
/odel:	BT539i V2										
lanufa	cturer: Baizh	enrong									
lote:	Report No.:	ATE20181	147								
120.0	dBuV/m	1		Ţ		3	1	1 1	limit1:		
110								ļļ	limit2:		
100			*					ļ			
90											
N.				}		1					
80									********		
70		······	•••••		·····						
60				· · · \$- · · · · · · · · · · · · · · · ·	3						
50					1	-					
40	Lorda L.	mahangherman	rdille Hille	Www.inthe second when the	in and the second states	antherman	moning	internet	mann	person and	
	and for a deliver a local deliver a second	work of the survey.									
30									*******		
20		nunun				·····	f	m			
10									********		
0.0		1				1	1				
10	00.000	20	100	3000	5000	6000	7000 8000	9000		18000.0	MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2402.053	104.22	0.88	105.10		1000	peak				
	4804.110	48.46	7.40	55.86	74.00	-18.14	peak				
	4804.110	41.36	7.40	48.76	54.00	-5.24	AVG				

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.	: star2016 #	\$2596				F	Polarizat	ion: 🛝	/ertical	
Standar	d: FCC PAR	T 15C 3M F	Radiated			F	Power So	ource:	DC 3.7	V
Test iter	m: Radiatio	n Test				C	Date: 20	18/07/0	3	
Temp.(C)/Hum.(%) 23 C/4	8 %			1	Time: 16	:57:59		
EUT:	Bluetooth	h Headset				E	Engineer	Signat	ure: st	tar
Mode:	TX 2402M	Hz (8DPSK	.)			0	Distance	: 3m		
Model:	BT539i V2	2								
Manufa	cturer: Baizh	enrong								
Note:	Report No.:	ATE20181	147							
120.0) dBuV/m	1			1				limit1:	
110									limit2:	
100			×				l	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
90										
				1						
80	*****								*******	
70										
60					2 X					
50					3		·			
40	11	6 Jan	render halfra	mannership	him when him here	which means	in a second	horizon	nerginal devices a device	nuture
	dy uphy hadder and the ground	Philippine and an an and an an and an an an an an an an								
30					1		1	T T		
20		·······	******		· · · · · · · · · · · · · · · · · · ·				********	********
10					·			<u> </u>		
0.0					1	1				
10	00.000	20	000	3000	5000	6000	7000 8000	9000		18000.0 MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2402.053	103.66	0.88	104.54			peak			
2	4804.110	47.50	7.40	54.90	74.00	-19.10	peak			
~	1001 110	10.50	7.40	17.00	51.00	0.00	11/0	-	-	

3

4804.110

40.58

7.40

47.98

54.00

-6.02

AVG

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.	.: star2016 #	\$2598				F	Polarizati	ion: H	orizont	al
Standa	rd: FCC PAR	T 15C 3M F	Radiated			F	Power So	ource:	DC 3.7	V
Test ite	m: Radiatio	n Test				0	Date: 201	18/07/0	3	
Temp.(C)/Hum.(%) 23 C/4	8 %			1	Time: 17:	02:16		
EUT:	Bluetoot	n Headset				E	Engineer	Signat	ure: st	ar
Mode:	TX 2441M	Hz (8DPSK)				Distance			
Model:	BT539i V2	2								
Manufa	cturer: Baizh	enrong								
Note:	Report No.:		147							
		1000000000								
120	0 dBu¥/m									
		4 4 1 1			1	1			limit1:	
110			1						limit2:	
100								ļļ		
90					ļļ					
80										

70					÷			1		
60			******		2					
50										
40	ation the water is	- with Arrist	a Millin Jullan	mantheman matheres	in manual for more	mildisconfidence	www.	warming and	North and Antonia and	and an
	Marine Market Market	Walliam of the								
30			******						*******	*******
20									********	
10										******
0.0	distant.									
1	000.000	20	00	3000	5000	6000	7000 8000	9000		18000.0 MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2441.051	104.44	1.06	105.50		()	peak		7.54	
2	4882.151	48.01	8.17	56.18	74.00	-17.82	10.00			
		and the second se		and the second second					1	2 C

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.	: star2016 #	\$2597				F	Polarizati	ion: \	/ertical	
Standa	rd: FCC PAF	T 15C 3M F	Radiated			F	Power So	ource:	DC 3.7	V
Test ite	m: Radiatio	n Test				C	Date: 201	18/07/0	3	
Temp.(C)/Hum.(%) 23 C/4	8 %			1	Time: 17:	:00:44		
	Bluetoot					E	Engineer	Signat	ure: st	ar
Mode:		Hz (8DPSK)				Distance:			
Model:	BT539i V2		, 							
Manufa	cturer: Baizh	enrong								
Note:	Report No.:	-	147							
ioic.	reportio.	THELOTOT								
120.	0 dBu¥/m								limit1:	
110									limit2:	
			×							
100									********	
90			••••••					<u> </u>		
80										
70										
60					2 X					
50								Le monu	Marchillon	manunalitim
40	alow instruction	interdenter the second	-angelike Manual	underserved and the	wandhard	winder	new all way way			
30	and the state of t									
20									*******	
10		*********							وتشتعته	
0.0						1				
10	000.000	20	00	3000	5000	6000	7000 8000	9000		18000.0 MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2441.051	103.24	1.06	104.30			peak	1		
2	4882.151	47.69	8.17	55.86	74.00	- <mark>1</mark> 8.14	peak			
3	4882.151	40.10	8.17	48.27	54.00	-5.73	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No	.: star2016 #	\$2599				F	Polarizati	ion: H	Horizont	al
Standa	rd: FCC PAR	RT 15C 3M F	Radiated			F	Power So	ource:	DC 3.7	V
Test ite	m: Radiatio	n Test				C	Date: 20	18/07/0	3	
Temp.(C)/Hum.(%) 23 C/4	8 %			1	Fime: 17	04:33		
EUT:	Bluetoot	h Headset				E	Engineer	Signat	ure: st	ar
Mode:	TX 2480M	Hz (8DPSK)			C	Distance	3m		
Model:	BT539i V2	2								
Manufa	acturer: Baizh	nenrong								
Note:	Report No.:	ATE20181	147							
120.	0 dBu¥/m		_		1				limit1:	
110			1	+	·····		{		limit2:	
100			·····							
90							Į	l. l.		
80						1				
						1		1		
70						*******	*****		*****	
60					3					
50							ļ			where a start of
40		in the formation of the New	un aller willer	monoranter	montenen	aningation	imputation	man	- mater and	
30	Service Property of the service of t					1				
	A					1				A
20		Terrer terrer		. ionore		a franci		1.1.1.		
10		·····								
0.0	000.000			2000	F000	0000	2000 0000	0000		10000 01411
1	000.000	20	100	3000	5000	6000 7	7000 8000	9000		18000.0 MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2480.310	103.63	1.09	104.72			peak			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			AND DUNK STREET						

3

4960.307

39.81

8.58

48.39

54.00

-5.61

AVG

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No	.: star2016 #	¢2600				F	Polarizati	on: \	/ertical			
Standa	rd: FCC PAR	RT 15C 3M F	Radiated			F	Power Sc	ource:	DC 3.7	V		
Test ite	m: Radiatic	on Test				E	Date: 201	8/07/0	3			
Temp.(C)/Hum.(%) 23 C/4	8 %			1	Time: 17:06:33					
EUT:	Bluetoot	h Headset				E	Engineer Signature: star					
Mode:	TX 2480M	Hz (8DPSK)			C	Distance:	3m				
Model:	BT539i V2	2										
Manufa	cturer: Baizh	nenrong										
Note:	Report No.:	ATE201811	147									
120.	0 dBu¥/m	1							limit1:			
110			1 *						limit2:			
100												
90					ļ			ļļ				
80												
						1						
70												
60		·····	•••••		3				******			
50										and a shared		
40	and building	- uh and Maring	mull Male	versichlichendernen	mandenter	exceptionship	and marthaline	theman	V M MAN			
30	And a state of the											
20		1										
				1		1						
10							1			*******		
0.0	000.000	20	00	3000	5000	6000	7000 8000	0000		18000.0 MHz		
	000.000	20	00	3000	0000	6000	1000 8000	5000		10000.0 MH2		
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark		
1	2480.310	102.28	1.09	103.37			peak					
2	4960.307	45.47	8.58	54.05	74.00	-19.95	peak					

3

4960.307

38.45

8.58

47.03

54.00

-6.97

AVG

12.BAND EDGE COMPLIANCE TEST

12.1.Block Diagram of Test Setup

(EUT: Bluetooth Headset)

12.2.The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.209(a).

12.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

12.4.Operating Condition of EUT

- 12.4.1.Setup the EUT and simulator as shown as Section 12.1.
- 12.4.2.Turn on the power of all equipment.
- 12.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

12.5.Test Procedure

- 12.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 12.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 12.5.3.The band edges was measured and recorded.

12.6.Test Result

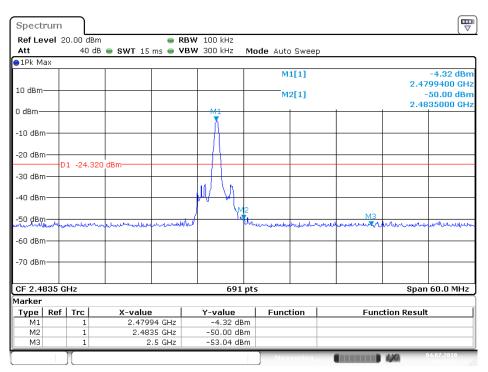
Test Lab: Shielding room Test Engineer: Star

Note: Both hopping-on mode and hopping-off mode had been pre-tested, and only the worst case was recorded in the test report.

Conducted Band Edge Result

Non-hopping mode

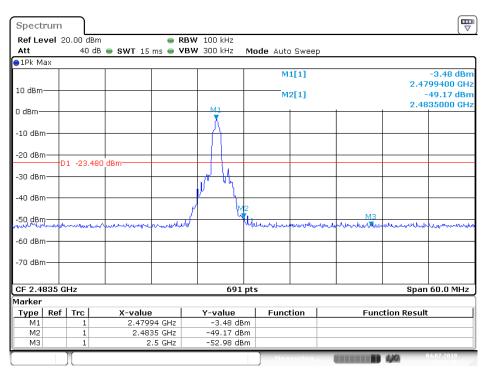
Frequency (MHz)	Result of Band Edge (dBc)	Limit of Band Edge (dBc)	Result
	GFSK Mo	de	
2400.00	27.60	> 20dBc	Pass
2483.50	45.68	> 20dBc	Pass
	П/4-DQPSK	Mode	
2400.00	25.95	> 20dBc	Pass
2483.50	45.69	> 20dBc	Pass
	8DPSK Mo	ode	
2400.00	26.14	> 20dBc	Pass
2483.50	45.68	> 20dBc	Pass


The spectrum analyzer plots are attached as below.

GFSK Mode

Spectrum					
RefLevel 20.00 dB Att 40	Bm 🛛 🗧 🖡 dB 🖷 SWT 15 ms 🖷 V	RBW 100 kHz /BW 300 kHz Mi	ode Auto Swee)	
1Pk Max					
.0 dBm			M1[1]		-6.68 dBm 2.4019970 GHz -34.28 dBm
			M2[1]		2.4000000 GHz
) dBm		1	V1		
10 dBm					
20 dBm			\mathbb{A}		
30 dBm D1 -26.6	680 dBm	M2			
40 dBm			\rightarrow		
50 dBm	M3	ant ann an ba	- Underthe conde	1. 0.0 10 mil 1. o alex N 1. o 1	mmungenerrender
60 dBm					
70 dBm					
CF 2.4 GHz		691 pt:	<u> </u>		Span 60.0 MHz
arker					
Type Ref Trc	X-value	Y-value	Function	Funct	ion Result
M1 1	2.401997 GHz	-6.68 dBm			
M2 1 M3 1	2.4 GHz 2.39 GHz	-34.28 dBm -52.80 dBm			
			Measuring.		04.07.2018

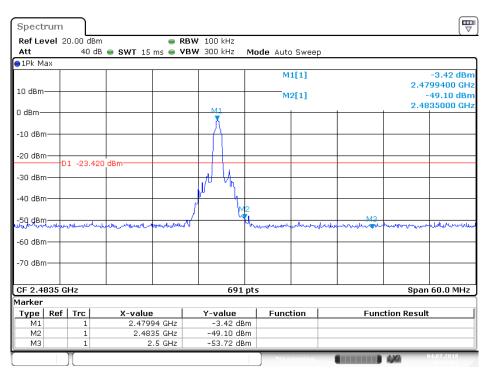
Date: 4.JUL.2018 10:44:01


Date: 4.JUL.2018 10:42:23

∏/4-DQPSK Mode

Spectrum	ı								
Ref Level Att				BW 100 kHz BW 300 kHz	Mode Aut	o Sweep	I		
∋1Pk Max									
10 dBm					M	1[1]		2.40	-6.14 dBn 19970 GH:
					M	2[1]			32.09 dBn 00000 GH;
0 dBm——					M1				
-10 dBm					A				
-20 dBm									
-30 dBm	D1 -26.14	40 dBm		N	2 M V4				
-40 dBm									
-50 dBm	montereduce	Manualla	M3	union		Munun	when when the	nutranaladar	mutut
-60 dBm									
-70 dBm									
CF 2.4 GHz	2			691	pts			Span	60.0 MHz
larker									
Type Re M1		X-valu	.997 GHz	<u>Y-value</u> -6.14 dB	Func	tion	Fund	ction Result	
M1 M2	1	2.401	2.4 GHz	-6.14 dE -32.09 dE					
M3	1	2	2.39 GHz	-52.11 dE					
][Mea	suring		4/4	14.07.2018

Date: 4.JUL.2018 10:44:59


Date: 4.JUL.2018 10:45:48

8DPSK Mode

Spectrum	ı)								
Ref Level Att		¦Bm ∣dB ⊜ SWT 1		BW 100 kHz 'BW 300 kHz	Mode Aut	o Swee	p		
1Pk Max									
10 dBm						1[1] 2[1]		2.40	-5.92 dBn 19970 GH: 32.06 dBn
									00000 GH
0 dBm					M1				
-10 dBm					-A				
-20 dBm					\square				
-30 dBm	D1 -25	.920 dBm		M	2 N. Uh				
-40 dBm					n an				
-50 dBm			МЗ		hu				
-79 dBm	wonterry	Mudannowad	www.tuhu	whathat		monde	he was a state was a state of the	meenwhere	moundation
-60 dBm									
-70 dBm									
CF 2.4 GHz				691	pts			Span	60.0 MHz
1arker Type Ref	f Trc	X-valu		Y-value	Func	tion	- Fun	ction Result	
M1	1		.997 GHz	-5.92 dB			run	ction Result	
M2	1		2.4 GHz	-32.06 dB					
MЗ	1	2	2.39 GHz	-51.96 dB	m				
					Mea	suring.		100	4.07.2018

Date: 4.JUL.2018 10:48:08

Date: 4.JUL.2018 10:47:01

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Test Procedure:

The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Let the EUT work in TX (Hopping off, Hopping on) modes measure it. We select 2402MHz, 2480MHz TX frequency to transmit(Hopping off mode). We select 2402-2480MHz TX frequency to transmit(Hopping on mode).

During the radiated emission test, the spectrum analyzer was set with the following configurations:

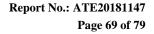
1.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.


2.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

3.All modes of operation were investigated and the worst case (8DPSK mode) emissions are reported.

Test Lab: 3m Anechoic chamber Test Engineer: Star

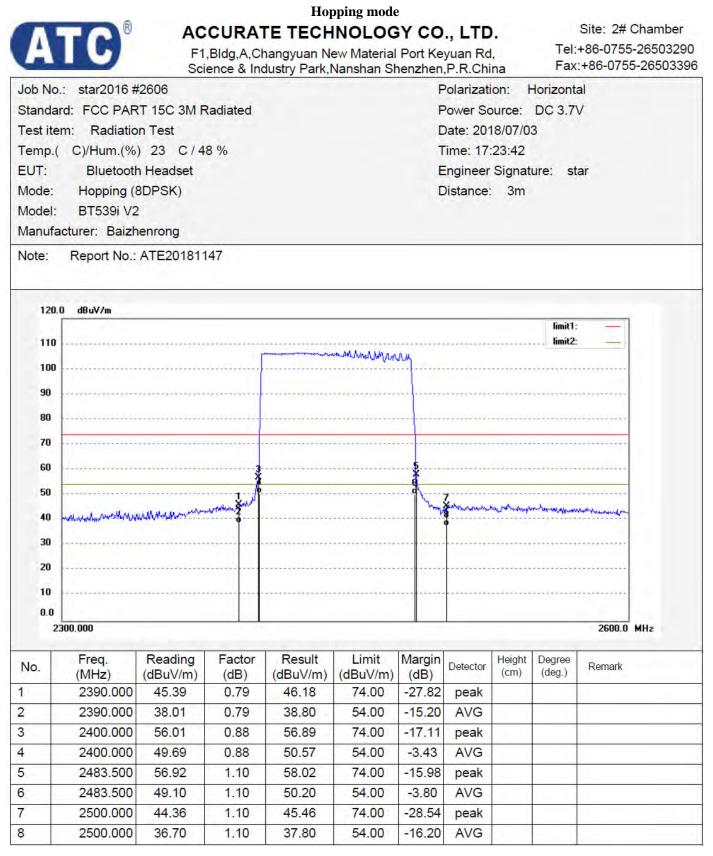
The spectrum analyzer plots are attached as below.


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

ob No	.: star2016 #	And the second					Polarizati		/ertical			
	rd: FCC PAR		adiated				Power Sc			v		
	m: Radiatio					Date: 2018/07/03						
	C)/Hum.(%		8 %			Time: 17:14:07						
EUT:		h Headset				Engineer Signature: star						
/lode:		Hz (8DPSK)					Distance:		uro. ot			
/lodel:						-						
	acturer: Baizh											
lote:	Report No.:		47									
120.	0 dBu¥/m											
									limit1:			
110				ومتناد مترتمين	ini				limit2:	-		
100							A			innina.		
90	lana							insinn	mini			
80												
70		*******							•••••			
60					•••••	•••••	***		•••••			
50							····					
40	when the manufacture	n-a-stata-abb-d	- Han San Harry	to the state bull	un handling	nation Aller	When No	Manufany	antimatelid	wantermittel		
30	tout the second second	Charles the second second	ANT WHAT IN THE	the state of the s		40						
	100000000000000000000000000000000000000											
20								********				
10								*******				
0.0												
2	300.000									2440.0	MHz	
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark		
2 - 1	2390.000	42.39	0.79	43.18	74.00	-30.82	peak	1				
2	2390.000	33.54	0.79	34.33	54.00	-19.67	AVG					
5	2400.000	57.76	0.88	58.64	74.00	-15.36	peak					
21	2400.000	50.00						10				

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.	: star2016 #	\$2602				F	Polarizat	ion: H	Horizont	al	
Standar	d: FCC PAR	T 15C 3M F	adiated			F	Power So	ource:	DC 3.7	V	
Test iter	m: Radiatio	n Test				Date: 2018/07/03					
Temp.(C)/Hum.(%) 23 C/4	8 %			4	Time: 17	11:10			
EUT:	Bluetooth	n Headset				E	Engineer	Signat	ure: st	ar	
Mode:	TX 2480M	Hz (8DPSK)				C	Distance	3m			
Model:	odel: BT539i V2										
Manufacturer: Baizhenrong											
Note:	Report No.:	ATE201811	47								
120 () dBuV/m										-
	uburrin								limit1:	-1	
110				al.					limit2:		
100											
90											
80								********			
70	******	*****	*******						*******		
60		•••••		·				*******	*******		
50				1.							
40		1.0	Ann	1 hours	AZA N	the state and a Date		and the second second	A.	and a second	
	wheels was weeked	Hitelen (Universities and a	1		0	Configuration and		All while the first first	and have an	and the designed in	
30						********		********	*******		
20											
10		***********									
0.0											
24	00.000									2600.0	MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2483.500	55.77	1.10	56.87	74.00	-17.13	peak				
2	2483.500	47.14	1.10	48.24	54.00	-5.76	AVG		1		
3	2500.000	39.58	1.10	40.68	74.00	-33.32	peak		11		
4	2500.000	32.63	1.10	33.73	54.00	-20.27	AVG				

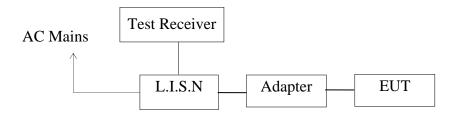


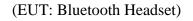
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No	o.: star2016 #	<i>‡</i> 2601				Polarization: Vertical							
Standa	ard: FCC PAR	RT 15C 3M F	Radiated			Power Source: DC 3.7V							
Test ite	em: Radiatio	on Test				C	Date: 20	8/07/0	3				
Temp.	(C)/Hum.(%) 23 C/4	8 %			1	Time: 17	10:06	:06				
EUT:		h Headset				E	Engineer	Signat	lignature: star				
Mode:	TX 2480M	Hz (8DPSK)				Distance						
Model:	BT539i V2	2											
Manufa	lanufacturer: Baizhenrong												
Note:	Report No.:	ATE20181	147										
120	.0 dBuV/m												
									limit1:				
110			******						limit2:				
100	l			A									
90													
80													
					100010090000				12000000000				
70		**********		****	************		********	140,000					
60			*******					******					
50				1-2-									
40	demaintender	Wester and And Madel and	Alleration	M 9 Mun	h manual has	and to any the state	hullower	Marchatto	and the design of	and a hard a star and a star			
30	A REAL PROPERTY AND A REAL				4								
20				*******									
10			**********										
0.0													
2	2400.000									2600.0 MH	z		
No.	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark			
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg.)				
1	2483.500	52.34	1.10	53.44	74.00	-20.56							
2	2483.500	43.58	1.10	44.68	54.00	-9.32	AVG						
3	2500.000	40.84	1.10	41.94	74.00	-32.06							
4	2500.000	32.44	1.10	33.54	54.00	-20.46	AVG						

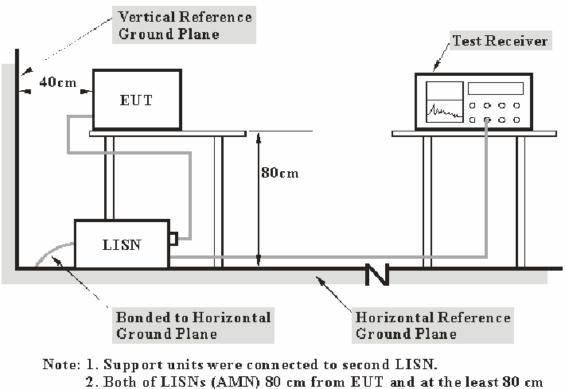
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

lob No	.: star2016 #	¢2605				F	Polarizati	on: \	/ertical				
Standa	ard: FCC PAR	T 15C 3M R	Radiated			F	ower So	ource:	DC 3.7	V			
est ite	em: Radiatio	n Test				C	Date: 201	8/07/0	3				
emp.((C)/Hum.(%) 23 C/4	8 %			T	Time: 17:18:42						
UT:	Bluetooth	h Headset				E	Engineer Signature: star						
/lode:	Hopping (8	BDPSK)				C	Distance	3m					
Nodel:	BT539i V2	2											
lanufa	acturer: Baizh	nenrong											
lote:	Report No.:	ATE201811	47										
120.	.0 dBuV/m												
									limit1:				
110		************							limit2:	-			
100				dambara hate	water								
90				**********	*****								
80		********							********	*********			
70													
		10/11/11/07											
60		******		*******	***********	5		********					
50			IN				7		••••••				
40	humanyahuhatamant	surely have the	HUTHING .			- Wird	munum	subday	www.white	elsentertourbanda			
30							•			******			
20			and the		nanana		inin	innin	monia				
10													
0.0	************	*************											
	2300.000									2600.0	MHz		
	Free	Deading	Faster	Desult	Linet	Manain	-	1 Islaha	Durrent				
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark			
2	2390.000	44.77	0.79	45.56	74.00	-28.44	peak			1			
	2390.000	36.58	0.79	37.37	54.00	-16.63	AVG						
8 T T T	2400.000	57.03	0.88	57.91	74.00	-16.09	peak)			
611	2400.000	50.61	0.88	51.49	54.00	-2.51	AVG						
;	2483.500	52.99	1.10	54.09	74.00	-19.91	peak						
6	2483.500	44.16	1.10	45.26	54.00	-8.74	AVG			1			
	2500.000	41.39	1.10	42.49	74.00	-31.51	peak						
3	2500.000	33.71	1.10	34.81	54.00	-19.19	AVG						


Note: Average measurement with peak detection at No.2&4&6&8



13.AC POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.207(A)


13.1.Block Diagram of Test Setup

13.1.1.Block diagram of connection between the EUT and simulators

13.1.2.Test System Setup

from other units and other metal planes support units.

Frequency	Limit d	B(µV)					
(MHz)	Quasi-peak Level	Average Level					
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *					
0.50 - 5.00	56.0	46.0					
5.00 - 30.00	60.0	50.0					
NOTE1: The lower limit shall apply at the transition frequencies.							
NOTE2: The limit decreases linearly with the logarithm of the frequency in the range							
0.15MHz to 0.50M	IHz.						

13.2.Power Line Conducted Emission Measurement Limits

13.3.Configuration of EUT on Measurement

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

13.4.Operating Condition of EUT

13.4.1.Setup the EUT and simulator as shown as Section 13.1.

13.4.2.Turn on the power of all equipment.

13.4.3.Let the EUT work in test mode and measure it.

13.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

13.6.Data Sample

Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dB)	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
X.XX	10.5	51.1	34.2	56.0	46.0	4.9	11.8	Pass

Frequency(MHz) = Emission frequency in MHz

Transducer value(dB) = Insertion loss of LISN + Cable Loss Level(dB μ V) = Quasi-peak Reading/Average Reading + Transducer value Limit (dB μ V) = Limit stated in standard Margin = Limit (dB μ V) - Level (dB μ V)

Calculation Formula: Margin = Limit ($dB\mu V$) - Level ($dB\mu V$)

13.7.Power Line Conducted Emission Measurement Results

PASS.

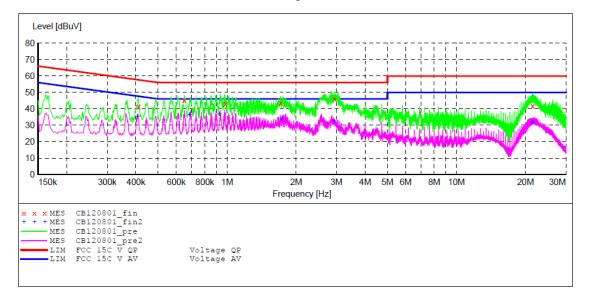
Test Lab: Shielding room Test Engineer: Star

The frequency range from 150kHz to 30MHz is checked.

Maximizing procedure was performed on the six (6) highest emissions of the EUT. Emissions attenuated more than 20 dB below the permissible value are not reported.

All data was recorded in the Quasi-peak and average detection mode.

The spectral diagrams are attached as below.



CONDUCTED EMISSION STANDARD FCC PART 15C

EUT:	Bluetooth Headset	M/N:BT539i V2
Manufacturer:	Baizhenrong	
Operating Condition:	BT Communication	
Test Site:	1#Shielding Room	
Operator:	Star	
Test Specification:	L 240V/60Hz	
Comment:	Report No.:ATE201811	47
Start of Test:	2018-7-4 / 9:18:13	

SCAN TABLE: "V 150K-30MHz fin"

5	CAN TABLE	: "V 150	K-SUMHZ	IIN"				
Short Description:			_SUB_STD_VTE					
	Start	Stop	Step	Detector	Meas.	IF	Transducer	
	Frequency	Frequency	Width		Time	Bandw.		
	150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008	
				Average				

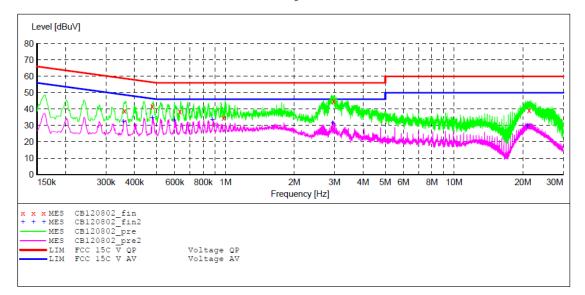
MEASUREMENT RESULT: "CB120801 fin"

2018-7-4 9:21

Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.411000 0.649500 0.982500 1.711500 2.940000 21.466500	41.50 45.20 43.10 43.70 45.90 41.90	11.0 11.0 11.1 11.2 11.3 11.7	58 56 56 56 56 60	12.9 12.3	QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "CB120801_fin2"

2018-7-4 9:21 Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.406500	35.50	11.0	48	12.2	AV	L1	GND
0.685500	36.60	11.1	46	9.4	AV	L1	GND
0.928500	36.70	11.1	46	9.3	AV	L1	GND
1.734000	33.80	11.2	46	12.2	AV	L1	GND
2.935500	32.50	11.3	46	13.5	AV	L1	GND
21.390000	31.80	11.7	50	18.2	AV	L1	GND



CONDUCTED EMISSION STANDARD FCC PART 15C

EUT:	Bluetooth Headset	M/N:BT539i V2
Manufacturer:	Baizhenrong	
Operating Condition:	BT Communication	
Test Site:	1#Shielding Room	
Operator:	Star	
Test Specification:	N 240V/60Hz	
Comment:	Report No.:ATE201811	47
Start of Test:	2018-7-4 / 9:22:20	

SCAN TABLE: "V 150K-30MHz fin"

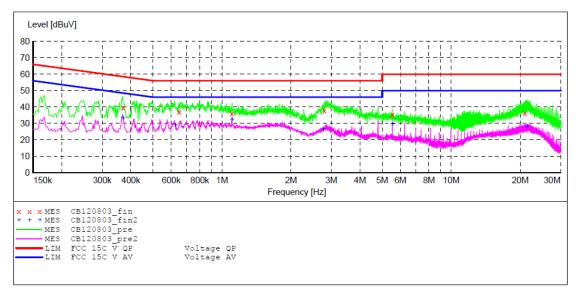
5	CAN TABLE	: "V 1501	X-SUMHZ	IIN"			
	Short Desci	ription:		SUB STD VTER	RM2 1.70		
	Start	Stop	Step	Detector	Meas.	IF	Transducer
	Frequency	Frequency	Width		Time	Bandw.	
	150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
				Average			

MEASUREMENT RESULT: "CB120802 fin"

2018-7-4 9:25 Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.361500 0.478500 0.631500 0.982500 2.976000 21.300000	38.80 41.70 38.40 34.60 45.00 39.20	10.9 11.0 11.0 11.1 11.3 11.7	59 56 56 56 56 60	19.9 14.7 17.6 21.4 11.0 20.8	QP QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT: "CB120802 fin2"

2018-7-4 9:25 Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.357000 0.478500 0.595500 0.874500 2.944500 20.980500	32.50 34.60 33.20 33.50 31.50 29.80	10.9 11.0 11.0 11.1 11.3 11.7	49 46 46 46 46 50		AV AV AV AV AV AV	N N N N N	GND GND GND GND GND GND



CONDUCTED EMISSION STANDARD FCC PART 15C

EUT:	Bluetooth Headset	M/N:BT539i V2
Manufacturer:	Baizhenrong	
Operating Condition:	BT Communication	
Test Site:	1#Shielding Room	
Operator:	Star	
Test Specification:	N 120V/60Hz	
Comment:	Report No.:ATE201811	47
Start of Test:	2018-7-4 / 9:26:23	

SCAN TABLE: "V 150K-30MHz fin"

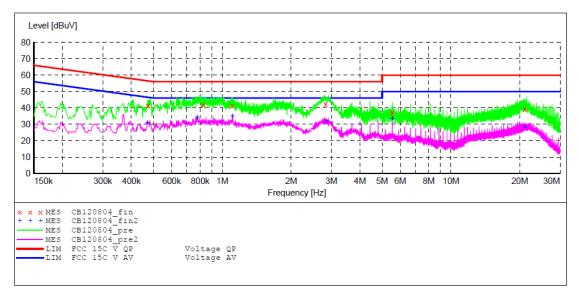
5	CAN TABLE	: "V 150	K-JUMHZ	Iln"			
	Short Desc	ription:		_SUB_STD_VTE	RM2 1.70		
	Start	Stop	Step	Detector	Meas.	ΙF	Transducer
	Frequency	Frequency	Width		Time	Bandw.	
	150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
				Average			

MEASUREMENT RESULT: "CB120803_fin"

2018-7-4 9:30 Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.370500 0.649500 1.104000 2.796000 5.541000 20.962500	39.70 37.30 35.90 37.80 35.40 36.50	10.9 11.0 11.2 11.3 11.5 11.7	59 56 56 60 60	18.8 18.7 20.1 18.2 24.6 23.5	QP QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT: "CB120803_fin2"

2018-7-4 9:30 Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.370500 0.627000 1.108500 2.764500	33.20 29.10 32.60 26.80	10.9 11.0 11.2 11.3	49 46 46 46		AV AV	N N N N	GND GND GND GND
5.541000 21.417000	29.50 28.30	11.5 11.7	50 50	20.5 21.7	AV AV	N N	GND GND



CONDUCTED EMISSION STANDARD FCC PART 15C

Bluetooth Headset	M/N:BT539i V2
Baizhenrong	
BT Communication	
1#Shielding Room	
Star	
L 120V/60Hz	
Report No.:ATE201811	47
2018-7-4 / 9:31:06	
	BT Communication 1#Shielding Room Star L 120V/60Hz Report No.:ATE201811

SCAN TABLE: "V 150K-30MHz fin"

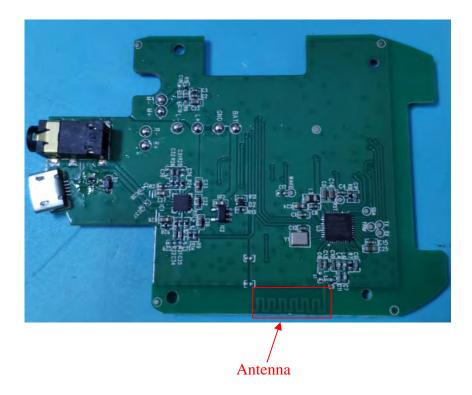
S	CAN TABLE	: "V 150.	K-JUMHZ	IIN"			
	Short Description:			SUB STD VTERM2 1.70			
	Start	Stop	Step	Detector	Meas.	IF	Transducer
	Frequency	Frequency	Width		Time	Bandw.	
	150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
				Average			

MEASUREMENT RESULT: "CB120804_fin"

2018-7-4 9:34 Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.474000 0.825000 1.104000 2.827500 5.541000 21.048000	41.30 42.00 41.30 42.50 37.10 39.20	11.0 11.1 11.2 11.3 11.5 11.7	56 56 56 60 60	15.1 14.0 14.7 13.5 22.9 20.8	QP QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "CB120804 fin2"

2018-7-4 9:34 Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.469500	31.00	11.0	47	15.5	AV	L1	GND
0.775500	34.20	11.1	46	11.8	AV	L1	GND
1.108500	35.00	11.2	46	11.0	AV	L1	GND
2.863500	31.90	11.3	46	14.1	AV	L1	GND
5.536500	33.60	11.5	50	16.4	AV	L1	GND
21.052500	28.60	11.7	50	21.4	AV	L1	GND


14.ANTENNA REQUIREMENT

14.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

14.2.Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Max Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

***** End of Test Report *****