

TEST REPORT

FCC ID: L73-92082

Applicant	: Sanwa Electronic Instrument Co., Ltd
Address	: 1-2-50, Yoshida Honmachi, Higashi-Osaka, Osaka 578-0982, Japan

Equipment Under Test (EUT):

Name : 2.4GHz Radio Control System

Model : 92082

In Accordance with: FCC PART 15, SUBPART C : 2014 (Section 15.247) ANSI C63.4:2003

Report No	:	T1850340 05
Date of Test	:	April 15- April 21, 2015
Date of Issue	:	April 22, 2015
Test Result	:	PASS

In the configuration tested, the EUT complied with the standards specified above

Authorized Signature

Sape G

(Simple Guan)

Engineering Manager

The manufacture should ensure that all the products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Shenzhen Alpha Product Testing Co., Ltd. or test done by Shenzhen Alpha Product Testing Co., Ltd. or use of the product described in this report must be approved by Shenzhen Alpha Product Testing Co., Ltd. Approvals in writing.

Contents

1.1. Description of Device (EUT) 4 1.2. Accessories of device (EUT) 4 1.3. Test Lab information 5 2. Summary of test 6 2.1. Summary of test result 6 2.2. Assistant equipment used for test 6 2.3. Block Diagram 7 2.4. Test mode 7 2.5. Test Conditions 8 2.6. Measurement Uncertainty (95% confidence levels, k=2) 8 2.7. Test Equipment 9 3. Maximum Peak Output power 10 3.1. Limit 10 3.2. Test Procedure 10 3.3. Test Setup 10 3.4. Test Result 10 4.1. Limit 11 4.1. Limit 11 4.2. Test Procedure 11 4.3. Test Result 11 4.3. Test Result 11 4.3. Test Result 11 4.3. Test Result 11 4.5.1. Limit 14 5.2. Test Procedure 14 5.3. Test Result 14 6. Number Of Hopping Channel 16 6.1. Limit 16<	1.	General Information	4
1.2. Accessories of device (EUT) 4 1.3. Test Lab information 5 2. Summary of test 6 2.1. Summary of test result 6 2.2. Assistant equipment used for test 6 2.3. Block Diagram 7 2.4. Test mode 7 2.5. Test Conditions 8 2.6. Measurement Uncertainty (95% confidence levels, k=2) 8 2.7. Test Equipment 9 3. Maximum Peak Output power 10 3.1. Limit 10 3.2. Test Procedure 10 3.3. Test Setup 10 3.4. Test Result 10 3.5. Test Procedure 11 4.1. Limit 11 4.2. Test Procedure 11 4.3. Test Result 11 4.4.1. Limit 11 4.5.2. Test Procedure 14 5.1. Limit 11 4.5.3. Test Result 14 5.6.1. Limit 16 6.7.2. Test Procedure 14 5.8.3. Test Result 16 6.1. Limit 16 6.2. Test Procedure 16		1.1. Description of Device (EUT)	4
1.3. Test Lab information .5 2. Summary of test .6 2.1. Summary of test result .6 2.2. Assistant equipment used for test .6 2.3. Block Diagram .7 2.4. Test mode .7 2.5. Test Conditions .8 2.6. Measurement Uncertainty (95% confidence levels, k=2) .8 2.7. Test Equipment .9 3. Maximum Peak Output power .10 3.1. Limit .10 3.2. Test Procedure .10 3.3. Test Setup .10 3.4. Test Result .10 3.4. Test Result .10 4.1. Limit .11 4.2. Test Procedure .11 4.3. Test Result .11 4.3. Test Result .11 4.5.1. Limit .14 5.1. Limit .14 5.2. Test Procedure .14 5.3. Test Result .16 6.1. Limit .16 6.2. Test Procedure .16 6.3. Test Result .16 6.3. Test Result .16 6.4. Limit .18		1.2. Accessories of device (EUT)	4
2. Summary of test 6 2.1. Summary of test result 6 2.2. Assistant equipment used for test 6 2.3. Block Diagram 7 2.4. Test mode 7 2.5. Test Conditions. 8 2.6. Measurement Uncertainty (95% confidence levels, k=2) 8 2.7. Test Equipment. 9 3. Maximum Peak Output power 10 3.1. Limit 10 3.2. Test Procedure 10 3.3. Test Result 10 3.4. Test Result 10 3.4. Test Result 11 4.1. Limit 11 4.2. Test Procedure 11 4.3. Test Result 11 4.3. Test Result 11 5.1. Limit 14 5.2. Test Result 14 5.3. Test Result 14 5.4. Number Of Hopping Channel 16 6.1. Limit 16 <t< td=""><td></td><td>1.3. Test Lab information</td><td>5</td></t<>		1.3. Test Lab information	5
2.1. Summary of test result 6 2.2. Assistant equipment used for test 6 2.3. Block Diagram 7 2.4. Test mode 7 2.5. Test Conditions 8 2.6. Measurement Uncertainty (95% confidence levels, k=2) 8 2.7. Test Equipment 9 3. Maximum Peak Output power 10 3.1. Limit 10 3.2. Test Procedure 10 3.3. Test Setup 10 3.4. Test Result 10 3.5. Test Procedure 10 3.6. Test Result 10 3.7. Test Result 10 3.8. Test Result 10 3.4. Test Result 10 3.4. Test Result 11 4.1. Limit 11 4.2. Test Procedure 11 4.3. Test Result 11 5.1. Limit 14 5.2. Test Procedure 14 5.3. Test Result 14 6.4. Number Of Hopping Channel 16 6.1. Limit 16 6.2. Test Procedure 16 6.3. Test Result 16	2.	Summary of test	6
2.2. Assistant equipment used for test.		2.1. Summary of test result	6
2.3. Block Diagram 7 2.4. Test mode 7 2.5. Test Conditions 8 2.6. Measurement Uncertainty (95% confidence levels, k=2) 8 2.7. Test Equipment 9 3. Maximum Peak Output power 10 3.1. Limit 10 3.2. Test Procedure 10 3.3. Test Setup 10 3.4. Test Result 10 3.4. Test Result 10 4.1. Limit 11 4.2. Test Procedure 11 4.3. Test Result 11 4.2. Test Procedure 11 4.3. Test Result 11 5. Carrier Frequency Separation 14 5.1. Limit 14 5.2. Test Procedure 14 5.3. Test Result 14 5.4. Carrier Frequency Separation 14 5.1. Limit 16 6.1. Limit 16 6.2. Test Procedure 16 6.3. Test Result 16 7.1. Test limit 18 7.1. Test limit 18 7.3. Test Results 18 7.3. Test Res		2.2. Assistant equipment used for test	6
2.4. Test mode 7 2.5. Test Conditions 8 2.6. Measurement Uncertainty (95% confidence levels, k=2) 8 2.7. Test Equipment 9 3. Maximum Peak Output power 10 3.1. Limit 10 3.2. Test Procedure 10 3.3. Test Setup 10 3.4. Test Result 10 3.4. Test Result 10 4.1. Limit 11 4.2. Test Procedure 11 4.3. Test Result 11 4.4.3. Test Result 11 4.5.1. Limit 11 4.5.2. Test Procedure 14 5.1. Limit 14 5.2. Test Procedure 14 5.3. Test Result 14 5.4. Carrier Frequency Separation 14 5.5. Test Procedure 14 5.6. Test Procedure 16 6.1. Limit 16 6.2. Test Procedure 16 6.3. Test Result 16 7.1. Test limit 18 7.1. Test limit 18 7.2. Test Procedure 18 7.3. Test Resul		2.3. Block Diagram	7
2.5. Test Conditions. 8 2.6. Measurement Uncertainty (95% confidence levels, k=2) 8 2.7. Test Equipment. 9 3. Maximum Peak Output power 10 3.1. Limit. 10 3.2. Test Procedure 10 3.3. Test Setup 10 3.4. Test Result 10 3.4. Test Result 10 4. Bandwidth. 11 4.1. Limit 11 4.2. Test Procedure 11 4.3. Test Result 11 4.3. Test Result 11 5. Carrier Frequency Separation 14 5.1. Limit 14 5.2. Test Procedure 14 5.3. Test Result 14 5.4. Number Of Hopping Channel. 16 6.1. Limit 16 6.2. Test Procedure 16 6.3. Test Result 16 7.1. Test limit 18 7.1. Test limit 18 7.2. Test Procedure 18 7.3. Test Results 18 7.4. Test limit 18 7.5. Test Results 18 7.6. De		2.4. Test mode	7
2.6. Measurement Uncertainty (95% confidence levels, k=2) .8 2.7. Test Equipment. .9 3. Maximum Peak Output power .10 3.1. Limit .10 3.2. Test Procedure .10 3.3. Test Setup .10 3.4. Test Result .10 3.4. Test Result .10 3.4. Test Result .10 4. Bandwidth .11 4.1. Limit .11 4.2. Test Procedure .11 4.3. Test Result .11 4.3. Test Result .11 4.5. Carrier Frequency Separation .14 5.1. Limit .14 5.2. Test Procedure .14 5.3. Test Result .14 5.4. Test Procedure .14 5.5. Test Procedure .16 6.1. Limit .16 6.2. Test Procedure .16 6.3. Test Result .16 7.1. Test limit .18 7.2. Test Procedure .18 7.3. Test Results .18 7.3. Test Results .18 7.3. Test Results .18		2.5. Test Conditions	8
2.7. Test Equipment. .9 3. Maximum Peak Output power .10 3.1. Limit. .10 3.2. Test Procedure .10 3.3. Test Setup .10 3.4. Test Result. .10 3.4. Test Result. .10 3.4. Test Result. .10 3.4. Test Result. .10 4. Bandwidth. .11 4.1. Limit. .11 4.2. Test Procedure .11 4.3. Test Result. .11 4.3. Test Result. .11 5. Carrier Frequency Separation .14 5.1. Limit. .14 5.2. Test Procedure .14 5.3. Test Result. .14 5.4. Number Of Hopping Channel. .16 6.1. Limit. .16 6.2. Test Procedure .16 6.3. Test Result. .16 7.1. Test limit. .18 7.1. Test limit. .18 7.2. Test Procedure .18 7.3. Test Results .18 8. Radiated emissions .20 8.1. Limit. .20 8.2. Block		2.6. Measurement Uncertainty (95% confidence levels, k=2)	8
3. Maximum Perk Output power 10 3.1. Limit 10 3.2. Test Procedure 10 3.3. Test Setup 10 3.4. Test Result 10 4. Bandwidth 10 4.1. Limit 11 4.2. Test Procedure 11 4.3. Test Result 11 4.2. Test Procedure 11 4.3. Test Result 11 5.1. Limit 14 5.2. Test Procedure 14 5.3. Test Result 14 5.4. Carrier Frequency Separation 14 5.5. Test Procedure 14 5.6. Test Procedure 14 5.7. Test Result 14 6. Number Of Hopping Channel 16 6.1. Limit 16 6.2. Test Procedure 16 6.3. Test Result 16 7.1. Test limit 18 7.1. Test limit 18 7.2. Test Procedure 18 7.3. Test Results 18 8. Radiated emissions 20 8.1. Limit 20 8.2. Block Diagram of Test setup 2		2.7. Test Equipment	9
3.1. Limit. 10 3.2. Test Procedure 10 3.3. Test Setup 10 3.4. Test Result 10 4. Bandwidth 11 4.1. Limit 11 4.2. Test Result 11 4.3. Test Result 11 4.5. Test Result 11 4.5. Test Result 11 4.5. Test Result 14 5.1. Limit 14 5.2. Test Procedure 14 5.3. Test Result 16 6.1. Limit 16 6.2. Test Procedure 16 6.3. Test Result 16 6.4. Number Of Hopping Channel 16 6.3. Test Result 16 6.4. Ime 18 7.1.	3.	Maximum Peak Output power	
3.2. Test Procedure 10 3.3. Test Setup 10 3.4. Test Result 10 4. Bandwidth 11 4.1. Limit 11 4.2. Test Procedure 11 4.3. Test Result 11 4.3. Test Result 11 5. Carrier Frequency Separation 14 5.1. Limit 14 5.2. Test Procedure 14 5.3. Test Result 14 6. Number Of Hopping Channel 16 6.1. Limit 16 6.2. Test Procedure 16 6.3. Test Result 16 7.1. Test limit 18 7.1. Test limit 18 7.2. Test Procedure 18 7.3. Test Results 18 8. Radiated emissions 20 8.1. Limit 20 8.2. Block Diagram of Test setup 21		3.1. Limit	10
3.3. Test Setup 10 3.4. Test Result 10 4. Bandwidth 11 4.1. Limit 11 4.2. Test Procedure 11 4.3. Test Result 11 4.3. Test Result 11 5. Carrier Frequency Separation 14 5.1. Limit 14 5.2. Test Procedure 14 5.3. Test Result 14 6. Number Of Hopping Channel 16 6.1. Limit 16 6.2. Test Procedure 16 6.3. Test Result 16 7.1. Test limit 18 7.1. Test limit 18 7.2. Test Procedure 18 7.3. Test Results 18 8. Radiated emissions 20 8.1. Limit 20 8.2. Block Diagram of Test setup 21		3.2. Test Procedure	
3.4. Test Result 10 4. Bandwidth 11 4.1. Limit 11 4.2. Test Procedure 11 4.3. Test Result 11 4.3. Test Result 11 4.3. Test Result 11 5. Carrier Frequency Separation 14 5.1. Limit 14 5.2. Test Procedure 14 5.3. Test Result 14 6. Number Of Hopping Channel 16 6.1. Limit 16 6.2. Test Procedure 16 6.3. Test Result 16 6.3. Test Result 18 7.1. Test limit 18 7.2. Test Procedure 18 7.3. Test Results 18 7.3. Test Results 18 8. Radiated emissions 20 8.1. Limit 20 8.2. Block Diagram of Test setup 21		3.3. Test Setup	
4. Bandwidth		3.4. Test Result	
4.1. Limit. 11 4.2. Test Procedure 11 4.3. Test Result 11 5. Carrier Frequency Separation 14 5.1. Limit 14 5.2. Test Procedure 14 5.3. Test Result 14 6. Number Of Hopping Channel 16 6.1. Limit 16 6.2. Test Procedure 16 6.3. Test Result 16 6.3. Test Result 16 7.1. Dest Imit 18 7.2. Test Procedure 18 7.3. Test Results 18 7.3. Test Results 18 7.3. Test Results 18 7.3. Test Results 18 7.4. Test limit 18 7.5. Test Procedure 18 7.6. Becolute 18 7.7. Test Procedure 18 7.8. Radiated emissions 20 8.1. Limit 20 8.2. Block Diagram of Test setup 21	4.	Bandwidth	
4.2. Test Procedure 11 4.3. Test Result 11 4.3. Test Result 11 5. Carrier Frequency Separation 14 5.1. Limit 14 5.2. Test Procedure 14 5.3. Test Result 14 6. Number Of Hopping Channel 16 6.1. Limit 16 6.2. Test Procedure 16 6.3. Test Result 16 6.3. Test Result 16 7.1. Test Result 16 7.2. Test Procedure 16 7.3. Test Results 18 7.3. Test Results 18 8. Radiated emissions 20 8.1. Limit 20 8.2. Block Diagram of Test setup 21		4.1. Limit	
4.3. Test Result 11 5. Carrier Frequency Separation 14 5.1. Limit 14 5.2. Test Procedure 14 5.3. Test Result 14 6. Number Of Hopping Channel 16 6.1. Limit 16 6.2. Test Procedure 16 6.3. Test Result 16 6.3. Test Result 16 7.1. Test Result 16 7.2. Test Procedure 18 7.3. Test Results 18 7.3. Test Results 18 7.3. Test Results 18 7.3. Test Results 20 8.1. Limit 20 8.2. Block Diagram of Test setup 21		4.2. Test Procedure	
5. Carrier Frequency Separation 14 5.1. Limit 14 5.2. Test Procedure 14 5.3. Test Result 14 5.3. Test Result 14 6. Number Of Hopping Channel 16 6.1. Limit 16 6.2. Test Procedure 16 6.3. Test Result 16 6.3. Test Result 16 7.0 Dwell Time 18 7.1. Test limit 18 7.2. Test Procedure 18 7.3. Test Results 18 8. Radiated emissions 20 8.1. Limit 20 8.2. Block Diagram of Test setup 21		4.3. Test Result	
5.1. Limit 14 5.2. Test Procedure 14 5.3. Test Result 14 6. Number Of Hopping Channel 16 6.1. Limit 16 6.2. Test Procedure 16 6.3. Test Result 16 6.3. Test Result 16 7. Dwell Time 18 7.1. Test limit 18 7.2. Test Procedure 18 7.3. Test Results 18 7.3. Test Results 18 8. Radiated emissions 20 8.1. Limit 20 8.2. Block Diagram of Test setup 21	5.	Carrier Frequency Separation	14
5.2. Test Procedure 14 5.3. Test Result 14 6. Number Of Hopping Channel 16 6.1. Limit 16 6.2. Test Procedure 16 6.3. Test Result 16 7. Dwell Time 18 7.1. Test limit 18 7.2. Test Procedure 18 7.3. Test Results 18 8. Radiated emissions 20 8.1. Limit 20 8.2. Block Diagram of Test setup 21		5.1. Limit	
5.3. Test Result .14 6. Number Of Hopping Channel .16 6.1. Limit .16 6.2. Test Procedure .16 6.3. Test Result .16 7. Dwell Time .18 7.1. Test limit .18 7.2. Test Procedure .18 7.3. Test Results .18 8. Radiated emissions .20 8.1. Limit .20 8.2. Block Diagram of Test setup .21		5.2. Test Procedure	
6. Number Of Hopping Channel		5.3. Test Result	
6.1. Limit	6.	Number Of Hopping Channel	
6.2. Test Procedure 16 6.3. Test Result 16 7. Dwell Time 18 7.1. Test limit 18 7.2. Test Procedure 18 7.3. Test Results 18 8. Radiated emissions 20 8.1. Limit 20 8.2. Block Diagram of Test setup 21		6.1. Limit	16
6.3. Test Result .16 7. Dwell Time .18 7.1. Test limit .18 7.2. Test Procedure .18 7.3. Test Results .18 8. Radiated emissions .20 8.1. Limit .20 8.2. Block Diagram of Test setup .21		6.2. Test Procedure	
7. Dwell Time 18 7.1. Test limit 18 7.2. Test Procedure 18 7.3. Test Results 18 8. Radiated emissions 20 8.1. Limit 20 8.2. Block Diagram of Test setup 21		6.3. Test Result	
7.1. Test limit 18 7.2. Test Procedure 18 7.3. Test Results 18 8. Radiated emissions 20 8.1. Limit 20 8.2. Block Diagram of Test setup 21	7.	Dwell Time	
7.2. Test Procedure		7.1 Test limit	18
7.3. Test Results 18 8. Radiated emissions 20 8.1. Limit 20 8.2. Block Diagram of Test setup 21		7.2 Test Procedure	18
8. Radiated emissions 20 8.1. Limit .20 8.2. Block Diagram of Test setup .21		7.3 Test Results	18
8.1. Limit	8.	Radiated emissions	
8.2. Block Diagram of Test setup		8.1. Limit	
		8.2. Block Diagram of Test setup	
8.3 Test Procedure 22		8.3 Test Procedure	22
8.4. Test Result		8.4. Test Result	
9. Band Edge Compliance	9.	Band Edge Compliance	
9.1 Block Diagram of Test Setup 28	-•	9.1 Block Diagram of Test Setup	28
9.2. Limit		9.2. Limit	
9.3. Test Procedure		9.3. Test Procedure	

	9.4. Test Result	
10.	Power Line Conducted Emissions	
	10.1. Block Diagram of Test Setup	
	10.2. Limit	
	10.3. Test Procedure	
	10.4. Test Result	
11.	Antenna Requirements	
	11.1. Limit	
	11.2. Result	
12.	Test setup photo	
	12.1. Photos of Radiated emission	
13.	Photos of EUT	

1. General Information

1.1. Description of Device (EUT)

EUT	:	2.4GHz Radio Control System
Model No.	:	92082
DIFF.	:	N/A
Trade mark	:	AIRTRONICS
Power supply	:	DC 6V from battery
Operation frequency	:	2403-2478MHz
Modulation	:	FHSS
Channel number	:	76
Channel spacing	:	1MHz
Antenna Type	:	PCB Antenna, max gain 3.14dBi
Applicant	:	Sanwa Electronic Instrument Co., Ltd
Address	:	1-2-50, Yoshida Honmachi, Higashi-Osaka, Osaka 578-0982, Japan
Manufacture	:	Dongguan Dongkeng Sanwa Electro Device Factory
Address	:	Qiaolian Industrial District, Erhuan St., Dongkeng Town, Dongguan City, Guangdong, P.R.China

1.2. Accessories of device (EUT)

Accessories 1	:	N/A
Туре	:	N/A

1.3. Test Lab information

Shenzhen Alpha Product Testing Co., Ltd.

Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road, Bao'an, Shenzhen, China

March 25, 2015 File on Federal Communication Commission Registration Number: 203110

July 18, 2014 Certificated by IC Registration Number: 12135A

2. Summary of test

2.1. Summary of test result

Description of Test Item	Standard	Results
Maximum Peak Output Power	FCC Part 15: 15.247 (b(1))	PASS
Bandwidth	FCC Part 15: 15.215& FCC Part 15: 15.247 (a(1))	PASS
Carrier Frequency Separation	FCC Part 15: 15.247 (a(1))	PASS
Number Of Hopping Channel	FCC Part 15: 15.247(b(1))	PASS
Dwell Time	FCC Part 15: 15.247(a(1)iii)	PASS
Radiated Emission	FCC Part 15: 15.209 FCC Part 15: 15.247(d)	PASS
Band Edge Compliance	FCC Part 15: 15.247(d)	PASS
Power Line Conducted Emissions	FCC Part 15: 15.207	N/A
Antenna requirement	FCC Part 15: 15.203	PASS

Note: 1 N/A is not applicable.

2 EUT power supply by battery, so Power Line Conducted Emissions test not applicable.

3. The EUT has been tested as an independent unit. And Continual Transmitting in maximum power (The new battery be used during Test).

2.2. Assistant equipment used for test

Description	:	N/A
Manufacturer	:	N/A
Model No.	:	N/A

2.3. Block Diagram

For radiated emissions test: EUT was placed on a turn table, which is 0.8 meter high above ground. EUT was be set into FHSS test mode by adb.exe software before test.

2.4. Test mode

Test methodology: Test had been referenced to the DA 00-705. The test was used to control EUT work in Continuous TX mode, and select test channel, wireless mode

Tested mode, channel, and data rate information					
Mode	Channel	Frequency			
		(MHz)			
Low :CH1 2403					
FHSS	Middle: CH40	2442			
	High: CH76	2478			
Note: For the relevant Conducted Measurement, the temporary antenna					
connector is used during the measurement.					
Antenna Connector Impedance: 50Ω , Cable Loss: 1.0 dB					

FH3 Channel list							
CH1	2403MHz	CH20	2422MHz	CH39	2441MHz	CH58	2460MHz
CH2	2404MHz	CH21	2423MHz	CH40	2442MHz	CH59	2461MHz
CH3	2405MHz	CH22	2424MHz	CH41	2443MHz	CH60	2462MHz
CH4	2406MHz	CH23	2425MHz	CH42	2444MHz	CH61	2463MHz
CH5	2407MHz	CH24	2426MHz	CH43	2445MHz	CH62	2464MHz
CH6	2408MHz	CH25	2427MHz	CH44	2446MHz	CH63	2465MHz
CH7	2409MHz	CH26	2428MHz	CH45	2447MHz	CH64	2466MHz
CH8	2410MHz	CH27	2429MHz	CH46	2448MHz	CH65	2467MHz
CH9	2411MHz	CH28	2430MHz	CH47	2449MHz	CH66	2468MHz
CH10	2412MHz	CH29	2431MHz	CH48	2450MHz	CH67	2469MHz
CH11	2413MHz	CH30	2432MHz	CH49	2451MHz	CH68	2470MHz
CH12	2414MHz	CH31	2433MHz	CH50	2452MHz	CH69	2471MHz
CH13	2415MHz	CH32	2434MHz	CH51	2453MHz	CH70	2472MHz
CH14	2416MHz	CH33	2435MHz	CH52	2454MHz	CH71	2473MHz
CH15	2417MHz	CH34	2436MHz	CH53	2455MHz	CH72	2474MHz
CH16	2418MHz	CH35	2437MHz	CH54	2456MHz	CH73	2475MHz
CH17	2419MHz	CH36	2438MHz	CH55	2457MHz	CH74	2476MHz
CH18	2420MHz	CH37	2439MHz	CH56	2458MHz	CH75	2477MHz
CH19	2421MHz	CH38	2440MHz	CH57	2459MHz	CH76	2478MHz

2.5. Test Conditions

Temperature range	21-25 °C
Humidity range	40-75%
Pressure range	86-106kPa

2.6. Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.70dB	
Uncertainty for Radiation Emission test in 3m	3.90 dB	Polarize: V
chamber (30MHz to 1GHz)	3.92dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	4.26 dB	Polarize: H
chamber (1GHz to 25GHz)	4.28 dB	Polarize: V
Uncertainty for conducted RF Power	0.16dB	

2.7.	Test Equipment
------	----------------

Equipment	Manufacture	Model No.	Serial No.	Cal. Due day	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN	N/A	SEL0017	2016.01.18	1 Year
Spectrum analyzer	Agilent	E4407B	MY49510055	2016.01.18	1 Year
Receiver	R&S	ESCI	101165	2016.01.18	1 Year
Bilog Antenna	SCHWARZBECK	VULB 9168	9168-438	2016.01.21	2Year
Horn Antenna SCHWARZB		BBHA 9120 D	BBHA 9120 D(1201)	2016.01.21	2Year
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA 9170 D(1432)	2016.01.21	2Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	2016.01.21	1 Year
Cable	Resenberger	SUCOFLEX 104	MY6562/4	2016.01.18	1 Year
Cable	Resenberger	SUCOFLEX 104	309972/4	2016.01.18	1 Year
Cable	Resenberger	SUCOFLEX 104	329112/4	2016.01.18	1 Year
Power Meter	Anritsu	ML2487A	6K00001491	2016.01.18	1Year
Power sensor	Anritsu	ML2491A	32516	2016.01.18	1 Year
Pre-amplifier	SCHWARZBECK	BBV9743	9743-019	2016.01.18	1 Year
Pre-amplifier	Quietek	AP-180C	CHM-0602012	2016.01.18	1 Year

3. Maximum Peak Output power

3.1. Limit

Please refer section15.247 b(1).

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts, the e.i.r.p shall not exceed 4W

3.2. Test Procedure

The transmitter output is connected to the RF Power Meter. The RF Power Meter is set to the peak power detection.

3.3. Test Setup

3.4. Test Result

EUT: 2.4GHz Radio Control System M/N: 92082						
Test date: 20	15-04-18	Test site: RF site	Tested b	oy: Peter		
Mode	Freq (MHz)	PK Output Power (dBm)	PK Output Power (mW)	Limit (dBm)	Result	
	2403	-0.73	0.85	21.00	Pass	
FHSS	2442	2.57	1.81	21.00	Pass	
2478		0.16	1.04	21.00	Pass	
Conclusion:	Conclusion: PASS					

4. Bandwidth

4.1. Limit

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

4.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30kHz RBW and 100kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

EUT: 2.4GHz Radio Control System M/N: 92082						
Test date: 20	15-04-21	Test site: RF site Tested by: Peter				
Mode	Freq (MHz)	20dB Bandwidth (MHz)	Limit (kHz)	Conclusion		
	2403	1.113	/	PASS		
FHSS	2442	1.137	/	PASS		
	2478	1.183	/	PASS		

4.3. Test Result

EUT: 2.4GH	EUT: 2.4GHz Radio Control System M/N: 92082						
Test date: 20	15-04-21	Test site: RF site	Tested by: Peter				
Mode	Freq (MHz)	99% Bandwidth (MHz)	Limit (kHz)	Conclusio n			
	2403	1.0996	/	PASS			
FHSS	2442	1.1173	/	PASS			
	2478	1.2034	/	PASS			

Span 3 MHz

99.00 % -20.00 dB

Sweep 9.99 ms (1000 pts)

x dB

Occ BW % Pwr

Original Test data:

Center 2.442 GHz

Occupied Bandwidth

1.1173 MHz

#Res BW 30 kHz

Transmit Freq Error-5.188 kHzx dB Bandwidth1.137 MHz

#VBW 100 kHz

5. Carrier Frequency Separation

5.1. Limit

Please refer section15.247 a(1):

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

5.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The carrier frequency was measured by spectrum analyzer with 30kHz RBW and 100kHz VBW.

EUT: 2.4GHz Radio Control System M/N: 92082							
Test date: 2015-04-21		Test site: RF site	Tested by: Simple				
Mode/Channel	Channel separation (MHz)	20dB Bandwidth (MHz)	Limit (MHz) 2/3 20dB bandwidth	Conclusion			
FHSS	1.000	1.183	0.79	PASS			

5.3. Test Result

Original test data for channel separation

6. Number Of Hopping Channel

6.1. Limit

Please refer section15.247 a(1):

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

6.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The number of hopping channel was measured by spectrum analyzer with 100kHz RBW and 300KHz VBW.

6.3. Test Result

EUT: 2.4GHz Radio Control System M/N: 92082						
Test date: 2015-04-21		Test site: RF site	Tested by:	Peter		
Mode	Number of hopping channel		Limit	Conclusion		
FHSS		76	>15	PASS		

Original test data for hopping channel number

7. Dwell Time

7.1. Test limit

Please refer section 15.247 a(1):

According to \$15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5MHz. The average time of occupancy on any frequency shall not greater than 0.4 s within period of 0.4 seconds multiplied by the number of hopping channel employed.

7.2. Test Procedure

(1) Place the EUT on the table and set it in transmitting mode.

(2) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

(3) Set center frequency of spectrum analyzer = operating frequency.

(4) Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.

(5) Repeat above procedures until all frequency measured was complete.

(6) The spectrums are scanned by using the spectrum analyzer (*1). And the numbers of occupied channel per Nsec (period of 0.4 seconds multiplied by the number of hopping channels employed) were counted by using the delta-marker function of spectrum analyzer and recorded as "N".

(7) The dwell time was calculated by Ton \times N.

7.3. Test Results

PASS.

Detailed information please see the following page.

EUT: 2.4GHz Radio Control System M/N: 92082						
Test date: 2015-04-22 Test site: RF site Tested by: Peter						
Mode	Dwell Time (ms)	Limit (ms)	Conclusion			
FHSS	2442	0.33	107.25	<400	PASS	
Note: 1 N=325						
2 Dwell Time =	2 Dwell Time = Pulse Duration * N					

Note: The numbers is 325.

8. Radiated emissions

8.1. Limit

Please refer section15.247 d:

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

15.205 Restricted	frequency	band:
-------------------	-----------	-------

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

15.209 Limit:

FREQUENCY	DISTANCE	FIELD STREN	FIELD STRENGTHS LIMIT		
MHz	Meters	μV/m	dB(µV)/m		
0.009-0.490	300	2400/F(KHz)	/		
0.490-1.705	30	24000/F(KHz)	/		
1.705-30	30	30	29.5		
30 ~ 88	3	100	40.0		
88 ~ 216	3	150	43.5		
216 ~ 960	3	200	46.0		
960 ~ 1000	3	500	54.0		
Above 1000	3	74.0 dB(μV 54.0 dB(μV)	/)/m (Peak) /m (Average)		

8.2. Block Diagram of Test setup

8.2.1. In 3m Anechoic Chamber Test Setup Diagram for below 1GHz

8.2.2. In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

8.3. Test Procedure

(1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber.

(2) Setup EUT and simulator as shown in section 1.4 and 6.1

(3) Test antenna was located 3m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.

- (a) Change work frequency or channel of device if practicable.
- (b) Change modulation type of device if practicable.
- (c) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions

(4) Spectrum frequency from 9KHz to 25GHz (tenth harmonic of fundamental frequency) was investigated

(5) For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4 2003 on Radiated Emission test.

(6) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW is set at 1MHz, VBW is set at 10Hz for Average measure.

8.4. Test Result

We have scanned the 10th harmonic from 9KHz to the EUT.

Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

From 30MHz to 1000MHz: Conclusion: PASS

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

- 1 -

Remark1: All modes have been tested, and only worst data, Channel 2403MHz was listed in this report.

Remark2: Test for all x, y, z axes is performed and only the worst case of y axes was recorded in the test report.

Shenzhen Alpha Product Testing Co., Ltd. Building B. East Area of Nanchang Second Industrial Zone. Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Tel: +86-755-29766001 FAX: +86-755-86375565 Website: http://www.a-lab.cn Email: service@a-lab.cn

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

- 2 -

Remark1: All modes have been tested, and only worst data, Channel 2403MHz was listed in this report.

Remark2: Test for all x, y, z axes is performed and only the worst case of y axes was recorded in the test report.

	1GHz—25GHz Radiated emission Test result								
EUT	: 2.4GHz	z Radio Cor	ntrol Syste	em		M/N: 92	2082		
Pow	er: DC 6	.0V From b	attery						
Test	date: 201	15-04-18	Test site	: 3m Cł	namber	Tested by	: Peter		
Test	mode: T	x CH1 2403	3MHz						
Ante	enna pola	rity: Vertica	al						
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4806	49.37	31.26	5.70	34.20	52.13	74	21.87	РК
2	4806	42.48	31.26	5.70	34.20	45.24	54	8.76	AV
3	7209	/							
4	9612	/							
5	12015	/							
Ante	enna Pola	rity: Horizo	ontal					<u>.</u>	
1	4806	46.31	31.26	5.70	34.20	49.07	74	24.93	РК
2	4806	40.73	31.26	5.70	34.20	43.49	54	10.51	AV
3	7209	/							
4	9612	/							
5	12015	/							
Note 1, M 2, S	Note: 1, Measuring frequency from 1GHz to 25GHz 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto,								
Dete	ctor: PK								
2, S	spectrum	Set for A	V meas	ure: R	BW=1N	ИHz, VBW	/=10Hz, Sv	veep tir	ne=Auto,
Dete	ctor: PK			~					
3, R	esult = Re	ead level +	Antenna	factor +	cable I	oss-Amp ta	ctor		
4, A	Il the othe	er emissions	s not repo	rted we	re too l	ow to read a	and deemed	to comp	ly with

1GHz—25GHz Radiated emission Test result									
EUT: 2.4GHz Radio Control System M/N: 92082									
Power	Power: DC 6.0V From battery								
Test d	late: 2015	5-04-18	Fest site:	3m Cha	mber	Tested by:	Peter		
Test mode: Tx CH40 2442MHz									
Anter	ına polari	ty: Vertical							
No	_	Read	Antenna	Cable	Amp		.	Margin (dB)	
	Freq	Level	Factor	loss	Factor	Kesult	Limit		Remark
	(MHZ)	(dBuV/m)	(dB/m)	(dB)	(dB)	(abuv/m)	(abuv/m)		
1	4884	49.52	31.38	5.75	34.14	52.51	74	21.49	PK
2	4884	41.84	31.38	5.75	34.14	44.83	54	9.17	AV
3	7326	/							
4	9768	/							
5	12210	/							
Anter	ına Polari	ty: Horizon	tal						
1	4884	48.24	31.38	5.75	34.14	51.23	74	22.77	PK
2	4884	40.64	31.38	5.75	34.14	43.63	54	10.37	AV
3	7326	/							
4	9768	/							
5	12210	/							
Note:									
1, Me	asuring fi	requency fro	om 1GHz	to 25G	Hz				
2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto,									
Detector: PK									
2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto,									
Detec	tor: PK								
3, Res	$\operatorname{sult} = \operatorname{Rea}$	d level + A	ntenna fa	$\cot r + c$	cable los	ss-Amp fac	tor		.
4, All	the other	emissions	not report	ted were	e too lo	w to read an	nd deemed	to comp	ly with

1GHz—25GHz Radiated emission Test result									
EUT:	EUT: 2.4GHz Radio Control System M/N: 92082								
Powe	r: DC 6	.0V From b	attery						
Test d	late: 2015	5-04-18	Fest site:	3m Cha	mber	Tested by:	Peter		
Test mode: Tx CH76 2478MHz									
Anter	ına polari	ty: Vertical							
	Enca	Read	Antenna	Cable	Amp	D a avult	T • •,	Margin	Remark
No	(MU_{7})	Level	Factor	loss	Factor	$d\mathbf{R} \mathbf{u} \mathbf{V} \mathbf{m}$	LIIIII (d P uV/m)		
	(WIIIZ)	(dBuV/m)	(dB/m)	(dB)	(dB)	(ubu v/III)	(ubu v/III)	(ub)	
1	4956	47.43	31.50	5.79	34.06	50.66	74	23.34	PK
2	4956	40.92	31.50	5.79	34.06	44.15	54	9.85	AV
3	7434	/							
4	9912	/							
5	12390	/							
Anter	na Polari	ty: Horizon	tal						
1	4956	44.58	31.50	5.79	34.06	47.81	74	26.19	РК
2	4956	39.18	31.50	5.79	34.06	42.41	54	11.59	AV
3	7434	/							
4	9912	/							
5	12390	/							
Note:									
1, Me	asuring fi	requency fr	om 1GHz	to 25G	Hz				
2, Sp	ectrum S	Set for PK	measur	e: RBV	N=1MF	Iz, VBW=	1MHz, Sv	weep tir	ne=Auto,
Detector: PK									
2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto,									
Detector: PK									
3, Res	sult = Rea	A = A = A + A	ntenna fa	$\cot r + c$	able los	ss-Amp fac	tor		1 .1
4, All FCC	une otner	emissions	not repor	lea wer	e (00 10	w to read at	ia deemed	to comp	iy with

9. Band Edge Compliance

9.1. Block Diagram of Test Setup

9.2. Limit

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

9.3. Test Procedure

Same with clause 6.3 except change investigated frequency range from 2310MHz to 2415MHz, 2475MHz to 2500MHz.

9.4. Test Result

PASS.

Band Edge Test result									
EUT: 2.4GHz	EUT: 2.4GHz Radio Control System M/N: 92082								
Power: DC 6.	Power: DC 6.0V From battery								
Test date: 201	15-04-18	Test site	: 3m Cl	namber	Tested by	: Peter			
Test mode: T	x CH1 2403	3MHz							
Antenna pola	rity: Vertica	al							
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss (dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
2390	45.71	27.62	3.92	34.97	42.28	74	31.72	PK	
2390	/	27.62	3.92	34.97	/	54	/	AV	
2400	46.28	27.62	3.94	34.97	42.87	74	31.13	PK	
2400	/	27.62	3.94	34.97	/	54	/	AV	
Antenna Pola	rity: Horizo	ontal							
2390	43.48	27.62	3.92	34.97	40.05	74	33.95	PK	
2390	/	27.62	3.92	34.97	/	54	/	AV	
2400	45.39	27.62	3.94	34.97	41.98	74	32.02	PK	
2400	/	27.62	3.94	34.97	/	54	/	AV	
Note: 1, Spectrum	Note: 1. Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto.								

1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK

2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK

3, Result = Read level + Antenna factor + cable loss-Amp factor

4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

			Band Ed	dge Test	result			
EUT: 2.4GHz	z Radio Cor	ntrol Syste	em		M/N: 92	2082		
Power: DC 6.	OV From b	attery						
Test date: 201	15-04-18	Test site	: 3m Cl	namber	Tested by	: Peter		
Test mode: T	x CH76 24	78MHz						
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss (dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	45.27	27.59	4.00	34.97	41.89	74	32.11	РК
2483.5	/	27.59	4.00	34.97	/	54	/	AV
Antenna Pola	rity: Horizo	ontal	1	.	1	ı —	.	1
2483.5	44.95	27.59	4.00	34.97	41.57	74	32.43	PK
2483.5	/	27.59	4.00	34.97	/	54	/	AV
							<u> </u>	
							<u> </u>	
Note: 1, Spectrum Detector: PK	Set for P	YK measu	ıre: RI	3W=1M	IHz, VBW	=1MHz, Sv	weep tir	me=Auto,
2, Spectrum Detector: PK	Set for A	V meas	ure: R	BW=IN	лнz, vвw	/=10Hz, Sv	veep tir	ne=Auto,
3, Result = Re	ead level +	Antenna	factor +	cable l	oss-Amp fa	ctor		
4, All the othe	er emission	s not repo	orted we	ere too l	ow to read a	and deemed	to comp	oly with

Band Edge Test result								
EUT: 2.4GHz	z Radio Cor	ntrol Syste	em		M/N: 92	2082		
Power: DC 6.	.0V From b	attery						
Test date: 20	15-04-18	Test site	: 3m Cł	namber	Tested by	: Peter		
Test mode: H	lopping							
Antenna pola	rity: Vertic:	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss (dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	43.84	27.62	3.92	34.97	40.41	74	33.59	РК
2390	/	27.62	3.92	34.97	/	54	/	AV
2400	44.72	27.62	3.94	34.97	41.31	74	32.69	PK
2400	/	27.62	3.94	34.97	/	54	/	AV
Antenna Pola	rity: Horizo	ontal						
2390	44.25	27.62	3.92	34.97	40.82	74	33.18	PK
2390	/	27.62	3.92	34.97	/	54	/	AV
2400	44.83	27.62	3.94	34.97	41.42	74	32.58	PK
2400	/	27.62	3.94	34.97	/	54	/	AV
Note: 1, Spectrum Detector: PK 2, Spectrum Detector: PK 3, Result = R	Set for P Set for A ead level +	YK measu AV meas Antenna	ure: RE sure: R factor +	3W=1M BW=1M	IHz, VB₩ MHz, VB₩ oss-Amp fa	=1MHz, Sw 7=10Hz, Sw ctor	weep tir weep tir	ne=Auto, ne=Auto,
4, All the oth	4, All the other emissions not reported were too low to read and deemed to comply with							

	Band Edge Test result							
EUT: 2.4GHz	z Radio Cor	ntrol Syste	em		M/N: 92	2082		
Power: DC 6	.0V From b	attery						
Test date: 20	15-04-18	Test site	: 3m Cl	hamber	Tested by	: Peter		
Test mode: H	lopping							
Antenna pola	rity: Vertica	al						
Emag	Read	Antenna	Cable	Amp	Result (dBuV/m)	T · · ·	Manain	
rreq	Level	Factor	loss	Factor		$\frac{1}{2} \frac{1}{2} \frac{1}$	Margin	Remark
	(dBuV/m)	(dB/m)	(dB)	(dB)		(aBuv/m)	(dB)	
2483.5	44.92	27.59	4.00	34.97	41.54	74	32.46	PK
2483.5	/	27.59	4.00	34.97	/	54	/	AV
Antenna Pola	rity: Horizo	ontal						
2483.5	43.81	27.59	4.00	34.97	40.43	74	33.57	PK
2483.5	/	27.59	4.00	34.97	/	54	/	AV
Note:		<u>. </u>		4			4	
1, Spectrum	Set for P	YK measu	ure: RF	3W=1M	IHz, VBW	=1MHz, Sv	weep tir	ne=Auto,
Detector: PK								
2, Spectrum	Set for A	AV meas	ure: R	BW=1N	ИHz, VBW	/=10Hz, Sv	veep tii	ne=Auto,
Detector: PK								
3, Result = R	ead level +	Antenna	factor +	- cable l	oss-Amp fa	ctor		
4, All the oth	er emission	s not repo	orted we	ere too l	ow to read a	and deemed	to comp	oly with
FCC limit.	FCC limit.							

10. Power Line Conducted Emissions

10.1.Block Diagram of Test Setup

 \square :50 Ω Terminator

10.2.Limit

	Maximum RF Line Voltage					
Frequency	Quasi-Peak Level	Average Level				
	$dB(\mu V)$	$dB(\mu V)$				
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*				
500kHz ~ 5MHz	56	46				
5MHz ~ 30MHz	60	50				

Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

10.3.Test Procedure

(1) The EUT was placed on a non-metallic table, 80cm above the ground plane.

(2) Setup the EUT and simulator as shown in 10.1.

(3) The EUT Power connected to the power mains through a notebook and a line impedance stabilization network (L.I.S.N1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N2), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4:2003 on conducted Emission test.

(4) The bandwidth of test receiver is set at 10KHz.

(5) The frequency range from 150 KHz to 30MHz is checked.

10.4. Test Result

EUT power supply by battery, so this test item not applicable.

11.Antenna Requirements

11.1.Limit

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2.Result

The antennas used for this product are PCB Antenna, no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 3.14dBi.

12. Test setup photo

12.1.Photos of Radiated emission

Direct Connect setup photo

13.Photos of EUT

-----THE END OF REPORT------