October 10, 2000

Federal Communications Commission Authorization and Evaluation Division 7435 Oakland Mills Road Columbia, MD 21046

Attention: Applications Examiner

Applicant: Allgon Telecom, Ltd.

7317 Jack Newell Blvd. North Fort Worth, Texas 76118

Equipment: COMPACT repeater with adjustable bandwidth, Model ALR4200

FCC ID: L6GALR4200

Specification: 47 CFR 22 Licensed Certification

Dear Examiner:

The following application for Grant of Equipment Authorization is presented on behalf of Allgon Telecom Ltd.. for the Licensed Certification of their Model: ALR4200, Repeater.

Enclosed, please find a complete data and documentation package demonstrating that this device complies with the technical requirements of 47 CFR, Part 22, for a Repeater.

If you have any questions, please contact the undersigned, who is authorized to act as Agent.

Sincerely,

Chris Harvey

Director, EMC Laboratory

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation

914 WEST PATAPSCO AVENUE ! BALTIMORE, MARYLAND 21230-3432 ! PHONE (410) 354-3300 ! FAX (410) 354-3313

ENGINEERING TEST REPORT

in support of the

Application for Grant of Equipment Authorization

EQUIPMENT: COMPACT Repeater, Model ALR4200

FCC ID:: L6GALR4200

Specification: 47 CFR 22

On Behalf of the Applicant: Allgon Telecom Ltd.

7317 Jack Newell Blvd. North

FortWorth, TX 76118

Manufacturer: Allgon Telecom Ltd.

7317 Jack Newell Blvd. North

FortWorth, TX 76118

Manufacturer's Mr. Tim Purvis

Representative

Test Date(s): August 8 thru September 22, 2000

ENGINEERING STATEMENT

I ATTEST: the measurements shown in this report were made in accordance with the procedures indicated, and that the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements. On the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Part 22 of the FCC Rules under normal use and maintenance.

Liming Xu

Project Engineer, MET Laboratories

Met 10030 - 2 - October 10, 2000

1.0 INTRODUCTION

The following data is presented on behalf of the Applicant, Allgon Telecom Ltd. as verification of the compliance of the Allgon COMPACT Repeater, Model ALR4200 to the requirements of 47CFR 22.

2.0 TEST SITE

All testing was conducted at MET Laboratories, Inc., 914 West Patapsco Avenue, Baltimore, Maryland 21230-3493. Radiated emissions measurements were performed on a three-meter open area test site (OATS). A complete site description is on file with the FCC Laboratory Division as 31040/SIT/MET.

3.0 TEST EQUIPMENT USED

TEST EQUITIENT COLD							
Manufacturer	Equipment	Calibration Due	Cal. Interval				
Hewlett Packard	8563A Spectrum Analyzer	5/26/01	annual				
ЕМСО	Biconical Antenna 3104	04/10/01	annual				
EMCO	EMCO Log Periodic Antenna	04/10/01	annual				
ЕМСО	Double Ridge Guided Horn	2/27/01	annual				
Hewlett Packard	8594EM Analyzer	11/20/00	annual				
Rhode & Swartz	SMIQ03 SG	08/16/01	annual				
Hewlett Packard	E4431B SG	8/29/01	annual				

4.0 EQUIPMENT UNDER TEST CONFIGURATION

The Cellular Repeater was configured with AC power supply modules and a digital signal generator was used to simulate various RF (i.e. FM,CDMA or iDEN type) input signals to the EUT. The EUT with host external computer was configured for maximum signal gain and bandwidth. The EUT was operated in a manner representative of the typical usage of the equipment. During all testing, (with the exception of intermodulation tests), the EUT was configured for Single Channel operation which results in maximum possible output gain.

5.0 TEST TYPE(S)

- 5.1 Radiated Emissions: 47CFR2.1053, 22.901(d)(2), 22.917(e)
- 5.2 Occupied Bandwidth: 47CFR2.1049, Input vs. Output
- 5.3 RF Power Output: 47CFR 2.1046, 22.913(a)
- 5.4 Spurious Emission at Antenna Terminals:(uplink & downlink) 47CFR 2.1051, 22.917(e)
- 5.5 Intermodulation Distortion 47 CFR 2.1051, 22.917(e)

Met 10030 - 3 - October 10, 2000

6.0 TEST RESULTS

6.1 TEST TYPE: Radiated Emissions

6.1.1 TECHNICAL SPECIFICATION: 2.1053; 22.901(d)(2), 22.917(e)

6.1.2 TEST DATE(S): August 11, 2000

6.1.3 MEASUREMENT PROCEDURES:

As required by 47 CFR 2.1053, *field strength of spurious radiation measurements* were made in accordance with the general procedures of ANSI C63.4-1992 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz". Preliminary radiated emission measurements were performed inside a shielded chamber with all digital signal generators on and terminated. The frequency list from the preliminary measurements was used as a guide for making final measurements on a 10 meter open area test site. The unit was scanned over the frequency range of 9 kHz to 9 GHz.

The Radiated Spurious Emissions *Limit* is obtained by the following:

Based on an output power (as measured at the output of the RF Amplifier) of 1 watts:

$$P_0 = 1 \text{ W}$$

As per 2.1053, it is assumed this power is to be fed to a half-wave tuned dipole. Using a conversion formula for distance, the field strength at one meter can be derived:

$$E(V/m)_{1m} = \frac{\sqrt{49.2 \ X \ 1}}{1}$$

$$E(V/m)_{1m} = 7 \ V/m \ or \ 137 \ db\mu V$$

As per 90.210(h), 90.691(a), the spurious emissions must be attenuated by $43 + 10\log(P)$ which is:

$$43 + 10Log(1) = 43 dB$$

Therefore, the limit for spurious emissions is:

$$137 \, dB\mu V - 43 \, dB = 94 \, dB\mu V @ 1m$$

At 3 meters measurement distance, the limit is;

$$E(V/m)_{3m} = \frac{\sqrt{49.2 \ X \ 1}}{3}$$

$$E(V/m)_{3m} = 2.333 \ V/m \ or \ 127 \ db\mu V$$

According to 24.238(a), all signals must be attenuated by 46.08 dB. Therefore, the limit for spurious emissions for a test distance of 3 meters is:

$$127 - 43 = 84 \, dBuV @ 3m$$

Met 10030 - 4 - October 10, 2000

6.1.4 RESULTS:

Frequency (MHz)	Azimuth (Degrees)	Polarity	Height (Meters)	Raw Amplitude (dBuV)	A.C.F. (dB)	Cable loss (dB)	Corrected Amplitude (dBuV/m)	Limit (dBuV/m)
52.925	0	Н	2.2	16.86	11.2	1.31	29.37	84.37
52.925	355	V	1	20.99	11.74	1.31	34.04	84.37
123.951	135	Н	1 .6	21.99	12.92	2.17	37.08	84.37
123.951	340	V	1	21.79	12.53	2.17	36.49	84.37
224.922	360	Н	4	13.83	15.91	2.86	32.60	84.37
224.922	0	V	4	13.86	16.30	2.86	33.02	84.37
377.25	150	Н	1.4	14.5	16.05	3.79	34.33	84.37
377.25	210	V	1	14.39	15.89	3.79	34.07	84.37
458.2	145	Н	2.1	13.92	17.52	4.17	35.61	84.37
458.2	215	V	1.5	13.99	17.12	4.17	35.28	84.37
800.0	245	Н	3.3	14.46	22.4	5.94	42.80	84.37
800.0	0	V	1	14.45	22.1	5.94	42.49	84.37

No Radiated Emissions was observed between 800 MhZ and 9GhZ.

The device complies with 47 CFR 2.1053; 22.901(d)(2), 22.917(e).

Met 10030 - 5 - October 10, 2000

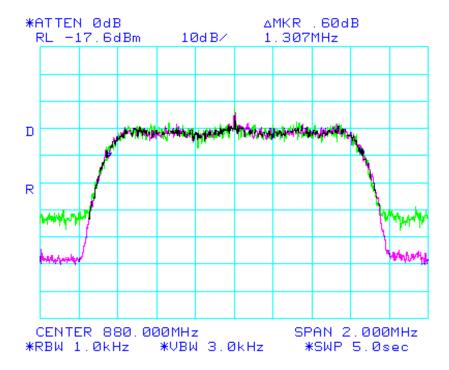
6.2 TEST TYPE: Occupied Bandwidth

6.2.1 TECHNICAL SPECIFICATION: 47 CFR 2.1046

6.2.2 TEST DATE(S): August 8, 2000

6.2.3 MEASUREMENT PROCEDURES:

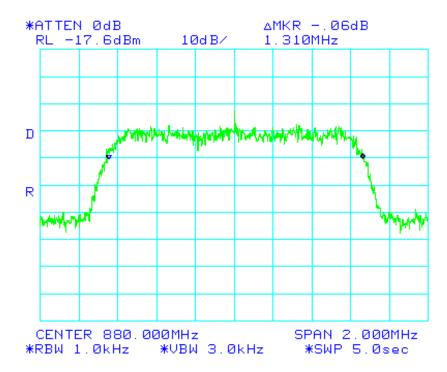
As required by 47 CFR 2.1049, *occupied bandwidth measurements* were made on the Repeater pre- and post- repeater. A digital signal generator was configured to transmit a modulated carrier signal. Using an IF bandwidth from 300Hz to 1KHz, we determined the occupied bandwidth of the emission at the Input vs Output.


6.2.4 RESULTS:

Equipment complies with Section 2.1049. Plots of the occupied bandwidth, as measured at the Repeater RF input port and at the antenna RF output port (post amplification) follow:

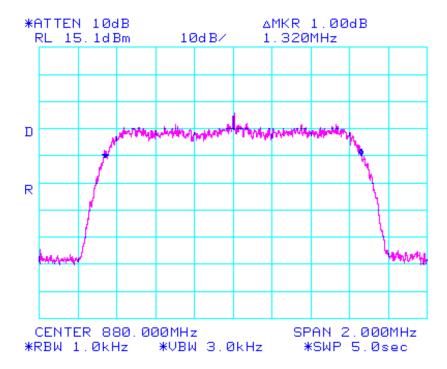
Met 10030 - 7 - October 10, 2000

Occupied B/W (CDMA) Input vs Output Downlink

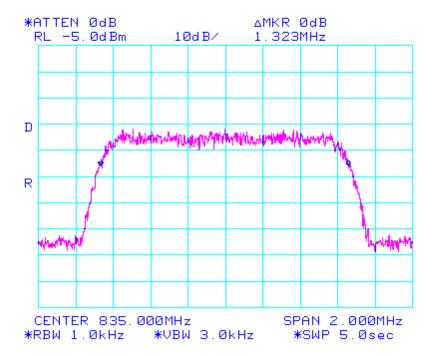

10030

Met 10030 - 8 - October 10, 2000

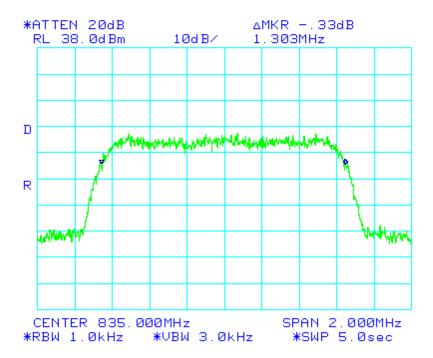
Occupied B/W (CDMA) at Input side Downlink


10030

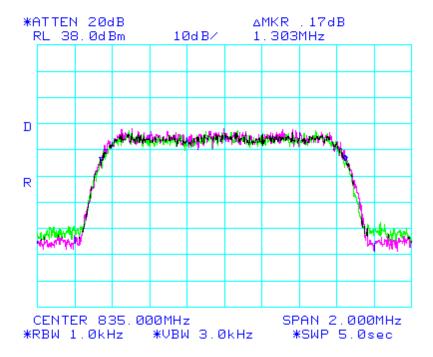
Met 10030 - 9 - October 10, 2000


Occupied B/W (CDMA) at Output side Downlink

10030

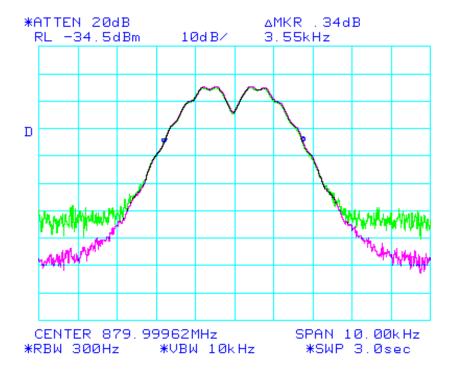

Met 10030 - 10 - October 10, 2000

Occupied B/W (CDMA) at Input side Uplink Met10030


Met 10030 - 11 - October 10, 2000

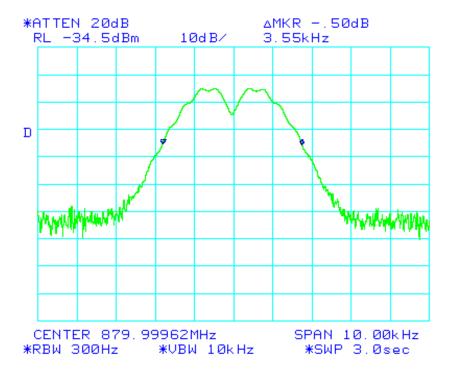
Occupied B/W at Output side Uplink Met 10030

Met 10030 - 12 - October 10, 2000


Occupied B/W (CDMA) Input vs Output Uplink Met 10030

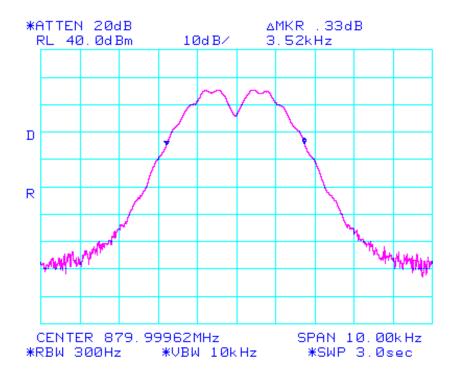
Met 10030 - 13 - October 10, 2000

Occupied B/W (FM) Input vs Output Downlink


10030

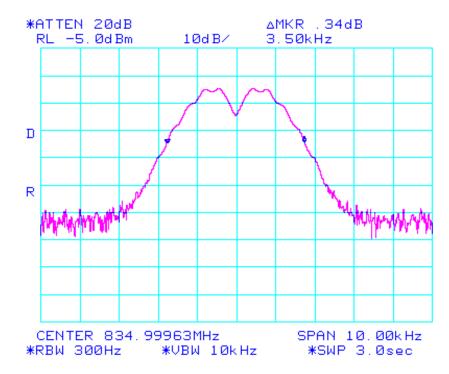
Met 10030 - 14 - October 10, 2000

Occupied B/W (FM) at Input side Downlink


10030

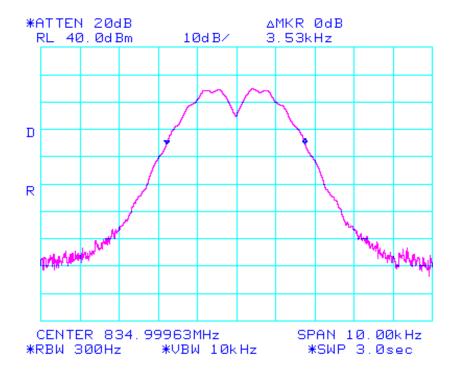
Met 10030 - 15 - October 10, 2000

Occupied B/W (FM) at Output side Downlink


10030

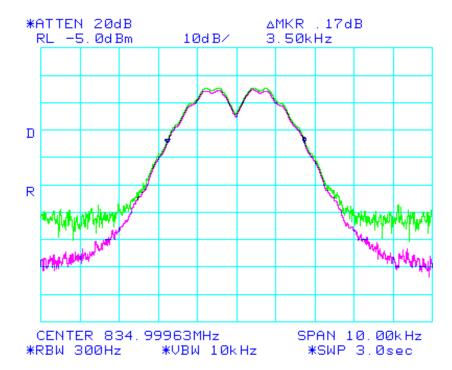
Met 10030 - 16 - October 10, 2000

Occupied B/W (FM) at Input side Uplink


10030

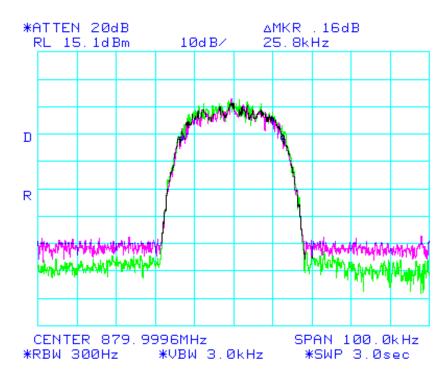
Met 10030 - 17 - October 10, 2000

Occupied B/W (FM) at Output side Uplink


10030

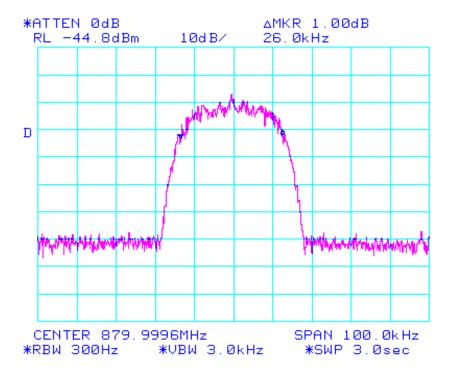
Met 10030 - 18 - October 10, 2000

Occupied B/W (FM) Input vs Output Uplink


10030

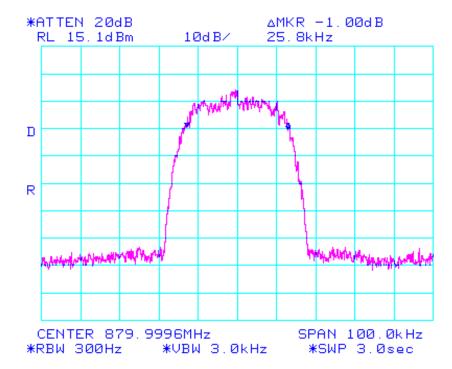
Met 10030 - 19 - October 10, 2000

Occupied B/W (iDEN) Input vs Output Downlink

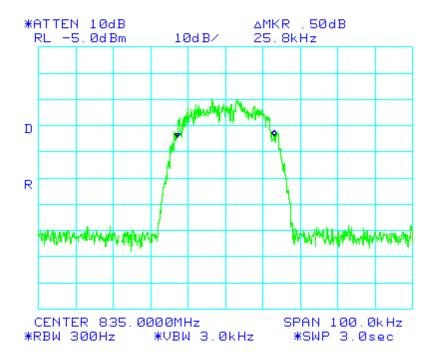

10030

Met 10030 - 20 - October 10, 2000

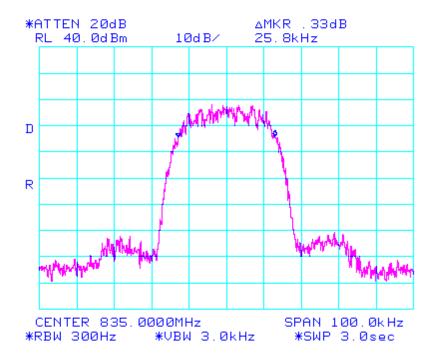
Occupied B/W (iDEN) at Input side Downlink


10030

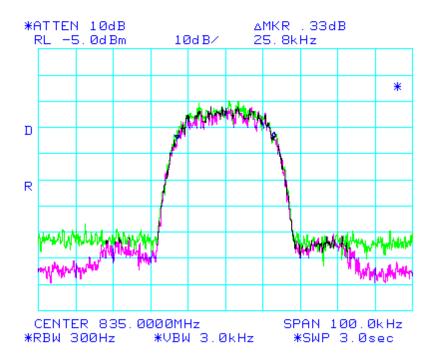
Met 10030 - 21 - October 10, 2000


Occupied B/W (iDEN) at Output side Downlink

10030


Met 10030 - 22 - October 10, 2000

Occupied B/W (iDEN) at Input side Uplink Met 10030


Met 10030 - 23 - October 10, 2000

Occupied B/W (iDEN) at Output side Uplink Met 10030

Met 10030 - 24 - October 10, 2000

Occupied B/W (iDEN) Input vs Output Uplink Met 10030

Met 10030 - 25 - October 10, 2000

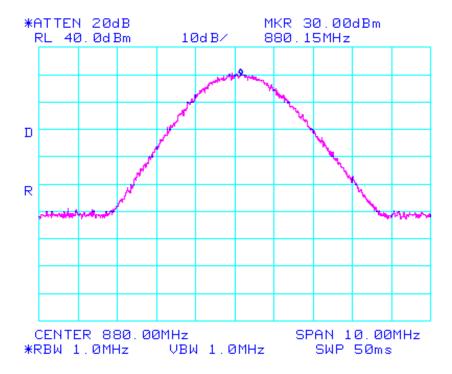
- 6.3 TEST TYPE: RF POWER OUTPUT
- **6.3.1 TECHNICAL SPECIFICATION:** 47 CFR 2.1046 and 22.913(a)
- **6.3.2 TEST DATE(S):** August 8, 2000

6.3.3 MEASUREMENT PROCEDURES:

As required by 47 CFR 2.1046, *RF power output measurements* were made at the RF output terminals using an attenuator and spectrum analyzer. This test was performed with carrier modulated by a FM,CDMA and iDEN(TDMA) modulated signal.

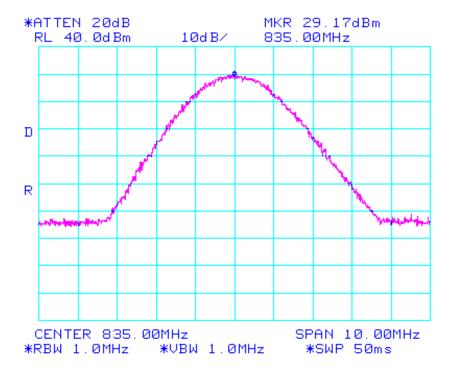
Plots of the RF output Power level of the Digitally modulated carrier, as measured at the RF output of the signal generator and at the RF output terminals of the EUT appear on the following pages:

6.3.4 RESULTS:


Equipment complies with 47CFR 2.1046 and 22.913(a). The repeater power does not exceed of 100 W, at the carrier frequency.

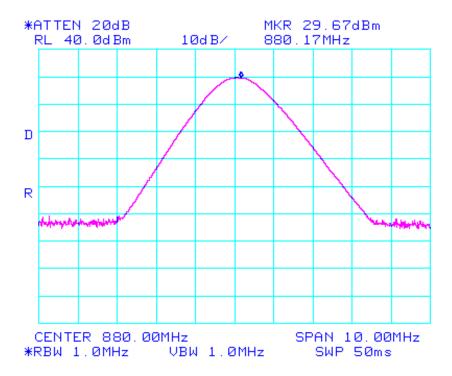
Photograph of Antenna Conducted Spurious Emissions and RF Power Output Test Configuration

Met 10030 - 26 - October 10, 2000

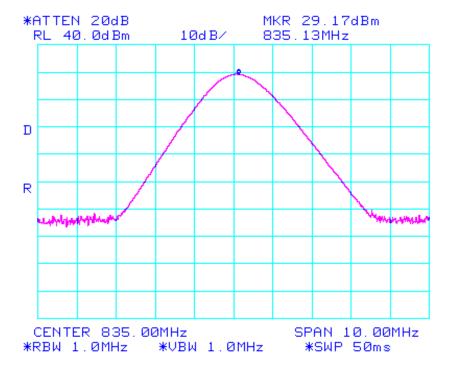


RF Power output CDMA (IS-95) downlink

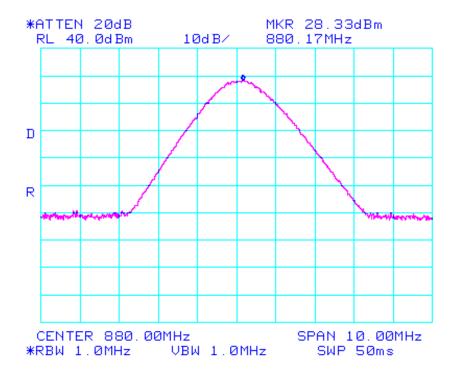
Met 10030 - 28 - October 10, 2000


RF Power output CDMA (IS-95) uplink

Met 10030 - 29 - October 10, 2000


RF Power output FM Downlink

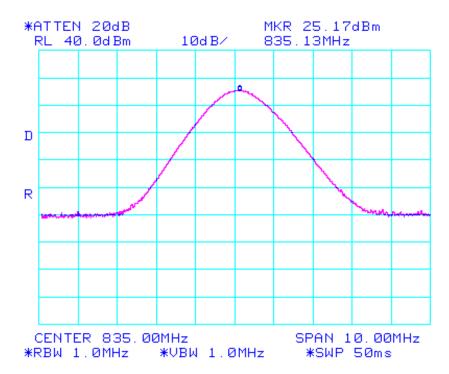
10030


Met 10030 - 30 - October 10, 2000

RF Power output FM Uplink 10030

Met 10030 - 31 - October 10, 2000

RF Power output TDMA (iDEN) downlink 10080



Met 10030 - 32 - October 10, 2000

RF Power output TDMA (iDEN)

Uplink

10030

Met 10030 - 33 - October 10, 2000

6.4 TEST TYPE: Spurious Emissions at Antenna Terminals

6.4.1 TECHNICAL SPECIFICATION: 2.1051; 22.917(e)

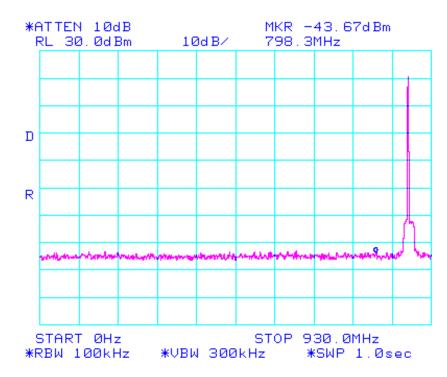
6.4.2 TEST DATE(S): September 20, 2000

6.4.3 MEASUREMENT PROCEDURES:

As required by 47 CFR 2.1051, spurious emissions at antenna terminal measurements were made at the RF output terminals using a 50 Ω attenuator and spectrum analyzer set for a 30 kHz bandwidth. This test was performed with Digitally modulated carrier signals. The Digital signal generator was adjusted for continuous transmit on frequencies in both the uplink and down-link frequency bands. The frequency spectrum was investigated from 9.0 KHz to 9.0 GHz. For measuring emissions above 2 GHz, a high-pass filter was used to eliminate the fundamental transmit frequency to prevent possible saturation effects on the front end of the spectrum analyzer.

6.4.4 RESULTS:

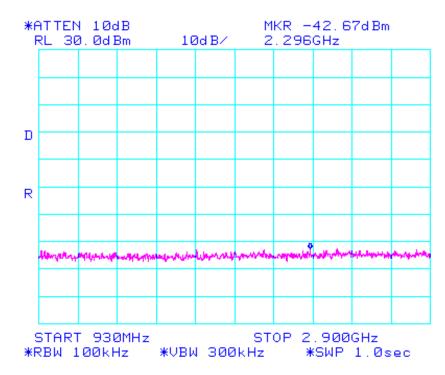
Spur limit = Po - $(43 + 10\log P) = 143 \text{ dB}\mu\text{V} - (49 \text{ dB}) = 94 \text{ dB}\mu\text{V} = -13.1 \text{ dBm}$


Equipment complies with Section 2.1051 and 22.917(e)

PLOTS OF SPURIOUS EMISSIONS AT ANTENNA TERMINALS : on following pages

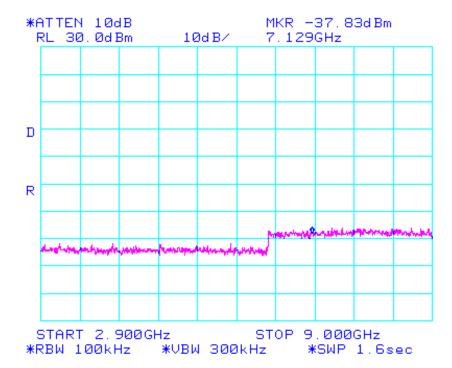
Met 10030 - 34 - October 10, 2000

Spur emissions Downlink

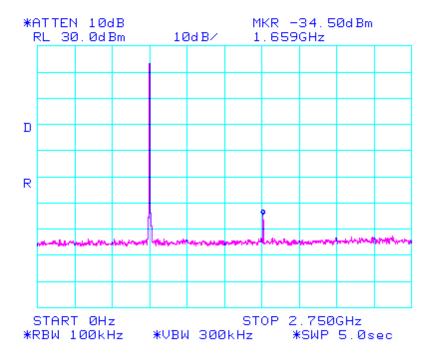

10030

Met 10030 - 35 - October 10, 2000

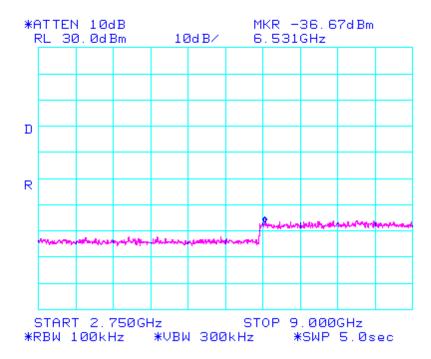
Spur emissions Downlink


10030

Met 10030 - 36 - October 10, 2000


Spur emissions Downlink

10030


Met 10030 - 37 - October 10, 2000

Spur emissions Uplink Met 10030

Met 10030 - 38 - October 10, 2000

Spur emissions Uplink Met 10030

Met 10030 - 39 - October 10, 2000

6.6 TEST TYPE: Intermodulation Spurious Emissions Antenna Terminals

6.6.1 TECHNICAL SPECIFICATION: 47 CFR 2.1051.

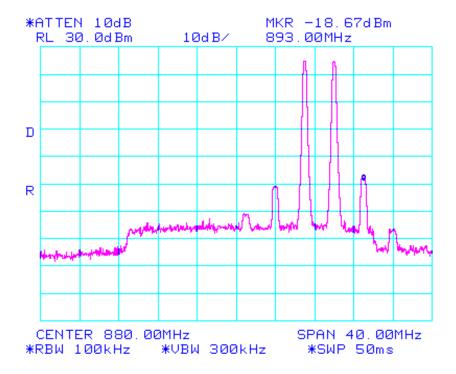
6.6.2 TEST DATE(S): September 20, 2000

6.6.3 MEASUREMENT PROCEDURES: UPLINK and DOWNLINK

Spurious emissions were measured at the antenna terminal with the Digital signal generator tuned to transmit on a frequency in the uplink/downlink of its tuneable range.

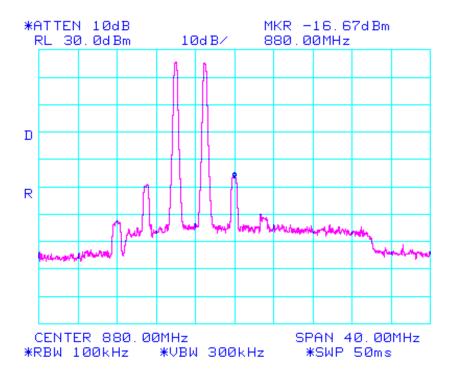
6.6.4 RESULTS:

Equipment complies with 47CFR 2.1051. Plots of the spurious emissions as measured at the antenna ports are included in this application as file attachment:

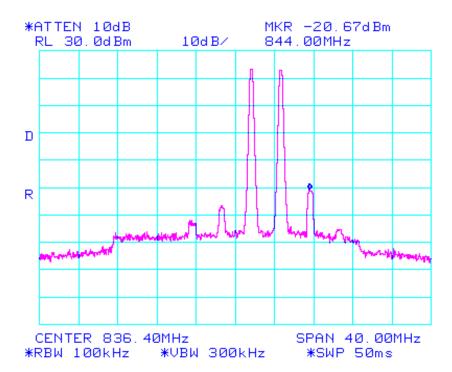

Intermodulation Spurious Products from 2-tone Simultaneous RF Injection At low side and high side of Cellular band. Uplink and Downlink

Spur limit = Po - $(43 + 10\log P) = 132.5 \text{ dB}\mu\text{V} - (38.44 \text{ dB}) = 94 \text{ dB}\mu\text{V} = -13.1 \text{ dBm}$

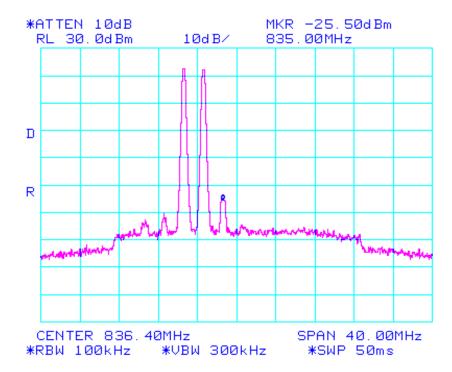
modulation type	Intermodulation products (MHZ)	Emission Level (dBm)	Limit (dBm)
TDMA(Downlink)	880.00 893.00	-16.67 -18.67	-13.1
TDMA(Uplink)	835.00 844.00	-25.50 -20.67	-13.1


Met 10030 - 40 - October 10, 2000

IMD at high side of downlink band. Met 10030


Met 10030 - 41 - October 10, 2000

IMD at low side of downlink band Met 10030


Met 10030 - 42 - October 10, 2000

IMD at high side of uplink band. Met 10030

Met 10030 - 43 - October 10, 2000

IMD at low side of uplink band Met 10030

Met 10030 - 44 - October 10, 2000