EMI Test Report

Tested in accordance with Federal Communications Commission (FCC) Personal Communications Services CFR 47, Part 15 Subpart C and E & Industry Canada (IC) RSS-210, RSS-GEN

A division of Research In Motion Limited

REPORT NO.: RTS-6026-1302-17

PRODUCT MODEL NO.:RFL111LWTYPE NAME:BlackBerry® smartphoneFCC ID:L6ARFL110LWIC:2503A-RFL110LW

DATE: March 27, 2013

RTS is accredited according to EN ISO/IEC 17025 by:

592

Testing Services	EMI Test Report for the BlackBerry $^{ extsf{ iny B}}$ smartphone Model RFL111LW	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Statement of Performance:

The BlackBerry® smartphone, model RFL111LW, part number CER-53012-001 Rev3-906-01, and its accessories perform within the requirements of the test standards when configured and operated under RIM's operation instructions.

Declaration:

We hereby certify that:

The test data reported herein is an accurate record of the performance of the sample(s) tested.

The test results are valid for the tested unit (s) only.

The test equipment used was suitable for the tests performed and within manufacturer's published specifications and operating parameters.

The test methods were consistent with the methods described in the relevant standards.

Documented by:

Savtej S. Sandhu **Regulatory Compliance Specialist**

Reviewed by:

Henry Lin

Hena Lin **Regulatory Compliance Specialist**

Reviewed and Approved by:

Masurd A

Masud S. Attayi, P.Eng. Manager, Regulatory Compliance

Testing Services	EMI Test Report for the BlackBerry $^{\ensuremath{^{ extsf{B}}}}$ smartphone Model RFL111LW		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Table of Contents

A.	Scope
В.	Associated Documents
C.	Product Identification
D.	Support Equipment Used for the Testing of the EUT
E.	Test Results Chart7
F.	Summary of Results9
G.	Compliance Test Equipment Used 18
APPE	NDIX 1 – AC CONDUCTED EMISSIONS TEST DATA/PLOTS
	NDIX 2 – BLUETOOTH, BLUETOOTH LOW ENERGY AND 802.11b/g/n RADIATED SIONS TEST DATA
APPE	NDIX 3 – 802.11a/n RADIATED EMISSIONS TEST DATA 48
	NDIX 4 – BLUETOOTH AND BLUETOOTH LOW ENERGY CONDUCTED EMISSIONS TEST /PLOTS
APPE	NDIX 5 – 802.11b/g/n CONDUCTED EMISSIONS TEST DATA/PLOTS
APPE	NDIX 6 – 802.11a/n CONDUCTED EMISSIONS TEST DATA/PLOTS 121
APPE	NDIX 7 – NEAR FIELD COMMUNICATIONS TEST DATA/PLOTS 148

Testing Services	EMI Test Report for the BlackBerry $^{ extsf{ iny B}}$ smartphone Model RFL111LW	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

A. Scope

This report details the results of compliance tests which were performed in accordance to the requirements of:

- o FCC CFR 47 Part 15, Subpart C, October, 2012
- o FCC CFR 47 Part 15, Subpart E, October, 2012

o Industry Canada, RSS-210, Issue 8, December 2010, License-exempt Radio Apparatus

o Industry Canada, RSS-GEN, Issue 3, December 2010, General Requirements and Information for the Certification of Radio Apparatus

B. Associated Documents

- 1) MultiSourceDeclaration_RFL111LW_b3123
- 2) MultiSourceDeclaration_RFL111LW_b3901
- 3) MultiSourceDeclaration_RFL111LW_b4318
- 4) RFL111LW_HW_Declaration_ CER-53012-001_Rev3-906-01

C. Product Identification

Manufactured by Research In Motion Limited whose headquarters is located at: 295 Phillip Street Waterloo, Ontario Canada, N2L 3W8 Phone: 519 888 7465 Fax: 519 888 6906

The equipment under test (EUT) was tested at the following locations:

RIM Test	RIM Testing Services EMI test facilities			
305 Phill	305 Phillip Street 440 Phillip Street			
Waterloc	, Ontario	Waterloo, Ontario		
Canada,	N2L 3W8	Canada,	N2L 5R9	
Phone: 519 888 7465 Phone: 519 88				
Fax:	519 888 6906	Fax:	519 888 6906	

The testing was performed from December 13, 2012 to February 25 and March 27, 2013.

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013 Page 4 of 152

Testing Services*	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

The sample EUT included:

SAMPLE	MODEL	CER NUMBER	PIN	SOFTWARE
1a	RFL111LW	CER-53012-001 Rev2- 905-01	25CF0AE1	OS Version: 127.0.1.3123 Bundle 3123
1b	RFL111LW	CER-53012-001 Rev2- 905-01	25CF0AE1	OS Version: 127.0.1.3694 Bundle 3694
1c	RFL111LW	CER-53012-001 Rev2- 905-01	25CF0AE1	MFI OS 4.0.10.180
2a	RFL111LW	CER-53012-001 Rev2- 905-01	25CF0AC4	OS Version: 127.0.1.2982 Bundle 2982
2b	RFL111LW	CER-53012-001 Rev2- 905-01	25CF0AC4	MFI OS 4.0.10.181
3	RFL111LW	CER-53012-001 Rev2- 905-01	25CF0ADF	OS Version: 127.0.1.3123 Bundle 3123
4	RFL111LW	CER-53012-001 Rev3- 906-01	2668C71B	OS Version: 127.0.1.3901 Bundle 3901
5	RFL111LW	CER-53012-001 Rev3- 906-01	2668C731	OS Version: 127.0.1.3901 Bundle 3901
6	RFL111LW	CER-53012-001 Rev3- 906-01	2668C6FD	OS Version: 127.0.1.4318 Bundle 4318

AC Line Conducted Emissions testing was performed on sample 1a and 4 Radiated Emissions testing was performed on samples 1a, 1b, 1c, 2a, 2b, and 4 Conducted Emissions testing was performed on sample 3 Near Field Communications testing was performed on sample 5

Only the characteristics that may have been affected by the changes from RFL111LW Rev2 to Rev3 were re-tested.

For more details, refer to RFL111LW_HW_Declaration_ CER-53012-001_Rev3-906-01

To view the differences between software bundles 127.0.1.3123 to 127.0.1.4318 for RFF111LW, see document MultiSourceDeclaration_RFL111LW_b3123, MultiSourceDeclaration_RFL111LW_b3901 and MultiSourceDeclaration_RFL111LW_b4318.

Testing Services	EMI Test Report for the BlackBerry $^{\ensuremath{^{ extsf{B}}}}$ smartphone Model RFL111LW		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

BlackBerry[®] smartphone Accessories Tested

- 1) Fixed Blade Charger, part number HDW-47725-001, with an output voltage of 5.0 volts dc, 850 mA
- 2) Alt. Fixed Blade Charger, part number HDW-46445-001, with an output voltage 5.0 volts dc, 850mA
- 3) Folding Blade Charger, part number HDW 34724-001, with an output voltage 5 volts dc, 1.8A
- 4) Alt.2 Fixed Blade Charger, part number HDW-24481-001, with an output voltage of 5.0 volts, dc, 750mA.
- 5) Wired Headset, part number HDW-44306-003, with a lead length of 1.1 metres.
- 6) Alt. Wired Headset, part number HDW-44306-003, with a lead length of 1.1 metres.
- 7) Alt.2 Wired Headset, part number HDW-49299-001, with a lead length of 1.1 metres.
- 8) USB Data Cable, part number HDW-28109-005, 1.20 metres long.
- 9) USB Data Cable, part number HDW-48415-001, 1.0 metre long.
- 10) USB Data Cable, part number HDW-51800-001, 1.20 metres long.
- 11) Battery, part number BAT-49702-002 1800mAh,6.8Wh
- 12) Battery, part number BAT-52961-001 2100mAh,8.0Wh

D. Support Equipment Used for the Testing of the EUT

1) Philips Monitor, type MWE12244T, product ID 2444E1SB/27

Testing Services**	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

E. Test Results Chart

SPECIFIC	ATION	TEST TYPE	Meets Requirements	TEST DATA
FCC CFR 47	IC		Meets Requirements	APPENDIX
Part 15.207	RSS-210 RSS-GEN	Conducted AC Line Emission	Pass	1
Part 15.209 Part 15.247	RSS-210 RSS-GEN	BT/BLE Radiated Spurious Emissions	Pass	2
Part 15.209 Part 15.247	RSS-210 RSS-GEN	BT/BLE Radiated Band Edge Compliance	Pass	2
Part 15.209 Part 15.247	RSS-210 RSS-GEN	802.11b/g/n Radiated Spurious Emissions	Pass	2
Part 15.209 Part 15.247	RSS-210 RSS-GEN	802.11b/g/n Radiated Band Edge Compliance	Pass	2
Part 15.209 Part 15.407	RSS-210 RSS-GEN	802.11a/n Radiated Spurious Emissions	Pass	3
Part 15.209 Part 15.407	RSS-210 RSS-GEN	802.11a/n Radiated Band Edge Compliance	Pass	3
Part 15.247(a)	RSS-210	BT, 20 dB Bandwidth	Pass	4
Part 15.247(a)	RSS-210	BT, Carrier Frequency Separation	Pass	4
Part 15.247(a)	RSS-210	BT, Number of Hopping Frequencies	Pass	4
Part 15.247(a)	RSS-210	BT, Time of Occupancy (Dwell Time)	Pass	4
Part 15.247(b)	RSS-210	BT, Maximum Peak Conducted Output Power	Pass	4
Part 15.247(c)	RSS-210	BT, Band-Edge Compliance of RF Conducted Emissions	Pass	4
Part 15.247(c)	RSS-210	BT, Spurious RF Conducted Emissions	Pass	4
Part 15.247(a)	RSS-210	BLE, 6 dB Bandwidth	Pass	4
Part 15.247(b)	RSS-210	BLE, Maximum Conducted Output Power	Pass	4
Part 15.247(c)	RSS-210	BLE, Band-Edge	Pass	4
Part 15.247(d)	RSS-210	BLE, Peak Power Spectral Density	Pass	4
Part 15.247(c)	RSS-210	BLE, Spurious RF Conducted Emissions	Pass	4

Testing Services	EMI Test Report for the BlackBerry $^{\ensuremath{^{ extsf{B}}}}$ smartphone Model RFL111LW	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Test Results Chart cont'd

SPECIFIC/	ATION	TEST TYPE Meets Requiremen		TEST DATA
FCC CFR 47	IC	TEST TIPE	Meets Requirements	APPENDIX
Part 15.247(a)	RSS-210	802.11b/g/n, 6 dB Bandwidth	Pass	5
Part 15.247(b)	RSS-210	802.11b/g/n, Maximum Conducted Output Power	Pass	5
Part 15.247(c)	RSS-210	802.11b/g/n, Band-Edge	Pass	5
Part 15.247(d)	RSS-210	802.11b/g/n, Peak Power Spectral Density	Pass	5
Part 15.247(c)	RSS-210	802.11b/g/n, Spurious RF Conducted Emissions	Pass	5
Part 15.407	RSS-210	802.11a/n, 6 dB Bandwidth	Pass	6
Part 15.407	RSS-210	802.11a/n, Maximum Conducted Output Power	Pass	6
Part 15.407	RSS-210	802.11a/n, Band-Edge	Pass	6
Part 15.407	RSS-210	802.11a/n, Peak Power Spectral Density	Pass	6
Part 15.407	RSS-210	802.11a/n, Spurious RF Conducted Emissions	Pass	6
Part 15.209 Part 15.225(a)	RSS-210 RSS-GEN	Near Field Communications, Radiated Emissions	Pass	7
Part 15.225(e)	RSS-210	Near Field Communications, Occupied Bandwidth	Pass	7
Part 15.225(e)	RSS-210	Near Field Communications, Frequency Stability	Pass	7

Testing Services	EMI Test Report for the BlackBerry $^{ extsf{R}}$ smartphone Model RFL111LW		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

F. Summary of Results

1) AC LINE CONDUCTED EMISSIONS

The conducted emissions were measured using the test procedure outlined in CISPR Recommendation 22 through a 50 Ohm Line Impedance Stabilization Network (LISN), which was inserted in the power line to the equipment to provide the specified impedance for measurements. The EUT was placed on a nonconductive wooden table, 80 cm high that was positioned 40 cm from a vertical ground plane. The RF output of the network was connected to an EMI receiver system with characteristics that duplicate those of the receiver specified in CISPR Publication 16. BlackBerry[®] smartphone was in battery charging mode. The input voltage was 120 V, 60 Hz.

The following test configurations were measured:

Test Configuration	Operating Mode(s)	Charger + Accessories
1	Bluetooth Tx + Audio Playing	Fixed Blade Charger + Alt.2 Wired Headset + 1.2m USB Cable
2	802.11b Tx + Video Playing	Alt. Fixed Blade Charger +Alt. Wired Headset +1.0m USB Cable
3	802.11a Tx + Video Playing	Folding Blade Charger + Wired Headset
4	NFC Tx	Alt.2 Fixed Blade Charger+ 1.2m USB Cable + Alt2. Wired Headset

The sample EUT's conducted emissions were compared with respect to the FCC CFR 47 Part 15, Subpart C and IC RSS-210 limits. The sample EUT had a worst case test margin of 6.93 dB below the QP limit at 0.438 MHz and 3.26 dB below the AV limit at 0.438 MHz with the Folding Blade Charger in Test Configuration 3

See APPENDIX 1 for the test data.

Measurement Uncertainty ±3.2 dB

Testing Services	EMI Test Report for the BlackBerry $^{\ensuremath{^{ extsf{B}}}}$ smartphone Model RFL111LW		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

- 2) BLUETOOTH, BLUETOOTH LOW ENERGY AND 802.11b/g/n RADIATED EMISSIONS
- a) Radiated Spurious and Harmonic Emissions

The EUT was placed on a nonconductive styrofoam table, 80 cm high that was positioned on a remotely controlled turntable. The test distance used between the EUT and the receiving antenna was three metres. The turntable was rotated to determine the azimuth of the peak emissions. Then the emissions were maximized by elevating the antenna in the range of 1 to 4 metres. The maximum emission level was recorded. The frequency range measured was from 30 MHz to 25.0 GHz. Both the horizontal and vertical polarizations of the emissions were measured.

The measurements were done in a semi-anechoic chamber (SAC) below 1 GHz and a semi-anechoic chamber (SAC) with floor absorbers above 1 GHz. The SAC's FCC registration number is **778487** and the Industry Canada (IC) file number is **2503B-1**. The SAC with floor absorber's FCC registration number is **959115** and the IC file number is **2503C-1**.

The EUT was configured and operated to produce the maximum radiated emissions while still keeping within RIM's specifications.

The BlackBerry[®] smartphone was measured in standalone configuration with Bluetooth transmitting in single frequency mode at low channel (0), middle channel (39) and high channel (78) for packet type "DH5", "2-DH5" and "3-DH5". The system's radiated emission levels were compared with respect to the FCC CFR 47 Part 15, Subpart C, 15.247 and RSS-210.

The BlackBerry[®] smartphone was measured in standalone configuration with Bluetooth Low Energy transmitting in single frequency mode at low channel (0), middle channel (20) and high channel (39). The system's radiated emission levels were compared with respect to the FCC CFR 47 Part 15, Subpart C, 15.247 and RSS-210.

The BlackBerry[®] smartphone was measured in standalone configuration transmitting on channels 1, 6 & 11 at 1 Mbps for 802.11b mode, at 6 Mbps for 802.11g mode, and at MCS 0 for 802.11n mode. The system's radiated emission levels were compared with respect to the FCC CFR 47 Part 15 Subpart C, 15.247 and RSS-210.

The Bluetooth harmonics were investigated up to the 10th harmonic. The worst case test margin was 20.172dB below the accepted limit at 1902.24MHz

The Bluetooth Low Energy harmonics were investigated up to the 10th harmonic. The sample EUT emissions were in the noise floor (NF).

Testing Services*	EMI Test Report for the BlackBerry $^{ extsf{ iny R}}$ smartphone Model RFL111LW		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

The 802.11b/g/n harmonics were investigated up to the 10th harmonic. The worst case test margin was 12.14 dB below the accepted limit at 7384MHz. See APPENDIX 2 for the test data.

b) Band-Edge Compliance of RF Radiated Emissions

The BlackBerry[®] smartphone met the requirements for band-edge compliance of RF radiated emissions for Bluetooth, Bluetooth Low Energy and 802.11b/g/n as per the requirements of 15.247, 15.209, and RSS-210/RSS-GEN.

Measurement Uncertainty ±4.5 dB

See APPENDIX 2 for the test data

Testing Services	EMI Test Report for the BlackBerry $^{ extsf{ iny B}}$ smartphone Model RFL111LW		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

- 3) 802.11a/n RADIATED EMISSIONS
- a) Radiated Spurious and Harmonic Emissions

The EUT was placed on a nonconductive styrofoam table, 80 cm high that was positioned on a remotely controlled turntable. The test distance used between the EUT and the receiving antenna was three metres. The turntable was rotated to determine the azimuth of the peak emissions. Then the emissions were maximized by elevating the antenna in the range of 1 to 4 metres. The maximum emission level was recorded. The frequency range measured was from 30 MHz to 40.0 GHz. Both the horizontal and vertical polarizations of the emissions were measured.

The measurements were done in a semi-anechoic chamber (SAC) below 1 GHz and a semi-anechoic chamber (SAC) with floor absorbers above 1 GHz. The SAC's FCC registration number is **778487** and the Industry Canada (IC) file number is **2503B-1**. The SAC with floor absorber's FCC registration number is **959115** and the IC file number is **2503C-1**.

The EUT was configured and operated to produce the maximum radiated emissions while still keeping within RIM's specifications.

The BlackBerry[®] smartphone was measured in standalone configuration transmitting on channels 36, 48, 64, 100, 140 and 165 at 6 Mbps for 802.11a mode and at MCS 0 for 802.11n. The system's radiated emission levels were compared with respect to the FCC CFR 47 Part 15 Subpart E, 15.407 and RSS-210/RSS-GEN.

The 802.11a/n harmonics were investigated up to the 10th harmonic. The worst case test margin was 11.67 dB below the accepted limit at 10360.672 MHz See APPENDIX 3 for the test data.

b) Band-Edge Compliance of RF Radiated Emissions

The BlackBerry[®] smartphone met the requirements for band-edge compliance of RF radiated emissions for 802.11a/n as per the requirements of 15.407, 15.209 and RSS-210/ RSS-GEN.

See APPENDIX 3 for the test data

Measurement Uncertainty ±4.5 dB

Testing Services	EMI Test Report for the BlackBerry $^{ extsf{ iny B}}$ smartphone Model RFL111LW		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

4) i) BLUETOOTH RF CONDUCTED EMISSIONS

The Bluetooth conducted RF emissions from the BlackBerry[®] smartphone were measured using the methods outlined in FCC CFR 47 Part 15, Subpart C.

a) 20 dB Bandwidth

The BlackBerry[®] smartphone met the requirements of the 20 dB bandwidth as per 47 CFR 15.247(a) and RSS-210. Low channel (0), middle channel (39) and high channel (78) were measured. The result includes both normal data rate and EDR. The worst case 20 dB Bandwidth was 0.9226 MHz for channel 39 in normal data rate mode and 1.318MHz for channels 39 and 78 in EDR mode. See APPENDIX 4 for the test data.

b) Carrier Frequency Separation

The BlackBerry[®] smartphone met the requirements of the carrier frequency separation as per 47 CFR 15.247(a) and RSS-210. Channel 38 to 39 was measured. The result includes both normal data rate and EDR. See APPENDIX 4 for the test data.

- c) Number of Hopping Frequencies The BlackBerry[®] smartphone met the requirements of the number of hopping frequencies as per 47 CFR 15.247(a) and RSS-210. The number of hopping channels measured was 79. See APPENDIX 4 for the test data.
- d) Time of Occupancy (Dwell Time) The EUT met the requirements of the dwell time as per 47 CFR 15.247(a) and RSS-210. Low channel (0), middle channel (39) and high channel (78) were measured in DH1, DH3 and DH5 modes. Bluetooth was operating in frequency hopping (Euro/US) mode during the measurements. See APPENDIX 4 for the test data.
- e) Maximum Peak Conducted Output Power The BlackBerry[®] smartphone met the requirements of the maximum peak conducted output power as per 47 CFR 15.247(b) and RSS-210. Low channel (0), middle channel (39) and high channel (78) were measured. The result includes both normal data rate and EDR. The worst case Conducted Output Power level was 10.2 dBm (0.01047 W) for Channel 0 in normal data rate mode and 7.52 dBm (0.00565 W) for channel 0 in EDR mode. See APPENDIX 4 for the test data.

Testing Services"	EMI Test Report for the BlackBerry $^{\ensuremath{^{ extsf{B}}}}$ smartphone Model RFL111LW		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

- f) Band-Edge Compliance of RF Conducted Emissions The BlackBerry[®] smartphone met the requirements of the band-edge compliance of RF conducted emissions as per 47 CFR 15.247(c) and RSS-210. Channels 0 and 78 were measured in frequency hopping (Euro/US) mode and single frequency mode. The result includes both normal data rate and EDR. See APPENDIX 4 for the test data.
- g) Spurious RF Conducted Emissions

The BlackBerry[®] smartphone met the requirements of the spurious RF conducted emissions as per 47 CFR 15.247(c) and RSS-210. The frequency range measured was 10 MHz to 26 GHz. Low channel (0), middle channel (39) and high channel (78) were measured in single frequency mode and frequency hopping (Euro/US) mode. The result includes both normal data rate and EDR. See APPENDIX 4 for the test data.

4) ii) BLUETOOTH LOW ENERGY RF CONDUCTED EMISSIONS

The Bluetooth Low Energy conducted RF emissions from the BlackBerry[®] smartphone were measured using the methods outlined in FCC CFR 47 Part 15, Subpart C.

a) 6dB Bandwidth

The EUT met the requirements of the 6 dB bandwidth as per 47 CFR 15.247(b) and RSS-210. Low channel (0), middle channel (20) and high channel (39) were measured. The worst case 6 dB Bandwidth was 0.67290 MHz for channel 0. See APPENDIX 4 for the test data.

b) Maximum Conducted Output Power

The EUT met the requirements of the maximum conducted output power as per 47 CFR 15.247(b) and RSS-210. Low channel (0), middle channel (20) and high channel (39) were measured. The worst case Conducted Output Power level was 7.75 dBm (0.00596 W) for channel 0. See APPENDIX 4 for the test data

 c) Band-Edge Compliance of RF Conducted Emissions The EUT met the requirements of band-edge compliance of RF conducted emissions as per 47 CFR 15.247(b) and RSS-210. Low channel (0) and high channel (39) were measured. See APPENDIX 4 for the test data.

Testing Services*	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

- d) Peak Power Spectral Density The EUT met the requirements of peak power spectral density as per 47 CFR 15.247(b) and RSS-210. Low channel (0), middle channel (20) and high channel (39) were measured. See APPENDIX 4 for the test data.
- e) Spurious RF Conducted Emissions The EUT met the requirements of the spurious RF conducted emissions as per 47 CFR 15.247(c) and RSS-210. The frequency range measured was 30 MHz to 26 GHz. Low channel (0), middle channel (20) and high channel (39) were measured.

See APPENDIX 4 for the test data.

5) 802.11b/g/n RF CONDUCTED EMISSIONS

The 802.11b/g/n conducted RF emissions from the BlackBerry[®] smartphone were measured using the methods outlined in FCC CFR 47 Part 15, Subpart C.

a) 6dB Bandwidth

The EUT met the requirements of the 6 dB bandwidth as per 47 CFR 15.247(b) and RSS-210. Low channel (1), middle channel (6) and high channel (11) were measured. The worst case 6 dB Bandwidth was 8.48 MHz for channel 11 in 802.11b mode, 16.59 MHz for channel 1 in 802.11g mode, and 17.78 MHz for channels 1 and 11 in 802.11n mode. See APPENDIX 5 for the test data.

- b) Maximum Conducted Output Power

The EUT met the requirements of the maximum conducted output power as per 47 CFR 15.247(b) and RSS-210. Low channel (1), middle channel (6) and high channel (11) were measured. The worst case Conducted Output Power level was 18.88 dBm (77.27 mW) for channel 6 in 802.11b mode, 17.88 dBm (61.38 mW) for channel 6 in 802.11g mode, and 17.95 dBm (62.37mW) for channel 6 in 802.11n mode.

See APPENDIX 5 for the test data

c) Band-Edge Compliance of RF Conducted Emissions The EUT met the requirements of band-edge compliance of RF conducted emissions as per 47 CFR 15.247(b) and RSS-210. Low channel (1) and high channel (11) were measured. See APPENDIX 5 for the test data.

Testing Services*	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

- d) Peak Power Spectral Density The EUT met the requirements of peak power spectral density as per 47 CFR 15.247(b) and RSS-210. Low channel (1), middle channel (6) and high channel (11) were measured. See APPENDIX 5 for the test data.
- e) Spurious RF Conducted Emissions The EUT met the requirements of the spurious RF conducted emissions as per 47 CFR 15.247(c) and RSS-210. The frequency range measured was 30 MHz to 26 GHz. Low channel (1), middle channel (6) and high channel (11) were measured. See APPENDIX 5 for the test data.
- 802.11a/n RF CONDUCTED EMISSIONS 6)

The 802.11a/n conducted RF emissions from the BlackBerry[®] smartphone were measured using the methods outlined in FCC CFR 47 Part 15, Subpart E.

a) 6 dB Bandwidth

The EUT met the requirements of the 6 dB bandwidth as per 47 CFR 15.407 and RSS-210. Channels 36, 48, 64, 100, 140, and 165 were measured. The worst case 6 dB Bandwidth was 16.58 MHz for channels 48, 100 and 165 in 802.11a mode. The worst case 6 dB Bandwidth was 17.77 MHz for channels 36 and 64 in 802.11n mode.

See APPENDIX 6 for the test data.

b) Maximum Conducted Output Power

The EUT met the requirements of the maximum conducted output power as per 47 CFR 15.407 and RSS-210. Channels 36, 48, 64, 100, 140, and 165 were measured. The worst case Conducted Output Power level was 18.58 dBm (72.13 mW) for channel 100 in 802.11a mode. The worst case Conducted Output Power level was 18.52 dBm (71.04 mW) for channel 64 in 802.11n mode. See APPENDIX 6 for the test data

c) Band-Edge Compliance of RF Conducted Emissions The EUT met the requirements of band-edge compliance of RF conducted emissions as per 47 CFR 15.407 and RSS-210. Channels 36, 48, 52, 64, 100, 149, 161 and 165 were measured. See APPENDIX 6 for the test data.

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013

Testing Services*	EMI Test Report for the BlackBerry $^{\ensuremath{^{ extsf{B}}}}$ smartphone Model RFL111LW		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

- d) Peak Power Spectral Density The EUT met the requirements of peak power spectral density as per 47 CFR 15.407 and RSS-210. Channels 36, 44, 48, 52, 60, 64, 149, 157, 161 and 165 were measured. See APPENDIX 6 for the test data.
- e) Spurious RF Conducted Emissions The EUT met the requirements of the spurious RF conducted emissions as per 47 CFR 15.407 and RSS-210. The frequency range measured was 30 MHz to 40 GHz. Channels 44, 60 and 157 were measured. See APPENDIX 6 for the test data.
- 7) Near Field Communications (NFC)

The Near Field Communications emissions from the BlackBerry[®] smartphone were measured using the methods outlined in FCC CFR 47 Part 15, Subpart C.

a) Radiated Emissions

The BlackBerry[®] smartphone was measured in standalone configuration transmitting at 13.56 MHz. The system's radiated emission levels were compared with respect to the FCC CFR 47 Part 15 Subpart C, 15.209, 15.225(a) and RSS-210/RSS-GEN.

The NFC emissions were investigated from 9 kHz to 1 GHz. The sample EUT has a field strength measurement of 50.46 dBuV/m. See APPENDIX 7 for the test data.

b) Occupied Bandwidth

The EUT met the requirements of the Occupied bandwidth as per 47 CFR 15 C and RSS-210. The EUT was measured in test mode with modulation on and transmitting at 13.56 MHz.

See APPENDIX 7 for the test data.

c) Frequency Stability The EUT met the requirements of the Frequency Stability as per 47 CFR 15.225(e) and RSS-210. The EUT was measured in test mode with modulation on and transmitting at 13.56 MHz. See APPENDIX 7 for the test data.

Testing Services	EMI Test Report for the BlackBerry $^{ extsf{ iny R}}$ smartphone Model RFL111LW		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

G. Compliance Test Equipment Used

UNIT	MANUFACTURER	MODEL	<u>SERIAL</u> <u>NUMBER</u>	CAL DUE DATE (YY MM DD)	USE
EMI Test Receiver	Rohde & Schwarz	ESIB 40	100255	13-11-30	Conducted/Radiated Emissions
EMI Test Receiver	Rohde & Schwarz	ESU 40	100162	13-11-30	Conducted/Radiated Emissions
Hybrid Log Antenna	EMC Automation	HLP-3003C	017301	13-08-23	Radiated Emissions
Horn Antenna	СМТ	3116	R52734-001	14-08-02	Radiated Emissions
Horn Antenna	ETS-Lindgren	3117	2538	13-08-04	Radiated Emissions
Preamplifier	Rohde & Schwarz	TS-ANA4-SP	001	13-09-01	Radiated Emissions
Preamplifier	Sonoma	310N/11909A	185831	13-10-10	Radiated Emissions
Preamplifier	Rohde & Schwarz	TS-ANA-SP	001	13-09-01	Radiated Emissions
L.I.S.N.	Rohde & Schwarz	ENV216	100060	13-10-25	Conducted Emissions
Environment Monitor	Omega	iTHX-SD	0380561	13-10-30	Radiated Emissions
EMC Analyzer	Agilent	E7405A	US40240226	14-01-15	Radiated Emissions
Spectrum Analyzer	HP	8563E	3745A08113	13-10-05	RF Conducted Emissions
DC Power Supply	HP	6632B	US37472178	13-09-25	RF Conducted Emissions
Environment Monitor	Omega	iTHX-SD	0340060	13-10-30	RF Conducted Emissions
Environmental Chamber	Test Equity	107	0900246	N/R	Frequency Stability
Bluetooth Tester	Rohde & Schwarz	СВТ	119549	13-12-04	RF Conducted Emissions
Bluetooth Tester	Rohde & Schwarz	CBT35	100368	13-12-04	Radiated Emissions
Bluetooth Tester	Rohde & Schwarz	CBT35	100370	13-12-04	Radiated Emissions
Power Meter	Agilent	N1911A	MY45100951	13-08-16	RF Conducted / Frequency Stability
Power Sensor	Agilent	N1921A	MY45241383	13-09-11	RF Conducted / Frequency Stability
Digital Multimeter	Hewlett Packard	34401A	US36042324	13-11-13	Conducted/Radiated Emissions
Environment Monitor	Omega	iTHX-SD	0380567	13-10-30	Radiated Emissions

APPENDIX 1 – AC CONDUCTED EMISSIONS TEST DATA/PLOTS

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW			
Services	APPENDIX 1			
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW		

AC Conducted Emission Test Results

The following tests were performed by Mahmood Ahmed

Test Configuration 1

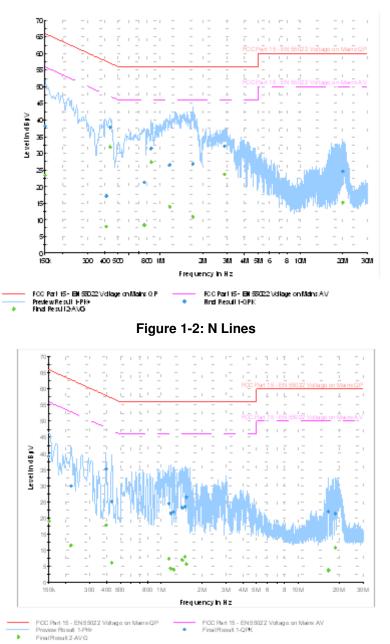
The BlackBerry[®] smartphone was tested on January 23, 2013

The environmental test conditions were: Temperature: 24.3 °C Relative Humidity: 17.4 %

Frequency	Line	Reading (QP)	Correction Factor	Corrected Reading (QP)	Limit (QP)	Limit (AV)	Margin (QP) Limits
(MHz)		(dBµV)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)
0.393	Ν	25.25	10.03	35.28	58.00	48.00	-22.72
0.438	L1	27.87	9.95	37.82	57.10	47.10	-19.28
0.861	L1	21.70	9.81	31.51	56.00	46.00	-24.49
2.882	L1	22.30	9.87	32.16	56.00	46.00	-23.84

All other emission levels were at least 25 dB below the limit.

Measurements were done with the quasi-peak detector.


See figure 1-1 and figure 1-2 for the measurement plot of the L1 and N lines of AC power line conducted emissions.

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW			
Services	APPENDIX 1			
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW		

AC Conducted Emissions Test Graphs

Test Configuration 1

Figure 1-1: L1 lines

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW				
Services	APPENDIX 1				
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW			

AC Conducted Emission Test Results cont'd

Test Configuration 2

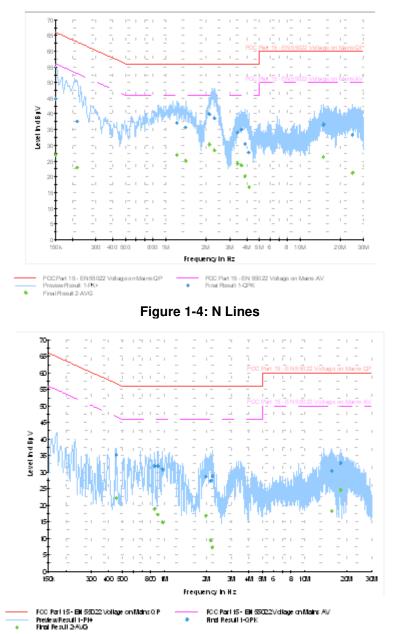
The BlackBerry[®] smartphone was tested on January 31, 2013.

The environmental test conditions were: Temperature: 25.1ºC Relative Humidity: 23 %

Frequency	Line	Reading (QP)	Correction Factor	Corrected Reading (QP)	Limit (QP)	Limit (AV)	Margin (QP) Limits
(MHz)		(dBµV)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)
0.150	L1	33.61	11.20	44.81	66.00	56.00	-21.19
0.456	Ν	25.21	9.94	35.15	56.80	46.80	-21.65
0.852	Ν	22.04	9.82	31.86	56.00	46.00	-24.14
0.902	Ν	22.11	9.81	31.92	56.00	46.00	-24.08
1.208	L1	27.45	9.80	37.25	56.00	46.00	-18.75
1.406	L1	25.98	9.80	35.78	56.00	46.00	-20.22
2.108	L1	30.16	9.83	39.99	56.00	46.00	-16.02
2.292	L1	28.78	9.84	38.62	56.00	46.00	-17.38
3.413	L1	24.25	9.89	34.14	56.00	46.00	-21.86
3.638	L1	25.13	9.89	35.02	56.00	46.00	-20.98
14.942	L1	26.59	10.07	36.66	60.00	50.00	-23.34

All other emission levels were at least 25 dB below the limit.

Measurements were done with the guasi-peak detector


See figure 1-3 and figure 1-4 for the measurement plot of the L1 and N lines of AC power line conducted emissions.

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW			
Services	APPENDIX 1			
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW		

AC Conducted Emissions Test Graphs

Test Configuration 2

Figure 1-3: L1 lines

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013 Page 23 of 152

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW				
Services	APPENDIX 1				
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW			

AC Conducted Emissions Test Results cont'd

Test Configuration 3

The BlackBerry[®] smartphone was tested on January 31, 2013.

The environmental test conditions were: Temperature:25.1°CRelative Humidity:23 %

Frequency	Line	Reading (QP)	Correction Factor	Corrected Reading (QP)	Limit (QP)	Margin (QP) Limits
(MHz)		(dBµV)	(dB)	(dB)	(dBµV)	(dB)
0.150	Ν	39.53	11.23	50.76	66.00	-15.24
0.191	L1	28.45	10.92	39.38	64.00	-24.62
0.249	Ν	31.18	10.54	41.72	61.80	-20.08
0.308	Ν	30.72	10.17	40.88	60.00	-19.12
0.438	L1	40.22	9.95	50.17	57.10	-6.93
0.501	Ν	37.46	9.92	47.38	56.00	-8.62
0.960	L1	35.31	9.81	45.12	56.00	-10.88
1.113	L1	26.48	9.80	36.28	56.00	-19.72
1.118	Ν	33.03	9.81	42.84	56.00	-13.16
2.022	Ν	30.33	9.83	40.16	56.00	-15.84
2.103	L1	24.57	9.83	34.40	56.00	-21.61
3.008	Ν	28.36	9.88	38.24	56.00	-17.76
3.624	L1	25.26	9.89	35.15	56.00	-20.85
12.930	Ν	26.16	10.07	36.23	60.00	-23.77

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013 Page 24 of 152

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW			
Services	APPENDIX 1			
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW		

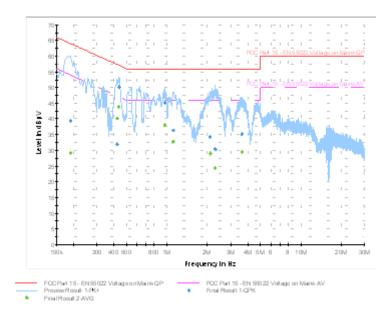
AC Conducted Emissions Test Results cont'd

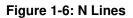
Frequency	Line	Reading (QP)	Correction Factor	Corrected Reading (QP)	Limit (AV)	Margin (AV) Limits
(MHz)		(dBµV)	(dB)	(dB)	(dBµV)	(dB)
0.150	Ν	33.47	11.23	44.70	46.00	-11.30
0.191	L1	18.31	10.92	29.23	44.00	-24.77
0.249	Ν	23.79	10.54	34.33	41.80	-17.47
0.308	Ν	25.92	10.17	36.09	40.00	-13.91
0.425	L1	30.32	9.97	40.29	37.40	-7.11
0.438	L1	33.89	9.95	43.84	37.10	-3.26
0.501	Ν	32.21	9.92	42.13	36.00	-3.87
0.960	L1	28.23	9.81	38.03	36.00	-7.97
1.113	L1	22.96	9.80	32.76	36.00	-13.24
1.118	Ν	27.66	9.81	37.47	36.00	-8.53
2.022	Ν	24.93	9.83	34.76	36.00	-11.24
2.103	L1	19.21	9.83	29.04	36.00	-16.96
2.288	L1	14.57	9.84	24.40	36.00	-21.60
3.008	Ν	22.92	9.88	32.80	36.00	-13.20
3.624	L1	19.59	9.89	29.48	36.00	-16.52
12.930	Ν	20.58	10.07	30.65	40.00	-19.35

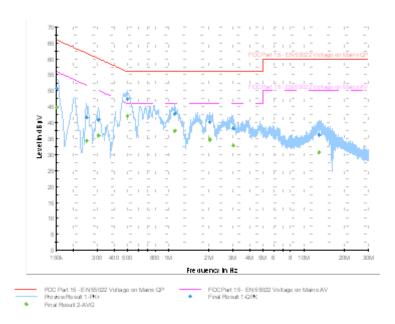
Test Configuration 3 cont'd

All other emission levels were at least 25 dB below the limit.

Measurements were done with the quasi-peak and average detectors


See figure 1-5 for the measurement plot of the L1 and N lines of AC power line conducted emissions.


Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW			
Services	APPENDIX 1			
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW		


AC Conducted Emissions Test Graphs

Test Configuration 3

Figure 1-5: L1 Lines

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW			
Services	APPENDIX 1			
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW		

AC Conducted Emission Test Results cont'd

Test Configuration 4

The BlackBerry[®] smartphone was tested on February 01, 2013

The environmental test conditions were: Temperature: 25.4 °C

Relative Humidity: 17.6 %

Frequency	Line	Reading (QP)	Correction Factor	Corrected Reading (QP)	Limit (QP)	Limit (AV)	Margin (QP) Limits
(MHz)		(dBµV)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)
0.155	L1	30.49	11.17	41.66	65.80	55.80	-24.14
0.348	L1	27.93	10.09	38.02	59.00	49.00	-20.98
0.398	L1	26.93	10.01	36.95	57.90	47.90	-20.95
0.614	L1	24.60	9.85	34.46	56.00	46.00	-21.55
0.861	L1	24.95	9.81	34.77	56.00	46.00	-21.23
3.296	L1	22.92	9.89	32.80	56.00	46.00	-23.20
3.471	L1	23.19	9.89	33.08	56.00	46.00	-22.93
4.245	L1	24.57	9.90	34.47	56.00	46.00	-21.53
4.299	Ν	21.17	9.91	31.07	56.00	46.00	-24.93

All other emission levels were at least 25 dB below the limit.

Measurements were done with the quasi-peak and the average detectors.

See figure 1-6 and figure 1-7 for the measurement plot of the L1 and N lines of AC power line conducted emissions.

Testing Services	phone Model RFL111LW	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

AC Conducted Emissions Test Graphs

Test Configuration 4

Figure 1-7: L1 lines

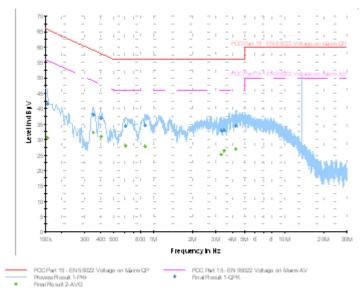
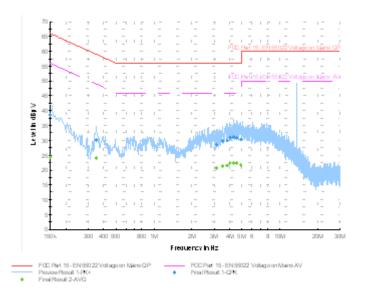



Figure 1-8: N Lines

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013

APPENDIX 2 – BLUETOOTH, BLUETOOTH LOW ENERGY AND 802.11b/g/n RADIATED EMISSIONS TEST DATA

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW				
Services	APPENDIX 2				
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW			

Radiated Emissions Test Results Bluetooth Band

Date of Test: January 08, 2013 Measurements were performed by Feras Obeid.

The environmental test conditions were: Temperature:25.2 °CRelative Humidity:17.4 %

The test distance was 3.0 metres with a EUT height of 0.8 metres, and sweep frequency of 30 MHz to 1 GHz.

The BlackBerry[®] smartphone in Bluetooth Tx mode was in horizontal position.

The frequency sweep measurements were performed in single frequency mode on channels 0, 39 and 78 using packet types "<u>DH5</u>", "<u>2-DH5</u>" and "<u>3-DH5</u>".

All other emission levels were at least 25 dB below the limit.

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RI				
Services	APPENDIX 2				
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW			

Radiated Emissions Test Results cont'd Bluetooth Band cont'd

Date of Test: December 17, 2012 - January 4, 2013 Measurements were performed by Masud Attayi

The environmental test conditions were: Temperate	ıre: 24.9-26ºC
Relative H	umidity: 18.3-25.1 %

The test distance was 3.0 metres with a EUT height of 0.8 metres, and sweep frequency of 1GHz to 25GHz.

The BlackBerry[®] smartphone in Bluetooth Tx mode was in horizontal down position.

The frequency sweep measurements were performed in single frequency mode on channels 0, 39 and 78 using packet types "DH5", "2-DH5" and "3-DH5".

Frequency	Channel Of	Ant	enna	Test	Detector	Measured	Correction Factor for	Field Strength Level	Limit @	Test
	Occurrenc	Pol.	Height	Angle			preamp/antenna/ cables/ filter	(reading+corr)	3.0 m	Margin
(MHz)	е	(V/H)	(meters)	(Deg.)	(PK or QP)	(dBµV)	(dB)	(dBm)	(dBm)	(dB)
1902.24	0	3DH5	Н	300	136	15.718	18.11	33.828	54	-20.172

All other emission levels were at least 25 dB below the limit.

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LV				
Services	APPENDIX 2				
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW			

Band-Edge Compliance of RF Radiated Emissions Test Results Bluetooth Band

Date of test: January 22, 2013 Measurements were performed by Savtej Sandhu.

The environmental test conditions were: Temperature:	26.4 º C
Relative Humidity:	31 %

The BlackBerry[®] smartphone was in standalone, horizontal position and pattern type "Static PBRS" in "<u>DH5</u>", "<u>2-DH5</u>" and "<u>3-DH5</u>" modulation during the measurements.

The test distance was 3.0 metres.

Channel	Freq.	Rx Ante	enna	Detector	VBW	Corrected Reading	Delta Marker	Corrected Band edge	Limit	Diff. To Limit
	(MHz)	Туре	POL.			(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
Low Cha	nnel, Pac	ket Type I	DH5							
0	2402	Horn	V	PK	1 MHz	103.1	60.55	42.55	74	-31.45
0	2402	Horn	Н	PK	1 MHz	106.22	61.81	44.41	74	-29.59
0	2402	Horn	V	AVE.	10 Hz	96.04	60.55	35.49	54	-18.51
0	2402	Horn	Н	AVE.	10 Hz	99.22	61.81	37.41	54	-16.59
High Cha	annel, Pac	ket Type	DH5							
78	2480	Horn	V	PK	1 MHz	103.38	60.11	43.27	74	-30.73
78	2480	Horn	н	PK	1 MHz	108.49	61.16	47.33	74	-26.67
78	2480	Horn	V	AVE.	10 Hz	96.41	60.11	36.3	54	-17.7
78	2480	Horn	Н	AVE.	10 Hz	101.44	61.16	40.28	54	-13.72
Low Cha	nnel, Pac	ket Type 2	2-DH5							
0	2402	Horn	V	PK	1 MHz	102.05	57.52	44.53	74	-29.47
0	2402	Horn	Н	PK	1 MHz	104.7	59.56	45.14	74	-28.86
0	2402	Horn	V	AVE.	10 Hz	86.88	57.52	29.36	54	-24.64
0	2402	Horn	Н	AVE.	10 Hz	89.56	59.56	30	54	-24
High Cha	High Channel, Packet Type 2-DH5									
78	2480	Horn	V	PK	1 MHz	102.05	57.56	44.49	74	-29.51
78	2480	Horn	Н	PK	1 MHz	107.5	60.65	46.85	74	-27.15
78	2480	Horn	V	AVE.	10 Hz	86.85	57.56	29.29	54	-24.71
78	2480	Horn	Н	AVE.	10 Hz	92.28	60.65	31.63	54	-22.37

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013 Page 32 of 152

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW				
Services	APPENDIX 2				
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW			

Band-Edge Compliance of RF Radiated Emissions Test Results cont'd Bluetooth Band

Channel	Freq.	Rx Ante	enna	Detector	VBW	Corrected Reading	Delta Marker	Corrected Band edge	Limit	Diff. To Limit
	(MHz)	Туре	POL.			(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
Low Cha	nnel, Pac	ket Type 3	3-DH5				-	-	-	
0	2402	Horn	V	PK	1 MHz	103.1	60.55	42.55	74	-31.45
0	2402	Horn	н	PK	1 MHz	106.22	61.81	44.41	74	-29.59
0	2402	Horn	V	AVE.	10 Hz	96.04	60.55	35.49	54	-18.51
0	2402	Horn	Н	AVE.	10 Hz	99.22	61.81	37.41	54	-16.59
High Cha	annel, Pac	ket Type	3-DH5							
78	2480	Horn	v	PK	1 MHz	103.38	60.11	43.27	74	-30.73
78	2480	Horn	н	PK	1 MHz	108.49	61.16	47.33	74	-26.67
78	2480	Horn	V	AVE.	10 Hz	96.41	60.11	36.3	54	-17.7
78	2480	Horn	Н	AVE.	10 Hz	101.44	61.16	40.28	54	-13.72

See figures 2-1 to 2-12 for the plots of the Bluetooth band-edge compliance.

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW			
Services	APPENDIX 2			
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW		

Bluetooth Band-Edge Compliance of RF Radiated Emissions cont'd

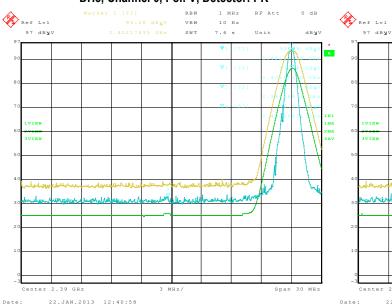
RBW

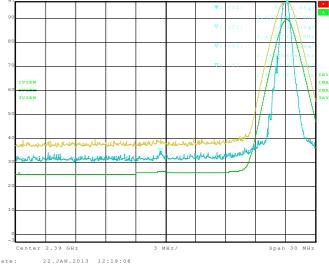
VBW

SWT

1 MHz

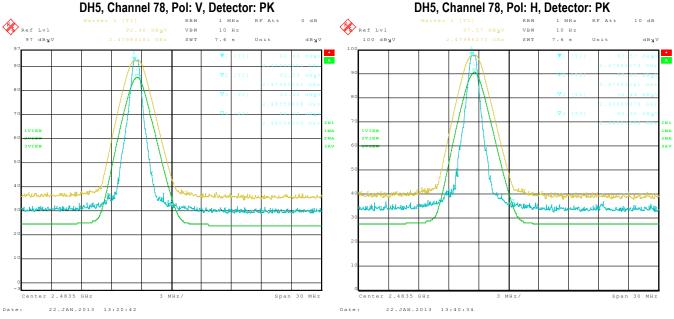
10 Hz

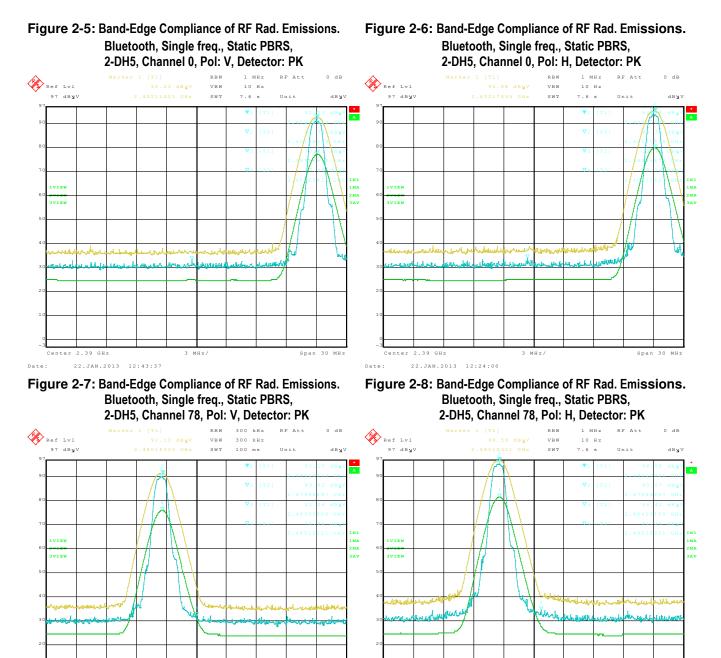

7.6 s


RF Att


Unit

0 dB


dB**y**V



This report shall NOT be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 2	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Bluetooth Band-Edge Compliance of RF Radiated Emissions cont'd

Span 30 MHz

Center 2.4835 GHz

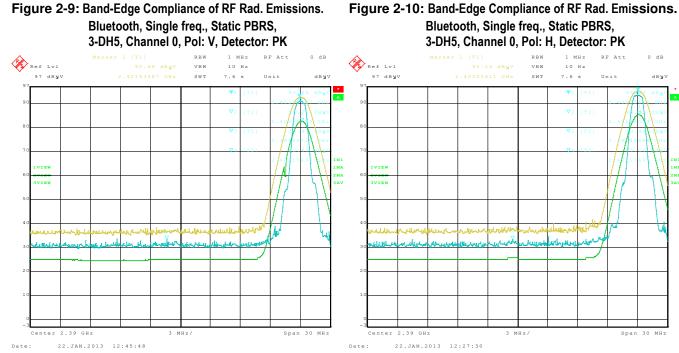
22.JAN.2013 13:43:48

Date:

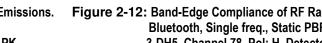
3 MHz/

Center 2.4835 GHz

Date:


22.JAN.2013 13:28:13

3 MHz/


Span 30 MHz

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 2	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Bluetooth Band-Edge Compliance of RF Radiated Emissions cont'd

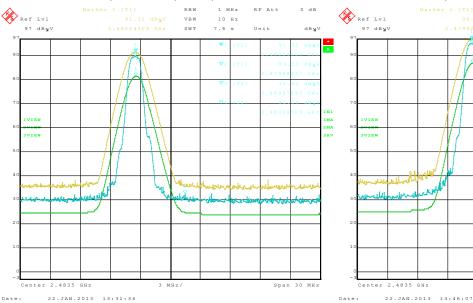
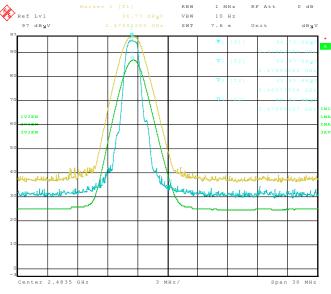


Figure 2-12: Band-Edge Compliance of RF Rad. Emissions. Bluetooth, Single freq., Static PBRS, 3-DH5, Channel 78, Pol: H, Detector: PK

1 MHz

10 Hz

7.6 s


RF Att

Unit

0 dB

Span 30 MHz

dB**y**V

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW				
Services	APPENDIX 2				
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW			

Radiated Emissions Test Results cont'd Bluetooth Low Energy Band

Date of Test: January 09, 2013 Measurements were performed by Feras Obeid.

25.2 °C The environmental test conditions were: Temperature: Relative Humidity: 17.4 %

The test distance was 3.0 metres with a EUT height of 0.8 metres, and sweep frequency of 30 MHz to 1 GHz.

The BlackBerry[®] smartphone in Bluetooth Low Energy Tx mode was in horizontal position.

The frequency sweep measurements were performed in single frequency mode on channels 0, 20 and 39.

All other emissions had a test margin of greater than 25.0 dB.

Date of Test: January 02, 17-18, 2013 Measurements were performed by Heng Lin.

The environmental test conditions were: Temperature:	24.7-25 .5ºC
Relative Humidity	18.1-20.0%

The test distance was 3.0 metres with a EUT height of 0.8 metres, and sweep frequency of 1GHz to 25GHz.

The BlackBerry[®] smartphone in Bluetooth Low Energy Tx mode was in horizontal down position.

The frequency sweep measurements were performed in single frequency mode on channels 0, 20 and 39.

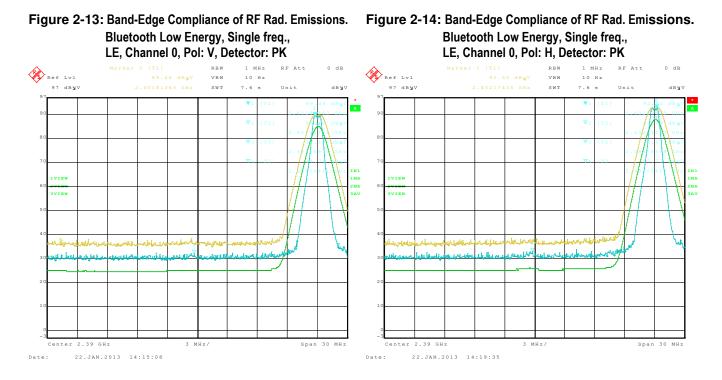
Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW				
Services	APPENDIX 2				
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW			

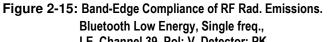
Band-Edge Compliance of RF Radiated Emissions Test Results Bluetooth Low Energy Band

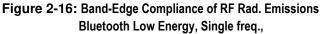
Date of test: January 22, 2013 Measurements were performed by Savtej Sandhu.

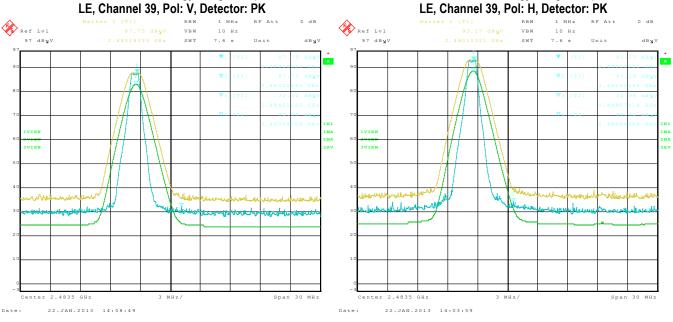
The environmental test conditions were: Temperature:	26.4º C
Relative Humidity:	13 %

The BlackBerry[®] smartphone was in horizontal position.


The test distance was 3.0 metres.


Channel	Freq.	Rx Ante	enna	Detector	VBW	Corrected Reading	Delta Marker	Corrected Band edge	Limit	Diff. To Limit
	(MHz)	Туре	POL.			(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
Low Cha	nnel, LE					-		-		
0	2402	Horn	V	PK	1 MHz	99.28	57.36	41.92	74	-32.08
0	2402	Horn	Н	PK	1 MHz	102.32	59.69	42.63	74	-31.37
0	2402	Horn	V	AVE.	10 Hz	94.58	57.36	37.22	54	-16.78
0	2402	Horn	Н	AVE.	10 Hz	97.55	59.69	37.86	54	-16.14
High Cha	annel, LE									
39	2480	Horn	V	PK	1 MHz	98.67	55.61	43.06	74	-30.94
39	2480	Horn	Н	PK	1 MHz	104.09	59.11	44.98	74	-29.02
39	2480	Horn	V	AVE.	10 Hz	93.91	55.61	38.3	54	-15.7
39	2480	Horn	Н	AVE.	10 Hz	99.34	59.11	40.23	54	-13.77


See figures 2-13 to 2-16 for the plots of the Bluetooth Low Energy band-edge compliance.


Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW				
Services	APPENDIX 2				
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW			

Bluetooth Low Energy Band-Edge Compliance of RF Radiated Emissions cont'd

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW				
Services	APPENDIX 2				
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW			

Radiated Emissions Test Results cont'd 802.11b/g/n Band

Date of Test: January 09- 10, 2013 Measurements performed by Feras Obeid

The environmental test conditions were: Temperature:	25.1-25.6 ºC
Relative Humidity:	16.5-17.6%

The test distance was 3.0 metres with a EUT height of 0.8 metres, and sweep frequency of 30 MHz to 1 GHz.

The BlackBerry[®] smartphone was in USB up position.

The frequency sweep measurements were performed in 802.11b Tx mode at 1 Mbps on channels 1, 6 and 11, in 802.11g Tx mode at 6 Mbps on channels 1, 6 and 11, and in 802.11n Tx mode at MCS 0 on channels 1, 6 and 11.

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW				
Services	APPENDIX 2				
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW			

Date of Test: December 13-17, 2012, and January 04-18, 2013 Measurements performed by Masud Attayi, Mahmood Ahmed, and Heng Lin.

The environmental test conditions were	: Temperature:	24.6 – 25.7 ºC
	Relative Humidity:	19.3- 22.0 %

The test distance was 3.0 metres with a EUT height of 0.8 metres, and sweep frequency of 1GHz to 25GHz.

The BlackBerry[®] smartphone was in horizontal position.

The frequency sweep measurements were performed in 802.11b Tx mode at 1 Mbps on channels 1, 6 and 11, in 802.11g Tx mode at 6 Mbps on channels 1, 6 and 11, and in 802.11n Tx mode at MCS 0 on channels 1, 6 and 11.

All emissions had a test margin of greater than 25.0 dB.

Frequency	Channel	Ant	enna	Test	Detector	ineasureu	Correction Factor for	Field Strength Level	Limit @	Test
	Of Occurrenc	Pol.	Height	Angle		Level	preamp/antenna/ cables/ filter	(reading+corr)	3.0 m	Margin
(MHz)	е	(V/H)	(meters)	(Deg.)	(PK or QP)	(dBµV)	(dB)	(dBm)	(dBm)	(dB)
7385.6	11B	V	1.00	180.00	PK	32.32	16.82	49.14	74.00	-24.86
7384.0	11B	V	1.00	180.00	PK	25.01	16.85	41.86	54.00	-12.14

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW				
Services	APPENDIX 2				
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW			

802.11b/g/n Band-Edge Compliance of RF Radiated Emissions

Date of Tests: February 25, 2013 Measurements performed by Savtej Sandhu.

The environmental test conditions were: Temperature:24 °CRelative Humidity:34 %

802.11b Band

The measurements were performed on BlackBerry[®] smartphone in standalone, USB up configuration on channels 1 and 11 for 802.11b mode at 1 Mbps.

The test distance was 3 metres.

						Carrier	Peak				
				Detec		Freq	Corrected	Delta	Corrected		
Channel	Freq.	Rx An	tenna	tor	VBW	Reading	Reading	Marker	Band edge	Limit	Diff. To Limit
	(MHz)	Туре	POL.			(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
1.0	2412.00	Horn	V	PK	1MHz	91.05	100.87	46.55	54.32	74.00	-19.68
1.0	2412.00	Horn	Н	PK	1MHz	98.36	108.18	49.31	58.87	74.00	-15.13
1.0	2412.00	Horn	V	AV	10 Hz	87.86	97.68	57.34	40.34	54.00	-13.66
1.0	2412.00	Horn	Н	AV	10 Hz	94.72	104.54	57.26	47.28	54.00	-6.72

Channel	Freg.	Rx An	tenna	Detec tor	VBW	Carrier Freq Reading	Peak Corrected Reading	Delta Marker	Corrected Band edge	Limit	Diff. To Limit
Chaimer	(MHz)	Туре	POL.			(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	
11.0	2462.00	Horn	V	PK	1MHz	92.97	103.89	48.11	55.78	74.00	-18.22
11.0	2462.00	Horn	Н	PK	1MHz	98.59	109.51	49.34	60.17	74.00	-13.83
11.0	2462.00	Horn	V	AV	10 Hz	89.81	100.73	57.55	43.18	54.00	-10.82
11.0	2462.00	Horn	Н	AV	10 Hz	95.35	106.27	57.07	49.20	54.00	-4.80

Testing	EMI Test Report for the BlackBerry [®] smartphone Model R					
Services	APPENDIX 2					
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW				

802.11g Band

The measurements were performed on the BlackBerry[®] smartphone in standalone, USB up configuration on channels 1 and 11 for 802.11g mode at 6 Mbps.

The test distance was 3 metres.

Channel	Freq.	Rx Ant	tenna	Detec tor	VBW	Carrier Freq Reading	Peak Corrected Reading	Delta Marker	Corrected Band edge	Limit	Diff. To Limit
	(MHz)	Туре	POL.			(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
1.0	2412.00	Horn	V	PK	1MHz	90.72	100.54	38.92	61.62	74.00	-12.38
1.0	2412.00	Horn	Н	PK	1MHz	97.99	107.81	40.09	67.72	74.00	-6.28
1.0	2412.00	Horn	V	AV	10 Hz	81.49	91.31	48.47	42.84	54.00	-11.16
1.0	2412.00	Horn	Н	AV	10 Hz	88.75	98.57	48.07	50.50	54.00	-3.50

Channel	Freq.	Rx An	tenna	Detec tor	VBW	Carrier Freq Reading	Peak Corrected Reading	Delta Marker	Corrected Band edge	Limit	Diff. To Limit
	(MHz)	Туре	POL.			(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
11.0	2462.00	Horn	V	PK	1MHz	89.79	100.71	43.71	57.00	74.00	-17.00
11.0	2462.00	Horn	Н	PK	1MHz	95.15	106.07	41.99	64.08	74.00	-9.92
11.0	2462.00	Horn	V	AV	10 Hz	80.33	91.25	48.90	42.35	54.00	-11.65
11.0	2462.00	Horn	Н	AV	10 Hz	85.91	96.83	48.90	47.93	54.00	-6.07

Testing	EMI Test Report for the BlackBerry [®] smartphone Model R					
Services	APPENDIX 2					
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW				

802.11n Band

The measurements were performed on the BlackBerry[®] smartphone in standalone, USB up configuration on channels 1 and 11 for 802.11n mode at MCS 0.

The test distance was 3 metres.

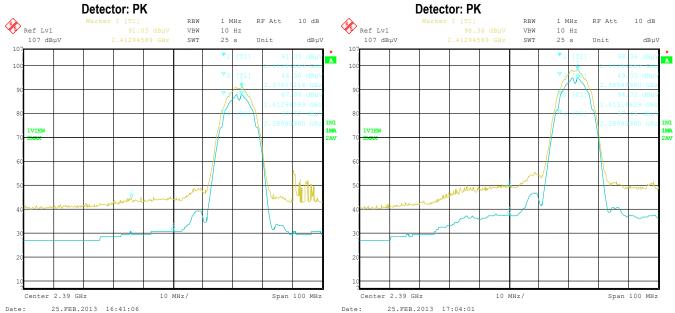
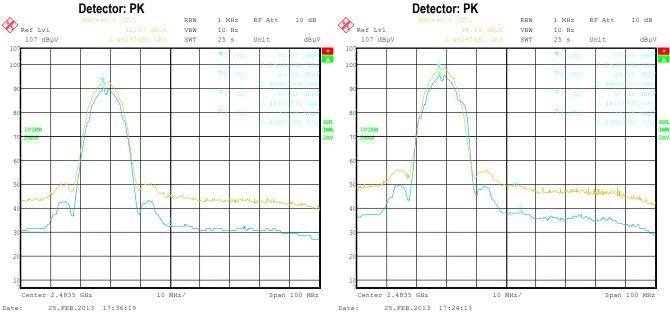
Channel	Freq.	Rx Ant	tenna	Detec tor	VBW	Carrier Freq Reading	Peak Corrected Reading	Delta Marker	Corrected Band edge	Limit	Diff. To Limit
	(MHz)	Туре	POL.			(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
1.0	2412.00	Horn	V	PK	1MHz	90.22	100.04	37.72	62.32	74.00	-11.68
1.0	2412.00	Horn	Н	PK	1MHz	98.69	108.51	37.21	71.30	74.00	-2.70
1.0	2412.00	Horn	V	AV	10 Hz	81.08	90.90	47.37	43.53	54.00	-10.47
1.0	2412.00	Horn	Н	AV	10 Hz	88.31	98.13	46.77	51.36	54.00	-2.64

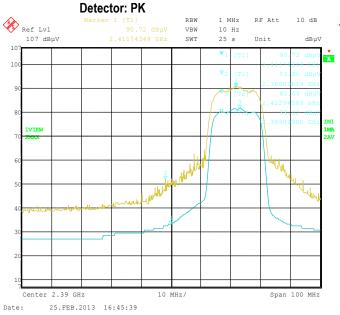
Channel	Freq.	Rx Ant	tenna	Detec tor	VBW	Carrier Freq Reading	Peak Corrected Reading	Delta Marker	Corrected Band edge	Limit	Diff. To Limit
	(MHz)	Туре	POL.			(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
11.0	2462.00	Horn	V	PK	1 MHz	89.1	100.02	41.41	58.61	74.00	-15.39
11.0	2462.00	Horn	Н	PK	1 MHz	95.13	106.05	41.69	64.36	74.00	-9.64
11.0	2462.00	Horn	V	AV	10 Hz	80.19	91.11	47.93	43.18	54.00	-10.82
11.0	2462.00	Horn	Н	AV	10 Hz	85.54	96.46	48.08	48.38	54.00	-5.62

See figures 2-17 to 2-20 for the plots of the 802.11b band-edge compliance. See figures 2-21 to 2-24 for the plots of the 802.11g band-edge compliance. See figures 2-25 to 2-28 for the plots of the 802.11n band-edge compliance.

Testing Services	phone Model RFL111LW	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Figure 2-18: Band-Edge Compliance of RF Radiated Emission 802.11b, Channel 1, 2412 MHz, Max Pol: H,


Figure 2-19: Band-Edge Compliance of RF Radiated Emission 802.11b, Channel 11, 2462 MHz, Max Pol: V,

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 2					
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW				

Figure 2-21: Band-Edge Compliance of RF Radiated Emission 802.11g, Channel 1, 2412 MHz, Max Pol: V,

Figure 2-22: Band-Edge Compliance of RF Radiated Emission 802.11g, Channel 1, 2412 MHz, Max Pol: H,

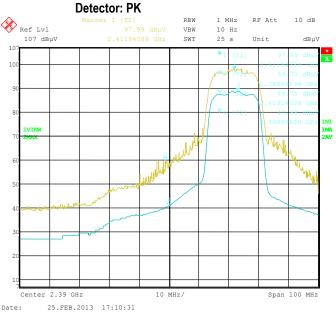
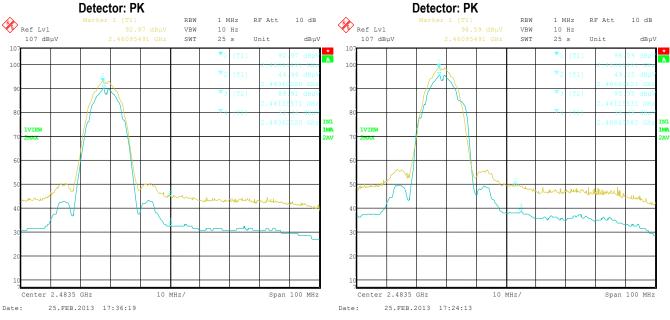



Figure 2-23: Band-Edge Compliance of RF Radiated Emission 802.11g, Channel 11, 2462 MHz, Max Pol: V,

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 2					
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW				

Figure 2-25: Band-Edge Compliance of RF Radiated Emission 802.11n, Channel 1, 2412 MHz, Max Pol: V,

Figure 2-26: Band-Edge Compliance of RF Radiated Emission 802.11n, Channel 1, 2412 MHz, Max Pol: H,

10 dB

Span 100 MHz

dBµV

A

IN1

LMA

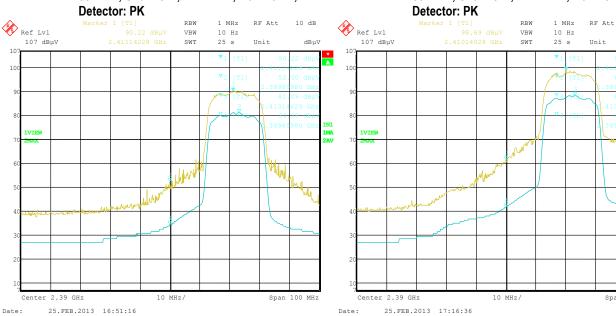
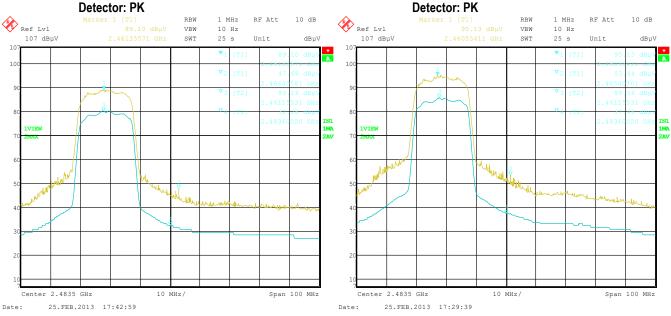



Figure 2-27: Band-Edge Compliance of RF Radiated Emission 802.11n, Channel 11, 2462 MHz, Max Pol: V,

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 3				
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW			

APPENDIX 3 - 802.11a/n RADIATED EMISSIONS TEST DATA

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW					
Services	APPENDIX 3					
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW				

Radiated Emissions Test Results 802.11a Band

Date of Test: January 25, 2013 Measurements were performed by Savtej Sandhu

The environmental test conditions were: Temperature:	25.6 ⁰C
Relative Humidity:	16.5 %

The test distance was 3.0 metres with a EUT height of 0.8 metres, and sweep frequency of 30 MHz to 1 GHz.

The BlackBerry[®] smartphone was in USB up position.

The frequency sweep measurements were performed in 802.11a Tx mode at 6 Mbps on channels 36, 48, 64, 100, 140 and 165.

Radiated Emissions Test Results 802.11a Band

Date of Test: December 17, 2012 January 07-30, 2013 Measurements were performed by Masud Attavi, Mahmood Ahmed, and Heng Lin.

The environmental test conditions were: Temperature:	24.9-26 ºC
Relative Humidit	y: 19.3-36.9 %

The test distance was 3.0 metres with a EUT height of 0.8 metres, and sweep frequency of 1GHz to 40GHz.

The BlackBerry[®] smartphone was in horizontal position.

The frequency sweep measurements were performed in 802.11a Tx mode at 6 Mbps on channels 36, 48, 64, 100, 140 and 165.

Frequency	Channel Of	Del	enna Height	Test Angle	Detector	Measured Level	Correction Factor for preamp/antenna/	Field Strength Level (reading+corr)	Limit @ 3.0 m	Test Margin
(MHz)	Occurrenc e	(V/H)	(meters)	(Deg.)	(PK or QP) (dBµV)		cables/ filter (dB)	(dBm)	(dBm)	(dB)
7093.432	64A	V	2.00	196.00	PK	25.14	16.03	41.17	54.00	-12.83
10365.03 2	36A	V	1.00	203.00	PK	30.71	22.49	53.21	74.00	-20.80
10360.67 2	36A	V	1.00	193.00	PK	19.75	22.59	42.34	54.00	-11.67
7093.432	64A	V	2.00	196.00	PK	25.14	16.03	41.17	54.00	-12.83

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW					
Services	APPENDIX 3					
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW				

Radiated Emissions Test Results cont'd 802.11n Band

Date of Test: January 25, 2013 Measurements were performed by Savtej Sandhu.

The environmental test conditions were: Temperature:	25.6 ⁰C
Relative Humidity:	16.5 %

The test distance was 3.0 metres with a EUT height of 0.8 metres, and sweep frequency of 30 MHz to 1 GHz.

The BlackBerry[®] smartphone was in USB up position.

The frequency sweep measurements were performed in 802.11n Tx mode at MCS 0 on channels 36, 64 and 165.

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW					
Services	APPENDIX 3					
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW				

Radiated Emissions Test Results cont'd 802.11n Band

Date of Test: December 17, 2012 and Janaury 07-30, 2013 Measurements were performed by Mahmood Ahmed and Heng Lin

The environmental test conditions were: Temperature:	24.9 - 26 ºC
Relative Humi	dity: 17.2 – 36.9%

The test distance was 3.0 metres with a EUT height of 0.8 metres, and sweep frequency of 1GHz to 40GHz.

The BlackBerry[®] smartphone was in horizontal position.

The frequency sweep measurements were performed in 802.11n Tx mode at MCS 0 on channels 36, 48, 64, 100, 140 and 165.

All Frequency	Channel Of		enna	Test Angle	Detector	Measured Level	Correction Factor for	Level	Limit @ 3.0 m	Test Margin	
(MHz)	Occurrenc e	Pol. (V/H)	Height (meters)		(PK or QP)	(dBµV)	preamp/antenna/ cables/ filter (dB)	(reading+corr) (dBm)	(dBm)	(dB)	
7093.368	64N	V	2.00	194.00	PK	33.30	16.03	49.33	74.00	-24.67	
7093.456	64N	V	1.00	182.00	PK	24.19	16.03	40.22	54.00	-13.78	
10361.71 2	36N	V	1.00	192.00	PK	30.75	22.57	53.31	74.00	-20.69	
10360.18 4	36N	V	1.00	184.00	PK	18.90	22.60	41.50	54.00	-12.50	

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW					
Services	APPENDIX 3					
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW				

Date of Tests: February 25, 2013

Measurements performed by Savtej Sandhu.

The environmental test conditions were: Temperature: 26.4 °C 13 %

Relative Humidity:

The measurements were performed on BlackBerry[®] smartphone in standalone, USB up configuration on channels 36, 64, 100, 140, 149 and 165 for 802.11a mode at 6 Mbps. The test distance was 3 metres.

Centre at Band-Edge: 5150 MHz

		-uge. e	100 10	1 12											
Channel	Freq. (MHz)	Rx Ant Type	tenna POL.	Detec tor	VBW	Carrier Freq Reading (dBuV)	Peak Corrected Reading (dBuV/m)	Delta Marker (dB)	Corrected Band edge (dBuV/m)	Limit (dBuV/m)	Diff. To Limit (dB)				
36.0	5180.0	Horn	V	PK	1 MHz	78.44	101.65	38.91	62.74	74.00	-11.26				
36.0	5180.0	Horn	Н	PK	1 MHz	88.33	111.54	46.74	64.80	74.00	-9.20				
36.0	5180.0	Horn	V	AV	10 Hz	69.64	92.85	42.64	50.21	54.00	-3.79				
36.0	5180.0	Horn	Н	AV	10 Hz	78.89	102.10	49.39	52.71	54.00	-1.29				
Centre a	at Band-E	Edge: 5	350 M	Hz											
Channel	Freq. (MHz)	Rx Ant Type	tenna POL.	Detec tor	VBW	Carrier Freq Reading (dBuV)	Peak Corrected Reading (dBuV/m)	Delta Marker (dB)	Corrected Band edge (dBuV/m)	Limit (dBuV/m)	Diff. To Limit (dB)				
64.0	5320.0	Horn	V	PK	1 MHz	75.86	99.82	35.40	64.42	74.00	-9.58				
64.0	5320.0	Horn	Н	PK	1 MHz	87.70	111.66	46.10	65.56	74.00	-8.44				
64.0	5320.0	Horn	V	AV	10 Hz	67.08	91.04	40.08	50.96	54.00	-3.04				
64.0	5320.0	Horn	Н	AV	10 Hz	77.60	101.56	48.10	53.46	54.00	-0.54				
Centre a	at Band-E	Edge: 5	460 M	Hz											
Channel	Freq. (MHz)	Rx Ant Type	tenna POL.	Detec tor	VBW	Carrier Freq Reading (dBuV)	Peak Corrected Reading (dBuV/m)	Delta Marker (dB)	Corrected Band edge (dBuV/m)	Limit (dBuV/m)	Diff. To Limit (dB)				
100.00	5500.0	Horn	V	PK	1 MHz	72.51	97.56	32.59	64.97	74.00	-9.03				
100.00	5500.0	Horn	Н	PK	1 MHz	82.36	107.41	41.19	66.22	74.00	-7.78				
100.00	5500.0	Horn	V	AV	10 Hz	63.30	88.35	36.30	52.05	54.00	-1.95				
100.00	5500.0	Horn	Н	AV	10 Hz	73.2	98.25	44.86	53.39	54.00	-0.61				

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW					
Services	APPENDIX 3					
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW				

802.11a Band-Edge Compliance of RF Radiated Emissions cont'd Centre at Band-Edge: 5725 MHz

Centre a	at Band-	-Edge:	5725	MHz							
Channel	Freq. (MHz)	Rx A Type	ntenna POI		VBW	Carrier Freq Reading (dBuV)	Peak Corrected Reading (dBuV/m)	Delta Marker (dB)	Corrected Band edge (dBuV/m)	Limit (dBuV/m	Diff. To Limit (dB)
140.0	5700.0	Horn	V	PK	1 MHz	80.25	105.69	39.43	66.26	, 68.20	-1.94
140.0	5700.0				1 MHz	83.35		42.35	66.44		
	at Band-					00.00	100.10	.2.00	00111	00.20	
Channel	Freq. (MHz)		ntenna POI	Detec tor	VBW	Carrier Freq Reading (dBuV)	Peak Corrected Reading (dBuV/m)	Delta Marker (dB)	Corrected Band edge (dBuV/m)	Limit (dBuV/m)	Diff. To Limit (dB)
149.00	5745.0	0 Horn	V	PK	1 MHz	80.96	106.80	40.16	66.64	78.20	-11.56
149.00	5745.0	0 Horn	Н	PK	1 MHz	82.94	108.78	41.63	67.15	78.20	-11.05
Centre a	at Band-	Edge:	5715	MHz							
Channel	Freq. (MHz)	Rx A Type	ntenna POI		VBW	Carrier Freq Reading (dBuV)	Peak Corrected Reading (dBuV/m)	Delta Marker (dB)	Corrected Band edge (dBuV/m)	Limit (dBuV/m)	Diff. To Limit (dB)
149.00	5745.0	0 Horn	V	PK	1 MHz	80.96	106.80	40.34	66.46	68.20	-1.74
149.00					1 MHz	82.94	108.78	41.51	67.27	68.20	-0.93
Centre	at Band-	Edge:	5805	MHz	-						
Channel	Freq. (MHz)	Rx Ante	enna POL.	Detector	VBW	Carrier Freq Reading (dBuV)	Corrected Reading (dBuV/m)	Delta Marker (dBc)	R	emarks	
165.0	5825.	Horn	V	PK	1 MHz	81.93	108.32	40.22	No restricted 20dBc red		,
			1	1	1	1				เฉแบบเป็นไ	vanu

Centre at Band-Edge: 5850 MHz

Horn

Н

ΡK

1 MHz

5825.

165.0

Channel	Freq.	Rx Ante	enna	Detector	VBW	Carrier Freq Reading	Corrected Reading	Delta Marker	Remarks
	(MHz)	Туре	POL.			(dBuV)	(dBuV/m)	(dBc)	
165.0	5825.	Horn	V	PK	1 MHz	81.93	108.32	40.87	No restricted band on border; 20dBc requirement valid
165.0	5825.	Horn	н	PK	1 MHz	81.58	107.97	40.48	

81.58

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013

20dBc requirement valid

instead

40.22

107.97

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL1					
Services	APPENDIX 3					
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW				

Date of Tests: February 25, 2013

Measurements performed by Savtej Sandhu.

The environmental test conditions were: Temperature:26.4 °CRelative Humidity:13 %

The measurements were performed on BlackBerry[®] smartphone in standalone, USB up configuration on channels 36, 64 and 165 for 802.11n mode at MCS 0.

The test distance was 3 metres.

Centre at Band-Edge: 5150 MHz

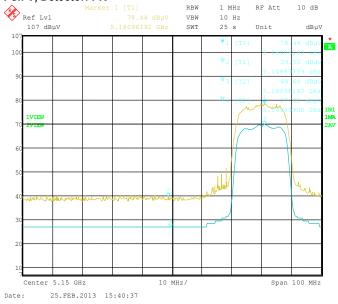
	<u> </u>									
Freq. (MHz)	Rx Ant Type	tenna POL.	Detec tor	VBW	Carrier Freq Reading (dBuV)	Peak Corrected Reading (dBuV/m)	Delta Marker (dB)	Corrected Band edge (dBuV/m)	Limit (dBuV/m)	Diff. To Limit (dB)
5180.0	Horn	V	PK	1 MHz	78.45	101.66	38.97	62.69	74.00	-11.31
5180.0	Horn	Н	PK	1 MHz	88.43	111.64	46.57	65.07	74.00	-8.93
5180.0	Horn	V	AV	10 Hz	69.23	92.44	42.23	50.21	54.00	-3.79
5180.0	Horn	Н	AV	10 Hz	78.56	101.77	49.06	52.71	54.00	-1.29
at Band-E	Edge: 5	350 M	Hz							
Freq. (MHz)	Rx Ant Type	tenna POL.	Detec tor	VBW	Carrier Freq Reading (dBuV)	Peak Corrected Reading (dBuV/m)	Delta Marker (dB)	Corrected Band edge (dBuV/m)	Limit (dBuV/m)	Diff. To Limit (dB)
5320.0	Horn	V	PK	1 MHz	75.64	99.60	35.46	64.14	74.00	-9.86
5320.0	Horn	Н	PK	1 MHz	86.46	110.42	44.61	65.81	74.00	-8.19
5320.0	Horn	V	AV	10 Hz	66.75	90.71	39.75	50.96	54.00	-3.04
5320.0	Horn	Н	AV	10 Hz	77.32	101.28	47.82	53.46	54.00	-0.54
at Band-E	Edge: 5	460 M	Hz							
Freq. (MHz)	Rx Ant Type	tenna POL.	Detec tor	VBW	Carrier Freq Reading (dBuV)	Peak Corrected Reading (dBuV/m)	Delta Marker (dB)	Corrected Band edge (dBuV/m)	Limit (dBuV/m)	Diff. To Limit (dB)
	Freq. (MHz) 5180.0 5180.0 5180.0 5180.0 at Band-E Freq. (MHz) 5320.0 5320.0 5320.0 5320.0 5320.0 at Band-E Freq.	Freq. Rx Ani (MHz) Type 5180.0 Horn 5320.0 Horn	Freq. Rx Antenna (MHz) Type POL. 5180.0 Horn V 5180.0 Horn H 5180.0 Horn H at Band-Edge: 5350 M H (MHz) Type POL. 5320.0 Horn V 5320.0 Horn H 5320.0 Horn H 5320.0 Horn H at Band-Edge: 5460 M H Freq. Rx Antenna Freq. Rx Antenna	Freq. Rx Antenna tor (MHz) Type POL. 5180.0 Horn V PK 5180.0 Horn H PK 5180.0 Horn H PK 5180.0 Horn H AV Grad Type POL. Oetec (MHz) Type POL. PK 5320.0 Horn V AV 5320.0 Horn H AV 5320.0 Horn H AV 5320.0 Horn H AV State Exempte Exempte	Freq. Rx Antenna Detec tor VBW (MHz) Type POL. VBW 5180.0 Horn V PK 1 MHz 5180.0 Horn H PK 1 MHz 5180.0 Horn H PK 1 MHz 5180.0 Horn H PK 1 0 Hz 5180.0 Horn H AV 10 Hz 60000 Type POL. VBW VBW (MHz) Type POL. VBW 10 Hz 5320.0 Horn H PK 1 MHz 5320.0 Horn H AV 10 Hz 5320.0 Horn H AV 10 Hz 5320.0	Carrier Freq.Freq.Rx AntennaDetec torVBWCarrier Freq Reading (dBuV)5180.0HornVPK1 MHz78.455180.0HornHPK1 MHz88.435180.0HornHPK10 Hz69.235180.0HornHAV10 Hz69.235180.0HornHAV10 Hz78.56Detec torDetec VBWCarrier Freq Reading (dBuV)Freq.Rx AntennaDetec torVBWCarrier Freq Reading (dBuV)5320.0HornVPK1 MHz75.645320.0HornVPK1 MHz66.755320.0HornVAV10 Hz66.755320.0HornHAV10 Hz77.32Band-Edge: 5460 MHzFreq.Rx AntennaDetec torCarrier Freq Reading (dBuV)Freq.Rx AntennaCarrier Freq Freq torCarrier Freq Reading (dBuV)	Freq.Rx AntennaDetec torVBWCarrier Freq (dBuV)Peak Corrected Reading (dBuV/m)5180.0HornVPK1 MHz78.45101.665180.0HornVPK1 MHz88.43111.645180.0HornVAV10 Hz69.2392.445180.0HornVAV10 Hz69.2392.445180.0HornHAV10 Hz78.56101.77at Band-Edge: 5350 MHzDetec torVBWCarrier Reading (dBuV)Peak Corrected Reading (dBuV)Peak Corrected Reading (dBuV)5320.0HornVPK1 MHz75.6499.605320.0HornVPK1 MHz75.6499.605320.0HornVAV10 Hz66.7590.715320.0HornVAV10 Hz77.32101.28at Band-Edge: 5460 MHzDetec torVBWCarrier Freq Reading (dBuV)Peak Corrected Reading (dBuV)Freq.Rx AntennaDetec torVBWCarrier Freq Reading (dBuV)Peak Corrected Reading (dBuV)	VariationFreq.Rx AntennaDetec torVBWCarrier Reading (dBuV)Peak Reading (dBuV)Delta Marker5180.0HornVPK1 MHz78.45101.6638.975180.0HornHPK1 MHz88.43111.6446.575180.0HornHPK1 0 Hz69.2392.4442.235180.0HornHAV10 Hz78.56101.7749.06at Band-Edge: 5350 MHzDetec torVBWCarrier Freq (dBuV)Peak (dBuV)MHz)TypePOL.Detec torVBWCarrier (dBuV)Peak (dBuV)Delta (dBuV)5320.0HornVPK1 MHz75.6499.6035.465320.0HornHPK1 MHz86.46110.4244.615320.0HornVAV10 Hz66.7590.7139.755320.0HornHAV10 Hz77.32101.2847.82Treq.Rx AntennaDetec torVBWCarrier Freq Reading (dBuV)Peak Corrected Reading MarkerFreq.Rx AntennaDetec torVBWCarrier Reading Reading Reading Reading Reading Reading Reading ReadingDelta Marker	Freq.Rx AntennaDetec torDetec torCarrier VBWPeak Reading (dBuV)Peak Corrected Reading (dBuV/m)Delta MarkerCorrected Band edge (dBuV/m)5180.0HornVPK1 MHz78.45101.6638.9762.695180.0HornHPK1 MHz88.43111.6446.5765.075180.0HornVAV10 Hz69.2392.4442.2350.215180.0HornHAV10 Hz78.56101.7749.0652.715180.0HornHAV10 Hz78.56101.7749.0652.715180.0HornHAV10 Hz78.56101.7749.0652.71at Band-Edge:5350 MHzDetec torVBWCarrier Reading (dBuV)Peak Corrected Reading (dBuV/m)Delta (dBuV/m)Corrected Band edge (dBuV/m)5320.0HornVPK1 MHz75.6499.6035.4664.145320.0HornHPK1 0 Hz66.7590.7139.7550.965320.0HornHAV10 Hz77.32101.2847.8253.465320.0HornHAV10 Hz77.32101.2847.8253.465320.0HornHAV10 Hz77.32101.2847.8253.465320.0HornHAV10 Hz77.32101.2847.82 <td>Freq. Rx Antenna Detec tor VBW Carrier Reading (dBuV) Peak Reading (dBuV/m) Deta Marker Corrected Band edge (dBuV/m) Limit (dBuV/m) 5180.0 Horn V PK 1 MHz 78.45 101.66 38.97 62.69 74.00 5180.0 Horn H PK 1 MHz 78.45 101.66 38.97 62.69 74.00 5180.0 Horn H PK 1 MHz 69.23 92.44 42.23 50.21 54.00 5180.0 Horn H AV 10 Hz 69.23 92.44 42.23 50.21 54.00 5180.0 Horn H AV 10 Hz 78.56 101.77 49.06 52.71 54.00 at Band-Edge: 5350 MHz Detec VBW Reading (dBuV) (dBuV/m) (dBuV/m)</td>	Freq. Rx Antenna Detec tor VBW Carrier Reading (dBuV) Peak Reading (dBuV/m) Deta Marker Corrected Band edge (dBuV/m) Limit (dBuV/m) 5180.0 Horn V PK 1 MHz 78.45 101.66 38.97 62.69 74.00 5180.0 Horn H PK 1 MHz 78.45 101.66 38.97 62.69 74.00 5180.0 Horn H PK 1 MHz 69.23 92.44 42.23 50.21 54.00 5180.0 Horn H AV 10 Hz 69.23 92.44 42.23 50.21 54.00 5180.0 Horn H AV 10 Hz 78.56 101.77 49.06 52.71 54.00 at Band-Edge: 5350 MHz Detec VBW Reading (dBuV) (dBuV/m) (dBuV/m)

	(MHz)	Туре	POL.			(02017)	(dBuV/m)	(dB)	(dBuV/m))	(dB)
100.00	5500.0	Horn	V	ΡK	1 MHz	72.07	97.12	31.80	65.32	74.00	-8.68
100.00	5500.0	Horn	Н	ΡK	1 MHz	81.41	106.46	40.71	65.75	74.00	-8.25
100.00	5500.0	Horn	V	AV	10 Hz	62.66	87.71	35.66	52.05	54.00	-1.95
100.00	5500.0	Horn	Н	AV	10 Hz	72.92	97.97	44.58	53.39	54.00	-0.61

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited.

Copyright 2005-2013

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 3					
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW				


Centre a	at Band	-Edge:	5725 I	ИНz	-						
Channel	Freq. (MHz)	Rx A Type	ntenna POL	Detec tor	VBW	Carrier Freq Reading (dBuV)	Peak Corrected Reading (dBuV/m)	Marker	Corrected Band edge (dBuV/m)	Limit (dBuV/m)	Diff. To Limit (dB)
140.0	5700.0	Horn	V	PK	1 MHz	79.97	7 105.41	38.89	66.52	68.20	-1.68
140.0	5700.0			PK	1 MHz	82.76	108.20	41.67	66.53	68.20	-1.67
Centre a	at Band	Edge:	5725 I	ИНz				1			
Channel	Freq. (MHz)	Rx A Type	ntenna POL	Detec tor	VBW	Carrier Freq Reading (dBuV)	Peak Corrected Reading (dBuV/m)	Delta Marker (dB)	Corrected Band edge (dBuV/m)	Limit (dBuV/m)	Diff. To Limit (dB)
149.00	5745.	0 Horr	V	PK	1 MHz	80.27	/ 106.11	38.86	67.25	78.20	-10.95
149.00	5745.	0 Horr	Н	PK	1 MHz	82.39	108.23	41.08	67.15	78.20	-11.05
Centre a	at Band	-Edge:	5715 I	ИНz			•				
Channel	Freq. (MHz)	Rx A Type	ntenna POL	Detec tor	VBW	Carrier Freq Reading (dBuV)	Peak Corrected Reading (dBuV/m)	Marker	Corrected Band edge (dBuV/m)	Limit (dBuV/m)	Diff. To Limit (dB)
149.00	5745.	0 Horr	V	PK	1 MHz	80.27	7 106.11	39.24	66.87	68.20	-1.33
149.00	5745.	0 Horn	Н	PK	1 MHz	82.39	108.23	41.20	67.03	68.20	-1.17
Centre a	at Band	-Edge:	5805 I	ИНz							
Channel	Freq. (MHz)	Rx Ant	enna I POL.	Detector	VBW	Carrier Freq Reading (dBuV)	Corrected Reading (dBuV/m)	Delta Marker (dBc)	R	emarks	
165.0	5825.	Horn	V	PK	1 MHz	81.78	108.17	40.43	No restricted		,
165.0	5825.	Horn	Н	PK	1 MHz	81.57	107.96	39.55	20dBc rec ir	nstead	valiu
Centre a	at Band [.]	-Edae:	5850 I	ИНz							

Centre at Band-Edge: 5850 MHz

Channel	Freq.	Rx Ante	enna	Detector	VBW	Carrier Freq Reading	Corrected Reading	Delta Marker	Remarks
	(MHz)	Туре	POL.			(dBuV)	(dBuV/m)	(dBc)	
165.0	5825.	Horn	V	PK	1 MHz	81.78	108.17	40.87	No restricted band on border; 20dBc requirement valid
165.0	5825.	Horn	Н	PK	1 MHz	81.57	107.96	40.18	•

Rear Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111L						
Services"	APPENDIX 3						
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW					

Figure 3-1: Band-Edge Compliance of RF Radiated Emission 802.11a, Ch 36, 5180 MHz, Centre of Band-Edge: 5150 MHz Pol: V, Detector: PK

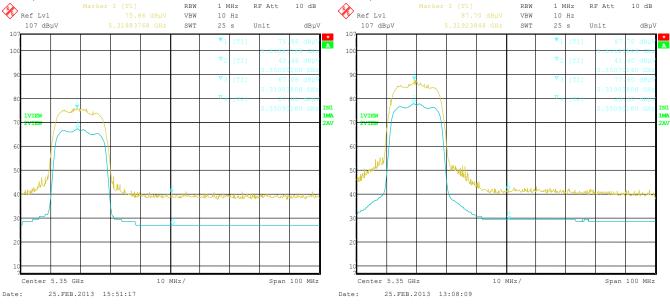


Figure 3-2: Band-Edge Compliance of RF Radiated Emission 802.11a, Ch 36, 5180 MHz, Centre of Band-Edge: 5150 MHz Pol: H, Detector: PK

Figure 3-3: Band-Edge Compliance of RF Radiated Emission 802.11a, Ch 64, 5320 MHz, Centre of Band-Edge: 5350 MHz Pol: V, Detector: PK

Figure 3-4: Band-Edge Compliance of RF Radiated Emission 802.11a, Ch 64, 5320 MHz, Centre of Band-Edge: 5350 MHz Pol: H, Detector: PK

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW						
Services	APPENDIX 3						
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW					

Figure 3-5: Band-Edge Compliance of RF Radiated Emission 802.11a, Ch 100, 5500 MHz, Centre of Band-Edge: 5460 MHz Pol: V. Detector: PK

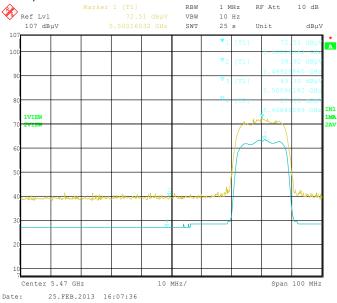


Figure 3-6: Band-Edge Compliance of RF Radiated Emission. 802.11a, Ch 100, 5500 MHz, Centre of Band-Edge: 5460 MHz Pol: H. Detector: PK

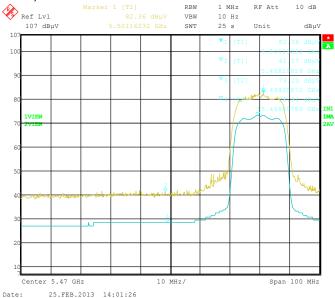


Figure 3-7: Band-Edge Compliance of RF Radiated Emission. 802.11a, Ch 140, 5700 MHz, Centre of Band-Edge: 5725 MHz Pol: V, Detector: PK

Figure 3-8: Band-Edge Compliance of RF Radiated Emission. 802.11a, Ch 140, 5700 MHz, Centre of Band-Edge: 5725 MHz Pol: H, Detector: PK

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 3						
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW					

Figure 3-9: Band-Edge Compliance of RF Radiated Emission 802.11a, Ch 149, 5745 MHz, Centre of Band-Edge: 5725 and 5715MHz

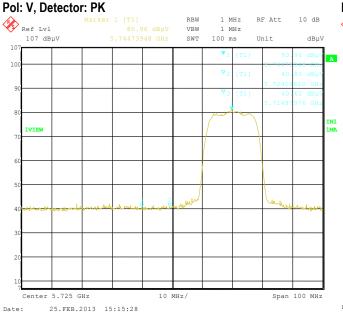
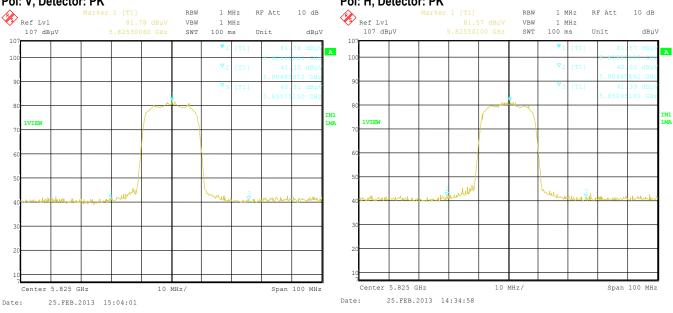



Figure 3-10: Band-Edge Compliance of RF Radiated Emission. 802.11a, Ch 149, 5745 MHz, Centre of Band-Edge: 5725 and 5715 MHz

Pol: H, Detector: PK RBW 1 MHz RF Att 10 dB Ref Lvl VBW 1 MHz 107 dBµV 100 ms Unit SWT dBuV 10 А 10 IN1 IVTEW мN Center 5 725 GHz 10 MHz/ Span 100 MHz 25.FEB.2013 13:34:10 Date:

Figure 3-13: Band-Edge Compliance of RF Radiated Emission 802.11a, Ch 165, 5825 MHz, Centre of Band-Edge: 5805 MHz Pol: V. Detector: PK

Figure 3-14: Band-Edge Compliance of RF Radiated Emission. 802.11a, Ch 165, 5825 MHz, Centre of Band-Edge: 5805 MHz Pol: H. Detector: PK

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 3						
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW					

Figure 3-1: Band-Edge Compliance of RF Radiated Emission 802.11n, Ch 36, 5180 MHz, Centre of Band-Edge: 5150 MHz Pol: V, Detector: PK

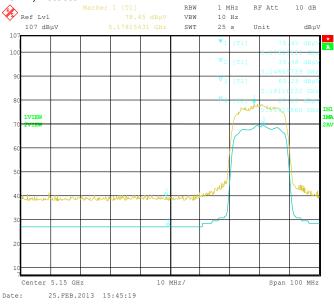
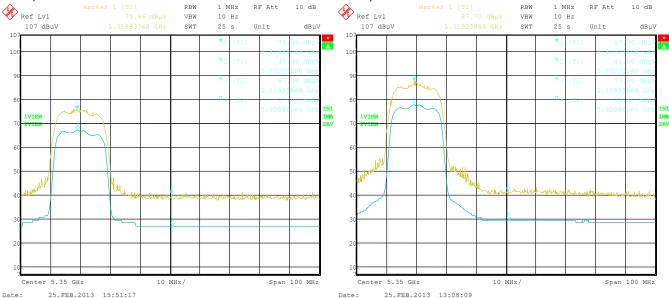



Figure 3-3: Band-Edge Compliance of RF Radiated Emission 802.11n, Ch 64, 5320 MHz, Centre of Band-Edge: 5350 MHz Pol: V, Detector: PK

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013

Figure 3-2: Band-Edge Compliance of RF Radiated Emission 802.11n, Ch 36, 5180 MHz, Centre of Band-Edge: 5150 MHz Pol: H, Detector: PK

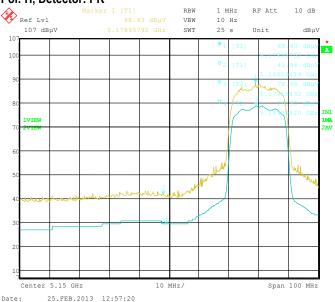


Figure 3-4: Band-Edge Compliance of RF Radiated Emission 802.11n Ch 64, 5320 MHz, Centre of Band-Edge: 5350 MHz Pol: H, Detector: PK

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 3	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Figure 3-5: Band-Edge Compliance of RF Radiated Emission 802.11n, Ch 100, 5500 MHz, Centre of Band-Edge: 5460 MHz Pol: V. Detector: PK

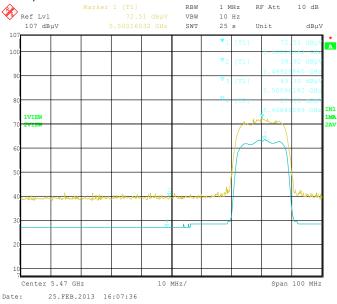


Figure 3-6: Band-Edge Compliance of RF Radiated Emission. 802.11n, Ch 100, 5500 MHz, Centre of Band-Edge: 5460 MHz Pol: H, Detector: PK

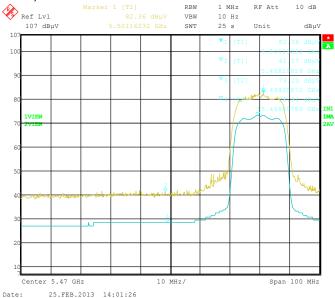


Figure 3-7: Band-Edge Compliance of RF Radiated Emission. 802.11n, Ch 140, 5700 MHz, Centre of Band-Edge: 5725 MHz Pol: V, Detector: PK

Figure 3-8: Band-Edge Compliance of RF Radiated Emission. 802.11n, Ch 140, 5700 MHz, Centre of Band-Edge: 5725 MHz Pol: H, Detector: PK

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 3	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Figure 3-9: Band-Edge Compliance of RF Radiated Emission 802.11n, Ch 149, 5745 MHz, Centre of Band-Edge: 5725 MHz Pol: V. Detector: PK

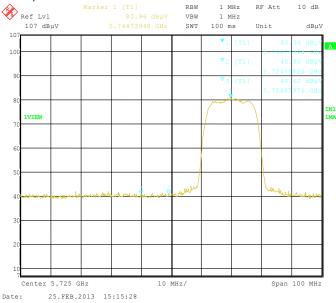


Figure 3-10: Band-Edge Compliance of RF Radiated Emission. 802.11n, Ch 149, 5745 MHz, Centre of Band-Edge: 5725 MHz Pol: H, Detector: PK

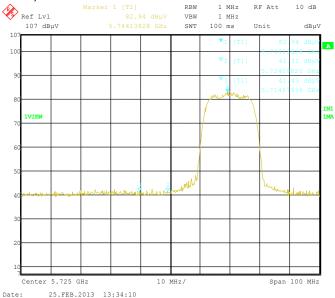
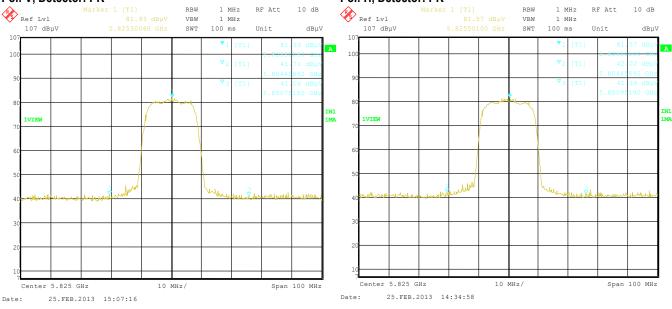
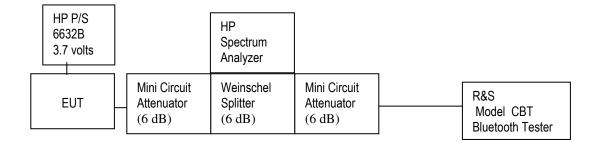



Figure 3-13: Band-Edge Compliance of RF Radiated Emission 802.11n, Ch 165, 5825 MHz, Centre of Band-Edge: 5805 MHz Pol: V, Detector: PK

Figure 3-14: Band-Edge Compliance of RF Radiated Emission. 802.11n, Ch 165, 5825 MHz, Centre of Band-Edge: 5805 MHz Pol: H, Detector: PK

APPENDIX 4 – BLUETOOTH AND BLUETOOTH LOW ENERGY CONDUCTED EMISSIONS TEST DATA/PLOTS


Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Bluetooth power output from BlackBerry[®] smartphone was at maximum for all the recorded measurements shown below.

The measurements were performed by Berkin Can

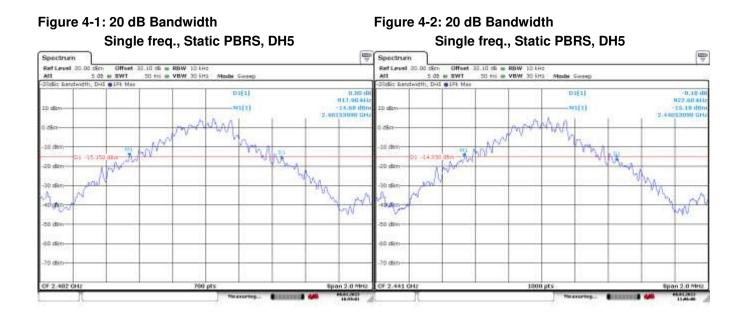
Date of test: January 8-9, 2013

Test Setup Diagram

A reference offset of 12.4 dB was applied to the spectrum analyzer reference level for the attenuators and coaxial cable loss in the test circuit.

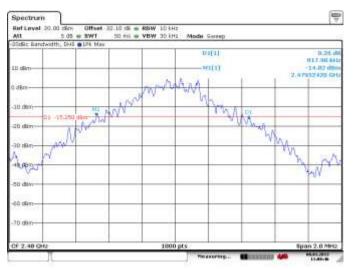
The environmental test conditions were:	Temperature:	23.1-23.8 ºC
	Relative Humidity:	25.6-25.8 %

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW


20 dB Bandwidth

The EUT met the requirements of the 20 dB bandwidth as per 47 CFR 15.247(a) and RSS-210. Low channel (0), middle channel (39) and high channel (78) were measured. Bluetooth was operating in single frequency mode.

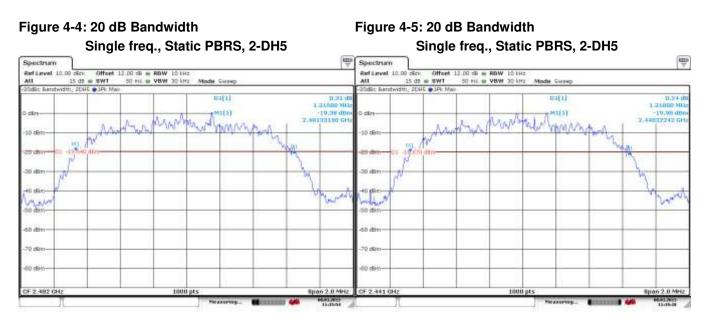
Using pattern type "Static PBRS" and packet type "DH5" during the measurements.


Bluetooth Channel	Limit (MHz)	Measured Level (MHz)
0	≤1.0	917.000
39	≤1.0	922.600
78	≤1.0	917.900

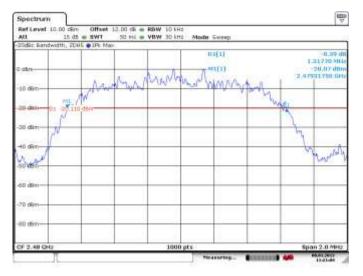
See figures 4-1 to 4-3 for the plots of the 20 dB bandwidth measurements.

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Figure 4-3: 20 dB Bandwidth Single freq., Static PBRS, DH5



Using Pattern type "Static PBRS" and packet type "2-DH5" during the measurements.


Bluetooth Channel	Limit (MHz)	Measured Level (MHz)
0	≤1.5	1.316
39	≤1.5	1.318
78	≤1.5	1.318

See figures 4-4 to 4-6 for the plots of the 20 dB bandwidth measurements.

Resting Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Figure 4-6: 20 dB Bandwidth Single freq., Static PBRS, 2-DH5

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Using Pattern type "Static PBRS" and packet type "<u>3-DH5</u>" during the measurements.

Bluetooth Channel	Limit (MHz)	Measured Level (MHz)
0	≤1.5	1.316
39	≤1.5	1.293
78	≤1.5	1.316

See figures 4-7 to 4-9 for the plots of the 20 dB bandwidth measurements.

Figure 4-7: 20 dB Bandwidth

Figure 4-8: 20 dB Bandwidth

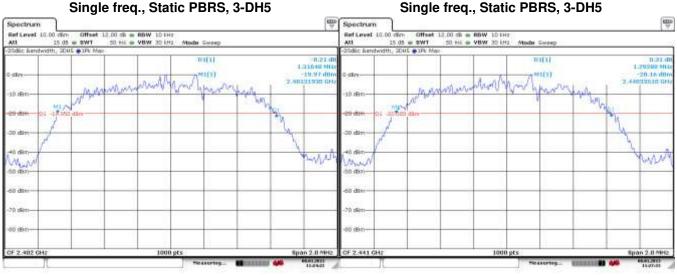
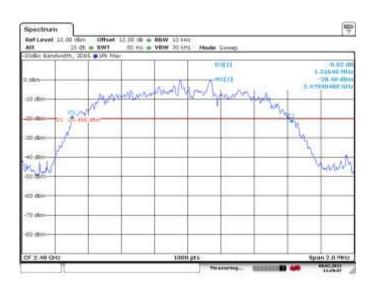
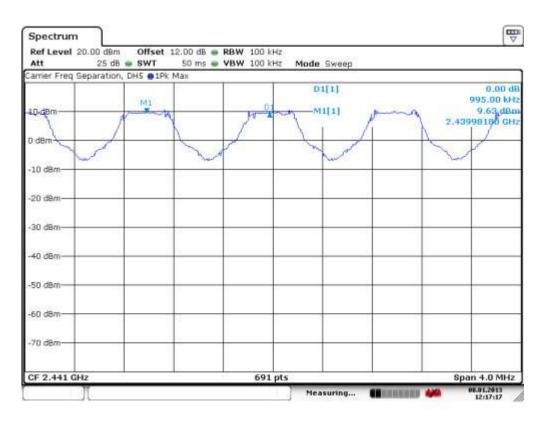



Figure 4-9: 20 dB Bandwidth Single freq., Static PBRS, 3-DH5

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 4		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Carrier Frequency Separation


The EUT met the requirements of the Carrier Frequency Separation as per 47 CFR 15.247(a) and RSS-210. Channel 38 to 39 was measured. Bluetooth was operating in frequency hopping (Euro/US) mode.

Using pattern type "Static PBRS" and packet type "DH5" during the measurements.

Bluetooth Channels	Limit (MHz)	Measured Level (MHz)
38 to 39	\geq 0.025 or 20 dB bandwidth	0.995

See figure 4-10 for the plot of the Carrier Frequency Separation measurement.

Figure 4-10: Carrier Frequency Separation, Freq. Hopping, Static PBRS, DH5, Channels 38 to 39

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 4		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Using Pattern type "Static PBRS" and packet type "2-DH5" during the measurements.

Bluetooth Channels	Limit (MHz)	Measured Level (MHz)
38 to 39	≥ 0.025 or 20 dB bandwidth	1.001

See figure 4-11 for the plot of the Carrier Frequency Separation measurement.

Figure 4-11: Carrier Frequency Separation, Freq. Hopping, Static PBRS, 2-DH5, Channels 38 to 39

amer Fred sept	aration, 20H5 🛭 1F	k Max				
10 dBm	~~~~		m	D1[1] -M1[1]	purh	0.01 d 1.00060 MH 6.61 dBr 2.43998189-GH
0 d6m						
-10 dBm					-	
-20 dBm						
-30 dBm				_		
-40 dBm				_		
-50 dBm				_		
60 dBm				-		
-70 dBm						

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 4		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Using Pattern type "Static PBRS" and packet type "<u>3-DH5</u>" during the measurements.

Bluetooth Channels	Limit (MHz)	Measured Level (MHz)
38 to 39	≥ 0.025 or 20 dB bandwidth	1.001

See figure 4-12 for the plot of the Carrier Frequency Separation measurement.

Figure 4-12: Carrier Frequency Separation, Freq. Hopping, Static PBRS, 3-DH5, Channels 38 to 39

Ref Level 20.0 Att	25 dB 👜 SWT	12.00 dB 👄 RBW 50 ms 🖷 VBW		
arrier Freq Sep	aration, 3DH5 😐 1	Pk Max	01[1]	0.00.4
10 dBm	- low h		01[1] 01 M1[1] 01 M1[1]	0.02 d 1.00080 MH 6.61 dBr 2.4399818964
10 dBm				~
20 dBm				
30 dBm				
40 dBm				
50 dBm				
70 dBm				
CF 2.441 GHz			691 pts	Span 4.0 MHz

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

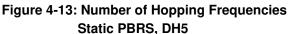
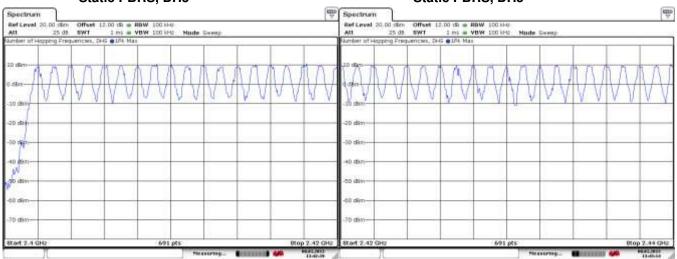
Number of Hopping Frequencies

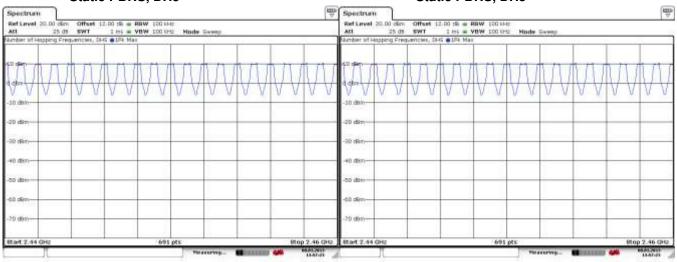
The EUT met the requirements of the number of hopping frequencies as per 47 CFR 15.247(a) and RSS-210. Bluetooth was operating in frequency hopping (Euro/US) mode.

Using pattern type "Static PBRS" and packet type "DH5" during the measurements.

Limit	Number of Hopping Frequencies
(CH)	(CH)
≥75	79

See figures 4-13 to 4-16 for the plots of the number of hopping frequencies.


Figure 4-14: Number of Hopping Frequencies Static PBRS, DH5

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 4		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Figure 4-15: Number of Hopping Frequencies Static PBRS, DH5

Figure 4-16: Number of Hopping Frequencies Static PBRS, DH5

Time of Occupancy (Dwell Time)

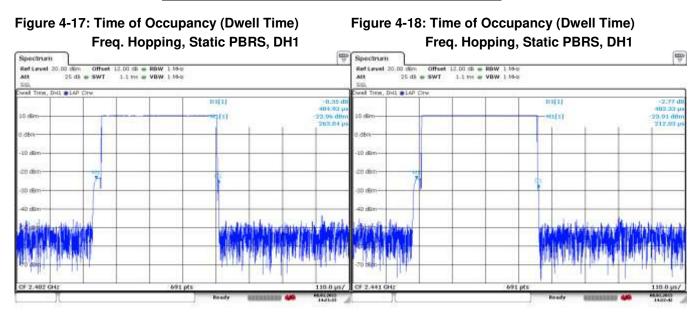
The EUT met the requirements of the time of occupancy (dwell time) as per 47 CFR 15.247(a) and RSS-210. Low channel (0), middle channel (39) and high channel (78) were measured in packet types <u>DH1</u>, <u>DH3</u> and <u>DH5</u>. Bluetooth was operating in frequency hopping (Euro/US) mode during the measurements. The frequency hopping is 1600 hops per second for a dwell time of 625 µsec for 79 channels.

A DH1 packet needs one time slot for transmitting and one time slot for receiving. The frequency hopping is 800 hops per second with 79 channels which is 10.127 times per second. As per 15.247(a) (iii) "The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed". Therefore for 31.6 seconds (79x0.4) there are 320.0 times of appearance.

A DH3 packet needs one time slot for transmitting and one time slot for receiving. The frequency hopping is 400 hops per second with 79 channels which is 5.06 times per second. Therefore for 31.6 seconds there are 159.9 times of appearance.

A DH5 packet needs one time slot for transmitting and one time slot for receiving. The frequency hopping is 266.7 hops per second with 79 channels which is 3.38 times per second. Therefore for 31.6 seconds there are 106.8 times of appearance.

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013


Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 4		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Bluetooth RF	Conducted Emis	<u>ssion Test Resu</u>	<u>ults</u> cont'd

Bluetooth Channel	Mode	Tx Time (ms)	Dwell Time/31.6 sec. (msec.)	Limit (msec.)	Margin (msec.)
0	DH1	0.4050	0.405 x 320.0 = 129.60	400	270.40
39	DH1	0.4030	0.403 x 320.0 = 128.96	400	271.04
78	DH1	0.4030	0.403 x 320.0 = 128.96	400	271.04
0	DH3	1.6530	1.653 x 320.0 = 528.96	400	135.69
39	DH3	1.6530	1.653 x 320.0 = 528.96	400	135.69
78	DH3	1.6530	1.653 x 320.0 = 528.96	400	135.69
0	DH5	2.9140	2.914 x 320.0 = 932.48	400	88.78
39	DH5	2.9230	2.923 x 320.0 = 935.36	400	87.82
78	DH5	2.9230	2.923 x 320.0 = 935.36	400	87.82

See figures 4-17 to 4-25 for the plots of the dwell time.

Bluetooth RF Conducted Emission Test Results cont'd

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 4		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Figure 4-19: Time of Occupancy (Dwell Time) Freq. Hopping, Static PBRS, DH1

Figure 4-20: Time of Occupancy (Dwell Time) Freq. Hopping, Static PBRS, DH3

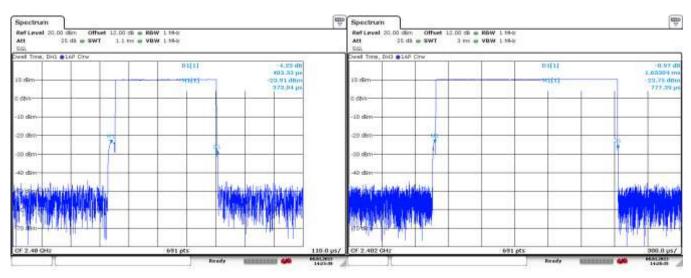
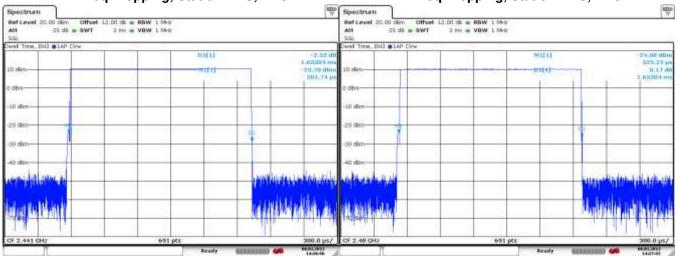



Figure 4-21: Time of Occupancy (Dwell Time) Freq. Hopping, Static PBRS, DH3

Figure 4-22: Time of Occupancy (Dwell Time) Freq. Hopping, Static PBRS, DH3

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

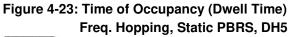
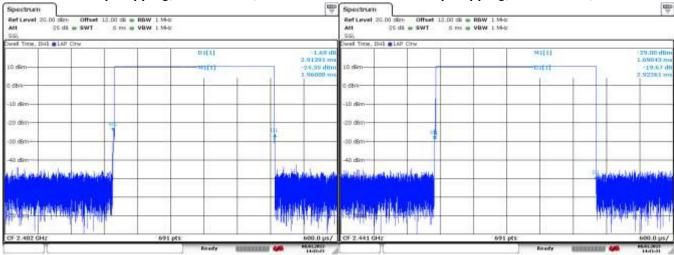
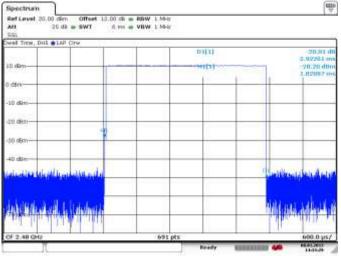




Figure 4-24: Time of Occupancy (Dwell Time) Freq. Hopping, Static PBRS, DH5

Figure 4-25: Time of Occupancy (Dwell Time) Freq. Hopping, Static PBRS, DH5

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Maximum Peak Conducted Output Power

The EUT met the requirements of the maximum peak conducted output power of class 1 as per 47 CFR 15.247(b) and RSS-210. Low channel (0), middle channel (39) and high channel (78) were measured. Bluetooth was operating in single frequency mode during the measurements. A reference offset of 12.4 dB was applied to the spectrum analyzer reference level for the coaxial cable loss and attenuators in the test circuit.

Using pattern type "Static PBRS" and packet type "DH5" during the measurements.

Bluetooth Channel	Measured Level (dBm)	Measured Level (W)	Class 1 Limit (dBm)
0	9.8	0.00955	0.0 to 20.0
39	10.2	0.01047	0.0 to 20.0
78	9.9	0.00977	0.0 to 20.0

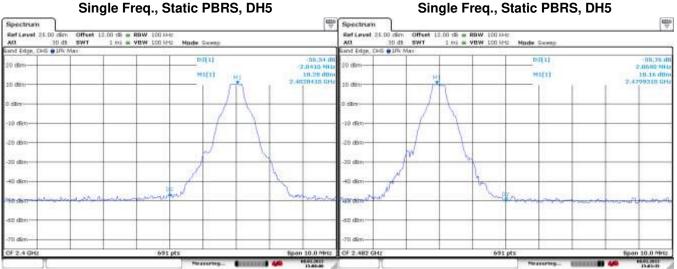
Using Pattern type "Static PBRS" and packet type "2-DH5" during the measurements.

Bluetooth Channel	Measured Level (dBm)	Measured Level (W)	Class 1 Limit (dBm)
0	6.50	0.00447	0.0 to 20.0
39	6.70	0.00468	0.0 to 20.0
78	6.50	0.00447	0.0 to 20.0

Using Pattern type "Static PBRS" and packet type "3-DH5" during the measurements.

Bluetooth Channel	Measured Level (dBm)	Measured Level (W)	Class 1 Limit (dBm)
0	7.52	0.00565	0.0 to 20.0
39	7.16	0.00520	0.0 to 20.0
78	6.10	0.00407	0.0 to 20.0

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW


Band Edge Compliance

The EUT met the requirements of the band edge compliance as per 47 CFR 15.247(c) and RSS-210. Low channel (0) and high channel (78) were measured. Bluetooth was operating in single frequency and hopping mode.

Using pattern type "Static PBRS" and packet type "DH5" during the measurements.

Bluetooth Channel	Operating Mode	Measured Level (dBc)	Limit (dBc)	Margin (dB)
0	Single Frequency	-56.34	-20	-36.34
78	Single Frequency	-58.76	-20	-38.76
0	Hopping	-59.97	-20	-39.97
78	Hopping	-60.97	-20	-40.97

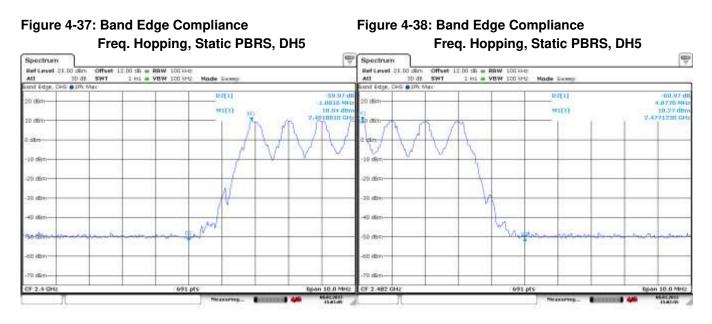
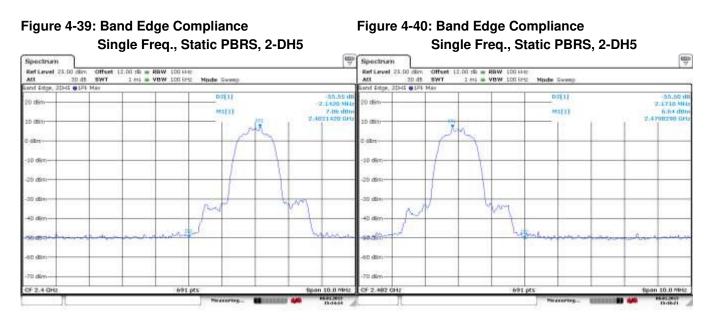
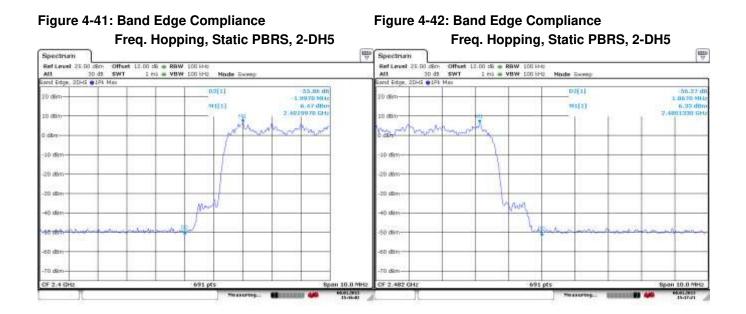

See figures 4-35 to 4-38 for the plots of the band edge compliance measurements.

Figure 4-35: Band Edge Compliance

Figure 4-36: Band Edge Compliance

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

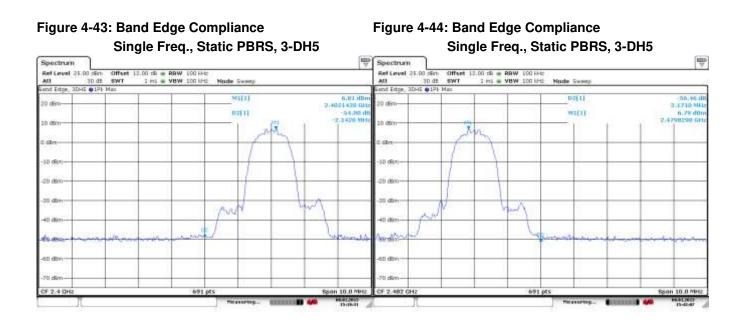



Using pattern type "Static PBRS" and packet type "2-DH5" during the measurements.

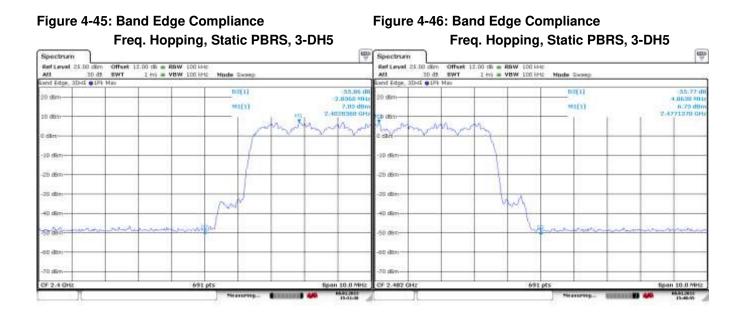
Bluetooth Channel	Operating Mode	Measured Level (dBc)	Limit (dBc)	Margin (dB)
0	Single Frequency	-56.17	-20	-36.17
78	Single Frequency	-55.5	-20	-35.50
0	Hopping	-55.86	-20	-35.86
78	Hopping	-56.27	-20	-36.27

See figures 4-39 to 4-42 for the plots of the band edge compliance measurements.

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW



Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW


Using pattern type "Static PBRS" and packet type "3-DH5" during the measurements.

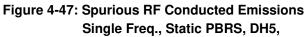
Bluetooth Channel	Operating Mode	Measured Level (dBc)	Limit (dBc)	Margin (dB)
0	Single Frequency	-54.00	-20	-34.00
78	Single Frequency	-56.46	-20	-36.46
0	Hopping	-55.86	-20	-35.86
78	Hopping	-55.77	-20	-35.77

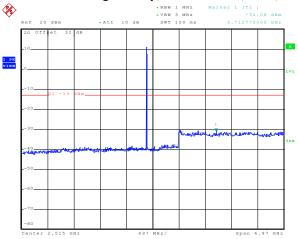
See figures 4-43 to 4-46 for the plots of the band edge compliance measurements.

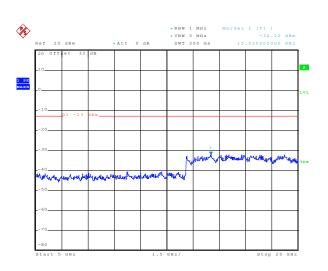
Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Spurious RF Conducted Emissions


The EUT met the requirements of the spurious RF conducted emissions as per 47 CFR 15.247(c) and RSS-210. Low channel (0), mid channel (39) and high channel (78) were measured. Bluetooth was operating in single frequency and hopping mode. A reference offset of 12.4 dB was applied to the spectrum analyzer reference level for the attenuators and coaxial cable loss in the test circuit.


Using pattern type "Static PBRS" and packet type "DH5" during the measurements.

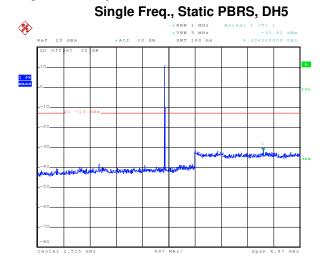
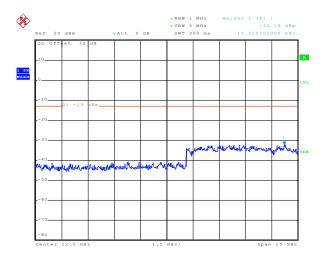

Bluetooth Channel	Channel Power (dBm)	Max. Measured Level (dBm)	Max. Measured Level from carrier (dBc)	Limit (dBc)
0.00	9.80	-31.06	-40.86	-20.00
39.00	10.20	-31.91	-42.11	-20.00
78.00	9.90	-31.88	-41.78	-20.00
Hopping mode	9.80	-31.12	-40.92	-20.00

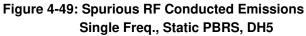
See figures 4-47 to 4-50 for the plots of the spurious RF conducted emissions.

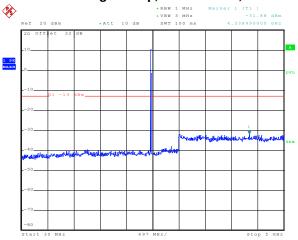
Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

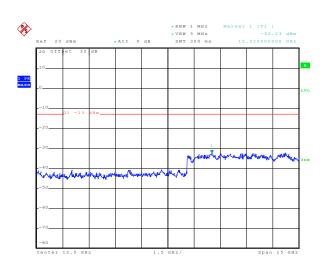
Date: 8.JAN.2013 16:09:57

Date: 8.JAN.2013 16:18:05

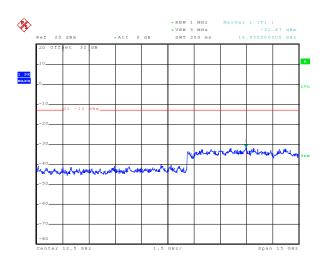

Figure 4-48: Spurious RF Conducted Emissions




Date: 8.JAN.2013 16:11:17

Date: 8.JAN.2013 16:18:54

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW



Date: 8.JAN.2013 16:12:06

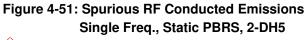
Date: 8.JAN.2013 16:19:48

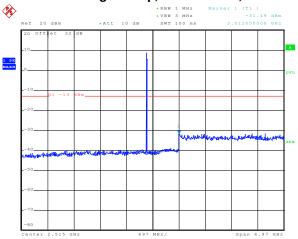
Freq. Hopping, Static PBRS, DH5 Marker 1 [T1] -31.12 dBm * RBW 1 MHz * VBW 3 MHz SWT 100 ms **%** Ref 20 dBm * Att 10 dB 1 93 Charles I

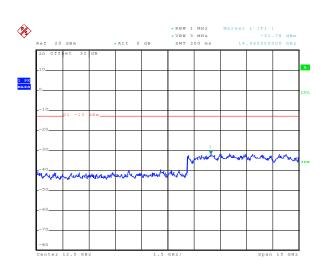
Figure 4-50: Spurious RF Conducted Emissions

Date: 8.JAN.2013 16:13:55

Date: 8.JAN.2013 16:20:38

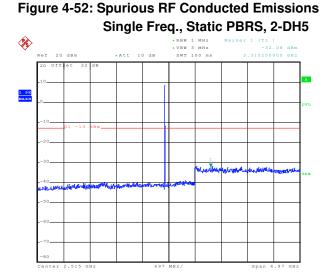

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 4		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

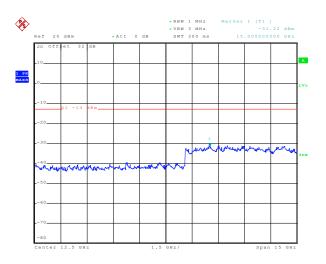

Using pattern type "Static PBRS" and packet type "2-DH5" during the measurements.


Bluetooth Channel	Channel Power (dBm)	Max. Measured Level (dBm)	Max. Measured Level from carrier (dBc)	Limit (dBc)
0.00	6.40	-31.49	-37.89	-20.00
39.00	6.60	-32.08	-38.68	-20.00
78.00	6.50	-32.16	-38.66	-20.00
Hopping mode	6.40	-31.24	-37.64	-20.00

See figures 4-51 to 4-54 for the plots of the spurious RF conducted emissions.

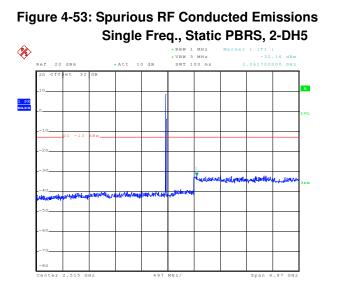
Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 4		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

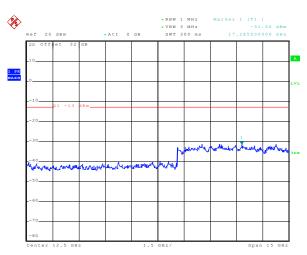




Date: 8.JAN.2013 17:09:13

Date: 8.JAN.2013 16:25:30

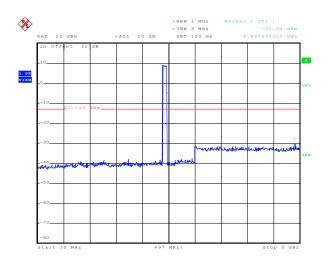




Date: 8.JAN.2013 17:08:00

Date: 8.JAN.2013 16:54:55

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 4		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	



Date: 8.JAN.2013 17:07:18

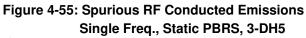
Date: 8.JAN.2013 16:59:08

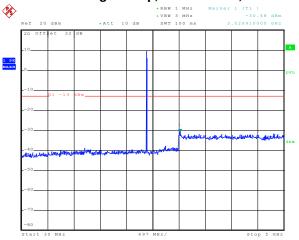
Freq. Hopping, Static PBRS, 2-DH5 *RBW 1 MHz *VBW 3 MHz SWT 100 ms **%** Ref 20 dBm • Att 10 dB 1 PK VIEW

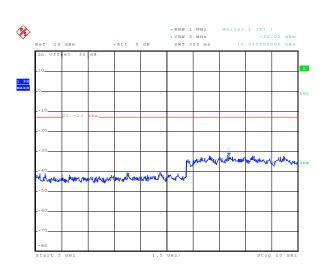
Figure 4-54: Spurious RF Conducted Emissions

Date: 8.JAN.2013 17:06:37

Date: 8.JAN.2013 17:06:37

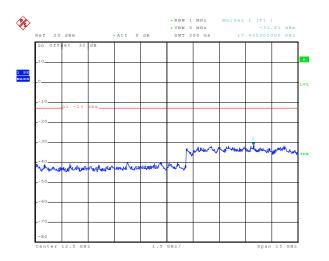

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 4		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	


Using pattern type "Static PBRS" and packet type "<u>3-DH5"</u> during the measurements.


Bluetooth Channel	Channel Power (dBm)	Max. Measured Level (dBm)	Max. Measured Level from carrier (dBc)	Limit (dBc)
0.00	6.50	-30.68	-37.18	-20.00
39.00	6.70	-31.61	-38.31	-20.00
78.00	6.50	-31.26	-37.76	-20.00
Hopping mode	6.50	-30.83	-37.33	-20.00

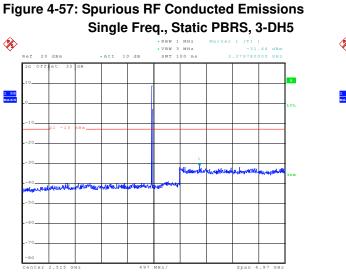
See figures 4-55 to 4-58 for the plots of the spurious RF conducted emissions.

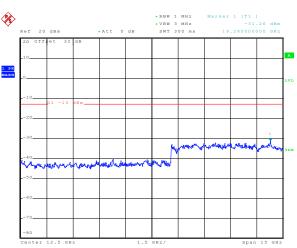
Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 4		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	



Date: 9.JAN.2013 10:52:25

Date: 9.JAN.2013 11:07:28

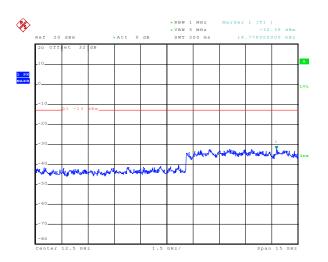

Figure 4-56: Spurious RF Conducted Emissions



Date: 9.JAN.2013 10:53:18

Date: 9.JAN.2013 11:06:47

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 4		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	



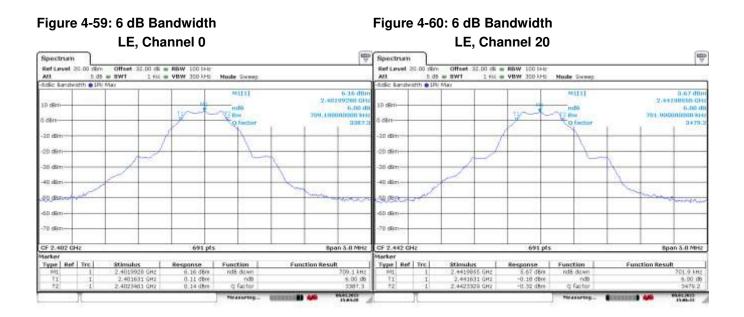
Date: 9.JAN.2013 10:54:23

Date: 9.JAN.2013 11:03:17

Figure 4-58: Spurious RF Conducted Emissions

Date: 9.JAN.2013 10:59:39

Date: 9.JAN.2013 11:01:59


Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 4		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

6 dB Bandwidth

The EUT met the requirements of the 6 dB bandwidth as per 47 CFR 15.247(a)(2) and RSS-210. Channels 0, 20 and 39 were measured.

Channel	Limit (kHz)	Measured Level (MHz)
0	≥ 500	672.90
20	≥ 500	665.00
39	≥ 500	670.00

See figures 4-59 to 4-61 for the plots of the 6 dB bandwidth measurements for Channels 0, 20, and 39.

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 4		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Figure 4-61: 6 dB Bandwidth LE. Channel 39

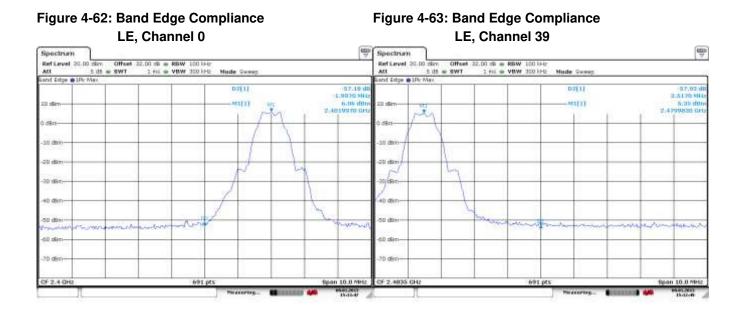
Spectrum Ref Level 2 Att		Offset : e SWT		BBW 100 H		Sweep			1	
Adlic Bandwi	utth 😐 1Pk	Mas								
10 dBm				y	-VE BA				5,31 d00 97030 GH 6,00 d8 000000 kH 1530.3	
-10 d0m		-	7	A	~	1	-	-		
-20 d9m		1	1	-		L	-	-		
-30 dim		1					N			
40 dim-	1	-					1	-		
恐勇的								Sec. Mar	a sure p	
-60 d9m		-					-	-		
-70 dBm-		-		-		-	+	-	-	
CF 2.48 CH				691)	XIS .	_	-	800	n 5.0 MHz	
Type Ref	Trel	Stimula		Response	Fund	line 1	Euro	ction Result		
Mt	1	2.47997	83 GH2					701.9 kHz		
71	1	2.47962		-0.53 dBr -0.69 dBr		nd8 factor			8.00.09	
	11				Piere	servic.	Courses of	444	MAX.NET	

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Maximum Conducted Output Power

The EUT met the requirements of the maximum conducted output power of class 2 as per 47 CFR 15.247(b)(3) and RSS-210. Channels 0, 20 and 39 were measured using an Agilent power meter, model N1911A with model N1921A power sensor. A reference offset of 6.4 dB was applied to the power meter reference level for the coaxial cable loss and attenuators in the test circuit.

Channel	Class 2 Limit (W)	Measured Level (dBm)	Measured Level (W)
0	< 1.00	7.75	5.956621435
20	< 1.00	7.3	5.370317964
39	< 1.00	6.28	4.246195639


Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Band Edge Compliance

The EUT met the requirements of the band edge compliance as per 47 CFR 15.247(c) and RSS-210. Channels 0 and 39 were measured.

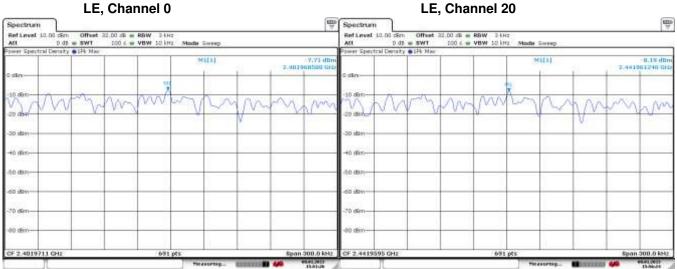
Channel	Limit (dBc)	Measured Level (dBc)	Margin (dBc)
0	< -20	-41.13	-21.13
39	< -20	-43.32	-23.32

See figures 4-62 to 4-63 for the plots of the band edge compliance measurements for Channels 0 and 39.

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Peak Power Spectral Density

The EUT met the requirements of the peak power spectral density as per 47 CFR 15.247(d) and RSS-210. Channels 0, 20 and 39 were measured.


Channel	Limit (dBm)	Measured Level (dBm)	Margin (dBm)
0	< 8.00	-6.73	-14.73
20	< 8.00	-7.09	-15.09
39	< 8.00	-7.89	-15.89

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 4	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

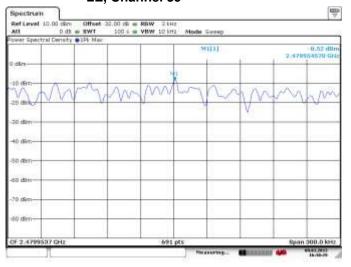
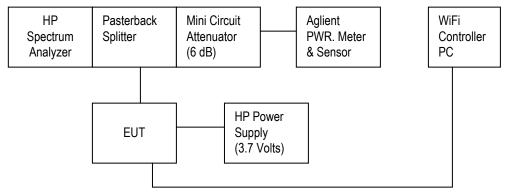

See figures 4-64 to 4-66 for the plots of the peak power spectral density for Channels 0, 20 and 39.

Figure 4-64: Peak Power Spectral Density

Figure 4-65: Peak Power Spectral Density


Figure 4-66: Peak Power Spectral Density LE, Channel 39

APPENDIX 5 – 802.11b/g/n CONDUCTED EMISSIONS TEST DATA/PLOTS

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 5	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

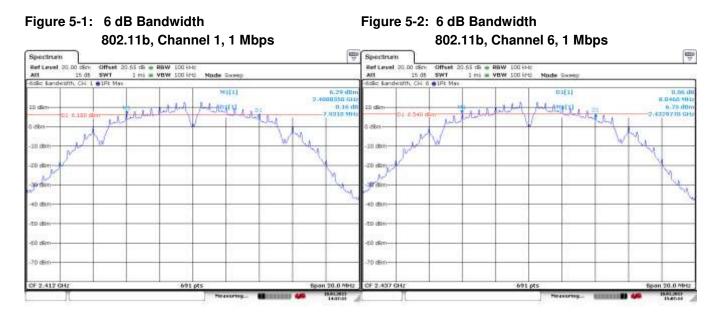
Test Setup Diagram

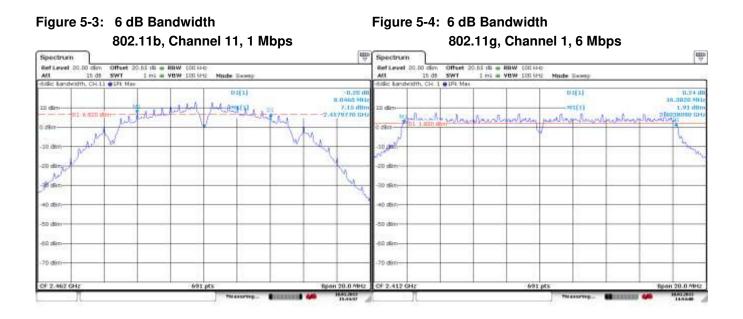
A reference offset of 20.4 dB was applied to the spectrum analyzer and 6.6 dB was applied to the Power Meter reference level for the attenuators and coaxial cable loss in the test circuit.

Date of test: January 11-14, 2013 The measurements on the BlackBerry[®] smartphone were performed by Kevin Guo.

The environmental test conditions were:	Temperature:	22.6-22.8ºC
	Relative Humidity:	29.5-23.9 %

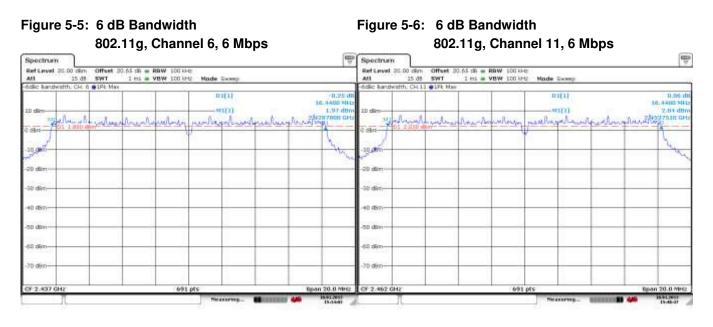
Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 5	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

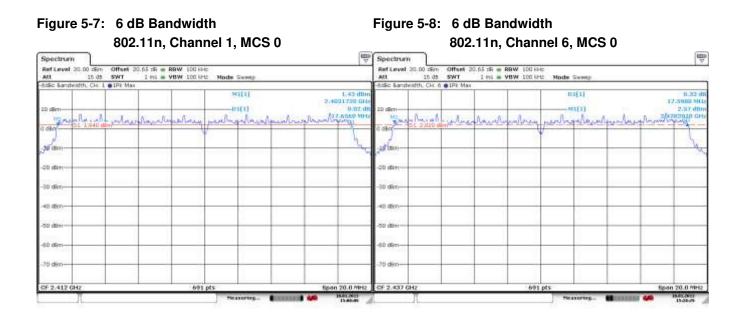

6 dB Bandwidth


The EUT met the requirements of the 6 dB bandwidth as per 47 CFR 15.247(a)(2) and RSS-210. Channels 1, 6 and 11 were measured at 1 Mbps, 5.5 Mbps, and 11 Mbps each for 802.11b mode, 6 Mbps, 24 Mbps, and 54 Mbps each for 802.11g mode, and MCS 0, 4, and 7 for 802.11n mode.

Channel	Data Rate	Limit (kHz)	Measured Level (MHz)
	1 Mbps	≥ 500	7.93
	5.5 Mbps	≥ 500	8.25
	11 Mbps	≥ 500	7.47
	6 Mbps	≥ 500	16.38
1	24 Mbps	≥ 500	15.56
	54 Mbps	≥ 500	16.59
	MCS 0	≥ 500	17.66
	MCS 4	≥ 500	17.77
	MCS 7	≥ 500	17.78
	1 Mbps	≥ 500	8.05
	5.5 Mbps	≥ 500	7.61
	11 Mbps	≥ 500	7.50
	6 Mbps	≥ 500	16.44
6	24 Mbps	≥ 500	16.56
	54 Mbps	≥ 500	16.56
	MCS 0	≥ 500	17.60
	MCS 4	≥ 500	17.77
	MCS 7	≥ 500	17.77
	1 Mbps	≥ 500	8.05
	5.5 Mbps	≥ 500	8.48
	11 Mbps	≥ 500	8.25
	6 Mbps	≥ 500	16.44
11	24 Mbps	≥ 500	16.56
	54 Mbps	≥ 500	16.56
	MCS 0	≥ 500	17.66
	MCS 4	≥ 500	17.77
	MCS 7	≥ 500	17.78

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 5	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW


See figures 5-1 to 5-9 for the plots of the 6 dB bandwidth measurements for Channels 1, 6, and 11, at 1 Mbps each for 802.11b mode, 6 Mbps each for 802.11g mode, and MCS 0 each for 802.11n mode.



This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013 Page 102 of 152

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 5		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 5		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Figure 5-9: 6 dB Bandwidth 802.11n, Channel 11, MCS 0

Distin	mulue	untrint	nea purchas	0.06 dt 17.6560 MHz 1.14 dtm 2/4551.720 GH 2/4551.720 GH
aer			Ψ.	h.
2D dam				
30 d9m;				
40 dBm				
50 dBm				
20 dem				

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 5		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Maximum Conducted Output Power

The EUT met the requirements of the maximum conducted output power of class 2 as per 47 CFR 15.247(b)(3) and RSS-210. Channels 1, 6 and 11 were measured at 1 Mbps, 5.5 Mbps, and 11 Mbps each for 802.11b mode, 6 Mbps, 24 Mbps, and 54 Mbps each for 802.11g mode, and MCS 0, 4 and 7 for 802.11n mode using an Aglient power meter, model N1911A with model N1921A power sensor. A reference offset of 18.4 dB was applied to the power meter reference level for the coaxial cable loss and attenuators in the test circuit.

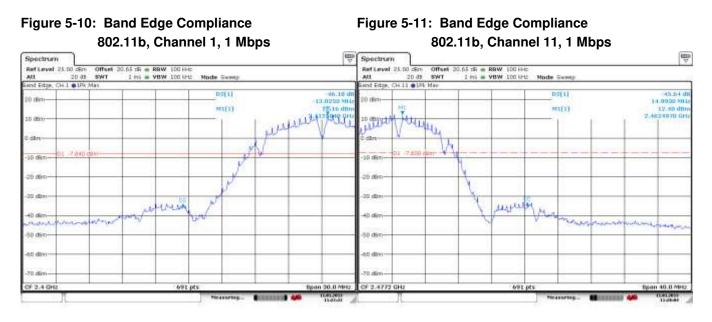
Channel	Data Rate	Class 2 Limit (W)	Measured Level (dBm)	Measured Level (mW)
	1 Mbps	< 1.00	19.28	84.77
	5.5 Mbps	< 1.00	19.07	80.82
	11 Mbps	< 1.00	19.09	81.07
	6 Mbps	< 1.00	16.27	42.39
1	24 Mbps	< 1.00	15.88	38.73
	54 Mbps	< 1.00	14.48	28.03
	MCS 0	< 1.00	16.17	41.42
	MCS 4	< 1.00	13.58	22.80
	MCS 7	< 1.00	12.22	16.68
	1 Mbps	< 1.00	19.49	89.01
	5.5 Mbps	< 1.00	19.33	85.62
	11 Mbps	< 1.00	19.25	84.09
	6 Mbps	< 1.00	18.88	77.35
6	24 Mbps	< 1.00	16.44	44.01
	54 Mbps	< 1.00	14.86	30.62
	MCS 0	< 1.00	16.41	43.71
	MCS 4	< 1.00	13.81	24.05
	MCS 7	< 1.00	12.49	17.72

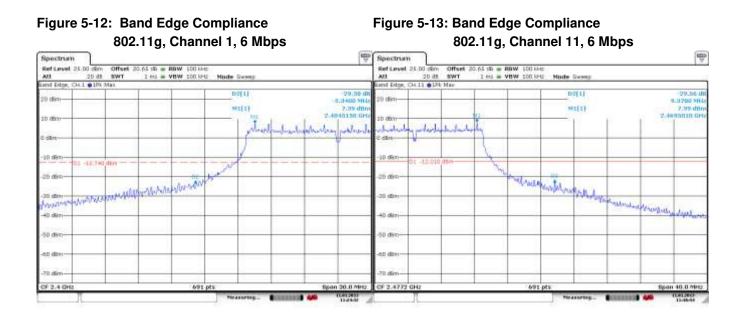
Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 5		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Channel	Data Rate	Class 2 Limit (W)	Measured Level (dBm)	Measured Level (mW)
	1 Mbps	< 1.00	19.21	83.33
	5.5 Mbps	< 1.00	19.05	80.38
	11 Mbps	< 1.00	19.00	79.44
	6 Mbps	< 1.00	12.94	19.68
11	24 Mbps	< 1.00	12.61	18.23
	54 Mbps	< 1.00	12.14	16.38
	MCS 0	< 1.00	12.88	19.42
	MCS 4	< 1.00	12.30	17.00
	MCS 7	< 1.00	11.97	15.73

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 5		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Band Edge Compliance


The EUT met the requirements of the band edge compliance as per 47 CFR 15.247(c) and RSS-210. Channels 1 and 11 were measured at 1 Mbps, 5.5 Mbps, and 11 Mbps each for 802.11b mode, 6 Mbps, 24 Mbps, and 54 Mbps each for 802.11g mode, and MCS 0, 4 and 7 for 802.11n mode.


Channel	Data Rate	Limit (dBc)	Measured Level (dBc)	Margin (dBc)
	1 Mbps	< -20	-46.18	-26.18
	5.5 Mbps	< -20	-46.09	-26.09
	11 Mbps	< -20	-46.11	-26.11
	6 Mbps	< -20	-29.38	-9.38
1	24 Mbps	< -20	-29.26	-9.26
	54 Mbps	< -20	-29.19	-9.19
	MCS 0	< -20	-28.72	-8.72
	MCS 4	< -20	-28.61	-8.61
	MCS 7	< -20	-28.65	-8.65
	1 Mbps	< -20	-45.64	-25.64
	5.5 Mbps	< -20	-45.49	-25.49
	11 Mbps	< -20	-45.46	-25.46
	6 Mbps	< -20	-29.56	-9.56
11	24 Mbps	< -20	-29.51	-9.51
	54 Mbps	< -20	-29.40	-9.40
	MCS 0	< -20	-29.86	-9.86
	MCS 4	< -20	-29.75	-9.75
	MCS 7	< -20	-29.72	-9.72

See figures 5-10 to 5-15 for the plots of the band edge compliance measurements for Channels 1 and 11, at 1 Mbps each for 802.11b mode, 6 Mbps each for 802.11g mode, and MCS 0 each for 802.11n mode.

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013 Page 107 of 152

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 5		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 5		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Figure 5-14: Band Edge Compliance 802.11n, Channel 1, MCS 0

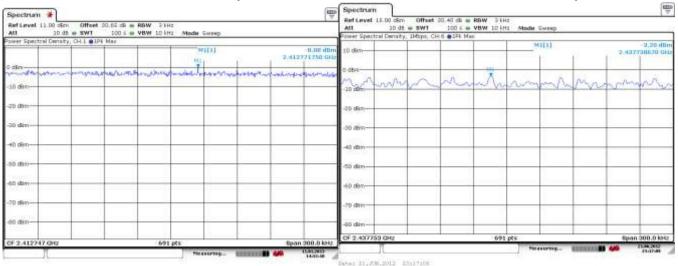
Figure 5-15: Band Edge Compliance 802.11n, Channel 11, MCS 0

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 5		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Peak Power Spectral Density

The EUT met the requirements of the peak power spectral density as per 47 CFR 15.247(d) and RSS-210. Channels 1, 6 and 11 were measured at 1 Mbps, 5.5 Mbps, and 11 Mbps each for 802.11b mode, 6 Mbps, 24 Mbps, and 54 Mbps each for 802.11g mode, and MCS 0, 4, and 7 for 802.11n mode.

Channel	Data Rate	Limit (dBm)	Measured Level (dBm)	Margin (dBm)
	1 Mbps	< 8.00	-0.08	-8.08
	5.5 Mbps	< 8.00	-1.79	-9.79
	11 Mbps	< 8.00	-2.05	-10.05
	6 Mbps	< 8.00	-6.12	-14.12
1	24 Mbps	< 8.00	-8.04	-16.04
	54 Mbps	< 8.00	-9.16	-17.16
	MCS 0	< 8.00	-5.32	-13.32
	MCS 4	< 8.00	-7.43	-15.43
	MCS 7	< 8.00	-7.96	-15.96
	1 Mbps	< 8.00	-0.47	-8.47
	5.5 Mbps	< 8.00	-2.14	-10.14
	11 Mbps	< 8.00	-2.69	-10.69
	6 Mbps	< 8.00	-6.03	-14.03
6	24 Mbps	< 8.00	-7.84	-15.84
	54 Mbps	< 8.00	-9.16	-17.16
	MCS 0	< 8.00	-4.97	-12.97
	MCS 4	< 8.00	-7.24	-15.24
	MCS 7	< 8.00	-7.52	-15.52
	1 Mbps	< 8.00	0.07	-7.93
	5.5 Mbps	< 8.00	-1.71	-9.71
	11 Mbps	< 8.00	-2.12	-10.12
	6 Mbps	< 8.00	-5.55	-13.55
11	24 Mbps	< 8.00	-7.80	-15.80
	54 Mbps	< 8.00	-8.61	-16.61
	MCS 0	< 8.00	-5.44	-13.44
	MCS 4	< 8.00	-7.52	-15.52
	MCS 7	< 8.00	-7.95	-15.95


This report shall NOT be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 5		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

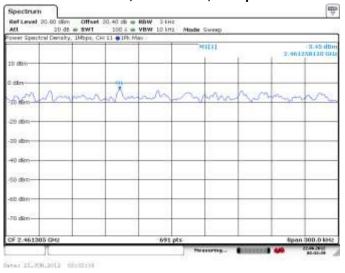
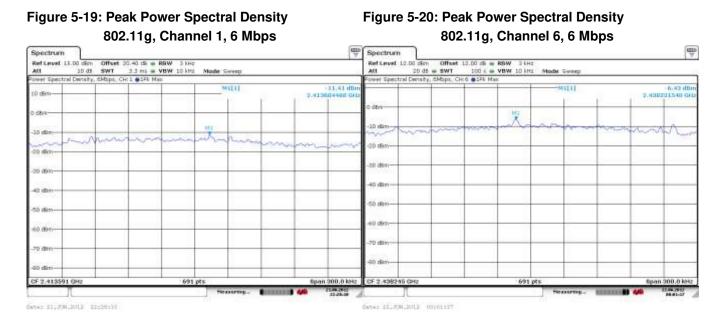
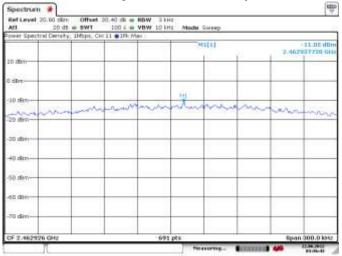

See figures 5-16 to 5-24 for the plots of the peak power spectral density for Channels 1, 6 and 11, at 1 Mbps each for 802.11b mode, 6 Mbps each for 802.11g mode, and MCS 0 for 802.11n mode.

Figure 5-16: Peak Power Spectral Density 802.11b, Channel 1, 1 Mbps




Figure 5-18: Peak Power Spectral Density 802.11b, Channel 11, 1 Mbps

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 5		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Figure 5-21: Peak Power Spectral Density 802.11g, Channel 11, 6 Mbps

Dates: 12. JUN, 2012 00.056:42

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 5		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

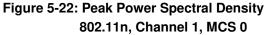


Figure 5-23: Peak Power Spectral Density 802.11n, Channel 6, MCS 0

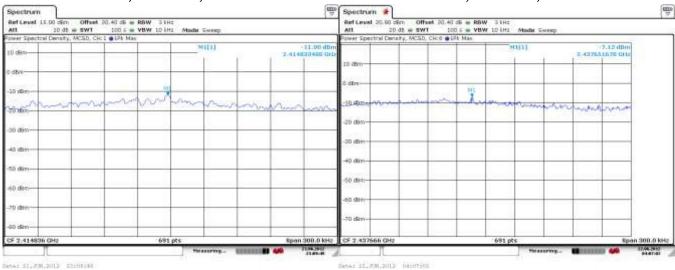
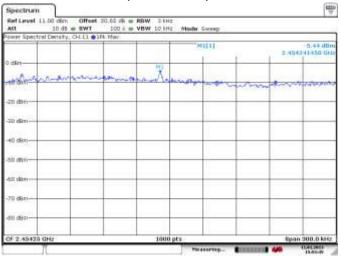



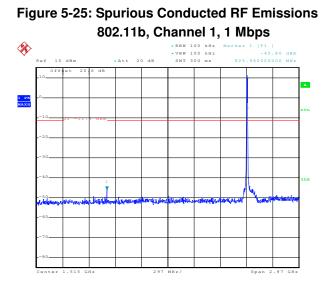
Figure 5-24: Peak Power Spectral Density 802.11n, Channel 11, MCS 0

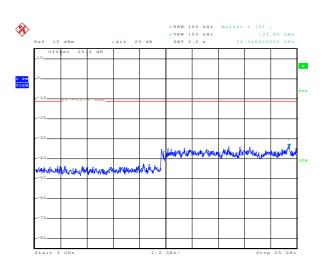
Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 5		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Spurious RF Conducted Emissions

The EUT met the requirements of the spurious RF conducted emissions as per 47 CFR 15.247(c) and RSS-210. Channels 1, 6 and 11 were measured at 1 Mbps, 5.5 Mbps, and 11 Mbps each for 802.11b mode, 6 Mbps, 24 Mbps, and 54 Mbps each for 802.11g mode, and MCS 0, 4, and 7 for 802.11n mode. Peak power was measured using an Agilent power meter, model N1911A with model N1921A power sensor. A reference offset of 18.4 dB was applied to the power meter reference level for the coaxial cable loss and attenuators in the test circuit.

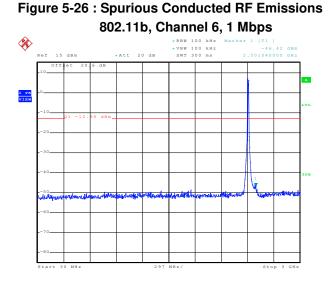
Channel	Data Rate	Power (dBm)	Max. Measured Level (dBm)	Max. Measured Level from Carrier (dBc)	Limit (dBc)
	1 Mbps	18.21	-43.80	-62.01	-20
	5.5 Mbps	18.01	-44.11	-62.12	-20
	11 Mbps	18	-44.26	-62.26	-20
	6 Mbps	17.72	-46.42	-64.14	-20
1	24 Mbps	14.91	-47.29	-62.2	-20
	54 Mbps	13.46	-47.35	-60.81	-20
	MCS 0	17.7	-47.20	-64.9	-20
	MCS 4	14.7	-48.64	-63.34	-20
	MCS 7	13.28	-48.71	-61.99	-20
	1 Mbps	18.88	-43.88	-62.76	-20
	5.5 Mbps	18.663	-43.71	-62.373	-20
	11 Mbps	18.61	-44.46	-63.07	-20
	6 Mbps	17.88	-48.76	-66.64	-20
6	24 Mbps	15.12	-48.36	-63.48	-20
	54 Mbps	13.49	-46.80	-60.29	-20
	MCS 0	17.95	-48.10	-66.05	-20
	MCS 4	14.94	-48.23	-63.17	-20
	MCS 7	13.51	-48.78	-62.29	-20

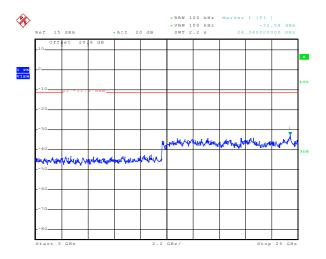

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 5		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	


Channel	Data Rate	Power (dBm)	Max. Measured Level (dBm)	Max. Measured Level from Carrier (dBc)	Limit (dBc)
	18.85	-44.00	-62.85	18.85	-20
	18.62	-44.23	-62.85	18.62	-20
	18.57	-48.21	-66.78	18.57	-20
	17.85	-48.43	-66.28	17.85	-20
11	15.12	-48.11	-63.23	15.12	-20
	13.52	-48.42	-61.94	13.52	-20
	17.93	-48.37	-66.3	17.93	-20
	14.9	-48.28	-63.18	14.9	-20
	13.5	-48.34	-61.84	13.5	-20

The emissions were in the NF.

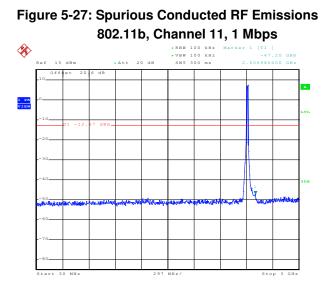
See figures 5-25 to 5-33 for the plots of the spurious RF conducted emissions for Channels 1, 6 and 11, at 1 Mbps each for 802.11b mode, 6 Mbps each for 802.11g mode, and MCS 0 each for 802.11n mode.

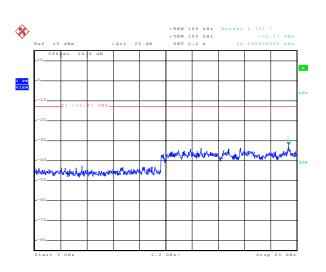

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 5		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	



Date: 11.JAN.2013 17:08:15

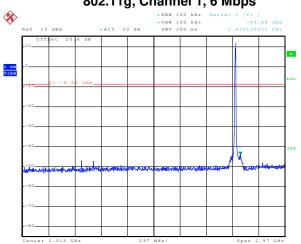
Date: 11.JAN.2013 17:10:13

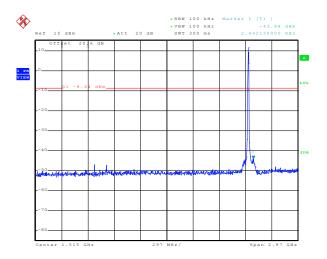




Date: 11.JAN.2013 17:13:22

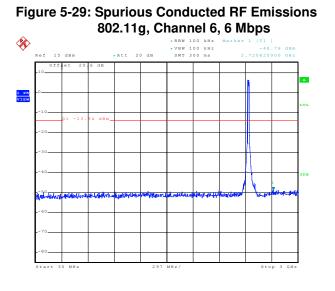
Date: 11.JAN.2013 17:11:13

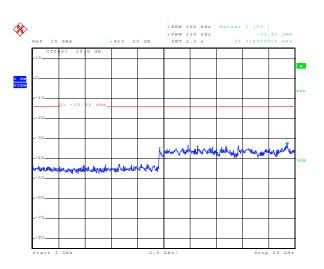

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 5		
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	



Date: 11.JAN.2013 17:14:45

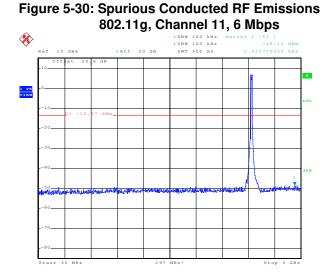
Date: 11.JAN.2013 17:16:22

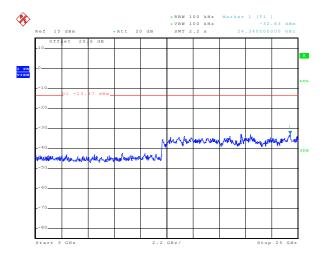



Date: 14.JAN.2013 09:55:10

Date: 14.JAN.2013 09:55:10

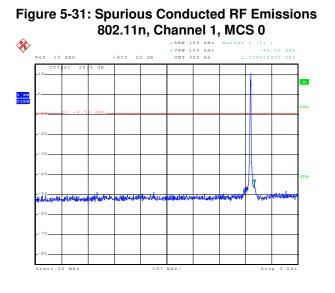
Figure 5-28: Spurious Conducted RF Emissions 802.11g, Channel 1, 6 Mbps

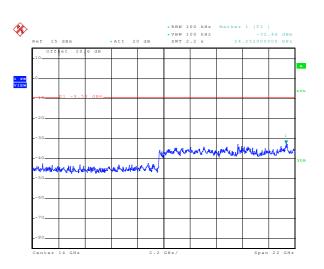

Rear Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services"	APPENDIX 5	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW



Date: 14.JAN.2013 09:58:21

Date: 14.JAN.2013 10:00:13

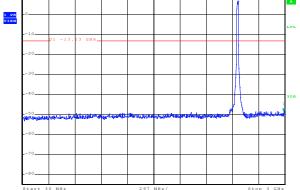


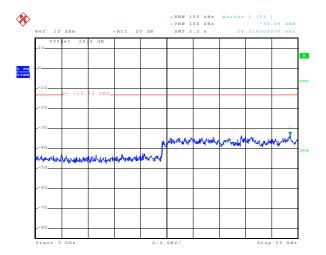


Date: 14.JAN.2013 10:06:35

Date: 14.JAN.2013 10:08:47

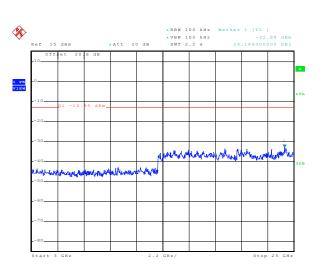
Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 5	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW





Date: 14.JAN.2013 10:14:00

Date: 14.JAN.2013 10:33:41

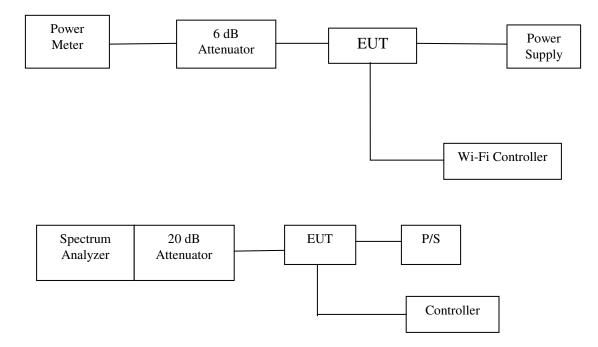


Date: 14.JAN.2013 10:36:22

Date: 14.JAN.2013 10:37:41

Rear Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services"	APPENDIX 5	
Test Report No. RTS-6026-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Date: 14.JAN.2013 10:40:21


Date: 14.JAN.2013 10:41:16

APPENDIX 6 – 802.11a/n CONDUCTED EMISSIONS TEST DATA/PLOTS

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

802.11a/n RF Conducted Emission Test Results

Test Setup Diagram

A reference offset of 8.9 dB was applied to the spectrum analyzer and 7.4 dB to the Power Meter reference level for the attenuators and coaxial cable loss in the test circuit.

Date of test: January 21, 2013 The measurements were performed by Berkin Can.

The environmental test conditions were:	Temperature:	22.5 ⁰C
	Relative Humidity:	19.2 %

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

6 dB Bandwidth

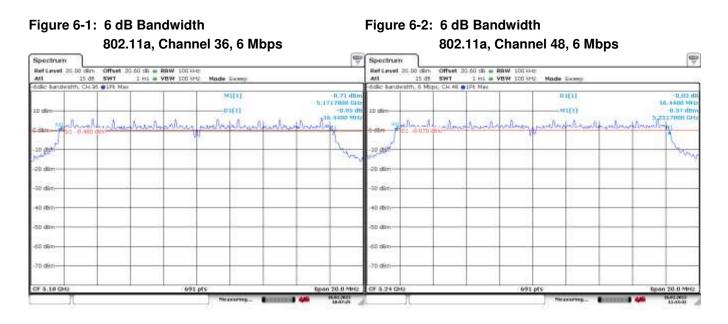
The EUT met the requirements of the 6 dB bandwidth as per 47 CFR 15.247(a) (2) and RSS-210. Channels 36, 48, 64, 100, 140, and 165 were measured at 6 Mbps, 24 Mbps, and 54 Mbps each for 802.11a mode.

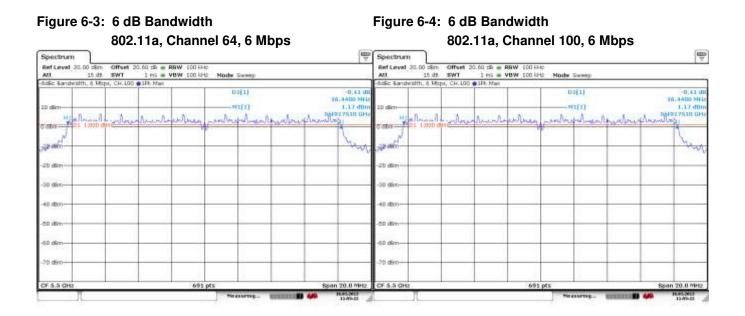
Channel	Data Rate	Limit (kHz)	Measured Level (MHz)
	6 Mbps	≥ 500	16.44
36	24 Mbps	≥ 500	16.56
	54 Mbps	≥ 500	16.56
	6 Mbps	≥ 500	16.44
48	24 Mbps	≥ 500	16.56
	54 Mbps	≥ 500	16.58
	6 Mbps	≥ 500	16.47
64	24 Mbps	≥ 500	16.53
	54 Mbps	≥ 500	16.56
	6 Mbps	≥ 500	16.44
100	24 Mbps	≥ 500	16.56
	54 Mbps	≥ 500	16.58
	6 Mbps	≥ 500	16.38
140	24 Mbps	≥ 500	16.56
	54 Mbps	≥ 500	16.56
	6 Mbps	≥ 500	16.44
165	24 Mbps	≥ 500	16.56
	54 Mbps	≥ 500	16.58

See figures 6-1 to 6-6 for the plots of the 6 dB bandwidth measurements for Channel 36, 48, 64, 100, 140, and 165 at 6 Mbps each for 802.11a mode.

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

802.11n RF Conducted Emission Test Results

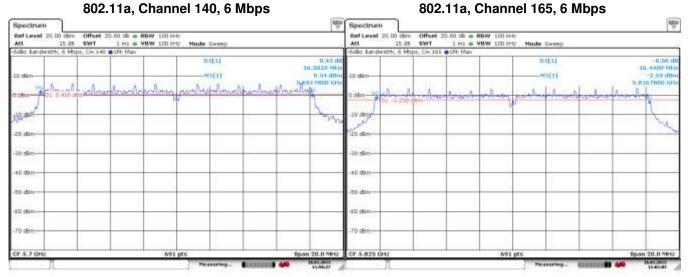

6 dB Bandwidth


The EUT met the requirements of the 6 dB bandwidth as per 47 CFR 15.247(a) (2) and RSS-210. Channels 36, 64 and 165 were measured at MCS 0, MCS 4 an MCS 7 each for 802.11n mode.

Channel	Data Rate	Limit (kHz)	Measured Level (MHz)
	MCS0	≥ 500	17.63
36	MCS4	≥ 500	17.77
	MCS7	≥ 500	17.77
	MCS0	≥ 500	17.63
64	MCS4	≥ 500	17.74
	MCS7	≥ 500	17.77
	MCS0	≥ 500	17.63
165	MCS4	≥ 500	17.74
	MCS7	≥ 500	17.74

See figures 6-7 to 6-9 for the plots of the 6 dB bandwidth measurements for Channel 36, 100 and 165 at MCS 0 each for 802.11n mode.

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW



This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services - A division of Research in Motion Limited. Copyright 2005-2013 Page 125 of 152

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Figure 6-5: 6 dB Bandwidth

Figure 6-6: 6 dB Bandwidth

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

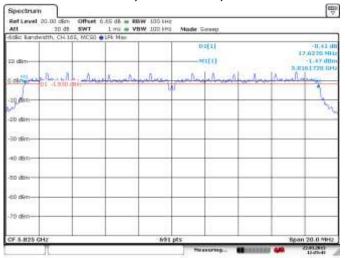

802.11n RF Conducted Emission Test Results

Figure 6-8: 6 dB Bandwidth

Figure 6-7: 6 dB Bandwidth

802.11n, Channel 36, MCS 0 802.11n, Channel 100, MCS 0 5 Æ Spectrum Spectrum Offset 0.55 db = 989W 100 kHz SWT 1 mil = VBW 100 kHz MCSD =1Pk Max Ref Level 20.00 dia Ref Level 20.00 dim Offset 6.85 dB = 98W 100 1H SWT MCSD 5D d8 50 d8 SWT - VBW 100 kHz 0.56 0.56 d 17.0270 MI 17.0266 M -0,09 d0 TELEP TTTT .1 A 10 dt 0.45 10 16 0 (9) 5.18 0 691 pt 20.0 M 691 p 20.0 M 2.012

Figure 6-9: 6 dB Bandwidth 802.11n, Channel 165, MCS 0

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Maximum Conducted Output Power

The EUT met the requirements of the maximum conducted output power of class 2 as per 47 CFR 15.407 and RSS-210. Channels 36, 48, 52, 60, 64, 100, 140 and 165 were measured for 802.11a mode using an Agilent power meter, model N1911A with model N1921A power sensor. A reference offset of 8.9 dB was applied to the power meter reference level for the coaxial cable loss and attenuators in the test circuit.

Channel	Data Rate	Class 2 Limit (W)	Measured Level (dBm)	Measured Level (mW)
	6 Mbps	< 1.00	13.10	20.43
36	24 Mbps	< 1.00	12.75	18.86
	54 Mbps	< 1.00	12.28	16.92
	6 Mbps	< 1.00	13.07	20.29
48	24 Mbps	< 1.00	12.54	17.96
	54 Mbps	< 1.00	12.08	16.14
	6 Mbps	< 1.00	14.99	31.59
52	24 Mbps	< 1.00	14.56	28.59
	54 Mbps	< 1.00	14.07	25.52
	6 Mbps	< 1.00	15.05	31.99
60	24 Mbps	< 1.00	14.62	28.97
	54 Mbps	< 1.00	14.16	26.06
	6 Mbps	< 1.00	12.71	18.67
64	24 Mbps	< 1.00	12.33	17.10
	54 Mbps	< 1.00	11.84	15.27
	6 Mbps	< 1.00	12.80	19.07
100	24 Mbps	< 1.00	12.36	17.23
	54 Mbps	< 1.00	11.83	15.23
	6 Mbps	< 1.00	14.27	26.71
140	24 Mbps	< 1.00	13.99	25.05
	54 Mbps	< 1.00	13.35	21.65
	6 Mbps	< 1.00	11.71	14.82
165	24 Mbps	< 1.00	11.35	13.64
	54 Mbps	< 1.00	10.78	11.96

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services"	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

802.11n RF Conducted Emission Test Results

Maximum Conducted Output Power

The EUT met the requirements of the maximum conducted output power of class 2 as per 47 CFR 15.407 and RSS-210. Channels 36, 48, 52, 60, 64, 100, 140 and 165 were measured for 802.11n mode using an Agilent power meter, model N1911A with model N1921A power sensor. A reference offset of 8.9 dB was applied to the power meter reference level for the coaxial cable loss and attenuators in the test circuit.

Channel	Data Rate	Class 2 Limit (W)	Measured Level (dBm)	Measured Level (mW)
	6 Mbps	< 1.00	13.08	20.32
36	24 Mbps	< 1.00	12.47	17.66
	54 Mbps	< 1.00	12.08	16.14
	6 Mbps	< 1.00	12.86	19.32
48	24 Mbps	< 1.00	12.18	16.52
	54 Mbps	< 1.00	11.91	15.51
	6 Mbps	< 1.00	14.92	31.03
52	24 Mbps	< 1.00	14.20	26.30
	54 Mbps	< 1.00	13.86	24.32
	6 Mbps	< 1.00	14.76	29.92
60	24 Mbps	< 1.00	14.27	26.73
	54 Mbps	< 1.00	13.86	24.32
	6 Mbps	< 1.00	14.67	29.30
64	24 Mbps	< 1.00	14.01	25.20
	54 Mbps	< 1.00	13.69	23.38
	6 Mbps	< 1.00	12.65	18.42
100	24 Mbps	< 1.00	12.00	15.86
	54 Mbps	< 1.00	11.72	14.86
	6 Mbps	< 1.00	12.16	16.45
140	24 Mbps	< 1.00	11.47	14.02
	54 Mbps	< 1.00	11.11	12.90
	6 Mbps	< 1.00	11.68	14.71
165	24 Mbps	< 1.00	11.00	12.58
	54 Mbps	< 1.00	10.66	11.63

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Band Edge Compliance

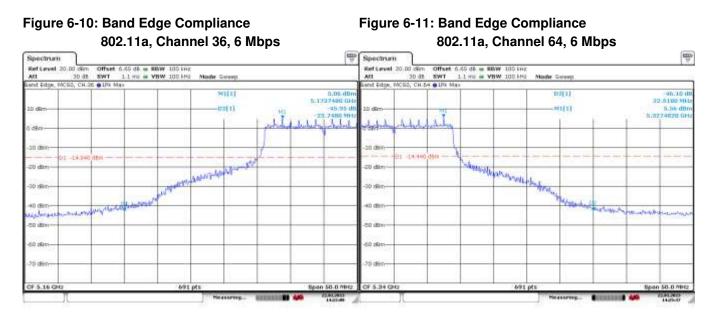
The EUT met the requirements of the band edge compliance as per 47 CFR 15.407 and RSS-210. Channels 36, 64, 100, 149, 161 and 165 were measured at 6 Mbps, 24 Mbps, and 54 Mbps each for 802.11a mode.

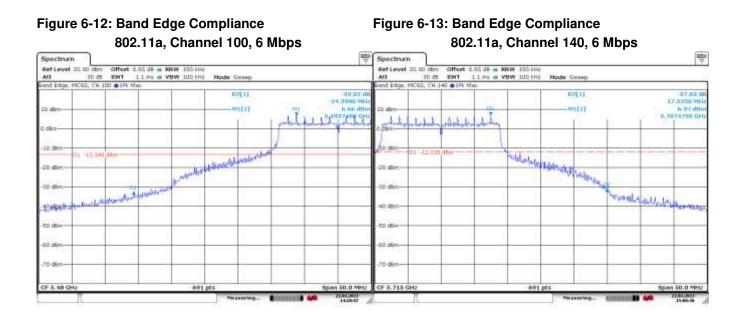
Channel	Data Rate	Limit (dBc)	Measured Level (dBc)	Margin (dBc)
	6 Mbps	< -20	-43.42	-23.42
36	24 Mbps	< -20	-50.28	-30.28
	54 Mbps	< -20	-48.2	-28.20
	6 Mbps	< -20	-45.74	-25.74
64	24 Mbps	< -20	-49.41	-29.41
	54 Mbps	< -20	-50.15	-30.15
	6 Mbps	< -20	-39.47	-19.47
100	24 Mbps	< -20	-44.58	-24.58
	54 Mbps	< -20	-43.15	-23.15
	6 Mbps	< -20	-39.35	-19.35
149	24 Mbps	< -20	-42.72	-22.72
	54 Mbps	< -20	-40.50	-20.50
	6 Mbps	< -20	-35.13	-15.13
161	24 Mbps	< -20	-36.44	-16.44
	54 Mbps	< -20	-41.58	-21.58
	6 Mbps	< -20	-23.39	-3.39
165	24 Mbps	< -20	-24.51	-4.51
	54 Mbps	< -20	-24.89	-4.89

See figures 6-10 to 6-15 for the plots of the band edge compliance measurements for Channel 36, 64, 100, 149, 161 and 165 at 6 Mbps each for 802.11a mode.

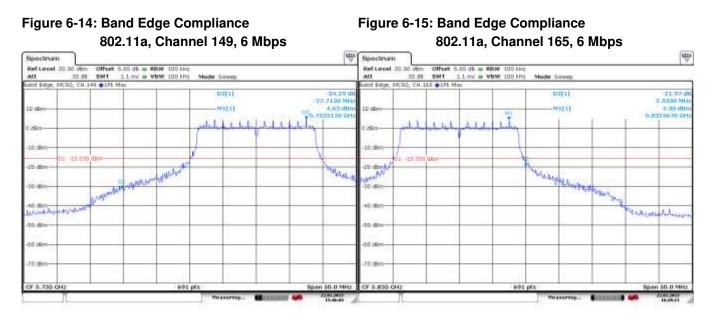
Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

802.11n RF Conducted Emission Test Results

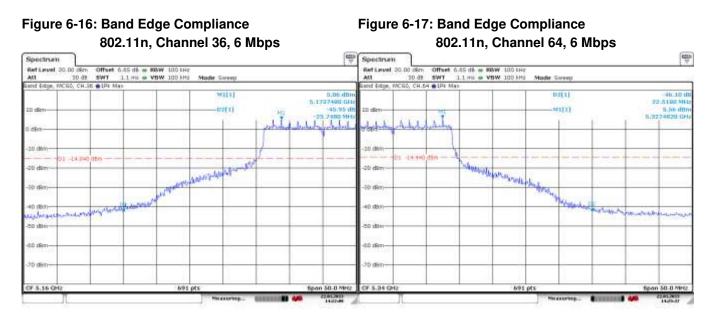

Band Edge Compliance

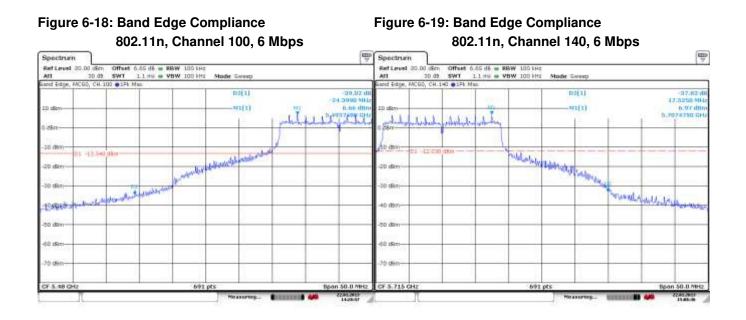

The EUT met the requirements of the band edge compliance as per 47 CFR 15.407 and RSS-210. Channels 36, 64 and 165 were measured at MCS 0, MCS 4 and MCS 7 each for 802.11n mode.

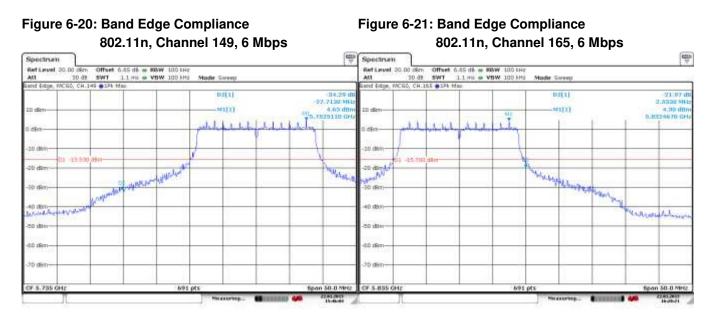
Channel	Data Rate	Limit (dBc)	Measured Level (dBc)	Margin (dBc)
	MCS0	< -20	-45.95	-25.95
36	MCS4	< -20	-50.17	-30.17
	MCS7	< -20	-50.09	-30.09
	MCS0	< -20	-46.10	-26.10
64	MCS4	< -20	-48.70	-28.70
	MCS7	< -20	-47.08	-27.08
	MCS0	< -20	-39.02	-19.02
100	MCS4	< -20	-40.58	-20.58
	MCS7	< -20	-41.26	-21.26
	MCS0	< -20	-37.83	-17.83
149	MCS4	< -20	-37.53	-17.53
	MCS7	< -20	-39.80	-19.80
	MCS0	< -20	-34.29	-14.29
161	MCS4	< -20	-38.93	-18.93
	MCS7	< -20	-43.01	-23.01
	MCS0	< -20	-21.97	-1.97
165	MCS4	< -20	-23.67	-3.67
	MCS7	< -20	-23.20	-3.20


See figures 6-16 to 6-21 for the plots of the band edge compliance measurements for Channel 36, 64, 100, 149, 161 and 165 at MCS 0 each for 802.11n mode.

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW




Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW


Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

802.11n RF Conducted Emission Test Results

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Peak Power Spectral Density

The EUT met the requirements of the peak power spectral density as per 47 CFR 15.407 and RSS-210. Channels 36, 44, 48, 52, 60, 64, 149, 157, 161 and 165 were measured at 6 Mbps, 24 Mbps, and 54 Mbps each for 802.11a mode.

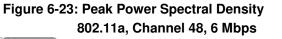
Channel	Data Rate	Limit (dBm)	Measured Level (dBm)	Margin (dBm)
	6 Mbps	< 4.00	-1.77	-5.77
36	24 Mbps	< 4.00	-9.96	-13.96
	54 Mbps	< 4.00	-11.96	-15.96
	6 Mbps	< 4.00	-0.22	-4.22
48	24 Mbps	< 4.00	-9.54	-13.54
	54 Mbps	< 4.00	-10.29	-14.29
	6 Mbps	< 11.00	0.39	-10.61
64	24 Mbps	< 11.00	-8.58	-19.58
	54 Mbps	< 11.00	-10.01	-21.01
	6 Mbps	< 11.00	-0.29	-11.29
100	24 Mbps	< 11.00	-1.24	-12.24
	54 Mbps	< 11.00	-2.78	-13.78
	6 Mbps	< 11.00	-4.99	-15.99
140	24 Mbps	< 11.00	-5.26	-16.26
	54 Mbps	< 11.00	-6.38	-17.38
	6 Mbps	< 17.00	-8.94	-25.94
165	24 Mbps	< 17.00	-9.06	-26.06
	54 Mbps	< 17.00	-11.12	-28.12

See figures 6-22 to 6-27 for the plots of the peak power spectral density for Channel 36, 48, 64, 100, 140, and 165 at 6 Mbps each for 802.11a mode.

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

802.11n RF Conducted Emission Test Results

Peak Power Spectral Density


The EUT met the requirements of the peak power spectral density as per 47 CFR 15.407 and RSS-210. Channels 36, 64 and 165 were measured at MCS 0, MCS 4 and MCS 7 each for 802.11n mode.

Channel	Data Rate	Limit (dBm)	Measured Level (dBm)	Margin (dBm)
	6 Mbps	< 4.00	-3.62	-7.62
36	24 Mbps	< 4.00	-10.40	-14.40
	54 Mbps	< 4.00	-12.30	-16.30
	6 Mbps	< 11.00	-0.76	-11.76
64	24 Mbps	< 11.00	-2.23	-13.23
	54 Mbps	< 11.00	-2.99	-13.99
	6 Mbps	< 17.00	-9.10	-26.10
165	24 Mbps	< 17.00	-10.95	-27.95
	54 Mbps	< 17.00	-10.97	-27.97

See figures 6-28 to 6-30 for the plots of the peak power spectral density for Channel 36, 64 and 165 at MCS 0 each for 802.11n mode.

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Figure 6-22: Peak Power Spectral Density 802.11a, Channel 36, 6 Mbps

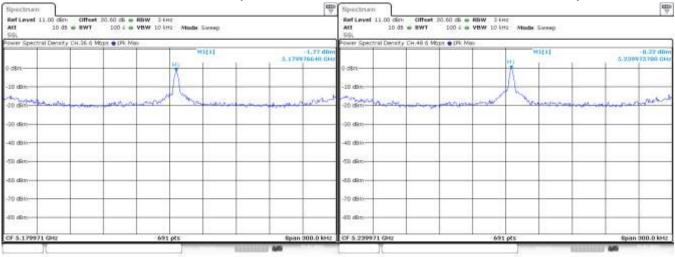
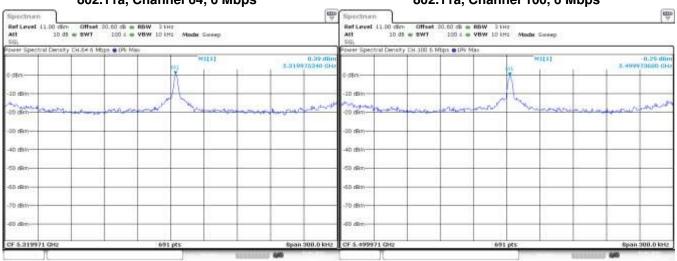
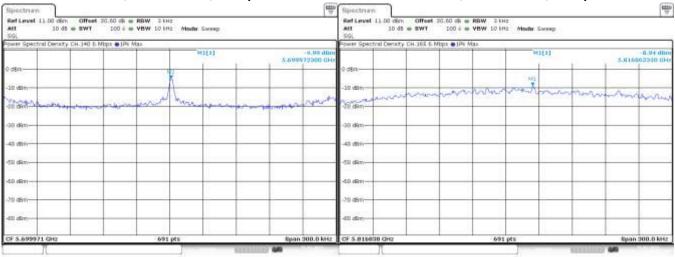



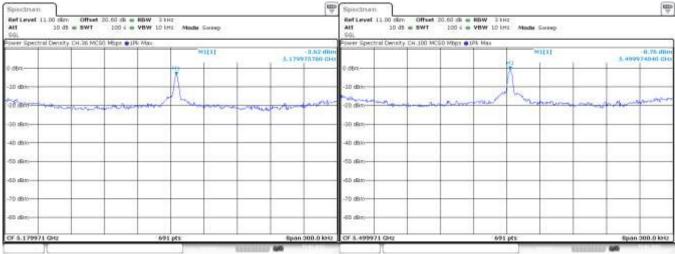
Figure 6-24: Peak Power Spectral Density 802.11a, Channel 64, 6 Mbps


Figure 6-25: Peak Power Spectral Density 802.11a, Channel 100, 6 Mbps

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Figure 6-26: Peak Power Spectral Density 802.11a, Channel 140, 6 Mbps

Figure 6-27: Peak Power Spectral Density 802.11a, Channel 165, 6 Mbps



Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

802.11n RF Conducted Emission Test Results

Figure 6-28: Peak Power Spectral Density 802.11n, Channel 36, MCS 0

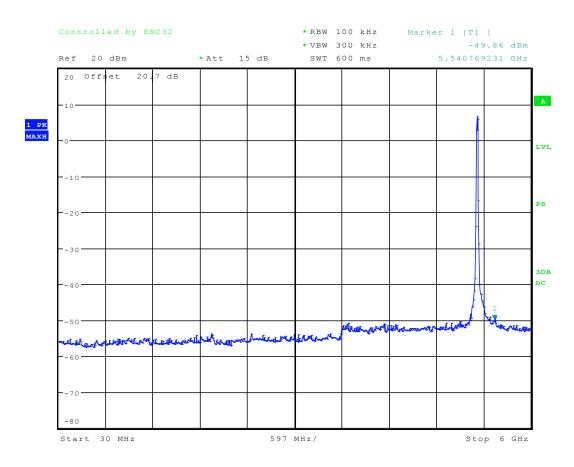
Figure 6-29: Peak Power Spectral Density 802.11n, Channel 64, MCS 0

Figure 6-30: Peak Power Spectral Density 802.11n, Channel 165, MCS 0

			- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12			_
			MTTA	1	5.80+974930	
) d8n			1	-	1	
1000			142			
10 dBit)			Δ			
Terretor	A	manciela	we here he	et and with the	in downally	-
	and and the second			and the second second	1	
30 d9m						
40 db/n						-
5D dBm						
and many.						
60 d9m	-					_
70 dBm						

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

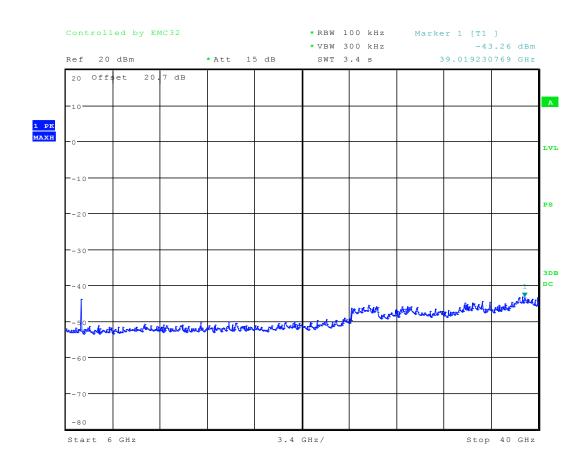
Spurious RF Conducted Emissions


The EUT met the requirements of the spurious RF conducted emissions as per 47 CFR 15.407 and RSS-210. Channels 44, 60, and 157 were measured at 6 Mbps each for 802.11a mode. Peak power was measured using an Agilent power meter, model N1911A with model N1921A power sensor. A reference offset of 29.0 dB was applied to the spectrum analyzer reference level for the attenuators and coaxial cable loss in the test circuit.

Channel	Data Rate	Power (dBm)	Max. Measured Level (dBm)	Limit (dBc)	Margin (dB)
64	6 Mbps	17.82	-43.26	-20	-23.26
100	6 Mbps	14.18	-43.29	-20	-23.29
140	6 Mbps	12.56	-41.22	-20	-21.22

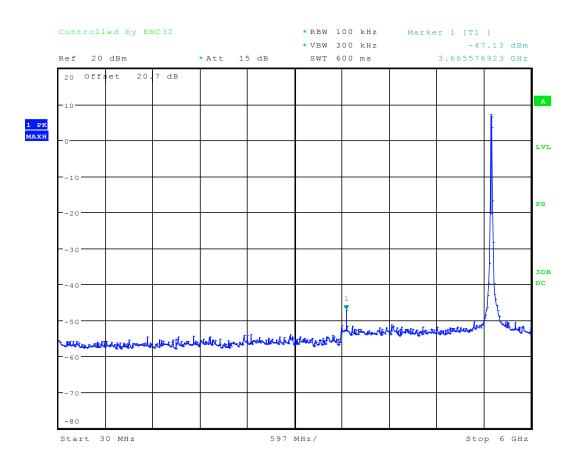
See figures 6-31 to 6-33 for the plots of the spurious RF conducted emissions for Channel 64, 60 and 157 at 6 Mbps each for 802.11a mode.

Testing Services	EMI Test Report for the BlackBerry [®] smart APPENDIX 6	phone Model RFL111LW
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW


Figure 6-31a: Spurious RF Conducted Emissions, 802.11a Channel 64, 6 Mbps

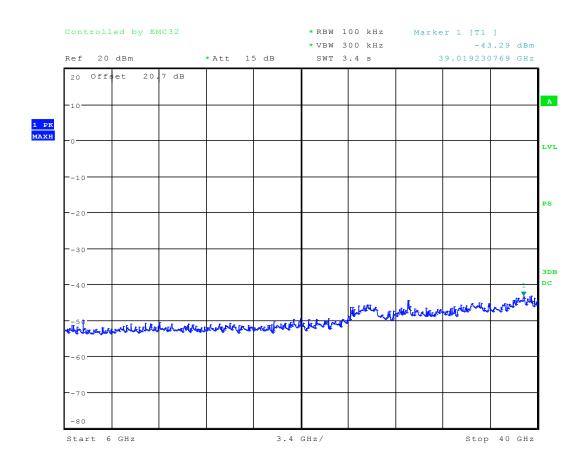
Date: 24.JAN.2013 11:03:56

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW


Figure 6-31b: Spurious RF Conducted Emissions, 802.11a Channel 64, 6 Mbps

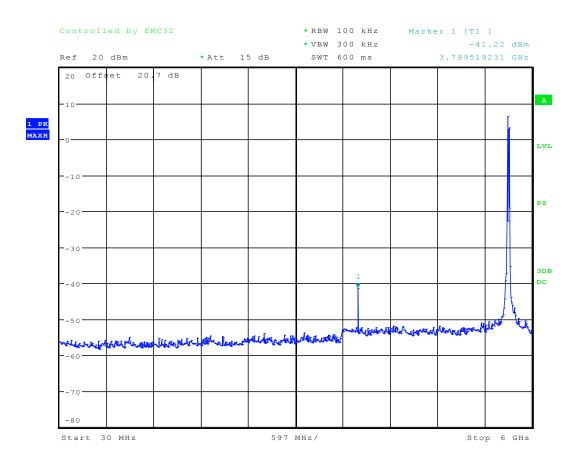
Date: 24.JAN.2013 11:04:35

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 6		
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	


Figure 6-32a: Spurious RF Conducted Emissions, 802.11a Channel 100, 6 Mbps

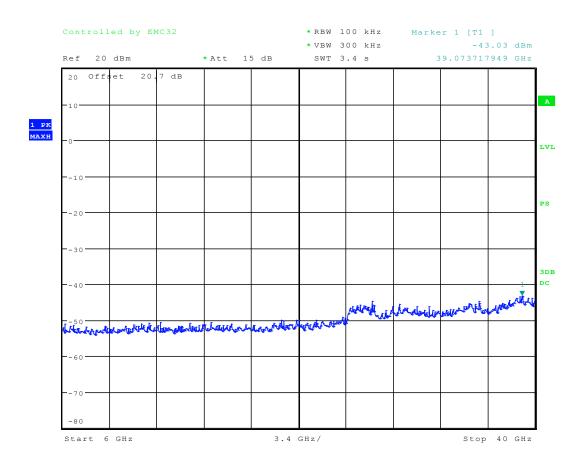
Date: 24.JAN.2013 11:05:35

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW


Figure 6-32b: Spurious RF Conducted Emissions, 802.11a Channel 100, 6 Mbps

Date: 24.JAN.2013 11:05:10

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 6		
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	


Figure 6-33a: Spurious RF Conducted Emissions, 802.11a Channel 140, 6 Mbps

Date: 24.JAN.2013 11:06:00

Testing Services	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW APPENDIX 6	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

Figure 6-33b: Spurious RF Conducted Emissions, 802.11a Channel 140, 6 Mbps

Date: 24.JAN.2013 11:06:37

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW	
Services	APPENDIX 7	
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW

APPENDIX 7 – NEAR FIELD COMMUNICATIONS TEST DATA/PLOTS

Near Field Communications (NFC) Test Results

Radiated Emissions

Date of Test: January 29, 2013 Measurements were performed by Savtej Sandhu.

The environmental test conditions were: Temperature:	25 ⁰C
Relative Humidity:	21.2 %

The test distance was 3.0 metres with a EUT height of 0.8 metres, and sweep frequency of 9 kHz to 1 GHz.

The BlackBerry[®] smartphone was in vertical position.

The frequency sweep measurements were performed in Near Field Communications Tx mode at 13.56 MHz.

Frequency	Reading (QP)	Correction Factor	Corrected Reading (QP)	Limit	Test Margin
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
13.558	17.42	18.56	55.28	124.00	-68.72
14.408	29.73	13.19	46.07	69.50	-23.43

All other emissions had a test margin of greater than 25.0 dB.

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 7		
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Near Field Communications (NFC) Test Results cont'd

Occupied Bandwidth

Date of test: February 14, 2013 The measurements were performed by Berkin Can.

The environmental test conditions were:	Temperature:	24.2 ºC
	Relative Humidity:	23.6 %

Operation mode (TX ON)	Occupied Bandwidth (kHz)
NFC, modulated	423.97

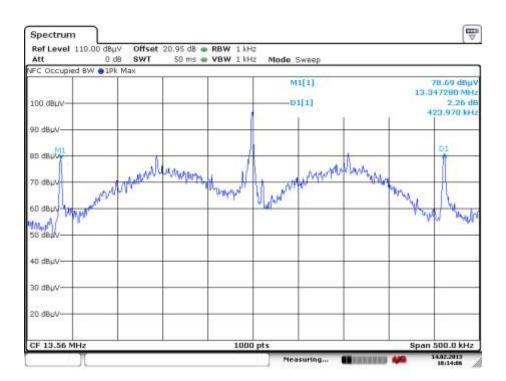


Figure 7-1: Occupied Bandwidth, NFC TX Frequency = 13.56 MHz

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW		
Services	APPENDIX 7		
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW	

Near Field Communications (NFC) Test Results cont'd

Frequency Stability

Date of test: February 14, 2013. The measurements were performed by Berkin Can.

The environmental test conditions were:	Temperature:	24.2 ºC
	Relative Humidity:	23.6 %

Test Temperature (Celsius)	Nominal Freq. (MHz)	Measured Freq. (MHz)	Input Voltage (Volts)	Max Freq Error (Hz)	% Deviation (Limit .01%)	РРМ
-20	13.56	13.559419	3.6	-581	-0.00428	-42.8466
-20	13.56	13.559393	3.7	-607	-0.00448	-44.7640
-20	13.56	13.559410	4.35	-590	-0.00435	-43.5103
-10	13.56	13.559329	3.6	-671	-0.00495	-49.4838
-10	13.56	13.559252	3.7	-748	-0.00552	-55.1622
-10	13.56	13.559317	4.35	-683	-0.00504	-50.3687
0	13.56	13.559256	3.6	-744	-0.00549	-54.8673
0	13.56	13.559326	3.7	-674	-0.00497	-49.7050
0	13.56	13.559458	4.35	-542	-0.00400	-39.9705
10	13.56	13.559361	3.6	-639	-0.00471	-47.1239
10	13.56	13.559322	3.7	-678	-0.00500	-50.0000
10	13.56	13.559266	4.35	-734	-0.00541	-54.1298
20	13.56	13.559387	3.6	-613	-0.00452	-45.2065
20	13.56	13.559375	3.7	-625	-0.00461	-46.0914
20	13.56	13.559116	4.35	-884	-0.00652	-65.1917

Testing	EMI Test Report for the BlackBerry [®] smartphone Model RFL111LW			
Services	APPENDIX 7			
Test Report No. RTS-6012-1302-17	Dates of Test December 13, 2012-February 25 and March 27, 2013	FCC ID: L6ARFL110LW IC: 2503A-RFL110LW		

Near Field Communications (NFC) Test Results cont'd

Frequency Stability cont'd

Test Temperature (Celsius)	Nominal Freq. (MHz)	Measured Freq. (MHz)	Input Voltage (Volts)	Max Freq Error (Hz)	% Deviation (Limit .01%)	РРМ
30	13.56	13.559197	3.6	-803	-0.00592	-59.2183
30	13.56	13.559469	3.7	-531	-0.00392	-39.1593
30	13.56	13.559163	4.35	-837	-0.00617	-61.7257
40	13.56	13.559260	3.6	-740	-0.00546	-54.5723
40	13.56	13.559297	3.7	-703	-0.00518	-51.8437
40	13.56	13.559243	4.35	-757	-0.00558	-55.8260
50	13.56	13.559245	3.6	-755	-0.00557	-55.6785
50	13.56	13.559226	3.7	-774	-0.00571	-57.0796
50	13.56	13.559316	4.35	-684	-0.00504	-50.4425
60	13.56	13.559201	3.6	-799	-0.00589	-58.9233
60	13.56	13.559330	3.7	-670	-0.00494	-49.4100
60	13.56	13.559139	4.35	-861	-0.00635	-63.4956