APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page **2(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

Probe 3225

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Blackberry Waterloo

Accreditation No.: SCS 108

Certificate No: ES3-3225_Jan14

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3225

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

January 22, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check; Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Name Function Signature

Calibrated by: Israe El-Naouq Laboratory Technician

Approved by: Kalja Pokovic Technical Manager

Issued: January 22, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3225_Jan14

Page 1 of 11

3(62)

Author Data

Andrew Becker

Dates of Test

Nov 04 – Dec 02, 2014

Test Report No

RTS-6057-1411-17

FCC ID:

L6ARGV160LW

Calibration Laboratory of

Schmid & Partner Engineering AG susstrasse 43, 8004 Zurich, Switzerland

C

S

Schweizerischer Kallbrierdienst S Service suisse d'étalonnage

> Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSI NORMx,y,z ConvF DCP

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization op o rolation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques", June 2013 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f < 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E^z-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No. ES3-3225 Jan14

Page 2 of 11

Appendix E for the BlackBerry® Smartphone Model RGV161LW

(SQW100-03) SAR Report

Page **4(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID:

L6ARGV160LW

ES3DV3 - SN:3225

January 22, 2014

Probe ES3DV3

SN:3225

Manufactured: Calibrated:

September 1, 2009 January 22, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3225_Jan14

Page 3 of 11

5(62)

Author Data **Andrew Becker** Dates of Test Nov 04 – Dec 02, 2014 Test Report No RTS-6057-1411-17 FCC ID: L6ARGV160LW

ES3DV3-SN:3225

January 22, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.26	1.20	1.30	± 10.1 %
DCP (mV) th	99.9	99.5	100.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^b (k=2)
0	CW	X	0.0	0.0	1.0	0.00	158.9	±2.7 %
		Y	0.0	0.0	1.0		156.6	
		2	0.0	0.0	1.0		165.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3225_Jan14

Page 4 of 11

The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value

6(62)

Author Data Andrew Becker Dates of Test Nov 04 – Dec 02, 2014 Test Report No RTS-6057-1411-17 FCC ID: L6ARGV160LW

ES3DV3-SN:3225

January 22, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.36	6.36	6.36	0.28	1.91	± 12.0 %
900	41.5	0.97	6.05	6.05	6.05	0.49	1.38	± 12.0 %
1810	40.0	1.40	5.24	5.24	5.24	0.69	1.23	± 12.0 %
1950	40.0	1.40	4.97	4.97	4.97	0.73	1.21	± 12.0 %
2450	39.2	1.80	4.64	4.64	4.64	0.80	1.23	± 12.0 %
2600	39.0	1.96	4.33	4.33	4.33	0.75	1,34	± 12.0 %

Certificate No: ES3-3225_Jan14

Page 5 of 11

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (s and a) can be relaxed to ±10% if figuid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and a) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Application of the during calibration is SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Appendix E for the BlackBerry® Smartphone Model RGV161LW

(SQW100-03) SAR Report

7(62)

Author Data **Andrew Becker** Dates of Test Nov 04 – Dec 02, 2014 Test Report No RTS-6057-1411-17 FCC ID: L6ARGV160LW

ES3DV3-SN:3225

January 22, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.28	6.28	6.28	0.34	1.84	± 12.0 %
900	55.0	1.05	6.09	6.09	6.09	0.62	1.32	± 12.0 %
1810	53.3	1,52	4.93	4.93	4.93	0.48	1.57	± 12.0 %
1950	53.3	1.52	4.84	4.84	4.84	0.50	1.59	± 12.0 %
2450	52.7	1,95	4.28	4,28	4.28	0.77	1.23	± 12.0 %
2600	52.5	2.16	4.03	4.03	4.03	0.80	1.01	± 12.0 %

Certificate No: ES3-3225 Jan14

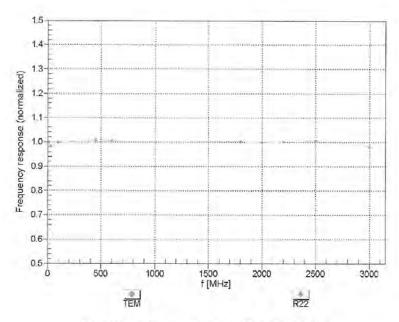
Page 6 of 11

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

*At frequencies below 3 GHz, the validity of issue parameters (c and n) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (n and n) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

*Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always test than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

8(62)


Author Data **Andrew Becker** Dates of Test Nov 04 - Dec 02, 2014 Test Report No RTS-6057-1411-17 FCC ID: L6ARGV160LW

ES3DV3-SN:3225

January 22, 2014

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

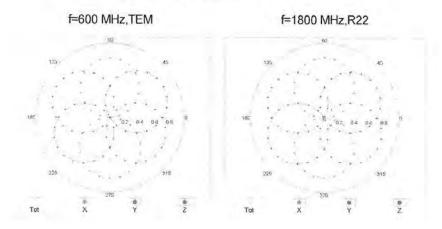
Certificate No: ES3-3225_Jan14

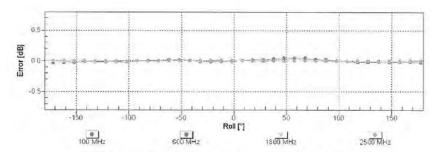
Page 7 of 11

Page **9(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014


Test Report No **RTS-6057-1411-17**


FCC ID: L6ARGV160LW

ES3DV3-SN:3225

January 22, 2014

Receiving Pattern (ϕ), $9 = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

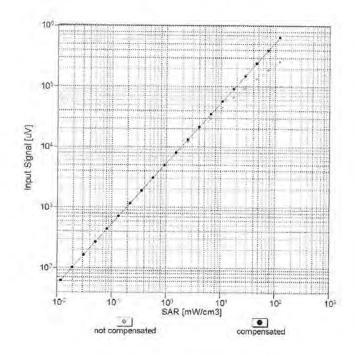
Certificate No: ES3-3225_Jan14

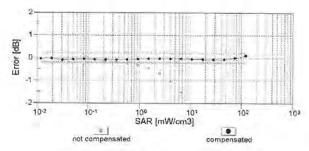
Page 8 of 11

10(62)

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014


Test Report No **RTS-6057-1411-17**


FCC ID: L6ARGV160LW

ES3DV3-SN:3225

January 22, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3225_Jan14

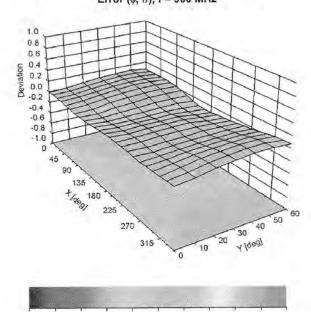
Page 9 of 11

Page 11(62)

Author Data
Andrew Becker


Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**


FCC ID: L6ARGV160LW

ES3DV3- SN:3225 January 22, 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

Certificate No: ES3-3225_Jan14

Page 10 of 11

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

0.2

0.4

0.6 0.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

Page **12(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

ES3DV3- SN:3225

January 22, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3225_Jan14

Page 11 of 11

*## BlackBerry	/	Appendix E for the (SQW100-03) SAR	BlackBerry® Smartphor Report	ne Model RGV161LV	V	Page 13(62)
Author Data	Dates of Te	st	Test Report No	FCC ID:		
Andrew Becker	Nov 04	4 – Dec 02, 2014				

Probe 3592

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page **14(62)**

Author Data
Andrew Becker

Dates of Test

Nov 04 - Dec 02, 2014

Test Report No

RTS-6057-1411-17

FCC ID:

L6ARGV160LW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizenischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service.

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the algoratories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Blackberry Waterloo

Certificate No: EX3-3592 Nov14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3592

Calibration procedure(s)

QA CAL-01,v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

November 10, 2014

This calibration cartificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the cartificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID.	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3u)	. 03 Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	(3-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN; S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ESUDV2	5N: 3013	30-Dec-13 (No. ES3-3013, Dec13)	Dec-14
DAE4	SN: 860	13-Dec-13 (No. DAE4-860_Dec13)	Dec-14
Secondary Standards	(0)	Gheck Date (in house)	Scheduled Check
RI- generator HP 8648C	U83642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753F	US37390585	18-Oct-01 (in house check Oct-14)	In house sheck: O4t-15

Name Function Signature
Calibrated by: Leif Klysner Laboratory Technician

Approved by: Katja Pukovic Technical Manager

Issued: November 10, 2014

This celluration cellificate shall not be reproduced except in full without written approval of the liaboratory.

Certificate No: EX3-3592_Nov14

Page 1 of 11

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page 15(62)

Author Data

Andrew Becker

Dates of Test

Nov 04 – Dec 02, 2014

Test Report No

RTS-6057-1411-17

FCC ID:

L6ARGV160LW

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zoughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kalibrierdiensi
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ σ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 8 = 0 is normal to probe axis.

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spalial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1. "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for 1 < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for 1 > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): In a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Cortificate No. EX3-3592 Nov14

Page 2 of 11

Appendix E for the BlackBerry® Smartphone Model RGV161LW

(SQW100-03) SAR Report

Page **16(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

EX3DV4 - SN:3592

November 10, 2014

Probe EX3DV4

SN:3592

Manufactured: Calibrated: September 18, 2006 November 10, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3592 Nov14

Page 3 of 11

17(62)

Author Data **Andrew Becker** Dates of Test Nov 04 – Dec 02, 2014 Test Report No RTS-6057-1411-17 FCC ID: L6ARGV160LW

EX3DV4-SN:3592

November 10, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592

Basic Calibration Parameters

	Sensor X		Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.48	0.47	0.40	±10.1 %
DCP (mV)	95,2	98.0	98.8	

Modulation Calibration Parameters

מוט	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc* (k=2)
D	CW	×	0.0	0.0	1.0	0.00	145.9	±3.3 %
	10.00	Y	0.0	0,0	1.0		156.9	
		Z	0.0	0.0	1.0		149.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3592_Nov14

Page 4 of 11

 $^{^{\}Lambda}$ The uncertainties of NormX, Y.Z do not affect the E 2 -field uncertainty inside TSL (see Pages 5 and 6).

¹⁸ Numerical linearization parameter, uncertainty not required.
¹⁹ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

18(62)

Author Data **Andrew Becker** Dates of Test Nov 04 – Dec 02, 2014 Test Report No RTS-6057-1411-17 FCC ID: L6ARGV160LW

EX3DV4-SN:3592

November 10, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
2600	39.0	1.96	6.80	6.80	6.80	0.36	0.93	± 12.0 %
5250	35.9	4.71	4.63	4.63	4.63	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.20	4.20	4.20	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.34	4.34	4.34	0.40	1.80	± 13.1 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v1.4 and higher (see Page 2), size it is restricten to ± 50 MHz. The uncertainty is fire RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 84, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No. EX3-3592 Nov14

Page 5 of 11

validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (a and a) can be released to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and b) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncortainty for indicated target tissue parameters.

AlphaPerbh are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies ballow 3 GHz and below ± 2% for frequencies between 3-8 GHz at any distance larger than half the probe to

diameter from the boundary.

19(62)

Author Data **Andrew Becker** Dates of Test Nov 04 – Dec 02, 2014 Test Report No RTS-6057-1411-17 FCC ID: L6ARGV160LW

EX3DV4 SN:3592

November 10, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592

Calibration Parameter Determined in Body Tissue Simulating Media

F(MHz) C	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^C (mm)	Unct. (k=2)
2600	52.5	2.18	6.84	6.84	6,84	0.78	0.62	± 12.0 %
5250	48,9	5.36	4.06	4.06	4.06	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.78	3.78	3.78	0.45	1.90	± 13.1 %
5750	48.3	5.94	3.81	3.81	3.81	0.50	1.90	± 13.1 %

Frequency validity above 300 MHz of ± 103 MHz only applies for DASY (4.4 and higher (see Page 7), else if is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (c and c) can be released to ± 10% if liquid compansation formula is applied to

Certificate No: EX3-3592_Nov14

Page 6 of 11

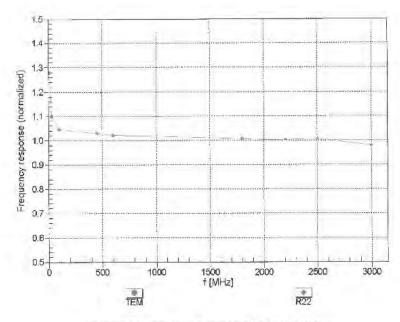
At frequencies below 3 GHz, the validity of tissue parameters (clandic) can be relaxed to ± 10% if liquid compansation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (clandic) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated larger itssue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and heliow ± 2% for frequencies between 3.6 GHz at any distance larger than half the probe tip claimater from the boundary.

Page **20(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014


Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

EX3DV4- 5N:3592

November 10, 2014

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3592 Nov14

Page 7 of 11

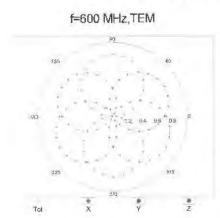
ent

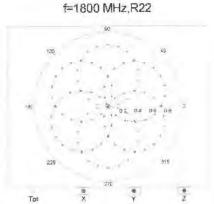
21(62)

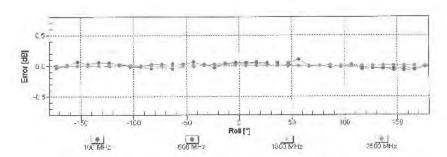
Author Data
Andrew Becker

Dates of Test

Nov 04 - Dec 02, 2014


Test Report No **RTS-6057-1411-17**


FCC ID: L6ARGV160LW


EX3DV4-SN:3592

November 10, 2014

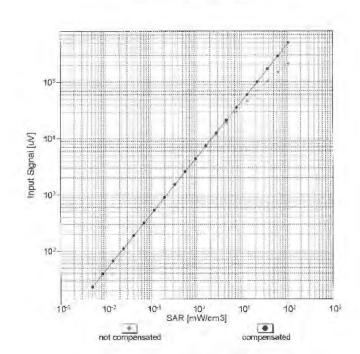
Receiving Pattern (4), 9 = 0°

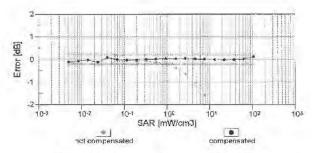
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3592_Nov14

Page 8 of 11

22(62)


Author Data **Andrew Becker**


Dates of Test Nov 04 - Dec 02, 2014 Test Report No RTS-6057-1411-17 FCC ID: L6ARGV160LW

EX3DV4 SN:3592

November 10, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

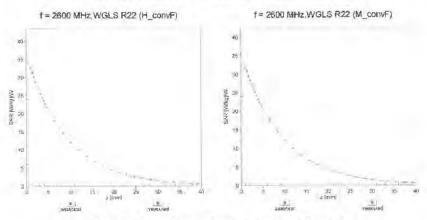
Certificate No: EX3-3592 Nov14

Page 9 of 11

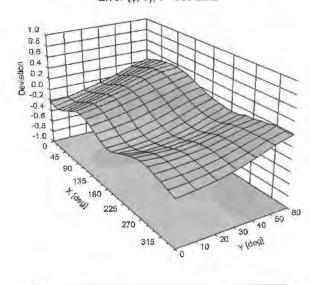
23(62)

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014


Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW


EX3DV4-SN:3592

November 10, 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (\$\phi\$, \$), f = 900 MHz

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3592_Nov14

Page 10 of 11

Occument

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page **24(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

EX3DV4-SN:3592

November 10, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	-13.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	mm f
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1,4 mm

Certificate No: EX3-3592_Nov14

Page 11 of 11

25(62)

Author Data

Dates of Test

Test Report No

FCC ID:

Andrew Becker Nov 04 – Dec 02, 2014 RTS-6057-1411-17

L6ARGV160LW

750 Dipole

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

C

SALIPPARIOLI	ing Services)	3,44,03,13	D750V3-1021_Jan13
CALIBRATION	CERTIFICATE		
Object	D750V3 - SN: 10	21	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	January 07, 2013	3	
The measurements and the unco	ertainties with confidence p	ional standards, which realize the physical ur robability are given on the following pages are ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
ype-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3 DAE4	SN: 3205 SN: 601	28-Dec-12 (No. ES3-3205_Dec12) 27-Jun-12 (No. DAE4-601_Jun12)	Dec-13 Jun-13
JAE4	314.001	27-301-12 (NO. DAEN-001_30112)	Jule 15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by	Leif Klysner	Laboratory Technician	p'aste
THE THEORY			Saxlyn
	The same of the same		-2-0
Approved by:	Katja Pokovic	Technical Manager	XXXX

Certificate No: D750V3-1021_Jan13

Page 1 of 6

nent

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page **26(62)**

Author Data

Andrew Becker

Dates of Test

Nov 04 – Dec 02, 2014

Test Report No

RTS-6057-1411-17

FCC ID:

L6ARGV160LW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1021_Jan13

Page 2 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page **27(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	41.4 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	Seat	Level .

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.46 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1,38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.51 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1021_Jan13

Page 3 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page **28(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.7 Ω - 0.2 jΩ
Return Loss	- 25.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.033 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 01, 2010	

Certificate No: D750V3-1021_Jan13

Page 4 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

29(62)

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

DASY5 Validation Report for Head TSL

Date: 07.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

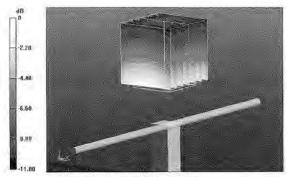
DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1021

Communication System: CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.89 \text{ S/m}$; $\varepsilon_r = 41.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.28, 6.28, 6.28); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

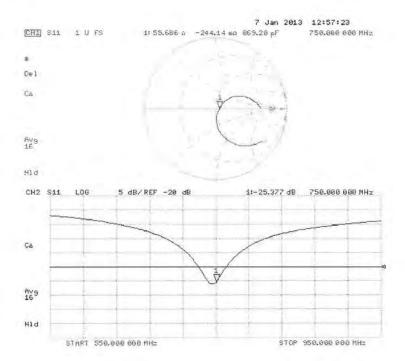
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.107 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.23 W/kg SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.38 W/kg

Maximum value of SAR (measured) = 2.47 W/kg

0 dB = 2.47 W/kg = 3.93 dBW/kg

30(62)


Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

Impedance Measurement Plot for Head TSL

Certificate No: D750V3-1021_Jan13

Page 6 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

31(62)

Author Data
Andrew Becker

Dates of Test Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

835 Dipole

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Issued: January 8, 2013

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client RTS (RIM Testing Services)

Accreditation No.: SCS 108

Certificate No: D835V2-446_Jan13

Object	D835V2 - SN: 44	6	
Calibration procedure(s)	QA CAL-05.v9		
	Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	January 07, 2013		
This calibration certificate docum	ens the traceability to nati	onal standards, which realize the physical un	its of measurements (SI)
		robability are given on the following pages an	
All calibrations have been condu	cted in the closed laborato	ry facility: environment temperature (22 ± 3)*1	C and humidity < 70%.
Coliberation Environment upon (\$49)	TC added for callbration		
Calibration Equipment used (M&	TE critical for calibration)		
	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	over page of	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640)	Scheduled Calibration Oct-13
Primary Standards Power meter EPM-442A	ID#		
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID# GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704 US37292783	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640)	Oct-13 Oct-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 SN: 5058 (20k)	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530)	Oct-13 Oct-13 Apr-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533)	Oct-13 Oct-13 Apr-13 Apr-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reterence 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 28-Dec-12 (No. ES3-3205_Dec12)	Oct-13 Oct-13 Apr-13 Apr-13 Dec-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID# GB37480704 US37292783 SN: 5058 (20k) SN: 5047.9 / 06327 SN: 3205 SN: 601	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 28-Dec-12 (No. ES3-3205_Dec12) 27-Jun-12 (No. DAE4-601_Jun12)	Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jun-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 28-Dec-12 (No. ES3-3205_Dec12) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house)	Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jun-13 Scheduled Check In house check: Oct-1:
Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 28-Dec-12 (No. ES3-3205_Dec12) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house)	Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jun-13 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID# GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID# MY41092317 100005 US37390585 S4208	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 28-Dec-12 (No. ES3-3205_Dec12) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12)	Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jun-13 Scheduled Check In house check: Oct-1: In house check: Oct-1:
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 28-Dec-12 (No. ES3-3205_Dec12) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12)	Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jun-13 Scheduled Check In house check: Oct-1 In house check: Oct-1
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID# GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID# MY41092317 100005 US37390585 S4208	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 28-Dec-12 (No. ES3-3205_Dec12) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12)	Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jun-13 Scheduled Check In house check: Oct-1: In house check: Oct-1:

Certificate No: D835V2-446_Jan13

Page 1 of 6

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

32(62)

Author Data

Andrew Becker

Dates of Test

Nov 04 – Dec 02, 2014

Test Report No

RTS-6057-1411-17

FCC ID:

L6ARGV160LW

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss; These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-446 Jan13

Page 2 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

33(62)

Author Data
Andrew Becker

Dates of Test Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

Measurement Conditions

DASY system configuration, as far as not given on page 1,

DASY Version	DASY5	V52,8.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41,5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.0 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	700	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2,38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.39 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.13 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-446_Jan13

Page 3 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

34(62)

Author Data
Andrew Becker

Dates of Test

Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID:

L6ARGV160LW

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.1 Ω - 6,5 jΩ	
Return Loss	- 23.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.385 ns
Elabilitai Solay (sha shootoff)	1.555 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 24, 2001	

Certificate No: D835V2-446_Jan13

Page 4 of 6

Page 35(62)

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

RTS-6057-1411-17

Test Report No

FCC ID: L6ARGV160LW

DASY5 Validation Report for Head TSL

Date: 07.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 446

Communication System: CW; Frequency: 835 MHz

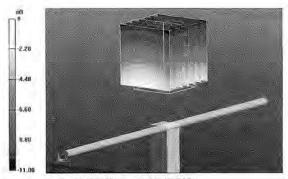
Medium parameters used: f = 835 MHz; $\sigma = 0.92 \text{ S/m}$; $\epsilon_t = 42$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06,2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.650 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.61 W/kg

SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.55 W/kg

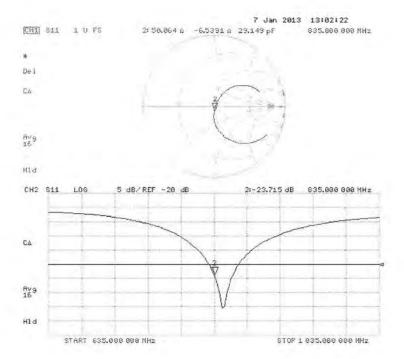
Maximum value of SAR (measured) = 2.79 W/kg

0 dB = 2.79 W/kg = 4.46 dBW/kg

Appendix E for the BlackBerry® Smartphone Model RGV161LW

(SQW100-03) SAR Report

Page **36(62)**


Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-446_Jan13

Page 6 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page 37(62)

Author Data

Andrew Becker

Dates of Test

Nov 04 – Dec 02, 2014

Test Report No

RTS-6057-1411-17

FCC ID:

L6ARGV160LW

1800 Dipole

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdlenst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RTS (RIM Testing Services)

Accreditation No.: SCS 108

Certificate No: D1800V2-2d020_Jan13

CALIBRATION CERTIFICATE Object D1800V2 - SN: 2d020 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz January 09, 2013 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 01-Nov-12 (No. 217-01640) Oct-13 Power sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Oct-13 Reference 20 dB Attenuator SN: 5058 (20k) 27-Mar-12 (No. 217-01530) Apr-13 Type-N mismatch combination SN: 5047,3 / 06327 27-Mar-12 (No. 217-01533) Apr-13 Reference Probe ES3DV3 SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) Dec-13 SN: 601 27-Jun-12 (No. DAE4-601_Jun12) Jun-13 Secondary Standards ID# Check Date (in house) Scheduled Check MY41092317 Power sensor HP 8481A 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 100005 84-Aug-99 (in house check Oct-11) In house check: Oct-13 US37390585 S4206 Network Analyzer HP 8753E 18-Oct-01 (in house check Oct-12) In house check: Oct-13 Name Function Calibrated by: Israe El-Naoug Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: January 9, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1800V2-2d020_Jan13

Page 1 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page 38(62)

Author Data

Andrew Becker

Dates of Test

Nov 04 – Dec 02, 2014

Test Report No

RTS-6057-1411-17

FCC ID:

L6ARGV160LW

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1800V2-2d020_Jan13

Page 2 of 6

Appendix E for the BlackBerry \otimes Smartphone Model RGV161LW (SQW100-03) SAR Report

^{Page} 39(62)

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID:

L6ARGV160LW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	1994	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.61 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.3 W/kg ± 16.5 % (k=2)

Certificate No: D1800V2-2d020_Jan13

Page 3 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

40(62)

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.2 Ω - 8.3 jΩ	
Return Loss	- 20.5 dB	

General Antenna Parameters and Design

1.216 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	September 07, 2001	

Certificate No: D1800V2-2d020_Jan13

Page 4 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page 41(62)

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

DASY5 Validation Report for Head TSL

Date: 09.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d020

Communication System: CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

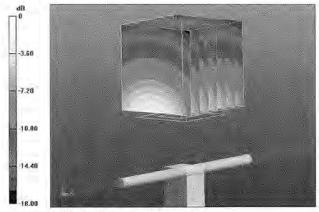
Probe: ES3DV3 - SN3205; ConvF(5.04, 5.04, 5.04); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.870 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.61 W/kg; SAR(10 g) = 5.06 W/kg

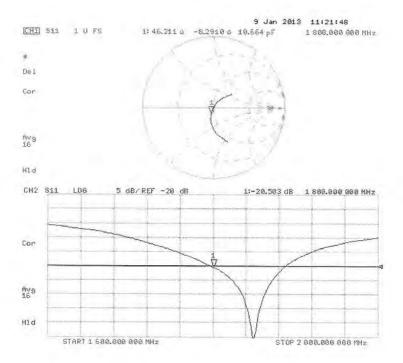
Maximum value of SAR (measured) = 11.8 W/kg

0 dB = 11.8 W/kg = 10.72 dBW/kg

Appendix E for the BlackBerry® Smartphone Model RGV161LW

(SQW100-03) SAR Report

Page **42(62)**


Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

Impedance Measurement Plot for Head TSL

Certificate No: D1800V2-2d020_Jan13

Page 6 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page **43(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

1900 Dipole

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio-svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the sign

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RTS (RIM Testing Services)

Accreditation No.: SCS 108

Certificate No: D1900V2-545_Jan13

Object	D1900V2 - SN: 5	45	
Calibration procedure(s)	QA CAL-05.v9		
	Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	January 09, 2013	(-	
	V) 711, V		
			- LY is a succession
		onal standards, which realize the physical un robability are given on the following pages an	
All calibrations have been conduc	cted in the closed laborator	y facility: environment temperature (22 ± 3)°(C and humidity < 70%.
Calibration Equipment used (M&T	TE critical for calibration)		
	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards		Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640)	Oct-13
Primary Standards Power meter EPM-442A	ID#		
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640)	Oct-13 Oct-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 SN: 5058 (20k)	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530)	Oct-13 Oct-13 Apr-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533)	Oct-13 Oct-13 Apr-13 Apr-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 28-Dec-12 (No. ES3-3205_Dec12)	Oct-13 Oct-13 Apr-13 Apr-13 Dec-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Referenca Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01530) 28-Dec-12 (No. ES3-3205_Dec12) 27-Jun-12 (No. DAE4-601_Jun12)	Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jun-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reterence Probe ES3DV3. DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 28-Dec-12 (No. ES3-3205_Dec12) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house)	Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jun-13 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-05	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 28-Dec-12 (No. ES3-3205_Dec12) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house)	Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jun-13 Scheduled Check In house check; Oct-13
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reterence Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RE generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 28-Dec-12 (No. ES3-3205_Dec12) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11)	Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jun-13 Scheduled Check In house check; Oct-13 In house check: Oct-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-05 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01630) 27-Mar-12 (No. 217-01530) 28-Dec-12 (No. ES3-3205_Dec12) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12)	Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jun-13 Scheduled Check In house check; Oct-13 In house check; Oct-13 In house check; Oct-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-05	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01630) 27-Mar-12 (No. 217-01530) 28-Dec-12 (No. ES3-3205_Dec12) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12)	Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jun-13 Scheduled Check In house check; Oct-13 In house check: Oct-13 Signature

Certificate No: D1900V2-545_Jan13

Page 1 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page **44(62)**

Author Data

Andrew Becker

Dates of Test

Nov 04 – Dec 02, 2014

Test Report No

RTS-6057-1411-17

FCC ID:

L6ARGV160LW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-545_Jan13

Page 2 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page **45(62)**

Author Data
Andrew Becker

Dates of Test Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	- Links

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.1 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-545_Jan13

Page 3 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

46(62)

Author Data **Andrew Becker** Dates of Test

Nov 04 – Dec 02, 2014

Test Report No RTS-6057-1411-17 FCC ID:

L6ARGV160LW

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$51.0 \Omega + 1.7 j\Omega$	
Return Loss	-34.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns
Electrical Dolay (offe direction)	11,100 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	November 15, 2001	

Certificate No: D1900V2-545_Jan13

Page 4 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

47(62)

Author Data **Andrew Becker** Dates of Test Nov 04 – Dec 02, 2014 Test Report No RTS-6057-1411-17 FCC ID: L6ARGV160LW

DASY5 Validation Report for Head TSL

Date: 09.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 545

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

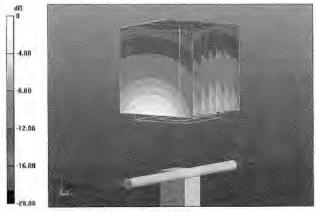
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012


Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.493 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.26 W/kg

Maximum value of SAR (measured) = 12.2 W/kg

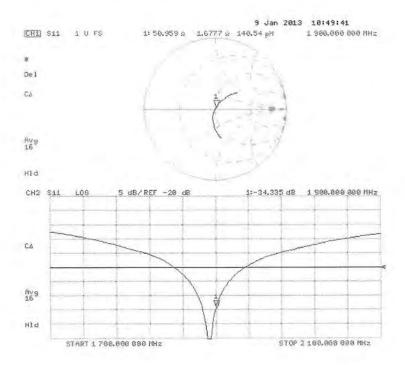
0 dB = 12.2 W/kg = 10.86 dBW/kg

Certificate No: D1900V2-545_Jan13

Page 5 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page **48(62)**


Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-545_Jan13

Page 6 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page 49(62)

Author Data

Andrew Becker

Dates of Test

Nov 04 – Dec 02, 2014

Test Report No

RTS-6057-1411-17

FCC ID:

L6ARGV160LW

2450 Dipole

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schwelzerischer Kalibrierdlenst Service suisse d'étalonnago Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Blackberry Waterloo

Accreditation No.: SCS 108

Certificate No: D2450V2-791_Sep13

CALIBRATION CERTIFICATE D2450V2 - SN: 791 Object Calibration procedure(s) **QA CAL-05.v9** Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 10, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Schoduled Calibration ID ti Cal Date (Certificate No.) Primary Standards 01-Nov-12 (No. 217-01640) Power meter EPM-442A GB37480704 Oct-13 Power sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Oct-13 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 Type-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 Reference Probe ES3DV3 SN: 3205 28-Dac-12 (No. ES3-3205_Dec12) Dec-13 25-Apr-13 (No. DAF4-601_Apr13) Apr-14 DAEA SN: 601 Check Date (in house) Scheduled Check Secondary Standards Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check; Oct-13 100005 04-Aug-99 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 US37390585 S4206 18-Oct-01 (in house check Oct-12) In house check: Oct-13 Network Analyzer HP 8758E Function Name Calibrated by Israe El-Nacuq Laboratory Technician Approved by: Katja Pokovic Technical (Manager Issued: September 10, 2013 This calibration certificate shall not be reproduced except in full will out written approval of the laboratory.

Certificate No: D2450V2-791_Sep13

Page 1 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page 50(62)

Author Data

Andrew Becker

Dates of Test

Nov 04 – Dec 02, 2014

Test Report No

RTS-6057-1411-17

FCC ID:

L6ARGV160LW

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst
 Service suisse d'étatonnage
 Servizio svizzero di taratura
 Swiss Callbratton Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-791_Sep13

Page 2 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Fage **51(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID:

L6ARGV160LW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	39.4 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	1-44	-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.03 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-791_Sep13

Page 3 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

52(62)

Author Data **Andrew Becker** Dates of Test Nov 04 – Dec 02, 2014 Test Report No RTS-6057-1411-17 FCC ID: L6ARGV160LW

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56 1 Ω + 3,4 <u>j</u> Ω	
Return Loss	- 23.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	January 24, 2006	

Certificate No: D2450V2-791_Sep13

Page 4 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page **53(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

RTS-6057-1411-17

Test Report No

FCC ID: L6ARGV160LW

DASY5 Validation Report for Head TSL

Date: 10.09,2013

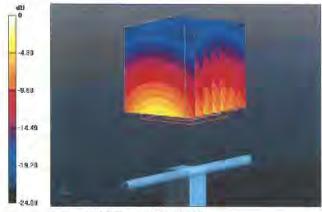
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 791

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.83$ S/m; $\epsilon_r = 39.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12,2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics; DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.824 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.03 W/kg Maximum value of SAR (measured) = 16.9 W/kg

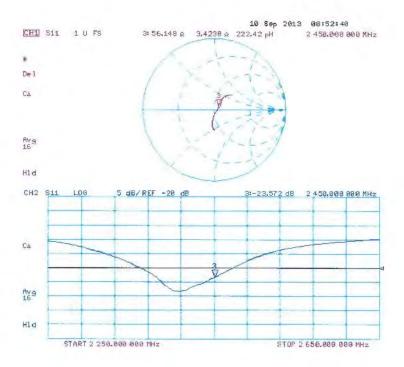
0 dB = 16.9 W/kg = 12.28 dBW/kg

Certificate No: D2450V2-791 Sep13

Page 5 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Fage **54(62)**


Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-791_Sep13

Page 6 of 6

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page **55(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

5000 Dipole

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kafibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Blackberry Waterloo

Accreditation No.: SCS 108

Certificate No: D5GHzV2-1033_Nov13

	ERTIFICATE		
Object	D5GHzV2 - SN: 1	033	
Calibration procedure(s)	QA CAL-22.v2 Calibration proced	dure for dipole validation kits bet	ween 3-6 GHz
Calibration date:	November 08, 20	13	
The measurements and the unca All calibrations have been condu	ntainties with confidence pr	onal standards, which realize the physical un obability are given on the following pages an y facility: environment temperature (22 \pm 3)°C	d are part of the certificate.
Calibration Equipment used (Ma			
	1.5	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power meter EPM-442A Power sensor HP 9481A Power sensor HP 9481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 801	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-13 Apr-14
Primary Standards Power meter EPM-442A Power sensor HP 9481A Power sensor HP 9481A Power sensor HP 8481A Reference 20 dB Attanuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	IU # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.9 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01738) 04-Apr-13 (No. 217-01739) 28-Dac-12 (No. ESS-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-13
Primary Standards Power meter EPM-442A Power sensor HP 9481A Power sensor HP 9481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01826) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-13 Apr-14
Primary Standards Power mater EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3 DAE4 Secondary Standards HF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	08-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house chack: Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 9481A Power sensor HP 9481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards HF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 801 ID # 100005 US37390585 S4206	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dac-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house chack Oct-13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-15 In house check: Oct-14

Certificate No: D5GHzV2-1033_Nov13

Page 1 of 8

Appendix E for the BlackBerry® Smartphone Model RGV161LW

(SQW100-03) SAR Report

56(62)

Author Data Andrew Becker Dates of Test Nov 04 – Dec 02, 2014 Test Report No RTS-6057-1411-17 FCC ID: L6ARGV160LW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage

C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1033_Nov13

Page 2 of 8

cument

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Fage **57(62)**

Author Data
Andrew Becker

Dates of Test Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	4.46 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	-

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	34.6 ± 6 %	4.75 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	-

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.51 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.4 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1033_Nov13

Page 3 of 8

ent

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

58(62)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	35,3	5:27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	34.2 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		-

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1033 Nov13

Page 4 of 8

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Fage **59(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	49.1 \(\Omega - 9.6 \)
Return Loss	- 20.3 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	50:3 Ω - 4.1 jΩ
Return Loss	- 27.7 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	57.8 Ω - 4.0 jΩ
Return Loss	- 21.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.213 ns.

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 09, 2004

Certificate No: D5GHzV2-1033 Nov13

Page 5 of 8

ument

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

Page **60(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW

DASY5 Validation Report for Head TSL

Date: 08.11.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1033

Communication System: UID 0 - CW ; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.46$ S/m; $\epsilon_r = 35$; $\rho = 1000$ kg/m³. Medium parameters used: f = 5500 MHz; $\sigma = 4.75$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³.

Medium parameters used: f = 5800 MHz; $\sigma = 5.06 \text{ S/m}$; $\epsilon_r = 34.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard; DASY5 (TEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phamom: Flat Phantom 5.0 (front); Type: QD000P50AA, Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.635 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.397 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 33.8 W/kg

SAR(1 g) = 8.51 W/kg; SAR(10 g) = 2.41 W/kg

Maximum value of SAR (measured) = 20.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.128 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 33.0 W/kg

SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

Certificate No: D5GHzV2-1033_Nov13

Page 6 of 8

Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

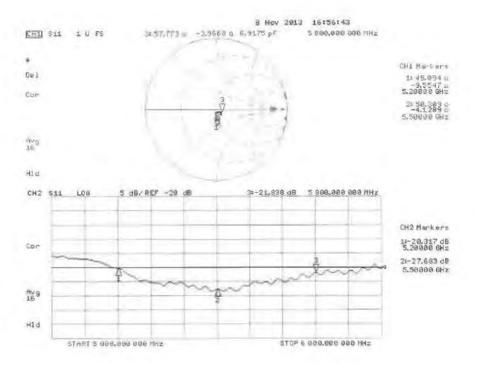
Page **61(62)**

Author Data
Andrew Becker

Dates of Test
Nov 04 – Dec 02, 2014

Test Report No **RTS-6057-1411-17**

FCC ID: L6ARGV160LW



Appendix E for the BlackBerry® Smartphone Model RGV161LW (SQW100-03) SAR Report

62(62)

Author Data **Andrew Becker** Dates of Test Nov 04 - Dec 02, 2014 Test Report No RTS-6057-1411-17 FCC ID: L6ARGV160LW

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1033_Nov13

Page 8 of 8