

Document

SAR Compliance Test Report for the BlackBerry® Smartphone Model RFW121LW Rev 3

Page **1(60)**

Andrew Becker

Dates of Test

July 02 -August 15, 2013

Test Report No

RTS-6046-1307-42 Rev 3

L6ARFW120LW

SAR Compliance Test Report

Testing Lab: RTS **Applicant:** BlackBerry Limited

 440 Phillip Street
 295 Phillip Street

 Waterloo, Ontario
 Waterloo, Ontario

 Canada N2L 5R9
 Canada N2L 3W8

 Phone: 519-888-7465
 Phone: 519-888-7465

 Fax: 519-746-0189
 Fax: 519-888-6906

Web site: www.BlackBerry.com

Statement of Compliance:

RTS declares under its sole responsibility that the product to which this declaration

relates, is in conformity with the appropriate RF exposure standards,

recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and

recommended practices.

Device Category: This BlackBerry® Smartphone is a portable device, designed to be used in direct

contact with the user's head, hand and to be carried in approved accessories when

carried on the user's body.

RF Exposure Environment: This device has been shown to be in compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in, FCC 96-326, IEEE Std. C95.1-2005, Health Canada's Safety Code 6, as reproduced in RSS-102 issue 4-2010 and has been tested in accordance with the measurement procedures specified in latest FCC OET KDB Procedures, ANSI/IEEE Std. C95.3-2002, IEEE 1528-2003, IEC 62209-1-2005, IEC 62209 - 2-2010 and Health

Canada's Safety Code 6.

Daoud Attayi
Compliance Manager (SAR & HAC)
(Verification and responsible of the Test Report)

Masud S. Attayi Manager, Regulatory Compliance (Approval for the Test Report)

RTS is accredited according to EN ISO/IEC 17025 by:

592

部	SAR Compliance Test Report for the BlackBerry® Smartphone Model RFW121LW Rev 3					
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker July 02 – August 15, 2013			RTS-6046-1307-42 Rev 3	L6ARFW120LW		

Report Issue Date: Sep 30, 2013

Updated Table: 11.1-3 in report RTS-6046-1307-42 Rev 2 and added more explanation.

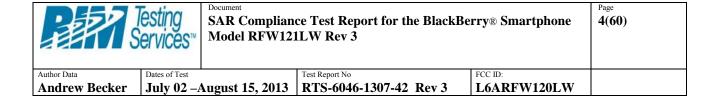
Revised report to RTS-6046-1307-42 Rev 3, added clarification that 802.11a/n (5-6 GHz) is not supported in Hotspot mode.

SAR Compliance Test Report for the BlackBerry® Smartphone Model RFW121LW Rev 3

Page **3(60)**

Andrew Becker

July 02 -August 15, 2013


Test Report No

RTS-6046-1307-42 Rev 3

FCC ID: L6ARFW120LW

Contents

1.0	OPE	ERATING CONFIGURATIONS AND TEST CONDITIONS	5
	1.1	PICTURE OF DEVICE	5
	1.2	ANTENNA DESCRIPTION	5
	1.3	DEVICE DESCRIPTION	5
	1.4	BODY WORN ACCESSORIES (HOLSTERS)	7
	1.5	HEADSET	
	1.6	BATTERY	
	1.7	PROCEDURE USED TO ESTABLISH TEST SIGNAL	7
	1.8	HIGHLIGHTS OF THE FCC OET SAR MEASUREMENT REQUIREMENTS	8
		1.8.1 SAR MEASUREMENT PROCEDURES FOR 802.11 A/B/G/N AS PER KDB 248227 D01 V01R02 AND SAR	
		MEASUREMENTS 100 MHZ TO 6 GHZ AS PER KDB 865664 D0 V01	8
		1.8.2 SAR MEASUREMENT REQUIREMENTS FOR BLUETOOTH	
		1.8.3 SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER CAPABILITIE	
		AS PER KDB 941225 D06 V01	
		1.8.4 SAR EVALUATION PROCEDURES FOR GSM/(E)GPRS DUAL TRANSFER MODE AS PER KDB 941225	
		D04 V01 AND SAR TEST REDUCTION PROCEDURES GSM GPRS EDGE AS PER DDB 941225 D03	
		VO1	.14
		1.8.5 SAR MEASUREMENT PROCEDURE FOR FAST SAR SCAN AS PER KDB 447498	
		1.8.6 SAR MEASUREMENT PROCEDURES FOR 3G DEVICES	
		1.8.7 TEST SEUP INFORMATION FOR WCDMA / HSPDA / HSUPA	
	1.9	GENERAL SAR TEST REDUCTION AND EXCLUSION PROCEDURE AS PER KDB 447498 D01 V05 AND SAR	
	•.,	HANDSETS MULTI XMITER AND ANT PROCEDURE AS PER 648474 D04 V01	
		1.9.1 SIMULTANEOUS TRANSMISSION ANALYSIS	26
2.0	DES	SCRIPTION OF THE TEST EQUIPMENT	
2.0	2.1	SAR MEASUREMENT SYSTEM	
	2.1	2.1.1 EOUIPMENT LIST	
	2.2	DESCRIPTION OF THE TEST SETUP	
	2.2	2.2.1 DEVICE AND BASE STATION SIMULATOR SETUP	
		2.2.2 DASY SETUP	
3.0	ELE	ECTRIC FIELD PROBE CALIBRATION	
3.0		PROBE SPECIFICATIONS	
		PROBE CALIBRATION AND MEASUREMENT UNCERTAINTY	
4.0		R MEASUREMENT SYSTEM VERIFICATION	
7.0	4.1	SYSTEM ACCURACY VERIFICATION FOR HEAD ADJACENT USE	
5.0		ANTOM DESCRIPTION	
6.0		SUE DIELECTRIC PROPERTIES	
0.0	6.1	COMPOSITION OF TISSUE SIMULANT	
	0.1	6.1.1 EQUIPMENT	
	6.2	ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID	38
	0.2	6.2.2 TEST CONFIGURATION	
		6.2.3 PROCEDURE	
7.0	CAE	R SAFETY LIMITS	
8.0		VICE POSITIONING.	
0.0	8.1	DEVICE HOLDER FOR SAM TWIN PHANTOM	
	8.2	DESCRIPTION OF THE TEST POSITIONING	
	8.2		
		8.2.2 BODY-WORN CONFIGURATION	
0.0	шс		
9.0		H LEVEL EVALUATION	
	9.1	MAXIMUM SEARCH	
	9.2	EXTRAPOLATION	
	9.3	BOUNDARY CORRECTION	
10.0	9.4	PEAK SEARCH FOR 1G AND 10G CUBE AVERAGED SAR	
10.0		EASUREMENT UNCERTAINTY	
11.0		ST RESULTS	
	11.1	SAR MEASUREMENT RESULTS AT HIGHEST POWER MEASURED AGAINST THE HEAD	51
	11.2		
10.0	n -	ACCESSORIES	
12.0	KE	FERENCES	.59

APPENDIX A: SAR DISTRIBUTION COMPARISON FOR ACCURACY VERIFICATION

APPENDIX B: SAR DISTRIBUTION PLOTS - HEAD CONFIGURATION

APPENDIX C1: SAR DISTRIBUTION PLOTS - BODY-WORN CONFIGURATION

APPENDIX C2: SAR DISTRIBUTION PLOTS - HOT SPOT

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

APPENDIX E: PHOTOGRAPHS

1.0 OPERATING CONFIGURATIONS AND TEST CONDITIONS

1.1 Picture of Device

Please refer to Appendix E.

Figure 1.1-1 BlackBerry Smartphone

1.2 Antenna description

Type Internal fixed antenna						
Location	Please refer to Figure 1.9-1					
Configuration	Internal fixed antenna					

Table 1.2-1 Antenna description

1.3 Device description

Device Model	RFW121LW								
FCC ID	L6ARFW120LW								
	Radiated: 2FFFE461, 2FFFE447								
PIN	Conducted: 2FFFE436								
Hardware Rev	Rev1-906-00, Rev2	-x08-00/01/02							
Software Version	10.2.0.519								
Prototype or Production Unit	Production								
	1-slot 2-slots 3-slots 4-slots								
		GSM 850 EDGE/GPRS EDGE/GPRS EDGE/GPRS							
Mode(s) of Operation	GSM 1900	850/1900	850/1900	850/1900					
Nominal Maximum	32.0	30.0	28.5	27.0					
conducted RF Output Power	30.0	27.0	25.5	24.0					
(dBm)	30.0	27.0	23.3	24.0					
Tolerance in Power Setting	± 1.0 ± 1.0 ± 1.0 ± 1.0								
on centre channel (dB)	±1.0 ±1.0 ±1.0								
Duty Cycle	1:8 2:8 3:8 4:8								
Transmitting Frequency	824.2 - 848.8 824.2 - 848.8 824.2 - 848.8 824.2 - 848.8								
Range (MHz)	1850.2 – 1909.8 1850.2 – 1909.8 1850.2 – 1909.8 1850.2 – 1								
Mode(s) of Operation	802.11b	802.11g	802.11n	Bluetooth					
Nominal Maximum									
conducted RF Output Power	17.5	17.0	15.0	9.8					
(dBm)									
Tolerance in Power Setting	± 1.5	± 1.5	± 1.5	N/A					
on centre channel (dB)									
Duty Cycle	1:1	1:1	1:1	N/A					
Transmitting Frequency	2412-2462	2412-2462	2412-2462	2402-2483					
Range (MHz)	2412-2402		2412-2402						
	802.11a/n	802.11a/n	802.11a/n	802.11a/n					
Mode(s) of Operation	(low band)	(middle band)	(upper band I)	(upper band II)					
Nominal Maximum									
conducted RF Output Power	Power 13.5 15.0 15.0 15.0								
(dBm)									
Tolerance in Power Setting	± 1.5	± 1.5	± 1.5	± 1.5					
on centre channel (dB)	±1.5	± 1.J	± 1.J	± 1.5					

	SAR Compliance Test Report for the BlackBerry® Smartphone Model RFW121LW Rev 3					
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	July 02 -A	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW		

Duty Cycle	1:1	1:1	1:1	1:1
Transmitting Frequency Range (MHz)	5180-5240	5260-5320	5520-5700	5745-5825
Mode(s) of Operation	HSPA ⁺ / WCDMA / UMTS FDD V (850)	HSPA ⁺ / WCDMA / UMTS FDD II (1900)	NFC	
Nominal Maximum conducted RF Output Power (dBm)	23.0	22.5	N/A	
Tolerance in Power Setting on centre channel (dB)	± 0.5	± 0.5	N/A	
Duty Cycle	Outy Cycle 1:1		N/A	
Transmitting Frequency Range (MHz)	824.6 – 846.6	1852.4 – 1907.6	13.56	

Table 1.3-1 Test device characterization for U.S. wireless operating modes/bands

Note 1: The BlackBerry model: RFW121LW also supports GSM/GPRS/EDGE 900/1800 MHz, UMTS band I/VIII, and LTE 3/7/8/20, that are not operational in North America, therefore no data is presented in this report for those bands.

Note 2: SAR measurements on NFC haven't been conducted, since it is very low power and frequency magnetic field transceiver. SAR probes measure higher frequency/power electric field.

SAR Compliance Test Report for the BlackBerry® Smartphone Model RFW121LW Rev 3					
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker July 02 – August 15, 2013			RTS-6046-1307-42 Rev 3	L6ARFW120LW	

1.4 Body worn accessories (holsters)

The device has been tested with the holster listed below. The holster has been designed with the intended device orientation being with the LCD facing the belt clip only. Proper positioning is vital for protection of the LCD display, and to help maximize the battery life of the device. The device can also be placed in the holster with the backside facing the belt clip. Body SAR measurements were carried out with the worst-case configuration front LCD side and backside towards the belt clip.

Number	Holster Type	Part Number	Separation distance (mm)
1	Vertical Holster, Leather	HDW-55471-001	20

Table 1.4-1 Body worn holster

Note: Holsters have identical design, except for different leather material being used.

Please refer to Appendix E.

Figure 1.4-1 Body-worn holster

1.5 Headset

The device was tested with headset if 1g avg. SAR > 1.2 W/Kg model numbers.

1)HDW-44306-xxx

1.6 Battery

The device was tested with the following Lithium Ion Battery packs.

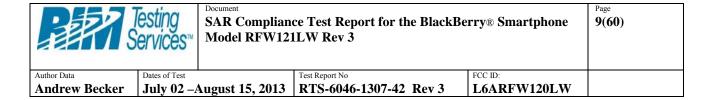
1) BAT-50136-00x

1.7 Procedure used to establish test signal

- The device was put into test mode for SAR measurements by placing a call from a Rohde & Schwarz CMU 200
- Software Tool was used to set WiFi to transmit at maximum power and duty cycle for each band, channel, and modulation.

事件。 S	Testing Services™	SAR Compliand Model RFW121	ce Test Report for the BlackBe ILW Rev 3	rry® Smartphone	Page 8(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker July 02 – August 15, 2013			RTS-6046-1307-42 Rev 3	L6ARFW120LW	

1.8 Highlights of the FCC OET SAR Measurement Requirements

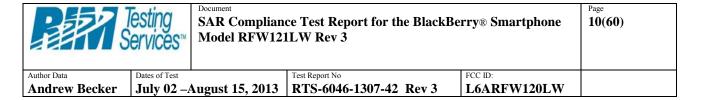

1.8.1 SAR Measurement Procedures for 802.11 a/b/g/n as per KDB 248227 D01 v01r02 and SAR Measurements 100 MHz to 6 GHz as per KDB 865664 D0 V01

- Repeat measurements when the measured SAR is ≥ 0.80 W/kg. If the measured SAR values are < 1.45 W/kg with $\leq 20\%$ variation, only one repeated measurement was performed to reaffirm that the results are not expected to have substantial variations. An additional repeated measurement is required only if the measured results are within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties.
- Maintained dielectric parameter uncertainty to \pm 5.0% of the target values, (although it is very challenging to control/maintain both permittivity and conductivity for 5-6 GHz for all test channels within \pm 5.0% of the target values, some conductivity values were measured slightly higher which resulted in more conservative SAR values.
- Liquid depth from SAM ERP or flat phantom was kept at 15 cm.
- Probe Requirement: Used SPEAG probe model ET3DV6/ES3DV3 for 2.45 GHz and EX3DV4 for 5-6 GHz SAR testing specs are outlined below:

ET3DV6/ES3DV3					
Probe tip to sensor center	2.7 mm / 2.0 mm				
Probe tip diameter is	6.8 mm / 4.0 mm				
Probe calibration uncertainty	< 15 % for f = 2.45 GHz				
Probe calibration range	± 100 MHz				
EX3DV	V4				
Probe tip to sensor center	1.0 mm				
Probe tip diameter is	2.5 mm				
Probe calibration uncertainty	< 15 % for f = 2.45 to $< 6.0 GHz$				
Probe calibration range	± 100 MHz				

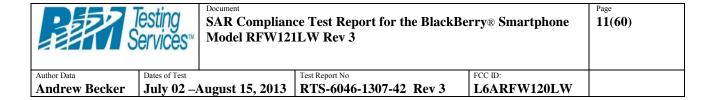
Table 1.8.1-1 Probe specification requirements

- Area scan resolution was maintained at 10mm (5-6 GHz)
- Area scan resolution was maintained at 12mm (2-3 GHz)
- Area scan resolution was maintained at 15mm (</= 2 GHz)
- \bullet System accuracy validation was conducted within \pm 100 MHz of device mid-band frequency and results were within \pm 10 % of the manufacturers target value for each band.
- Zoom Scan: The following settings were used for the validation and measurement.



ET3DV6/ES3DV3					
Closest Measurement Point to Phantom	4.0 mm				
Zoom Scan (x,y) Resolution	7.5 mm (≤2 GHz) or 5 mm (2-3 GHz)				
Zoom Scan (z) Resolution	5.0 mm				
Zoom Scan Volume	Minimum 30 x 30 x 30 mm ¹				
EX3	DV4				
Closest Measurement Point to Phantom	2.0 mm				
Zoom Scan (x,y) Resolution	4.0 mm (5-6 GHz)				
Zoom Scan (z) Resolution	2.0 mm (5-6 GHz)				
Zoom Scan Volume	Minimum 22 x 22 x 22 mm ¹				

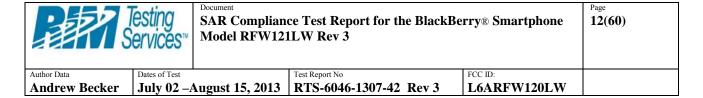
Table 1.8.1-2 Zoom Scan requirement


Note 1: "Auto-extend zoom scan when maxima on boundary" is enabled, which can result in the zoom scan dimensions varying between 30x30x30 to 60x60x30 mm and 22x22x22 to 48x40x22 mm.

- Frequency Channel Configuration: 802.11 b/g modes are tested on "default test channels" 1, 6 and 11.
- 802.11a is tested for UNII operations on the highest output power channel of each sub band (low, mid, upper band I, and upper band II). If the highest output power channel has a SAR level that is not 3dB lower than the limit, then the low, mid, and high channels of each sub band must also be tested.
- For each frequency band, testing at higher rates and higher modulations is not required when the maximum average output power for each of these configurations is less than ½ dB higher than those measured at the lowest data rate.
- SAR is not required for 802.11g/n channels when the maximum average output power is less than ¼ dB higher than that measured on the corresponding 802.11b channels.
- SAR test was conducted on each "default test channel" and each band with the worst case modulation and highest duty cycle, if the SAR level was within 3dB of the limit.
- Conducted power measurements:

802.1	1b @ 1M	lbps	802.11g @ 6Mbps			802.11n @ 6.5 Mbps				
f (MHz)	Chan	Max. Avg. Cond. Power (dBm)	f (MHz)	Ch	nan	Max Avg Cone Powe (dBn	g. d. er	f (MHz)	Chan	Max. Avg. Cond. Power (dBm)
2412	1	18.2	2412		1	16.8	8	2412	1	16.0
2437	6	18.8	2437	(6	18.2	2	2437	6	16.5
2462	11	18.0	2462	1	1	13.7	7	2462	11	13.7
	80	2.11g						802.1	l1b	
Data		C	Channel 6		D	ata			Chan	nel 6
Rate	Mod.	Max	. Avg. Co	nd.	R	ate	ľ	Mod.	Max. Av	g. Cond.
(Mbps)		Po	wer (dBm	1)	(M	bps)			Power	(dBm)
6	BPSK		18.2			1	E	BPSK	18.8	
9	BPSK		18.0			2	D	QPSK	18.7	
12	QPSK		17.9		5	5.5	(CCK	18.6	
18	QPSK		17.8		1	11	(CCK	18.5	
24	16-QAN	1	17.0		2	22	(CCK		
36	16-QAN	1	16.7							
48	64-QAN	1	15.6							
54	64-QAN	1	15.4							
				802.	11 n					
Doto I	Rate (Mb _l	ng)	Mod.		Channel 6					
Data I		μs)				Max. Avg. Cond. Power (dBm)				(dBm)
	6.5		MCS	SO		16.5				
	13		MCS				16.4			
	19.5		MCS						16.2	
26			MCS3		16.2					
39			MCS	S4		15.0				
	52		MCS	S5		14.9				
	58.5		MCS	S6		13.8				
	65				13.8					

Table 1.8.1-3a 802.11 b/g/n modulation type/data rate vs. conducted power with full power



802.1	1b @ 1M	lbps	802.1	l1g	@ 61	Mbps		802.	11n @ 6.5	5 Mbps	
f (MHz)	Chan	Max. Avg. Cond. Power (dBm)	f (MHz)	Ch	nan	Max Avg Con Pow (dBr	g. d. er	f (MHz)	Chan	Max. Avg. Cond. Power (dBm)	
2412	1	14.2	2412		1	14.0)	2412	1	14.0	
2437	6	14.8	2437	(6 14.5		5	2437	6	14.4	
2462	11	14.3	14.3 2462		.1	13.8	3	2462	11	13.8	
	802.11g							802.11b			
Data		C	hannel 6		D	ata			Chan	nel 6	
Rate	Mod.	Max	Avg. Cor	nd.	R	ate	M	Mod.	Max. Av	g. Cond.	
(Mbps)		Pov	wer (dBm	1)	(M	(bps)	ļ		Power (dBm)		
6	BPSK		14.5			1	F	BPSK	14	.8	
9	BPSK		14.4			2	D	QPSK	14.7		
12	QPSK		14.3		4	5.5	(CCK	14.8		
18	QPSK		14.2			11	(CCK	14.7		
24	16-QAN	1	14.1		- :	22	(CCK			
36	16-QAN	1	13.8								
48	64-QAN	1	13.6								
54	64-QAN	1	13.4								

Table 1.8.1-3b 802.11 b/g/n modulation type/data rate vs. conducted power with hotspot reduced power enabled.

Note: This lower power level is triggered when device is placed in the hotspot mode.

802.11a (low band	d) 6Mbps	802.11a	(mid band) 6Mbps	802.11a (802.11a (upper band I) 6Mbps		
f (MHz)	Chan	Cond. Power (dBm)	f (MHz)	Chan	Cond. Power (dBm)	f (MHz)	Chan	Cond. Power (dBm)	
5180	36	12.8	5260	52	14.6	5520	104	14.9	
5200	40	12.8	5280	56	14.5	5580	116	14.7	
5220	44	12.6	5300	60	14.4	5620	124	14.7	
5240	48	12.6	5320	64	12.2	5700	140	14.4	
						802.11a (upper band II) 6Mbps			
						f (MHz)	Chan	Cond. Power (dBm)	
						5745	149	11.6	
						5765	153	14.8	
						5785	157	14.7	
						5805	161	14.5	
						5825	165	11.2	

			2.11a	802.11a	-	802.11a	802.11a
			r band)	(middle ba		(upper band I)	
Data			mel 36	Channel		Channel 104	Channel 153
Rate	Mod.		. Avg.	Max. Av	_	Max. Avg.	Max. Avg. Cond.
(Mbits)			Power	Cond. Por		Cond. Power	Power (dBm)
		(dBm)		(dBm)		(dBm)	· · · · · · · · · · · · · · · · · · ·
6	BPSK		2.8	14.6		14.9	14.8
9	BPSK		2.8	14.6		14.9	14.7
12	QPSK	1:	2.7	14.5		14.8	14.6
18	QPSK	13	2.5	14.3		14.7	14.4
24	16-QAM	13	2.4	14.2		14.6	14.0
36	16-QAM	1.	2.2	13.9		14.3	13.8
48	64-QAM	12.0		13.0		13.3	12.6
54	64-QAM	11.9		12.9		13.2	12.4
	802.11	n	80	2.11n		802.11n	802.11n
	(lower ba	and)	(mide	lle band)	(u	pper band I)	(upper band II)
	Channe	l 36	Cha	nnel 52	(Channel 104	Channel 153
Mod.	Max. A Cond. Po (dBm	wer		avg. Cond. er (dBm)		x. Avg. Cond. ower (dBm)	Max. Avg. Cond. Power (dBm)
MCS0	12.8			13.8		14.9	11.4
MCS1	12.7			13.7		14.8	11.3
MCS2	12.6	12.6		12.6		14.7	11.2
MCS3	12.5			12.4		14.5	11.1
MCS4	12.4			14.1		13.6	10.9
MCS5	12.4			14.1	13.5		10.8
MCS6	12.2			13.9		12.2	10.7
MCS7	12.1			13.8		12.2	10.7

Table 1.8.1-4 802.11 a/n modulation type/data rate vs. conducted power

主教	Testing Services™	SAR Complian Model RFW12	ce Test Report for the BlackE ILW Rev 3	Berry® Smartphone	Page 13(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker July 02 –August 15, 2013			RTS-6046-1307-42 Rev 3	L6ARFW120LW	

1.8.2 SAR Measurement Requirements for Bluetooth

Channe l	Freq (MHz)	Mode	Modulation	Max. Peak Power (dBm)
0	2402			8.0
39	2441	DH5	GFSK	9.8
78	2480			6.5
0	2402			7.0
39	2441	2-DH5	π/4-DQPSK	8.3
78	2480			5.3
0	2402			7.1
39	2441	3-DH5	8-DPSK	8.5
78	2480			5.5

Table 1.8.2-1 Bluetooth maximum peak conducted power measurements

1.8.3 SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities as per KDB 941225 D06 v01

Standalone personal wireless routers and handsets with hotspot mode capabilities must address hand-held and other near-body exposure conditions to show SAR compliance. The following procedures are applicable when the overall device length and width are ≥ 9 cm x 5 cm respectively. A test separation of 10 mm is required. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25 mm from that surface or edge, for the data modes, wireless technologies and frequency bands supporting hotspot mode. The standalone SAR results in each device test orientation must be analyzed for the applicable hotspot mode simultaneous transmission configurations to determine SAR test exclusion and volume scan requirements.

Static/fixed power reduction scheme on the following modes/bands have been implemented when Hotspot Mode is enabled or active to comply with body SAR with 10 mm test separation from flat phantom on standalone transmitter and multi-band simultaneous transmission conditions:

• 802.11b – 4 dB

This lower power level is triggered when device is placed in the hotspot mode.

When Hotspot mode is enabled or active, all 5 GHz WiFi operations are disabled or not supported.

	Testing Services™	SAR Compliant Model RFW123	ce Test Report for the BlackB ILW Rev 3	erry® Smartphone	Page 14(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker July 02 – August 15, 2013		RTS-6046-1307-42 Rev 3	L6ARFW120LW		

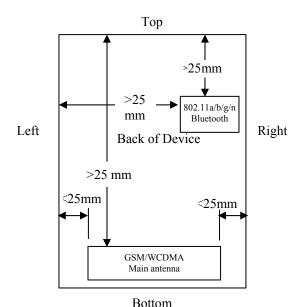
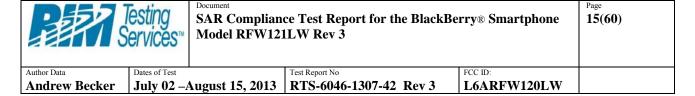


Figure 1.8.3-1 Identification of all sides for SAR Testing

Note: According to FCC guidance, Hotspot SAR testing is not required on any edge that is more than 2.5cm from the transmitting antenna.


When Hotspot mode is enabled or active, all 5 GHz WiFi operations are disabled or not supported.

Hotspot Sides for SAR Testing									
Mode	Front	Back	Top	Bottom	Left	Right			
GPRS 850	Yes	Yes	No	Yes	Yes	Yes			
GPRS 1900	Yes	Yes	No	Yes	Yes	Yes			
WCDMA/HSPA 850	Yes	Yes	No	Yes	Yes	Yes			
WCDMA/HSPA 1900	Yes	Yes	No	Yes	Yes	Yes			
Bluetooth 2.4GHz	Yes	Yes	No	No	No	Yes			
802.11b 2.4GHz	Yes	Yes	No	No	No	Yes			

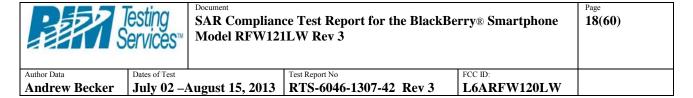
Table 1.8.3-1 Identification of all sides for SAR Testing

1.8.4 SAR Evaluation Procedures for GSM/(E)GPRS Dual Transfer Mode as per KDB 941225 D04 v01 and SAR Test Reduction Procedures GSM GPRS EDGE as per DDB 941225 D03 vo1

- The device supports EGPRS/GPRS Multi-slot Class 12, DTM/GPRS Multi-slot Class 11 and DTM/EGPRS Multi-slot Class 10.
- CMU200 base station simulator with DTM software option CMU-K44 was used to set device in DTM (CS+PD) mode for testing. However, device could not be connected in DTM 4-slots uplink.
- \bullet For each slot addition in multi-slot modes (DTM, GPRS, EDGE), there is software power reduction of \sim 2 dB per slot.

- For head configurations, 1 slot CS, 2/3/4-slots (PD) and DTM (CS+PD) were evaluated.
- For body SAR configurations, 2/3/4-slots GPRS (PD) mode were tested.
- In EDGE/GPRS mode, GMSK Modulation was used using CS1-CS4 or MCSI-MCS4.
- 8-PSK modulation or MCS5-MCS9 code scheme were avoided since maximum burst avg . power was measured lower on those modulation schemes.
- Please refer to the conducted power measurements table below:

Mode	Freq. (MHz)	Channel	Max burst averaged conducted power (dBm) CS1	Max burst averaged conducted power (dBm) MCS1	Max l avera condu power MC	aged icted (dBm)
2-slots	824.2	128	30.3			
GPRS	836.8	190	30.1			
850 MHz	848.8	251	30.3			
3-slots	824.2	128	28.7			
GPRS	836.8	190	28.8			
850 MHz	848.8	251	28.4			
4-slots	824.2	128	27.2			
GPRS	836.8	190	27.2			
850 MHz	848.8	251	26.9			
2-slots	824.2	128	30.4	30.4	24	.3
EDGE	836.8	190	30.1	30.2	24	.3
850 MHz	848.8	251	30.3	30.3	30.3 23.9	
2-slots	824.2	128	30.4	30.4	30.4	24.3
DTM	836.8	190	30.2	30.3	30.3	24.3
850 MHz	848.8	251	30.3	30.3	30.2	23.9
3-slots	824.2	128	28.8	28.8	22	.8
EDGE	836.8	190	28.8	28.8	22	.7
850 MHz	848.8	251	28.4	28.5	22	.6
3-slots	824.2	128	28.9	28.9	28.8	22.8
DTM	836.8	190	28.6	28.6	28.6	22.7
850 MHz	848.8	251	28.6	28.5	28.5	22.6
4-slots	824.2	128	27.2	27.2	21	.1
EDGE	836.8	190	27.1	27.2	21	.0
850 MHz	848.8	251	26.9	26.9	20	.9
2-slots	1850.2	512	27.0			
GPRS	1880.0	661	26.9			
1900 MHz	1909.8	810	27.1			
3-slots	1850.2	512	25.5			
GPRS	1880.0	661	25.4			


-								
1900 MHz	1909.8	810	25.	.4				
4-slots	1850.2	512	24.	.1				
GPRS	1880.0	661	24.	.1				
1900 MHz	1909.8	810	23.	.9				
2-slots	1850.2	512	27.	.0	27.0)	23	.1
EDGE	1880.0	661	27.	.0	26.9)	23	.1
1900MHz	1909.8	810	27.	.1	27.1		23	.1
2-slots	1850.2	512	27.	.1	27.1		27.1	23.1
DTM	1880.0	661	26	.8	26.9)	26.9	23.1
1900MHz	1909.8	810	26.	.9	26.9)	26.9	23.1
3-slots	1850.2	512	25.5		25.5		21.7	
EDGE	1880.0	661	661 25.5		25.4		21.5	
1900MHz	1909.8	810	25.4		25.4	ļ	21	.6
3-slots	1850.2	512	25.3		25.3		25.3	21.7
DTM	1880.0	661	25	.2	25.3	3	25.3	21.5
1900MHz	1909.8	810	25	.4	25.4	1	25.4	21.6
4-slots	1850.2	512	24	.1	24.1		20.1	
EDGE	1880.0	661	24	.0	24.0		20.2	
1900MHz	1909.8	810	23.	.9	23.9)	20	.1
		Free	n			Max	burst av	eraged
Mode	e	(MH	-	Ch	annel	con	ducted p	ower
							(dBm)	
	1-slot		.2		128		32.3	
GSM (CS)		836.			190		32.3	
850 MI		848.	.8		251		32.1	
1-slo		1850			512	30.1		
GSM (C	· ·	1880	0.0	661		30.0		
1900 M	Hz	1909	8.	810		30.0		

1.8.4-1 GSM/EDGE/GPRS channel vs. conducted power

	Testing Services™	SAR Complian Model RFW12	ce Test Report for the BlackB ILW Rev 3	erry® Smartphone	Page 17(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker July 02 –August 15, 2013			RTS-6046-1307-42 Rev 3	L6ARFW120LW	

1.8.5 SAR Measurement Procedure for Fast SAR Scan as per KDB 447498

- Area scan based 1-g SAR estimation.
 - o Very specific implementation of fast SAR methods.
 - Reported in the 29th BEMS meeting in 2009.
 - Using the specific polynomial fit algorithm.
 - o Other implementations are not considered.
- When estimated 1-g SAR is ≤ 1.2 W/kg, zoom scan is not required according to the following:
 - o Zoom scan is not required for any other purposes.
 - o Peaks are distinctively identified in the area scan.
 - o No sharp gradients: SAR at 1 cm from peak $\geq 40\%$ of peak value.
 - o No measurement warnings or alerts for other measurement issues.
- 1-g SAR for estimated & zoom scan in the system verification (dipole) must be within 3% of each other to utilize Fast SAR.
- 1g Fast SAR values for dipole validation scans are generally more conservative than the standard SAR scans.
- Regardless of the SAR value, a zoom scan is required for the highest SAR configuration in each frequency band and wireless mode.
- Fast SAR Algorithm: The approach is based on the area scan using DASY5 system.

1.8.6 SAR Measurement Procedures for 3G Devices

WCDMA Handsets

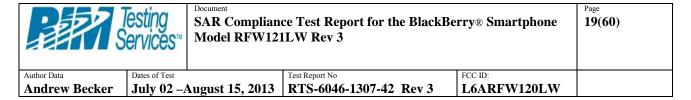
Output Power Verification

- Maximum output power is verified on the High, Middle and Low channels using 12.2 kbps RMC, 12.2 kbps AMR with a 3.4 kbps SRB (signal radio bearer) with TPC (transmit power control) set to all "1's" for WCDMA/HSPA or applying the required inner loop.
- For Release 6 HSPA/Release 7 HSDPA⁺, output power is measured according to requirements for HS-DPCCH Sub-test 1-4/1-5 and 3GPP TS 34.121.

Head SAR Measurements

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than ¼ dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signalling radio bearer) using the exposure configuration that results in the highest SAR for that RF channel in 12.2 RMC.

Body SAR Measurements


SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits configured to all "1s". SAR for other spreading codes and multiple DPDCH_n, when supported by the DUT, are not required when the maximum average outputs of each RF channel, for each spreading code and DPDCH_n configuration, are less than ¼ dB higher than those measured in 12.2 RMC. Otherwise, SAR is measured on the maximum output channel with an applicable RMC configuration for the corresponding spreading code or DPDCH_n using the exposure configuration that results in the highest SAR with 12.2 RMC.

Handsets with HSPA

Body SAR is not required for handsets with HSPA/HSPA+ capabilities, when the maximum average output of each RF channel with HSPA active is less than ¼ dB higher than that measured in 12.2 kbps RMC without HSPA/HSPA+. Otherwise, SAR for HSPA is measured using FRC (fixed reference channel) in the body exposure configuration that results in the highest SAR for that RF channel in 12.2kbps RMC.

1.8.7 Test Seup information for WCDMA / HSPDA / HSUPA

a) WCDMA RMC

In RMC (reference measurement channel) mode the conducted power at 4 different bit rates were measured. They correspond with the used spreading factors as follows:

Bit rate	12.2 kbit/s	64 kbit/s	144 kbit/s	384 kbit/s
Spreading factor (SF)	64	16	8	4

In RMC mode only DPCCH and DPDCH are active. As bit rate changes do not influence the relative power of any code channel the measured RMS output power remains on the same level which is set to maximum by TPC (Transmit power control) pattern type 'All 1'.

b) HSDPA

HSDPA adds the HS-DPCCH in uplink as a control channel for high speed data transfer in downlink. In HSDPA mode 4 sub-tests are defined by 3GPP 34.121 according to the following table:

Sub-test	β _c	β_d	β _d (SF)	β_c/β_d	$\beta_{\sf hs}^{(1)}$	CM(dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: Δ_{ACK} , Δ_{NACK} , Δ_{CQI} = 8 \iff A_{hs} = β_{hs}/β_c = 30/15 \iff β_{hs} = 30/15 * β_c

Note 2 : CM = 1 for β_c/β_d = 12/15, β_{hs}/β_c = 24/15

Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to β_c = 11/15 and β_d = 15/15

Table 1.8.7.1. Sub-tests for UMTS Release 5 HSDPA

The β_c and β_d gain factors for DPCCH and DPDCH were set according to the values in the above table, β_{hs} for HS-DPCCH is set automatically to the correct value when Δ_{ACK} , Δ_{NACK} , $\Delta_{CQI} = 8$. The variation of the β_c/β_d ratio causes a power reduction at sub-tests 2 - 4.

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI's
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 1.8.7.2. Settings of required H-Set 1 QPSK acc. to 3GPP 34.121

Services™ Model RFW12			ce Test Report for the BlackBe ILW Rev 3	erry® Smartphone	Page 20 (60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker July 02 – August 15, 2013			RTS-6046-1307-42 Rev 3	L6ARFW120LW	

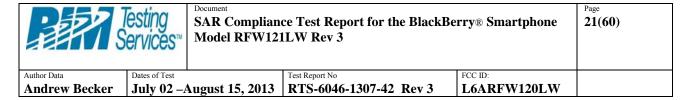
c) DC-HSDPA (3GPP Release 8)

Dual Cell – HSDPA has been signalized using the following settings for connection setup:

Parameter	Value
During Connection Setup	
P-CPICH_Ec/Ior	-10 dB
P-CCPCH	-12
SCH_Ec/Ior	-12
PICH_Ec/Ior	-15
HS-PDSCH	off
HS-SCCH_1	off
DPCH_Ec/Ior	-5
OCNS_Ec/Ior	-3.1

Table 1.8.7.3: Downlink Physical Channels according to 3GPP 34.121 Table E.5.0

The fixed reference channel has been set to H-set 12 according to 3GPP TS 34.121 Table C.8.1.12:


Parameter	Unit	Value
Nominal Average Inf. Bit Rate	kbit/s	60
Inter-TTI Distance	TTI's	1
Information Bit Payload (N _{INF})	Bits	120
Number Code Blocks	Blocks	1
Binary Channel Bits Per TTI	Bits	960
Total Available SML's in UE	SML's	19200
Number of SML's per HARQ Process	SML's	3200
Coding Rate		0.15
Number of Physical Channel Codecs	Codecs	1
Modulation		QPSK

Note 1: The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table.

Note 2: Maximum number of transmission is limited to 1, i.e., retransmission is not allowed. The redundancy and constellation version 0 shall be used.

Table 1.8.7.4 H-Set 12 QPSK configuration

The same Sub-test settings as for Release 5 HSDPA were used for the tests.

d) HSUPA

In HSUPA mode additional code channels (E-DPCCH, E-DPDCHn) are added for data transfer in uplink at higher bit rates.

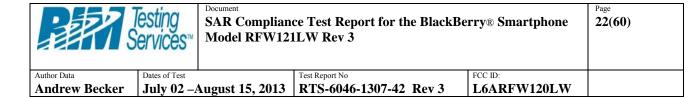
5 sub-tests are defined by 3GPP 34.121 according to the following table :

Sub-	βc	β_d	β _d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	eta_{ec}	$eta_{\sf ed}$	β_{ec}	β_{ed}	CM ⁽²⁾	MPR	AG ⁽⁴⁾	E-TFCI
test								(SF)	(code)	(dB)	(dB)	Index	
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β_{ed1} :47/15 β_{ed2} :47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} , Δ_{CQI} = 8 \iff A_{hs} = β_{hs}/β_c = 30/15 \iff β_{hs} = 30/15 * β_c

Note 2 : CM = 1 for β_0/β_d = 12/15, β_{hs}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference

Note 3 : For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to β_c = 10/15 and β_d = 15/15


Note 4 : For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to β_c = 14/15 and β_d = 15/15

Note 5 : Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g Note 6 : β_{eq} can not be set directly; it is set by Absolute Grant Value

Table 1.8.7.5: Subtests for UMTS Release 6 HSUPA

To achieve the settings above some additional procedures were defined by 3GPP 34.121. Those have been included in an application note for the CMU200 and were exactly followed:

- Test mode connection (BS signal tab):
- RMC 12.2 kbit/s + HSPA 34.108 with loop mode 1
- HS-DSCH settings (BS signal tab):
- FRC with H-set 1 QPSK
- ACK-NACK repetition factor = 3
- CQI feedback cycle = 4ms
- CQI repetition factor = 2
- HSUPA-specific signalling settings (UE signal tab) :
- E-TFCI table index = 0
- E-DCH minimum set E-TFCI = 9
- Puncturing limit non-max = 0.84
- max. number of channelisation codes = 2x SF4
- Initial Serving Grant Value = Off
- HSDPA and HSUPA Gain factors (UE signal tab)

Sub-test	$eta_{\mathbf{c}}$	$\beta_{\sf d}$	$\Delta_{ACK}, \Delta_{NACK}, \Delta$	ΔE-DPCCH *
1	10	15	8	6
2	6	15	8	8
3	15	9	8	8
4	2	15	8	5
5	14	15	8	7

* β_{ec} and β_{ed} ratios (relative to β_c and β_d) are set by $\Delta E\text{--DPCCH}$

- HSUPA Reference E-TFCIs (UE signal tab > HSUPA gain factors) :

Sub-test	1, 2, 4, 5				
Number of E-TFCIs			5		
Reference E-TFCI	11	67	71	75	81
Reference E-TFCI power offset	4	18	23	26	27

Sub-test	3		
Number of E-TFCIs		2	
Reference E-TFCI	11	92	
Reference E-TFCI power offset	4	18	

- HSUPA-specific generator parameters (BS Signal tab > HSUPA > E-AGCH > AG Pattern)

Sub-test	Absolute Grant Value (AG Index)
1	20
2	12
3	15
4	17
5	21

- Power Level settings (BS Signal tab > Node B-settings):
- Level reference : Output Channel Power (lor)
- Output Channel Power (lor): -86 dBm
- Downlink Physical Channel Settings (BS signal tab)
- P-CPICH: -10 dB - S-CPICH: Off - P-SCH: -15 dB - S-SCH: -15 dB - P-CCPCH: -12 dB
- S-CCPCH : -12 dB - PICH : -15 dB - AICH : -12 dB - DPDCH : -10 dB

SAR Compliance Test Report for the BlackBerry® Smartphone

ne 23(60)

Model RFW121LW Rev 3

Andrew Becker

July 02 –August 15, 2013

Test Report No **RTS-6046-1307-42 Rev 3**

L6ARFW120LW

- HS-SCCH : -8 dB - HS-PDSCH : -3 dB - E-AGCH : -20 dB

- E-RGCH/E-HICH - 20 dB - E-RGCH Active : Off

The settings above were stored once for each sub-test and recalled before the measurement.

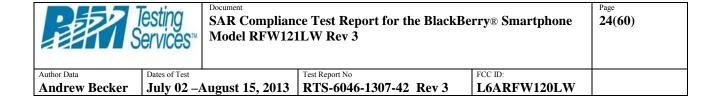
To reach maximum output power in HSUPA mode the following procedures were followed:

3 different TPC patterns were defined:

Set 1: Closed loop with target power 10 dBm

Set 2 : Single Pattern+Alternating with binary pattern '11111' for 1 dB steps 'up'
Set 3 : Single Pattern+Alternating with binary pattern '00000' for 1 dB steps 'down'

After recalling a certain HSUPA sub-test the HSUPA E-AGCH graph with E-TFCI event counter is displayed. After starting with the closed loop command the power is increased in 1 dB steps by activating pattern set 2 until the UE decreases the transmitted E-TFCI.


At this point set 3 is activated once to reduce the output power to the value at which the original E-TFCI, which is required for the sub-test, appears again.

For conducted power measurements the same steps are repeated in the power menu to read out the corresponding maximum RMS output power with the target E-TFCI.

For SAR measurements it is useful to switch to Code Domain Power vs. Time display.

Here the CMU200 shows relative power values (max. and min.) of each code channel which should roughly correspond to the numerators of the gain factors e.g.:

Sub-test	β_c	β_d	$eta_{\sf hs}$	$eta_{ t ec}$	$eta_{\sf ed}$
5	15	15	30	24	134

	Band	F	FDD V (850))	
	Freq (MHz)	826.4	836.4	846.6	
	Channel	4132	4182	4233	
N. 1	0.14	Max burst averaged			
Mode	Subtest	conducted power (dBm)			
Rel99	12.2 kbps RMC	23.0	23.2	23.1	
Rel99	12.2kbps, Voice, AMR, SRB 3.4 kbps	23.1	23.2	23.1	
Rel6 HSUPA	1	21.6	21.8	21.6	
Rel6 HSUPA	2	21.3	21.6	21.4	
Rel6 HSUPA	3	22.2	22.3	22.2	
Rel6 HSUPA	4	22.0	22.2	22.1	
Rel6 HSUPA	5	21.2	21.5	21.2	
Rel7 HSDPA+	1	22.1	22.2	22.1	
Rel7 HSDPA+	2	20.6	20.7	20.7	
Rel7 HSDPA+	3	19.3	19.2	19.4	
Rel7 HSDPA+	4	18.8	19.0	18.6	
		FDD II (1900)		٥)	
	Band	F	DD II (190	0)	
	Band Freq (MHz)	1852.4	DD II (190 1880.0	0) 1907.6	
Modo	Freq (MHz) Channel	1852.4 9262	1880.0	1907.6 9538	
Mode	Freq (MHz)	1852.4 9262 Max	1880.0 9400	1907.6 9538 aged	
Mode Rel99	Freq (MHz) Channel	1852.4 9262 Max	1880.0 9400 burst aver	1907.6 9538 aged	
	Freq (MHz) Channel Subtest	1852.4 9262 Max conduc	1880.0 9400 burst aver ted power	1907.6 9538 raged (dBm)	
Rel99	Freq (MHz) Channel Subtest 12.2 kbps RMC 12.2 kbps, Voice,	1852.4 9262 Max conduct 22.7	1880.0 9400 burst aver ted power 22.6	1907.6 9538 raged (dBm) 22.9	
Rel99 Rel99	Freq (MHz) Channel Subtest 12.2 kbps RMC 12.2 kbps, Voice, AMR, SRB 3.4 kbps	1852.4 9262 Max conduct 22.7 22.7	1880.0 9400 burst aver eted power 22.6 22.6	1907.6 9538 raged (dBm) 22.9 22.8	
Rel99 Rel99 Rel6 HSUPA	Freq (MHz) Channel Subtest 12.2 kbps RMC 12.2 kbps, Voice, AMR, SRB 3.4 kbps 1	1852.4 9262 Max conduct 22.7 22.7 21.3	1880.0 9400 burst aver eted power 22.6 22.6 21.1	1907.6 9538 raged (dBm) 22.9 22.8 21.4	
Rel99 Rel99 Rel6 HSUPA Rel6 HSUPA	Freq (MHz) Channel Subtest 12.2 kbps RMC 12.2 kbps, Voice, AMR, SRB 3.4 kbps 1 2	1852.4 9262 Max conduct 22.7 22.7 21.3 21.0	1880.0 9400 burst aver ted power 22.6 22.6 21.1 20.9	1907.6 9538 raged (dBm) 22.9 22.8 21.4 21.1	
Rel99 Rel99 Rel6 HSUPA Rel6 HSUPA Rel6 HSUPA	Freq (MHz) Channel Subtest 12.2 kbps RMC 12.2 kbps, Voice, AMR, SRB 3.4 kbps 1 2 3	1852.4 9262 Max conduct 22.7 22.7 21.3 21.0 21.8	1880.0 9400 burst aver 22.6 22.6 21.1 20.9 21.7	1907.6 9538 raged (dBm) 22.9 22.8 21.4 21.1 21.9	
Rel99 Rel99 Rel6 HSUPA Rel6 HSUPA Rel6 HSUPA Rel6 HSUPA	Freq (MHz) Channel Subtest 12.2 kbps RMC 12.2 kbps, Voice, AMR, SRB 3.4 kbps 1 2 3 4	1852.4 9262 Max conduct 22.7 22.7 21.3 21.0 21.8 21.7	1880.0 9400 burst aver eted power 22.6 22.6 21.1 20.9 21.7 21.6	1907.6 9538 raged (dBm) 22.9 22.8 21.4 21.1 21.9 21.8	
Rel99 Rel6 HSUPA Rel6 HSUPA Rel6 HSUPA Rel6 HSUPA Rel6 HSUPA	Freq (MHz) Channel Subtest 12.2 kbps RMC 12.2 kbps, Voice, AMR, SRB 3.4 kbps 1 2 3 4 5	1852.4 9262 Max conduct 22.7 22.7 21.3 21.0 21.8 21.7 20.9	1880.0 9400 burst aver eted power 22.6 22.6 21.1 20.9 21.7 21.6 20.7	1907.6 9538 raged (dBm) 22.9 22.8 21.4 21.1 21.9 21.8 20.9	
Rel99 Rel6 HSUPA Rel6 HSUPA Rel6 HSUPA Rel6 HSUPA Rel6 HSUPA Rel6 HSUPA Rel7 HSDPA+	Freq (MHz) Channel Subtest 12.2 kbps RMC 12.2 kbps, Voice, AMR, SRB 3.4 kbps 1 2 3 4 5 1	1852.4 9262 Max conduct 22.7 21.3 21.0 21.8 21.7 20.9 21.8	1880.0 9400 burst aver 22.6 22.6 21.1 20.9 21.7 21.6 20.7 21.5	1907.6 9538 raged (dBm) 22.9 22.8 21.4 21.1 21.9 21.8 20.9 21.9	

Table 1.8.6-1 WCDMA (Rel99) / HSPA/HSPA+ conducted power measurements

			nce Test Report for the BlackBerry® Smartphone		Page 25(60)	
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker July 02 – August 15, 2013		RTS-6046-1307-42 Rev 3	L6ARFW120LW			

1.9 General SAR Test Reduction and Exclusion procedure as per KDB 447498 D01 V05 and SAR Handsets Multi Xmiter and Ant procedure as per 648474 D04 v01

Standalone SAR test exclusion guidance:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances

$$\left(\frac{max.power\ of\ channel, including\ tuns-up\ tolerance}{(mW)} \times \sqrt{\frac{f}{(GHz)}} \le 3.0 \right), For\ 1g\ SAF$$
(mm)

Where:

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation17
- If distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- The result is rounded to one decimal place for comparison

Simultaneous Transmission SAR Test exclusion considerations:

When the sum of 1-g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration. When the sum is greater than the SAR limit, the SAR to peak location separation ratio procedures described below may be applied to determine if simultaneous transmission SAR test exclusion applies.

The ratio is determined by:

$$\left([SAR1 + SAR2]^{\frac{1.5}{R_t}} \right) \le 0.04$$

Where:

• R_i= the separation distance between the peak SAR locations for the antenna pair (mm)

Simultaneous Transmission SAR required:

• antenna pairs with SAR to antenna separation ratio > 0.04; test is only required for the configuration that results in the highest SAR in standalone configuration for each wireless mode and exposure condition.

	Testing Services™	SAR Complian Model RFW12	ce Test Report for the BlackE 1LW Rev 3	Berry® Smartphone	Page 26(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	July 02 –	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW	

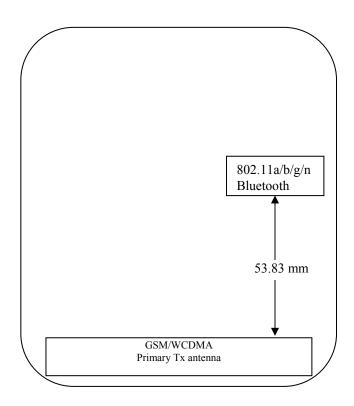


Figure 1.9-1 Back view of device showing closest distance between antenna pairs

1.9.1 Simultaneous Transmission Analysis

Simultaneous Transmission Combination	Head	Body-Worn Accessory	Mobile Hotspot
WCDMA/GSM voice + WiFi 5.0 GHz	Yes	Yes	No
WCDMA/GSM voice + WiFi 2.45 GHz	Yes	Yes	No
WCDMA/GSM voice + BT	Yes	Yes	No
HSPA/EDGE/GPRS data + WiFi 5.0 GHz	Yes	Yes	No
HSPA/EDGE/GPRS data + WiFi 2.45 GHz	Yes	Yes	Yes
HSPA/EDGE/GPRS data + BT	Yes	Yes	No

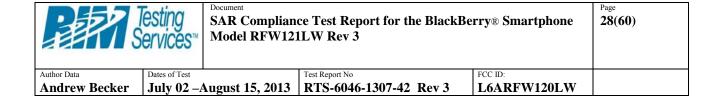
Table 1.9.1-1 Simultaneous Transmission Scenarios

Note 1: BT and WiFi cannot transmit simultaneously since the design doesn't allow it and they use the same antenna.

Note 2: 802.11b and 802.11a cannot transmit simultaneously since the design doesn't allow it and they use the same antenna.

		Licensed Transm	WiFi 2.4/5.0GHz	Max Sum 1g	
Test	Configuration	Band	1g avg. SAR (W/kg)	avg. SAR 1g avg. SAR	avg. SAR (W/kg)
	Right Cheek	GSM/DTM/EDGE 850	0.68	0.23	0.91
	Right Cheek	UMTS Band V	0.42	0.23	0.65
	Right Cheek	GSM/DTM/EDGE 1900	0.25	0.23	0.48
	Right Cheek	UMTS Band II	0.37	0.23	0.60
	Right Tilt	GSM/DTM/EDGE 850	0.39	0.24	0.63
	Right Tilt	UMTS Band V	0.24	0.24	0.48
	Right Tilt	GSM/DTM/EDGE 1900	0.10	0.24	0.34
Head SAR	Right Tilt	UMTS Band II	0.19	0.24	0.43
Tieau SAIN	Left Cheek	GSM/DTM/EDGE 850	0.70	0.40	1.10
	Left Cheek	UMTS Band V	0.48	0.40	0.88
	Left Cheek	GSM/DTM/EDGE 1900	0.49	0.40	0.89
	Left Cheek	UMTS Band II	0.77	0.40	1.17
	Left Tilt	GSM/DTM/EDGE 850	0.41	0.21	0.62
	Left Tilt	UMTS Band V	0.28	0.21	0.49
	Left Tilt	GSM/DTM/EDGE 1900	0.10	0.21	0.31
	Left Tilt	UMTS Band II	0.15	0.21	0.36

Table 1.9.1-2 Highest Head SAR values and summation


Note 1: If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required. **Note 2:** If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters calculated.

		Licensed Transn	nitters	WiFi	Max Sum 1g	
Test	Configuration	Band	1g avg. SAR (W/kg)	2.4/5.0GHz 1g avg. SAR (W/kg)	avg. SAR (W/kg)	
	15mm separation device back	GSM/DTM/EDGE 850	0.57	1.01	1.58	
1 [15mm separation device back	UMTS Band V	0.47	1.01	1.48	
1 [15mm separation device back	GSM/DTM/EDGE 1900	0.37	1.01	1.38	
1 [15mm separation device back	UMTS Band II	0.47	1.01	1.48	
	15mm separation device front	GSM/DTM/EDGE 850	0.59	0.12	0.71	
Body	15mm separation device front	UMTS Band V	0.46	0.12	0.58	
Worn SAR	15mm separation device front	GSM/DTM/EDGE 1900	0.23	0.12	0.35	
1 [15mm separation device front	UMTS Band II	0.42	0.12	0.54	
	Holster device back	GSM/DTM/EDGE 850	0.38	0.36	0.74	
	Holster device back	UMTS Band V	0.39	0.36	0.75	
	Holster device back	GSM/DTM/EDGE 1900	0.21	0.36	0.57	
	Holster device back	UMTS Band II	0.32	0.36	0.68	

Table 1.9.1-3 Highest Body-worn SAR values for the same configuration

Note 1: If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required.

Note 2: If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters is required.

		Licensed Transn	nitters	WiFi 2.4GHz	Max Sum 1g
Test	Configuration	Band	1g avg. SAR (W/kg)	1g avg. SAR (W/kg) 0.18 0.18 0.18 0.04 0.04 0.04 0.04 0.16 0.16 0.16 0.16 0.10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	avg. SAR (W/kg)
	10mm separation device back	GSM/DTM/EDGE 850	0.76	0.18	0.94
	10mm separation device back	UMTS Band V	0.55	0.18	0.73
	10mm separation device back	GSM/DTM/EDGE 1900	0.64	0.18	0.82
	10mm separation device back	UMTS Band II	0.87	0.18	1.05
	10mm separation device front	GSM/DTM/EDGE 850	0.70	0.04	0.74
	10mm separation device front	UMTS Band V	0.53	0.04	0.57
	10mm separation device front	GSM/DTM/EDGE 1900	0.42	0.04	0.46
	10mm separation device front	UMTS Band II	0.81	0.04	0.85
	10mm separation device left	GSM/DTM/EDGE 850	0.57	0.16	0.73
	10mm separation device left	UMTS Band V	0.44	0.16	0.60
	10mm separation device left	GSM/DTM/EDGE 1900	0.35	0.16	0.51
Hotspot	10mm separation device left	UMTS Band II	0.53	0.16	0.69
Mode SAR	10mm separation device right	GSM/DTM/EDGE 850	0.52	0.01	0.53
	10mm separation device right	UMTS Band V	0.40	0.01	0.41
	10mm separation device right	GSM/DTM/EDGE 1900	0.10	0.01	0.11
	10mm separation device right	UMTS Band II	0.13	0.01	0.14
	10mm separation device bottom	GSM/DTM/EDGE 850	0.22	0.01	0.23
	10mm separation device bottom	UMTS Band V	0.18	0.01	0.19
	10mm separation device bottom	GSM/DTM/EDGE 1900	0.21	0.01	0.22
	10mm separation device bottom	UMTS Band II	0.29	0.01	0.30
	10mm separation device top	GSM/DTM/EDGE 850	0.00	0.01	0.01
	10mm separation device top	UMTS Band V	0.00	0.01	0.01
	10mm separation device top	GSM/DTM/EDGE 1900	0.00	0.01	0.01
	10mm separation device top	UMTS Band II	0.00	0.01	0.01

Table 1.9.1-4 Highest Mobile Hotspot SAR values for the same configuration

Note 1: If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required.

Note 2: If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters calculated.

	Testing Services™	SAR Complian Model RFW12	ce Test Report for the BlackB ILW Rev 3	erry® Smartphone	Page 29(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	July 02 -A	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW	

2.0 DESCRIPTION OF THE TEST EQUIPMENT

2.1 SAR measurement system

SAR measurements were performed using a Dosimetric Assessment System (DASY52), an automated SAR measurement system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich, Switzerland.

The DASY 52 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software.
- An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A DAE module that performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the Electro-optical coupler (EOC).
- A unit to operate the optical surface detector that is connected to the EOC.
- The EOC performs the conversion from an optical signal into the digital electric signal of the DAE. The EOC is connected to the PC plug-in card.
- The functions of the PC plug-in card based on a DSP are to perform the time critical tasks such as signal filtering, surveillance of the robot operation fast movement interrupts.
- A computer operating Windows.
- DASY52 software version 52.8.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM Twin Phantom enabling testing left-hand and right-hand usage.
- The device holder for mobile phones.
- Tissue simulating liquid mixed according to the given recipes (see section 6.1).
- System validation dipoles allowing for the validation of proper functioning of the system.

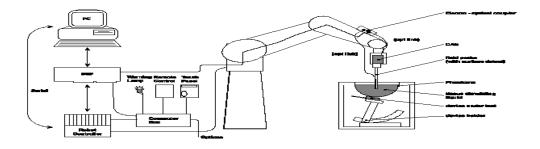


Figure 2.1-1 System Description

計算	Testing Pervices™	SAR Compliand Model RFW121	ce Test Report for the BlackBe ILW Rev 3	rry® Smartphone	Page 30(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	July 02 -A	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW	

2.1.1 Equipment List

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date (MM/DD/YY)
SCHMID & Partner Engineering AG	E-field probe	ES3DV3	3225	01/10/2014
SCHMID & Partner Engineering AG	E-field probe	EX3DV4	3548	01/15/2014
SCHMID & Partner Engineering AG	Data Acquisition Electronics (DAE3)	DAE4 V1	881	01/14/2014
SCHMID & Partner Engineering AG	Dipole Validation Kit	D835V2	446	01/07/2015
SCHMID & Partner Engineering AG	Dipole Validation Kit	D1900V2	545	01/09/2015
SCHMID & Partner Engineering AG	Dipole Validation Kit	D2450V2	747	11/09/2013
SCHMID & Partner Engineering AG	Dipole Validation Kit	D5000V2	1033	11/15/2013
Agilent Technologies	Signal generator	8648C	4037U03155	09/23/2013
Agilent Technologies	Power meter	E4419B	GB40202821	09/23/2013
Agilent Technologies	Power sensor	8481A	MY41095417	09/26/2013
Amplifier Research	Amplifier	5S1G4M3	300986	CNR
Agilent Technologies	Power meter	N1911A	MY45100905	05/29/2015
Agilent Technologies	Power sensor	N1921A	SG45240281	11/19/2013
Agilent Technologies	Power sensor	N1921A	MY45241383	09/11/2013
Weinschel Corp	20dB Attenuator	33-20-34	BMO697	CNR
Agilent Technologies	Power sensor	8481A	MY41095233	09/26/2013
Agilent Technologies	Network analyzer	8753ES	US39174857	09/20/2013
Rohde & Schwarz	Base Station Simulator	CMU 200	109747	11/19/2013
CPI Wireless Solutions	Amplifier	VZC-6961K4	SK4310E5	CNR
Rohde & Schwarz	Signal generator	SMA 100A	102106	12/02/2013
Rohde & Schwarz	Bluetooth Tester	CBT	100368	12/04/2013
Rohde & Schwarz	Bluetooth Tester	CBT	100678	12/04/2013
Rohde & Schwarz	Wideband Base Station Simulator	CMW 500	109949	12/10/2014
Rohde & Schwarz	Wideband Base Station Simulator	CMW 500	101169	12/10/2014

Table 2.1.1-1 Equipment list

	Testing Services™	SAR Compliant Model RFW123	ce Test Report for the BlackB ILW Rev 3	Serry® Smartphone	Page 31(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	July 02 -	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW	

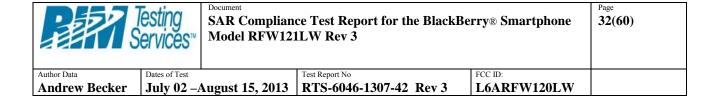
2.2 Description of the test setup

Before SAR measurements are conducted, the device and the DASY equipment are setup as follows:

2.2.1 Device and base station simulator setup

- Power up the device.
- Turn on the base station simulator and set the radio channel and power to the appropriate values.
- Connect an antenna to the RF IN/OUT of the communication test set and place it close to the device.

2.2.2 DASY setup


- Turn the computer on and log on to Windows.
- Start the DASY software by clicking on the icon located on the Windows desktop.
- Mount the DAE unit and the probe. Turn on the DAE unit.
- Turn the Robot Controller on by turning the main power switch to the horizontal position
- Align the probe by clicking the 'Align probe in light beam' button.
- Open a file and configure the proper parameters probe, medium, communications system etc.
- Establish a connection between the Device and the communications test instrument. Place the Device on the stand and adjust it under the phantom.
- Start SAR measurements.

3.0 ELECTRIC FIELD PROBE CALIBRATION

3.1 Probe Specifications

SAR measurements were conducted using the dosimetric probes ES3DV3/ET3DV6 and EX3DV4, designed by Schmid & Partner Engineering AG for the measurement of SAR. The probe is constructed using the thin film technique, with printed resistive lines on ceramic substrates. It has a symmetrical design with triangular core, built-in optical fibre for the surface detection system and built-in shielding against static discharge. The probe is sensitive to E-fields and thus incorporates three small dipoles arranged so that the overall response is close to isotropic. The table below summarizes the technical data for the probe.

Property	Data
Frequency range	30 MHz – 3 GHz
Linearity	±0.1 dB
Directivity (rotation around probe axis)	$\leq \pm 0.2 \text{ dB}$
Directivity (rotation normal to probe axis)	±0.4 dB
Dynamic Range	5 mW/kg – 100 W/kg
Probe positioning repeatability	±0.2 mm
Spatial resolution	< 0.125 mm ³
Probe model EX3DV4 for 2.4	– 6 GHz
Probe tip to sensor center	1.0 mm
Probe tip diameter is	2.5 mm
Probe calibration uncertainty	< 15 % for f = 2.45 to $< 6.0 GHz$
Probe calibration range	± 100 MHz

Table 3.1-1 Probe specifications

3.2 Probe calibration and measurement uncertainty

The probe had been calibrated with accuracy better than $\pm 12\%$. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe were tested. The probe calibration parameters are shown on Appendix D and below:

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^f	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.56	6.56	6.56	0.42	1.54	± 12.0 %
900	41.5	0.97	6.19	6.19	6.19	0.43	1.52	± 12.0 %
1810	40.0	1.40	5.35	5.35	5.35	0.63	1.39	± 12.0 %
1950	40.0	1.40	5.09	5.09	5.09	0.80	1.23	± 12.0 %
2450	39.2	1.80	4.65	4.65	4.65	0.61	1.63	± 12.0 %
2600	39.0	1.96	4.43	4.43	4.43	0.80	1.32	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

			-		-			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.27	6.27	6.27	0.48	1.51	± 12.0 %
900	55.0	1.05	6.12	6.12	6.12	0.73	1.25	± 12.0 %
1810	53.3	1.52	5.04	5.04	5.04	0.57	1.47	± 12.0 %
1950	53.3	1.52	4.94	4.94	4.94	0.58	1.50	± 12.0 %
2450	52.7	1.95	4.35	4.35	4.35	0.70	1.16	± 12.0 %
2600	52.5	2.16	4.11	4.11	4.11	0.67	0.99	± 12.0 %

Table 3.2-1 Probe ES3DV3 SN: 3225 (cal: 1/10/2013)

	Testing Services™	SAR Complian Model RFW12	ce Test Report for the BlackE ILW Rev 3	Berry® Smartphone	33(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	July 02 –	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW	

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
2600	39.0	1.96	7.15	7.15	7.15	0.47	0.86	± 12.0 %
5200	36.0	4.66	5.13	5,13	5.13	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.79	4.79	4.79	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.61	4.61	4.61	0.45	1.80	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k≃2)
2600	52.5	2.16	7.08	7.08	7.08	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.68	4.68	4.68	0.52	1.90	± 13.1 %
5500	48.6	5.65	4.15	4.15	4.15	0.52	1.90	± 13.1 %
5800	48.2	6.00	4.19	4.19	4.19	0.60	1.90	± 13.1 %

Table 3.2-2 Probe EX3DV4 SN: 3548 (cal: 1/15/2013)

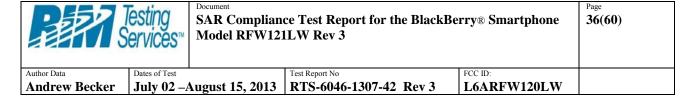
C The validity of \pm 100 MHz only applies for DASY v4.4 and higher. DASY 52 has been used for measurements, therefore \pm 100 MHz tolerance is valid. Measured dielectric parameters are within +/- 5% of the probe calibration values and target values. Expanded probe calibration uncertainty (k=2) is < 15 %

部的	Testing Services™	SAR Compliand Model RFW121	ce Test Report for the BlackBe ILW Rev 3	rry® Smartphone	Page 34(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	July 02 –	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW	I

4.0 SAR MEASUREMENT SYSTEM VERIFICATION

Prior to conducting SAR measurements, the system was validated using the dipole validation kit and the flat section of the SAM phantom. A power level of 1.0W was applied to the dipole antenna. The verification results are in the table below with a comparison to reference values. Printouts are shown in Appendix A. All the measured parameters are within the allowed tolerances.

At above 1.5 - 2 GHz, dipoles maintain good return loss of -15 dB to -20 dB, therefore SAR measurements are limited to approximately +/- 100 MHz of the probe/dipole calibration frequency.


4.1 System accuracy verification for head adjacent use

f	Limits / Measured	Scan Type	SAR 1g/10g	Dielectric Parameters		Liquid Temp.	
(MHz)	(MM/DD/YYYY)	Seatt Type	(W/kg)	ε _r	σ [S/m]	(°C)	
	Measured (07/13/2013)	Area Scan/Fast SAR	9.09/6.03	41.6	0.90	23.0	
	Measured (07/13/2013)	Zoom Scan	9.06/5.94	41.6	0.90	23.0	
835	Measured (07/16/2013)	Area Scan/Fast SAR	9.08/6.03	40.6	0.88	23.1	
	Measured (07/16/2013)	Zoom Scan	8.80/5.76	40.6	0.88	23.1	
	Recommended Lim	its (Dipole: 446)	9.39 / 6.13	41.5	0.90	N/A	
	Measured (07/02/2013)	Area Scan/Fast SAR	37.6/19.8	38.4	1.39	21.6	
	Measured (07/02/2013)	Zoom Scan	37.0/19.5	38.4	1.39	21.6	
	Measured (07/05/2013)	Area Scan/Fast SAR	36.7/19.4	38.7	1.41	21.7	
	Measured (07/05/2013)	Zoom Scan	36.2/19.1	38.7	1.41	21.7	
	Measured (07/08/2013)	Area Scan/Fast SAR	37.3/19.6	38.5	1.38	22.5	
1900	Measured (07/08/2013)	Zoom Scan	36.6/19.2	38.5	1.38	22.5	
	Measured (08/07/2013)	Area Scan/Fast SAR	38.7/20.5	38.2	1.38	22.2	
	Measured (08/07/2013)	Zoom Scan	38.0/19.9	38.2	1.38	22.2	
	Measured (08/15/2013)	Area Scan/Fast SAR	37.6/19.8	38.4	1.38	23.0	
	Measured (08/15/2013)	Zoom Scan	36.7/19.3	38.4	1.38	23.0	
	Recommended Limi	its (Dipole: 545)	40.2/21.1	40.0	1.40	N/A	
	Measured (07/19/2013)	Area Scan/Fast SAR	52.5/23.2	37.8	1.82	22.8	
	Measured (07/19/2013)	Zoom Scan	52.1/24.6	37.8	1.82	22.8	
2450	Measured (07/23/2013)	Area Scan/Fast SAR	51.7/22.8	37.9	1.85	22.4	
	Measured (07/23/2013)	Zoom Scan	51.6/24.3	37.9	1.85	22.4	
	Recommended Lim	its (Dipole: 747)	54.1/25.3	39.2	1.80	N/A	
	Measured (07/22/2013)	Area Scan/Fast SAR	77.3/21.6	35.2	4.63	21.4	
	Measured (07/22/2013)	Zoom Scan	83.1/24.1	35.2	4.63	21.4	
5200	Measured (08/12/2013)	Area Scan/Fast SAR	74.4/20.6	34.4	4.67	22.8	
•	Measured (08/12/2013)	Zoom Scan	78.1/22.7	34.4	4.67	22.8	
	Recommended Limi	ts (Dipole: 1033)	80.8 / 23.0	36.0	4.66	N/A	
	Measured (07/22/2013)	Area Scan/Fast SAR	83.2/22.9	34.5	5.01	21.4	
5500	Measured (07/22/2013)	Zoom Scan	90.0/25.7	34.5	5.01	21.4	
	Measured (08/12/2013)	Area Scan/Fast SAR	80.9/21.9	34.8	5.00	22.8	

主教	Testing Services™	-	Compliance Test Report for the BlackBerry® Smartphone el RFW121LW Rev 3		Page 35(60)	
Author Data	Dates of Test		Test Report No	FCC ID:		1
Andrew Becker	July 02 -	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW		

	Measured (08/12/2013)	Zoom Scan	85.1/24.3	34.8	5.00	22.8
	Recommended Limi	ts (Dipole: 1033)	87.3 / 24.7	35.6	4.96	N/A
	Measured (07/22/2013)	Area Scan/Fast SAR	78.1/21.6	33.9	5.32	21.4
	Measured (07/22/2013)	Zoom Scan	84.5/24.3	33.9	5.32	21.4
5800	Measured (08/12/2013)	Area Scan/Fast SAR	81.9/22.2	33.9	5.28	22.8
	Measured (08/12/2013)	Zoom Scan	86.0/24.6	33.9	5.28	22.8
	Recommended Limi	ts (Dipole: 1033)	79.4 / 22.5	35.3	5.27	N/A

Table 4.1-1 System accuracy (validation for head adjacent use)

5.0 PHANTOM DESCRIPTION

The SAM Twin Phantom, manufactured by SPEAG, was used during the SAR measurements. The phantom is made of a fibreglass shell integrated with a wooden table.

The SAM Twin Phantom is a fibreglass shell phantom with 2 mm shell thickness. It has three measurement areas:

Left side head Right side head Flat phantom

The phantom table dimensions are: 100x50x85 cm (LxWxH). The table is intended for use with freestanding robots.

The bottom shelf contains three pair of bolts for locking the device holder in place. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is

necessary if two phantoms are used (e.g., for different solutions).

A white cover is provided to top the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible; however the optical surface detector does not work properly at the cover surface. Place a sheet of white paper on the cover when using optical surface detection.

Liquid depth of \geq 15 cm is maintained in the phantom for all the measurements.

Figure 5.0-1 SAM Twin Phantom

計算	Testing Pervices™	SAR Compliant Model RFW12	ce Test Report for the BlackBo ILW Rev 3	erry® Smartphone	Page 37(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	July 02 -A	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW	

6.0 TISSUE DIELECTRIC PROPERTIES

6.1 Composition of tissue simulant

The composition of the brain and muscle simulating liquids are shown in the table below.

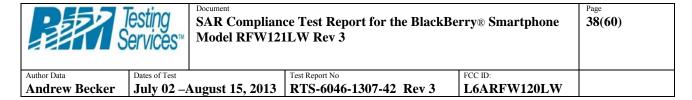

INGREDIE	MIXTURE 800- 900MHz		MIXTURE 1800- 1900MHz		MIXTURE 2450 MHz		MIXTURE 5 - 6 GHz	
NT	Brain %	Muscle %	Brain %	Muscle %	Brain %	Muscle %	Brain %	Muscl e %
Water	40.29	65.45	55.24	69.91	55.0	68.75	64	64-78
Sugar	57.90	34.31	0	0	0	0	0	0
Salt	1.38	0.62	0.31	0.13	0	0	0	0
HEC	0.24	0	0	0	0	0	0	0
Bactericide	0.18	0.10	0	0	0	0	0	0
DGBE	0	0	44.45	29.96	40.0	31.25	0	0
Triton X-	0	0	0	0	5.0	0	0	0
Additives and Salt	0	0	0	0	0	0	3	2-3
Emulsifiers	0	0	0	0	0	0	15	9-15
Mineral Oil	0	0	0	0	0	0	18	11-18

Table 6.1-1 Tissue simulant recipe

6.1.1 Equipment

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date (MM/DD/YY)
Pyrex, England	Graduated Cylinder	N/A	N/A	N/A
Pyrex, USA	Beaker	N/A	N/A	N/A
Acculab	Weight Scale	V1-1200	018WB2003	N/A
IKA Works Inc.	Hot Plate	RC Basic	3.107433	N/A
Dell	PC using GPIB card	GX110	347	N/A
Agilent Technologies	Dielectric probe kit	HP 85070C	US9936135	CNR
Agilent Technologies	Network Analyzer	8753ES	US39174857	09/20/2013
Control Company	Digital Thermometer	23609-234	21352860	09/26/2013

Table 6.1.1-1 Tissue simulant preparation equipment

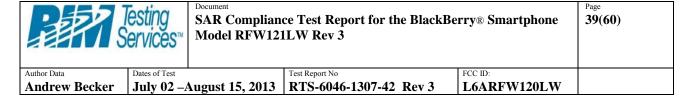
6.1.2 Preparation procedure

800-900 MHz liquids

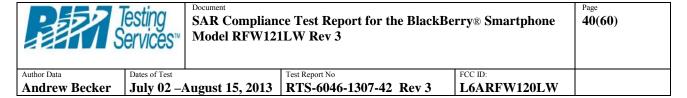
- Fill the container with water. Begin heating and stirring.
- Add the **Cellulose**, the **preservative substance** and the **salt**. After several hours, the liquid will become more transparent again. The container must be covered to prevent evaporation.
- Add Sugar. Stir it well until the sugar is sufficiently dissolved.
- Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation.
- Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

1800-2450 MHz liquid

- Fill the container with water and place it on hotplate. Begin heating and stirring.
- Add the salt, Glycol/Triton X-100. The container must be covered to prevent evaporation.
- Keep the liquid hot enough to dissolve sugar for at least an hour. The container must be covered to prevent evaporation.
- Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.


6.2 Electrical parameters of the tissue simulating liquid

The tissue dielectric parameters shall be measured before a batch can be used for SAR measurements to ensure that the simulated tissue was properly made and will simulate the desired human characteristic. Limits and measured electrical parameters are shown in the table below.


Recommended limits are adopted from IEEE P1528-2003:

"Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", DASY manual and from FCC Tissue Dielectric Properties web page at http://www.fcc.gov/fcc-bin/dielec.sh

Band	Tissue		Dielectric	Parameters	Liquid Temp			
(MHz)	Type	(MM/DD/YYYY)	(MHz)	ε _r	σ [S/m]	(°C)		
			815	41.8	0.88			
		Measured (07/13/2013)	825	41.7	0.89	23.0		
		Measured (07/13/2013)	835	41.6	0.90	23.0		
	Head		850	41.4	0.91			
		Managed (07/16/2012)	815	40.8	0.86			
			825	40.7	0.87	23.1		
835		Measured (07/16/2013)	835	40.6	0.88			
			850	40.4	0.89			
		Recommended Limits	835	41.5	0.90	N/A		
			815	53.4	0.95			
	Muscle	1 1/07/12/2012	825	53.4	0.96	22.0		
	wiuscie	Measured (07/13/2013)	835	53.3	0.97	23.0		
			850	53.1	0.98			

			815	53.9	0.93		
		Magazina d (07/16/2012)	825	53.9	0.94	22.1	
		Measured (07/16/2013)	835	53.8	0.96	23.1	
			850	53.8	0.97	1	
		Recommended Limits	835	55.2	0.97	N/A	
			1850	38.5	1.34		
		1 (07/02/2012)	1900	38.4	1.39	21.6	
		Measured (07/02/2013)	1910	38.4	1.40	21.6	
			1980	38.1	1.47		
			1850	38.9	1.36		
		1 (07/05/2012)	1900	38.7	1.41	21.7	
		Measured (07/05/2013)	1910	38.6	1.42	21.7	
			1980	38.3	1.49		
			1850	38.7	1.33		
	Head	1 (07/09/2012)	1900	38.5	1.38	22.5	
		Measured (07/08/2013)	1910	38.5	1.39	22.5	
			1980	38.2	1.46		
			1850	38.4	1.33		
		Measured (08/07/2013)	1900	38.2	1.38	22.2	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1910	38.2	1.42		
			1850	38.6	1.33		
		Measured (08/15/2013)	1900	38.4	1.38	23.0	
1900			1910	38.3	1.39		
		Recommended Limits	1900	40.0	1.40	N/A	
		Measured (07/02/2013)	1850	50.7	1.50	21.6	
			1900	50.7	1.55		
			1910	50.7	1.56		
			1850	51.3	1.52		
		Measured (07/05/2013)	1900	51.0	1.58	21.7	
		\	1910	51.0	1.59	1	
			1850	51.1	1.49		
	,, ,	Measured (07/08/2013)	1900	50.9	1.55	22.5	
	Muscle	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1910	50.8	1.56		
			1850	51.0	1.50		
		Measured (08/07/2013)	1900	50.8	1.55	22.2	
		`	1910	50.8	1.56	1	
			1850	51.0	1.50		
		Measured (08/15/2013)	1900	50.9	1.55	23.0	
		\	1910	50.9	1.57	1	
		Recommended Limits	1900	53.3	1.52	N/A	
			2410	37.9	1.79		
		Measured (07/17/2013)	2450	37.8	1.83	22.8	
			2480	37.7	1.86	1	
2450	Head		2410	38.0	1.80		
		Measured (07/23/2013)	2450	37.9	1.85	22.4	
			2480	37.8	1.88	22.4	
		Recommended Limits	2450	39.2	1.80	N/A	

			2410	50.9	1.96		
		Measured (07/17/2013)	2450	50.8	2.01	22.8	
			2480	50.6	2.05		
	Muscle		2410	51.3	2.00		
		Measured (07/23/2013)	2450	51.0	2.04	22.1	
		· · ·	2480	50.9	2.09		
		Recommended Limits	2450	52.7	1.95	N/A	
			5180	35.2	4.62		
		Measured (07/22/2013)	5200	35.2	4.63	21.4	
		` ′	5280	35.1	4.76		
	Head		5180	34.4	4.65		
		Measured (08/12/2013)	5200	34.4	4.67	22.8	
		`	5280	34.2	4.76		
5000		Recommended Limits	5200	36.0	4.66	N/A	
5200			5180	49.9	5.43		
		Measured (07/22/2013)	5200	49.8	5.46	23.2	
		`	5280	49.6	5.64		
	Muscle	Measured (08/12/2013)	5180	48.7	5.37		
			5200	48.6	5.41	22.8	
			5280	48.5	5.57		
		Recommended Limits	5200	49.0	5.30	N/A	
		Measured (07/22/2013)	5500	34.5	5.01	21.4	
			5620	34.5	5.13		
	Head	M 1 (00/12/2012)	5500	34.8	5.00	22.0	
		Measured (08/12/2013)	5620	34.6	5.15	22.8	
5500		Recommended Limits	5500	35.6	4.96	N/A	
5500		M 1 (07/22/2012)	5500	48.9	5.87	22.2	
		Measured (07/22/2013)	5620	48.7	6.03	23.2	
	Muscle	M 1 (00/12/2012)	5500	47.8	5.78	22.0	
		Measured (08/12/2013)	5620	47.6	5.95	22.8	
		Recommended Limits	5500	48.6	5.65	N/A	
			5745	34.3	5.30		
		Measured (07/22/2013)	5800	33.9	5.32	21.4	
	Head	Magazina d (00/10/2012)	5745	34.2	5.22	22.0	
		Measured (08/12/2013)	5800	33.9	5.28	22.8	
5000		Recommended Limits	5800	35.3	5.27	N/A	
5800		Magazina d (07/22/2012)	5500	48.4	6.25	22.2	
		Measured (07/22/2013)	5620	48.3	6.34	23.2	
	Muscle	Magazina d (00/10/2012)	5745	45.9	5.91	22.0	
		Measured (08/12/2013)	5800	46.0	5.99	22.8	
		Recommended Limits	5800	48.2	6.00	N/A	

Table 6.2-1 Electrical parameters of tissue simulating liquid

and s	Testing Services™	SAR Complian Model RFW12	ce Test Report for the BlackE ILW Rev 3	Berry® Smartphone	Page 41(60)	
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	July 02 –	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW		

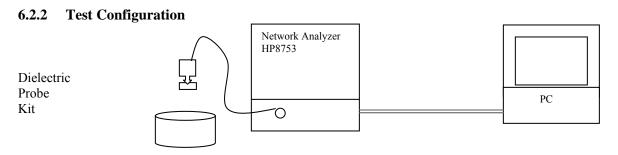


Figure 6.2.2-1 Test configuration

6.2.3 Procedure

- 1. Turn NWA on and allow at least 30 minutes for warm up.
- 2. Mount dielectric probe kit so that interconnecting cable to NWA will not be moved during measurements or calibration.
- 3. Pour de-ionized water and measure water temperature $(\pm 1^{\circ})$.
- 4. Set water temperature in HP-Software (Calibration Setup).
- 5. Perform calibration.
- 6. Relative permittivity $\varepsilon_r = \varepsilon'$ and conductivity can be calculated from ε'' ($\sigma = \omega \varepsilon_0 \varepsilon''$)
- 7. Measure liquid shortly after calibration.
- 8. Stir the liquid to be measured. Take a sample (~50ml) with a syringe from the center of the liquid container.
- 9. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
- 10. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
- 11. Perform measurements.
- 12. Adjust medium parameters in DASY software for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Head 835 MHz) and press 'Option'-button.
- 13. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 835 MHz).

部内 S	Testing Services™	SAR Compliand Model RFW121	ce Test Report for the BlackBe ILW Rev 3	rry® Smartphone	Page 42 (60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	July 02 –	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW	I

7.0 SAR SAFETY LIMITS

Standards/Guideline	Localized SAR Limit (W/kg) General public (uncontrolled)	Localized SAR Limits (W/kg) Workers (controlled)
ICNIRP Standard	2.0 (10g)	10.0 (10g)
IEEE C95.1 Standard	1.6 (1g)	8.0 (1g)

Table 7.0-1 SAR safety limits for Controlled / Uncontrolled environment

Human Exposure	Localized SAR Limits (W/kg) 10g, ICNIRP Standard	Localized SAR Limits (W/kg) 1g, IEEE C95.1 Standard
Spatial Average (averaged over the whole		
body)	0.08	0.08
Spatial Peak (averaged over any X g of		
tissue)	2.00	1.60
Spatial Peak (hands/wrists/feet/ankles		
averaged over 10 g)	4.00	4.00 (10g)

Table 7.0-2 SAR safety limits

Uncontrolled Environments are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

	Testing Services™	SAR Complian Model RFW12	ce Test Report for the BlackB ILW Rev 3	erry® Smartphone	Page 43(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	July 02 –	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW	

8.0 DEVICE POSITIONING

8.1 Device holder for SAM Twin Phantom

The Device was positioned for all test configurations using the DASY5 holder. The device holder facilitates the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately and with repeatability positioned according to FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 8.1-1 Device Holder

- 1. Put the phone in the clamp mechanism (1) and hold it straight while tightening. (Curved phones or phones with asymmetrical ear pieces should be positioned so that the earpiece is in the symmetry plane of the clamp).
- 2. Adjust the sliding carriage (2) to 90°. Then adjust the phone holder angle (3) until the reference line of the phone is horizontal (parallel to the flat phantom bottom). The phone reference line is defined as the front tangential line between the earpiece and the center of the device bottom (or the center of the flip hinge). For devices with parallel front and backsides, the phone holder angle (3) is 0°.
- 3. Place the device holder at the desired phantom section and move it securely against the positioning pins (4). The screw in front of the turning plate can be applied for correct positioning (5). (Do not tighten it too strongly).
- 4. Shift the phone clamp (6) so that the earpiece is exactly below the ear marking of the phantom. The phone is now correctly positioned in the holder for all standard phantom measurements, even after changing the phantom or phantom section.
- 5. Adjust the device position angles to the desired measurement position.
- 6. After fixing the device angles, move the phone fixture up until the phone touches the ear marking. (The point of contact depends on the design of the device and the positioning angle).

	Testing Services™	SAR Complian Model RFW12	ce Test Report for the BlackE ILW Rev 3	Berry® Smartphone	Page 44(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	July 02 -	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW	

8.2 Description of the test positioning

8.2.1 Test Positions of Device Relative to Head

The handset was tested in two test positions against the head phantom, the "cheek" position and the "tilted" position, on both left and right sides of the phantom.

The handset was tested in the above positions according to IEEE 1528- 2003 "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques".

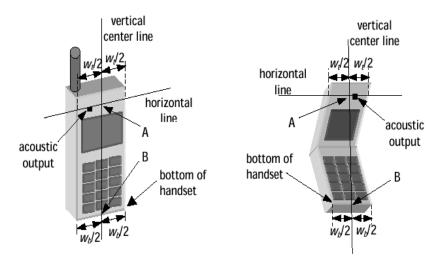


Figure 8.2.1-1 Handset vertical and horizontal reference lines – fixed case

Figure 8.2.1-2 Handset vertical and horizontal reference lines – "clam-shell"

| Document | SAR Compliance Test Report for the BlackBerry® Smartphone | Author Data | Dates of Test | July 02 - August 15, 2013 | RTS-6046-1307-42 | Rev 3 | L6ARFW120LW | Page 45(60) | Page 45(60)

Definition of the "cheek" position

- 1) Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover.
- 2) Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A on Figures 8.2.1-1 and 8.2.1-2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 8.2.1-1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 8.2.1-2), especially for clamshell handsets, handsets with flip pieces, and other irregularly shaped handsets.
- 3) Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 8.2.1-3), such that the plane defined by the vertical center line and the horizontal center line is in a plane approximately parallel to the sagittal plane of the phantom.
- **4)** Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear.
- 5) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is the plane normal to MB ("mouth-back") NF ("neck-front") including the line MB (reference plane).
- **6**) Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF.
- 7) While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the ear (cheek).

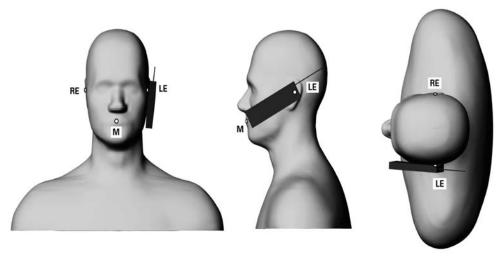


Figure 8.2.1-3 Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker July 02 –August 15, 2013			RTS-6046-1307-42 Rev 3	L6ARFW120LW	

Definition of the "Tilted" Position

- 1) Repeat steps 1 to 7 from above.
- 2) While maintaining the device in the reference plane (described above) and pivoting against the ear, move the device outward away from the mouth by an angle of 15 degrees, or until the antenna touches the phantom.

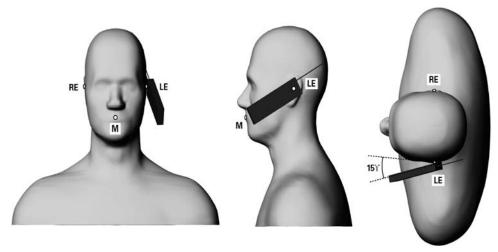
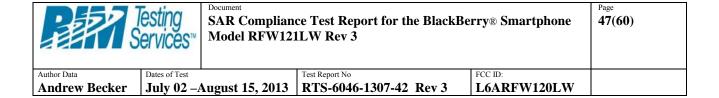


Figure 8.2.1-4 Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

8.2.2 Body-worn Configuration

Body-worn holsters, as shown on Figure 1.4-1, have been test with the device for RF exposure compliance. The device was positioned in each holster case and the belt clip was placed against the flat section of the phantom. A headset was then connected to the device to simulate hands-free operation in a body worn holster configuration.


In addition, device was tested with 15 mm RIM recommended separation distance to allow typical aftermarket holster to be used. RIM body-worn holsters with belt-clip have been designed to maintain \sim 19-20 mm separation distance from body.

8.2.3 Limb/Hand Configuration

BlackBerry device is not a limb-worn device and hasn't been tested for such a configuration.

As per Clause 6.1.4.9 in the IEC/EN 62209-2 standard:

"Additional studies remain needed for devising a representative method for evaluating SAR in the hand of hand-held devices. Future versions of this standard are intended to contain a test method based on scientific data and rationale. Annex J presents the currently available test procedure."

Clause J.2 of the IEC/EN 62209-2 states that testing for compliance for the exposure of the hand is not applicable for devices that are intended to being hand-held to enable use at the ear (see EN 62209-1) or worn on the body when transmitting.

In addition, BlackBerry device is not intended to be held in hand at a distance of larger than 200 mm from the head and body during normal use.

9.0 HIGH LEVEL EVALUATION

9.1 Maximum search

The maximum search is automatically performed after each coarse scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations.

9.2 Extrapolation

The extrapolation can be used in z-axis scans with automatic surface detection. The SAR values can be extrapolated to the inner phantom surface. The extrapolation distance is the sum of the probe sensor offset, the surface detection distance and the grid offset. The extrapolation is based on fourth order polynomial functions. The extrapolation is only available for SAR values.

9.3 Boundary correction

The correction of the probe boundary effect in the vicinity of the phantom surface is done in the standard (worst case) evaluation; the boundary effect is reduced by different weights for the lowest measured points in the extrapolation routine. The result is a slight overestimation of the extrapolated SAR values (2% to 8%) depending on the SAR distribution and gradient. The advanced evaluation makes a full compensation of the boundary effect before doing the extrapolation. This is only possible for probes with specifications on the boundary effect.

9.4 Peak search for 1g and 10g cube averaged SAR

The 1g and 10g peak evaluations are only available for the predefined cube 5x5x7 / 7x7x9 scan. The routines are verified and optimized for the grid dimensions used in these cube measurements.

The measured volume of 30x30x30mm / 22x22x22 with 7.5 / 5 / 4.0 mm resolution in (x,y) and 5mm / 2.mm resolution in z axis amounts to 175 / 693 measurement points. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is then moved around until the highest averaged SAR is found. This last procedure is repeated for a 10 g cube. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

PAS S	esting ervices™	SAR Compliane Model RFW121	ce Test Report for the BlackBe ILW Rev 3	erry® Smartphone	Page 48 (60)	
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	July 02 –	August 15, 2013	ugust 15, 2013 RTS-6046-1307-42 Rev 3 L6ARFW120LW			

10.0 MEASUREMENT UNCERTAINTY

D.	ASY5 Accordin							
	Uncert.	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}
Measurement System								
Probe Calibration	$\pm 5.5 \%$	N	1	1	1	±5.5 %	$\pm 5.5 \%$	∞
Axial Isotropy	$\pm 4.7\%$	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9 \%$	$\pm 1.9 \%$	∞
Hemispherical Isotropy	$\pm 9.6\%$	R	$\sqrt{3}$	0.7	0.7	±3.9 %	$\pm 3.9 \%$	∞
Boundary Effects	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	±0.6 %	$\pm 0.6 \%$	∞
Linearity	$\pm 4.7 \%$	R	$\sqrt{3}$	1	1	$\pm 2.7 \%$	$\pm 2.7\%$	∞
System Detection Limits	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	$\pm 0.6 \%$	∞	
Readout Electronics	N	1	1	1	$\pm 0.3 \%$	$\pm 0.3 \%$	∞	
Response Time	$\pm 0.8 \%$	R	$\sqrt{3}$	1	1	$\pm 0.5 \%$	$\pm 0.5 \%$	∞
Integration Time	$\pm 2.6\%$	R	$\sqrt{3}$	1	1	±1.5 %	$\pm 1.5 \%$	∞
RF Ambient Noise	$\pm 3.0 \%$	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
RF Ambient Reflections	$\pm 3.0 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	±1.7 %	∞
Probe Positioner	±0.4 %	R	$\sqrt{3}$	1	1	±0.2 %	±0.2 %	∞
Probe Positioning	$\pm 2.9 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	±1.7 %	∞
Max. SAR Eval.	±1.0 %	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
Test Sample Related								
Device Positioning	$\pm 2.9 \%$	N	1	1	1	±2.9 %	$\pm 2.9 \%$	145
Device Holder	$\pm 3.6 \%$	N	1	1	1	$\pm 3.6 \%$	$\pm 3.6 \%$	5
Power Drift	$\pm 5.0 \%$	R	$\sqrt{3}$	1	1	±2.9 %	$\pm 2.9 \%$	∞
Phantom and Setup								
Phantom Uncertainty	$\pm 4.0 \%$	R	$\sqrt{3}$	1	1	$\pm 2.3 \%$	$\pm 2.3 \%$	∞
Liquid Conductivity (target)	$\pm 5.0\%$	R	$\sqrt{3}$	0.64	0.43	±1.8 %	$\pm 1.2 \%$	∞
Liquid Conductivity (meas.) ±2.5%		N	1	0.64	0.43	±1.6 %	±1.1 %	∞
Liquid Permittivity (target)	R	$\sqrt{3}$	0.6	0.49	$\pm 1.7 \%$	$\pm 1.4 \%$	∞	
Liquid Permittivity (meas.)	N	1	0.6	0.49	±1.5 %	±1.2 %	∞	
Combined Std. Uncertainty						$\pm 10.7 \%$	$\pm 10.5 \%$	387
Expanded STD Uncertain	ty					$\pm 21.4\%$	$\pm 21.0\%$	

Table 10.0-1 Worst-Case uncertainty budget for DASY5 assessed according to IEEE P1528. Source: Schmid & Partner Engineering AG.

[1] The budget is valid for the frequency range 300MHz - 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

謝	Testing Services™	SAR Complian Model RFW12	ce Test Report for the BlackE ILW Rev 3	Berry® Smartphone	Page 49(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	July 02 -	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW	

Relative DASY5 Uncertainty Budget for Fast SAR Tests According to IEEE 1528/2011 and IEC 62209-1/2011 (0.3 - 3 GHz range) Uncert. Prob. Div. (c_i) (c_i) Std. Unc. Std. Unc. (v_i) (10g)Error Description value Dist. 1g 10g(1g) v_{eff} Measurement System Probe Calibration $\pm 6.0\%$ 0 0 R $\sqrt{3}$ 0.7 Axial Isotropy $\pm 4.7\%$ 0.7 $\pm 1.9 \%$ $\pm 1.9 \%$ ∞ $\pm 3.9 \%$ Hemispherical Isotropy $\pm 9.6\%$ \mathbf{R} $\sqrt{3}$ 0.70.7 $\pm 3.9 \%$ ∞ Boundary Effects ±1.0% R $\sqrt{3}$ 1 1 $\pm 0.6 \%$ $\pm 0.6 \%$ ∞ Linearity ±4.7% R $\sqrt{3}$ ±2.7% ±2.7 % 1 1 ∞ R System Detection Limits $\pm 1.0 \%$ $\sqrt{3}$ 1 1 $\pm 0.6 \%$ $\pm 0.6 \%$ ∞ Modulation Response $\pm 2.4\%$ R $\sqrt{3}$ 1 1 $\pm 1.4\%$ $\pm 1.4 \%$ ∞ Ν Readout Electronics $\pm 0.3\%$ 1 0 R 0 Response Time $\pm 0.8\%$ $\sqrt{3}$ 0 Integration Time ±2.6 % R $\sqrt{3}$ 1 1 $\pm 1.5 \%$ $\pm 1.5 \%$ ∞ RF Ambient Noise $\pm 3.0 \%$ R $\sqrt{3}$ ±1.7 % $\pm 1.7 \%$ 1 1 ∞ RF Ambient Reflections $\pm 3.0 \%$ \mathbf{R} $\sqrt{3}$ 0 0 Probe Positioner $\sqrt{3}$ $\pm 0.2 \%$ R 1 $\pm 0.2 \%$ $\pm 0.4\%$ 1 ∞ Probe Positioning $\pm 2.9 \%$ R $\sqrt{3}$ ±1.7 % $\pm 1.7 \%$ 1 1 ∞ $\pm 5.8 \%$ Spatial x-y-Resolution $\pm 10.0 \%$ \mathbf{R} $\sqrt{3}$ $\pm 5.8\%$ 1 1 ∞ Fast SAR z-Approximation ±7.0% R $\sqrt{3}$ ±4.0 % 1 1 $\pm 4.0 \%$ ∞ Test Sample Related Device Positioning $\pm 2.9\%$ N $\pm 2.9 \%$ $\pm 2.9 \%$ 145 1 1 1 Device Holder Ν ±3.6 % 1 1 1 ±3.6 % ±3.6 % 5 Power Drift ±5.0% $\overline{\mathbf{R}}$ $\sqrt{3}$ ±2.9 % $\pm 2.9 \%$ 1 1 ∞ $\sqrt{3}$ Power Scaling $\pm 0 \%$ \mathbf{R} 0 0 Phantom and Setup Phantom Uncertainty $\pm 6.1\%$ R $\sqrt{3}$ $\pm 3.5 \%$ $\pm 3.5 \%$ ∞ SAR correction $\pm 1.9\%$ \mathbf{R} $\sqrt{3}$ 0 0 Liquid Conductivity (mea.) $\pm 2.5 \%$ \mathbf{R} $\sqrt{3}$ 0 0 Liquid Permittivity (mea.) $\pm 2.5 \%$ R $\sqrt{3}$ 0 0 $\sqrt{3}$ Temp. unc. - Conductivity ±3.4 % R 0 0 Temp. unc. - Permittivity $\pm 0.4\%$ R $\sqrt{3}$ 0 0 Combined Std. Uncertainty 748±11.4% ±11.4% Expanded STD Uncertainty $\pm 22.7 \%$ $\pm 22.7 \%$

Table 10.0-2 Worst-Case uncertainty budget for DASY5 assessed according to IEEE P1528/2011 and IEC 62209-1/2011

Source: Schmid & Partner Engineering AG.

A S	esting ervices™	SAR Compliane Model RFW121	ce Test Report for the BlackB ILW Rev 3	erry® Smartphone	Page 50(60)	
Author Data	Dates of Test		Test Report No	FCC ID:		ı
Andrew Becker July 02 - August 15, 2013 RTS-6046-1307-42 Rev 3 L6ARFW120LW						ı

D	ASY5	Unce				et		
	Uncert.	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}
Measurement System								
Probe Calibration	$\pm 6.55 \%$	N	1	1	1	±6.55 %	±6.55 %	00
Axial Isotropy	$\pm 4.7 \%$	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9 \%$	$\pm 1.9 \%$	∞
Hemispherical Isotropy	$\pm 9.6 \%$	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9 \%$	$\pm 3.9 \%$	∞
Boundary Effects	$\pm 2.0 \%$	R	$\sqrt{3}$	1	1	±1.2 %	$\pm 1.2 \%$	∞
Linearity	$\pm 4.7 \%$	R	$\sqrt{3}$	1	1	±2.7 %	±2.7 %	∞
System Detection Limits	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞	
Readout Electronics	$\pm 0.3 \%$	N	1	1	1	±0.3 %	±0.3 %	00
Response Time	$\pm 0.8 \%$	R	$\sqrt{3}$	1	1	±0.5 %	±0.5 %	∞
Integration Time	$\pm 2.6 \%$	R	$\sqrt{3}$	1	1	±1.5 %	±1.5 %	∞
RF Ambient Noise	$\pm 3.0 \%$	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0 %	R	$\sqrt{3}$	1	1	±1.7 %	±1.7%	00
Probe Positioner	±0.8%	R	$\sqrt{3}$	1	1	±0.5 %	±0.5 %	00
Probe Positioning	$\pm 9.9 \%$	R	$\sqrt{3}$	1	1	±5.7 %	±5.7%	00
Max. SAR Eval.	±4.0%	R	$\sqrt{3}$	1	1	±2.3 %	±2.3 %	00
Test Sample Related								
Device Positioning	$\pm 2.9 \%$	N	1	1	1	±2.9 %	±2.9 %	145
Device Holder	$\pm 3.6 \%$	N	1	1	1	±3.6 %	±3.6 %	5
Power Drift	$\pm 5.0 \%$	R	$\sqrt{3}$	1	1	±2.9 %	±2.9 %	∞
Phantom and Setup								
Phantom Uncertainty	$\pm 4.0 \%$	R	$\sqrt{3}$	1	1	±2.3 %	$\pm 2.3 \%$	∞
Liquid Conductivity (target)	$\pm 5.0 \%$	R	$\sqrt{3}$	0.64	0.43	±1.8 %	±1.2 %	∞
Liquid Conductivity (meas.) ±2.5 % Liquid Permittivity (target) ±5.0 %		N	1	0.64	0.43	±1.6 %	±1.1 %	∞
Liquid Permittivity (target)	R	$\sqrt{3}$	0.6	0.49	$\pm 1.7 \%$	±1.4 %	∞	
Liquid Permittivity (meas.)	N	1	0.6	0.49	±1.5 %	±1.2 %	∞	
Combined Std. Uncertainty						±12.8 %	±12.6%	330
Expanded STD Uncertain	ty					$\pm 25.6\%$	$\pm 25.2\%$	

Table 10.0-3 Worst-Case uncertainty budget for DASY52 assessed according to IEEE P1528. Source: Schmid & Partner Engineering AG.

PAT S	Testing Services™	SAR Compliant Model RFW121	ce Test Report for the BlackBe ILW Rev 3	erry® Smartphone	Page 51(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	July 02 -	August 15, 2013	RTS-6046-1307-42 Rev 3 L6ARFW120L		

11.0 TEST RESULTS

11.1 SAR Measurement results at highest power measured against the head

	Measured/Extrapolated SAR Values - Head - GSM/EDGE/DTM 850 MHz											
Channel	Freq.	Time	Position	Cond. Outpu	t Power (dBm)	Power	1g SAI	R (W/Kg)				
Citatille	(MHz)	Slots	Position	Declared	Measured	Drift (dB)	Measured	Extrapolated				
128	824.2	1	Right Cheek					0.00				
190	836.6	1	Right Cheek	33.0	32.3	0.04	0.43	0.51				
251	848.8	1	Right Cheek					0.00				
190	836.6	3	Right Cheek	29.5	28.6	0.16	0.55	0.68				
190	836.6	3	Right 15° Tilt	29.5	28.6	-0.07	0.32	0.39				
128	824.2	1	Left Cheek					0.00				
190	836.6	1	Left Cheek	33.0	32.3	-0.02	0.47	0.55				
251	848.8	1	Left Cheek					0.00				
190	836.6	2	Left Cheek	31.0	30.2	-0.04	0.55	0.66				
190	836.6	3	Left Cheek	29.5	28.6	-0.02	0.57	0.70				
190	836.6	4	Left Cheek	28.0	27.1	-0.06	0.52	0.64				
190	836.6	3	Left 15° Tilt	29.5	28.6	0.09	0.33	0.41				

Table 11.1-1 SAR results for GSM/EDGE/DTM 850 head configuration

Note 1: If the power drift is ≤ -0.200 dB, the extrapolated SAR is calculated using the formula: Extrapolated SAR = (Measured SAR) * $10^{(|Power Drift (dB)|)} / 10$)

Note 2: Only Middle channel was tested when 1g Average SAR <0.8 W/Kg or 3dB lower than the limit. **Note 3:** Declared conducted power is the maximum possible power determined by the manufacturer

	Measured/Extrapolated SAR Values - Head - WCDMA FDD V 850 MHz											
Channel	Freq.	Position	Cond. Output	t Power (dBm)	Power	1g SAI	R (W/Kg)					
Chamilei	(MHz)	Position	Declared	Measured	Drift (dB)	Measured	Extrapolated					
4132	826.4	Right Cheek					0.00					
4182	836.4	Right Cheek	23.5	23.2	0.08	0.39	0.42					
4233	846.6	Right Cheek					0.00					
4182	836.4	Right 15° Tilt	23.5	23.2	0.04	0.22	0.24					
4132	826.4	Left Cheek					0.00					
4182	836.4	Left Cheek	23.5	23.2	0.06	0.45	0.48					
4233	846.6	Left Cheek					0.00					
/1102	936.4	Loft 15° Tilt	22.5	22.2	0.06	0.26	0.20					

Table 11.1-2 SAR results for WCDMA FDD V head configuration

	Measured/Extrapolated SAR Values - Head - GSM/EDGE/DTM 1900 MHz										
Channel	Freq.	Time	Position	Cond. Outpu	t Power (dBm)	Power	1g SAR (W/Kg)				
Chamilei	(MHz)	Slots	Position	Declared	Measured	Drift (dB)	Measured	Extrapolated			
512	1850.2	1	Right Cheek					0.00			
661	1880.0	1	Right Cheek	31.0	30.0	0.06	0.20	0.25			
810	1909.8	1	Right Cheek					0.00			
661	1880.0	1	Right 15° Tilt	31.0	30.0	0.05	0.08	0.10			
512	1850.2	1	Left Cheek					0.00			
661	1880.0	1	Left Cheek	31.0	30.0	-0.13	0.37	0.47			
810	1909.8	1	Left Cheek					0.00			
661	1880.0	2	Left Cheek	28.0	26.8	0.10	0.34	0.45			
661	1880.0	3	Left Cheek	26.5	25.2	0.03	0.36	0.49			
661	1880.0	4	Left Cheek	25.0	24.0	-0.03	0.34	0.43			
661	1880.0	1	Left 15° Tilt	31.0	30.0	0.02	0.08	0.10			

Table 11.1-3 SAR results for GSM/DTM 1900 head configuration

	Measured/Extrapolated SAR Values - Head - WCDMA FDD II 1900 MHz										
Channel	Freq.	Position	Cond. Output	t Power (dBm)	Power	1g SAI	R (W/Kg)				
Chamilei	(MHz)	Position	Declared	Measured	Drift (dB)	Measured	Extrapolated				
9262	1852.4	Right Cheek					0.00				
9400	1880.0	Right Cheek	23.0	22.6	0.03	0.34	0.37				
9538	1907.6	Right Cheek					0.00				
9400	1880.0	Right 15° Tilt	23.0	22.6	0.08	0.17	0.19				
9262	1852.4	Left Cheek	23.0	22.7	0.15	0.54	0.58				
9400	1880.0	Left Cheek	23.0	22.6	0.11	0.70	0.77				
9538	1907.6	Left Cheek	23.0	22.9	0.00	0.56	0.57				
9400	1880.0	Left 15° Tilt	23.0	22.6	-0.13	0.14	0.15				

Table 11.1-4 SAR results for WCDMA FDD II head configuration $\,$

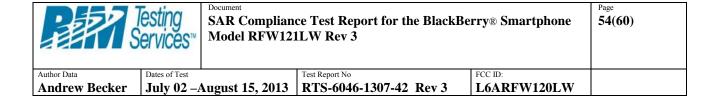

Me	asured/Ex						
Channel Freq		Position	Cond. Output	t Power (dBm)	Power	1g SAI	R (W/Kg)
Chainlei	(MHz)	Position	Declared	Measured	Drift (dB)	Measured	Extrapolated
1	2412.0	Right Cheek					0.00
6	2437.0	Right Cheek	19.0	18.8	0.57	0.22	0.23
11	2462.0	Right Cheek					0.00
6	2437.0	Right 15° Tilt	19.0	18.8	0.07	0.23	0.24
1	2412.0	Left Cheek					0.00
6	2437.0	Left Cheek	19.0	18.8	-0.23	0.32	0.34
11	2462.0	Left Cheek					0.00
6	2437.0	Left 15° Tilt	19.0	18.8	-0.70	0.20	0.21

Table 11.1-5 SAR results for WiFi/WLAN/802.11b head configuration

	Testing Services™	SAR Complian Model RFW12	ce Test Report for the BlackB 1LW Rev 3	erry® Smartphone	Page 53(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	July 02 –	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW	

Mea	sured/Ext	rapolated SAR \	/alues - Head -	Bluetooth 2450	MHz			
Channel	Freq.	Position	Cond. Outpu	t Power (dBm)	Power	1g SAF	R (W/Kg)	
Chamilei	(MHz)	Position	Declared	Measured	Drift (dB)	Measured	Extrapolated	
0	2402.0	Right Cheek					0.00	
39	2441.0	Right Cheek	9.8	9.8	0.37	0.01	0.01	
78	2480.0	Right Cheek					0.00	
39	2441.0	Right 15° Tilt	9.8	9.8	-0.09	0.00	0.00	
0	2402.0	Left Cheek					0.00	
39	2441.0	Left Cheek	9.8	9.8	0.41	0.01	0.01	
78	2480.0	Left Cheek					0.00	
39	2441.0	Left 15° Tilt	9.8	9.8	-0.04	0.00	0.00	

Table 11.1-6 SAR results for Bluetooth head configuration

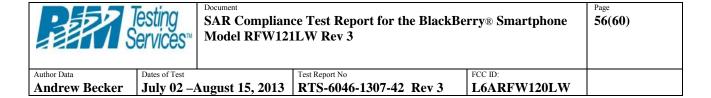
Me	asured/Ex	trapolated SAR	Values - Head	- 802.11a 5000 N	ИHz		
01	Freq.	D !#!	Cond. Outpu	t Power (dBm)	Power	1g SAI	R (W/Kg)
Channel	(MHz)	Position	Declared	Measured	Drift (dB)	Measured	Extrapolated
36	5180.0	Right Cheek	15.0	12.8	-0.07	0.09	0.15
40	5200.0	Right Cheek					0.00
44	5220.0	Right Cheek					0.00
48	5240.0	Right Cheek					0.00
52	5260.0	Right Cheek	16.5	14.6	-0.08	0.12	0.19
56	5280.0	Right Cheek					0.00
60	5300.0	Right Cheek					0.00
64	5320.0	Right Cheek					0.00
104	5520.0	Right Cheek	16.5	14.9	-0.16	0.10	0.14
116	5580.0	Right Cheek					0.00
124	5620.0	Right Cheek					0.00
136	5680.0	Right Cheek					0.00
140	5700.0	Right Cheek					0.00
149	5745.0	Right Cheek					0.00
153	5765.0	Right Cheek	16.5	14.8	-0.04	0.04	0.06
157	5785.0	Right Cheek					0.00
161	5805.0	Right Cheek					0.00
165	5825.0	Right Cheek					0.00
52	5260.0	Right 15° Tilt	16.5	14.6	0.44	0.02	0.03
36	5180.0	Left Cheek	16.5	12.8	0.12	0.14	0.33
40	5200.0	Left Cheek					0.00
44	5220.0	Left Cheek					0.00
48	5240.0	Left Cheek					0.00
52	5260.0	Left Cheek	16.5	14.6	0.04	0.23	0.36
56	5280.0	Left Cheek					0.00
60	5300.0	Left Cheek					0.00
64	5320.0	Left Cheek					0.00
104	5520.0	Left Cheek	16.5	14.9	0.02	0.28	0.40
116	5580.0	Left Cheek					0.00
124	5620.0	Left Cheek					0.00
136	5680.0	Left Cheek					0.00
140	5700.0	Left Cheek					0.00
149	5745.0	Left Cheek					0.00
153	5765.0	Left Cheek	16.5	14.8	0.31	0.12	0.18
157	5785.0	Left Cheek					0.00
161	5805.0	Left Cheek					0.00
165	5825.0	Left Cheek					0.00
104	5520.0	Left 15° Tilt	16.5	14.9	-0.17	0.03	0.04

Table 11.1-7 SAR results for WiFi/WLAN/802.11a head configuration

	Testing Services™	SAR Complian Model RFW12	ce Test Report for the BlackB ILW Rev 3	erry® Smartphone	Page 55(60)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	July 02 -	August 15, 2013	RTS-6046-1307-42 Rev 3	L6ARFW120LW	

11.2 SAR measurement results at highest power measured against the body using accessories

			Measu	red/Extrapolate	d SAR Values -	GSM/EDGE/GF	RS 850 MH	łz	
	Freq.	Time	spacing	Side Facing	Cond. Output	Power (dBm)	Power	1g SAI	₹ (W/Kg)
Ch.	(MHz)	Slots	(cm)/ holster	Phantom	Declared	Measured	Drift (dB)	Measured	Extrapolated
					Hotspot				
128	824.2	1	1.0	Back					0.00
190	836.6	1	1.0	Back	33.0	32.3	0.04	0.55	0.65
251	848.8	1	1.0	Back					0.00
190	836.6	2	1.0	Back	31.0	30.1	-0.09	0.62	0.76
190	836.6	3	1.0	Back	29.5	28.8	-0.04	0.59	0.69
190	836.6	4	1.0	Back	28.0	27.2	-0.17	0.55	0.66
190	836.6	2	1.0	Front	31.0	30.1	-0.15	0.57	0.70
190	836.6	2	1.0	Left	31.0	30.1	0.00	0.46	0.57
190	836.6	2	1.0	Right	31.0	30.1	0.00	0.42	0.52
190	836.6	2	1.0	Bottom	31.0	30.1	-0.04	0.18	0.22
190	836.6	2	1.0	+HS					0.00
					Bod-worn				
190	836.6	2	1.5	Back	31.0	30.1	-0.01	0.46	0.57
190	836.6	2	1.5	Front	31.0	30.1	0.06	0.48	0.59
190	836.6	2	Holster	Back	31.0	30.1	0.07	0.31	0.38

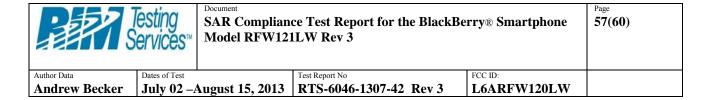

Table 11.2-1 SAR results for EDGE/EGPRS 850 body-worn and Hotspot configurations

Note 1: If the power drift is ≤ -0.200 dB, the extrapolated SAR is calculated using the formula: Extrapolated SAR = (Measured SAR) $*10^{(1)}$ (Power Drift (dB) / 10)

Note 2: Only Middle channel was tested when 1g Average SAR < 0.8 W/Kg or 3dB lower than the limit. Note 3: Device was tested with 15 mm RIM recommended separation distance to allow typical aftermarket holster to be used. RIM body-worn holsters with belt-clip have been designed to maintain ~ 19 mm separation distance from body.

Note 4: For Hot Spot mode any side of the phone that is further than 2.5 cm away from the transmitting antenna can be exempted from testing.

Note 5: Declared conducted power is the maximum possible power determined by the manufacturer

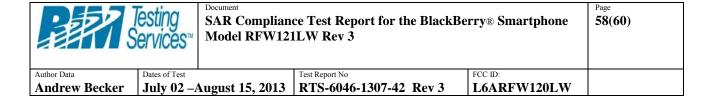


	Me	easured/Ex	trapolated SAR	Values - Hotsp	ot/Body-Worn	- WCDMA F	DD V 850 MF	łz					
	Ch. Freq. (spacing	Side Facing	Cond. Output	t Power (dBm)	Power Drift (dB)	1g SAR (W/Kg)						
Ch.		(cm)/ holster	Phantom	Declared	Measured		Measured	Extrapolated					
	Hotspot												
4132	826.4	1.0	Back					0.00					
4182	836.4	1.0	Back	23.5	23.2	-0.02	0.51	0.55					
4233	846.6	1.0	Back					0.00					
4182	836.4	1.0	Front	23.5	23.2	-0.05	0.49	0.53					
4182	836.4	1.0	Left	23.5	23.2	-0.01	0.41	0.44					
4182	836.4	1.0	Right	23.5	23.2	0.09	0.37	0.40					
4182	836.4	1.0	Bottom	23.5	23.2	-0.15	0.17	0.18					
4182	836.4	1.0	+HS					0.00					
				Body-v	vorn	•							
4182	836.4	1.5	Back	23.5	23.2	0.09	0.44	0.47					

Table 11.2-2 SAR results for WCDMA FDD V body-worn and Hotspot configurations

	M	easure	d/Extrapo	lated SAR Value	es - Hotspot/Bo	dy-Worn - GSM	/EDGE/GPF	RS 1900 MHz	
	Freg.	Time	spacing	Side Facing	Cond. Output	t Power (dBm)	Power	1g SAR (W/Kg)	
Ch.	(MHz)	Slots	(cm)/ holster	Phantom	Declared	Measured	Drift (dB)	Measured	Extrapolated
					Hotspot				
512	1850.2	1	1.0	Back					0.00
661	1880.0	1	1.0	Back	31.0	30.0	0.05	0.51	0.64
810	1909.8	1	1.0	Back					0.00
661	1880.0	2	1.0	Back	28.0	26.9	-0.11	0.49	0.63
661	1880.0	3	1.0	Back	26.5	25.4	0.13	0.43	0.55
661	1880.0	4	1.0	Back	25.0	24.1	-0.09	0.41	0.50
661	1880.0	1	1.0	Front	31.0	30.0	0.05	0.33	0.42
661	1880.0	1	1.0	Left	31.0	30.0	0.05	0.28	0.35
661	1880.0	1	1.0	Right	31.0	30.0	0.03	0.08	0.10
661	1880.0	1	1.0	Bottom	31.0	30.0	-0.02	0.17	0.21
661	1880.0	1	1.0	+HS					0.00
					Body-worr	1			
661	1880.0	1	1.5	Back	31.0	30.0	-0.05	0.29	0.37
661	1880.0	1	1.5	Front	31.0	30.0	0.04	0.18	0.23
661	1880.0	1	Holster	Back	31.0	30.0	0.04	0.17	0.21

Table 11.2-3 SAR results for GPRS/EDGE 1900 body-worn and Hotspot configurations



	Me	asured/Ex	trapolated SAR	Values - Hotsp	ot/Body-Worn -	WCDMA FI	DD II 1900 MI	Hz					
	Freq.	spacing	Side Facing	Cond. Output	Power (dBm)	Power	1g SAR (W/Kg)						
Ch.	(MHz)	(cm)/ holster	Phantom	Declared	Measured	Drift (dB)	Measured	Extrapolated					
	Hotspot												
9262	1852.4	1.0	Back	23.0	22.7	0.13	0.63	0.68					
9400	1880.0	1.0	Back	23.0	22.6	0.05	0.79	0.87					
9538	1907.6	1.0	Back	23.0	22.9	-0.10	0.68	0.70					
9400	1880.0	1.0	Front	23.0	22.6	0.00	0.74	0.81					
9400	1880.0	1.0	Left	23.0	22.6	0.00	0.48	0.53					
9400	1880.0	1.0	Right	23.0	22.6	0.03	0.12	0.13					
9400	1880.0	1.0	Bottom	23.0	22.6	-0.08	0.26	0.29					
9400	1880.0	1.0	+HS					0.00					
				Body-v	vorn								
9400	1880.0	1.5	Back	23.0	22.6	-0.01	0.43	0.47					
9400	1880.0	1.5	Front	23.0	22.6	0.04	0.38	0.42					
9400	1880.0	Holster	Back	23.0	22.6	-0.11	0.29	0.32					

Table 11.2-4 SAR results for WCDMA FDD II body-worn and Hotspot configurations

Mea	sured/Ex	ctrapolated	SAR Values -	Hotspot/Body-\	Worn - 802.11b 24	50 MHz		
	Freg.	spacing	Side Facing	Cond. Outpo	ıt Power (dBm)	Power	1g SA	R (W/Kg)
Ch.	(MHz)	(cm)/ holster	Phantom	Declared	Measured	Drift (dB)	Measured	Extrapolated
1	2412	1.0	Back					0.00
6	2437	1.0	Back	15.0	14.8	0.10	0.17	0.18
11	2462	1.0	Back					0.00
6	2437	1.0	Front	15.0	14.8	0.18	0.04	0.04
6	2437	1.0	Left	15.0	14.8	0.02	0.15	0.16
6	2437	1.0	Right	15.0	14.8	-0.10	0.01	0.01
6	2437	1.0	Тор	15.0	14.8	0.14	0.01	0.01
6	2437	1.0	Bottom	15.0	14.8	-0.10	0.01	0.01
6	2437	1.0	+HS					0.00
			Body	y-worn				
6	2437	1.5	Back	19.0	18.8	0.05	0.23	0.24
6	2437	1.5	Front	19.0	18.8	0.44	0.11	0.12
6	2437	Holster	Back	19.0	18.8	-0.04	0.19	0.20

Table 11.2-5 SAR results for WiFi/WLAN/802.11b body-worn and Hotspot configurations

Meas	sured/Ex	trapolated	SAR Values -	Hotspot/Body-V	Vorn - Bluetooth	2450 MHz		
	Freq.	spacing	Side Facing	Cond. Outpu	ıt Power (dBm)	Power	1g SA	R (W/Kg)
Ch.	(MHz)	(cm)/ holster	Phantom	Declared	Measured	Drift (dB)	Measured	Extrapolated
	•			otspot				
2402	0	1.0	Back					0.00
2441	39	1.0	Back	9.8	9.8	-0.15	0.01	0.01
2480	78	1.0	Back					0.00
2441	39	1.0	Front					0.00
2441	39	1.0	Left					0.00
2441	39	1.0	Right					0.00
2441	39	1.0	Top					0.00
2441	39	1.0	Bottom					0.00
2441	39	1.0	+HS					0.00
2441	39	1.5	Back	9.8	9.8	0.01	0.01	0.01
2441	39	1.5	Front					0.00
2441	39	Holster	Back	·				0.00

Table 11.2-6 SAR results for Bluetooth body-worn and Hotspot configurations

Me	easured	/Extrapola	ated SAR Valu	ies - Body-Wo	orn - 802.11a 500	00 MHz		
	Freq.	spacing	Side Facing	Cond. Outpu	ıt Power (dBm)	Power	1g SA	R (W/Kg)
Ch.	(MHz)	(cm)/ holster	Phantom	Declared	Measured	Drift (dB)	Measured	Extrapolated
36	5180	1.5	Back	15.0	12.8	0.02	0.42	0.70
40	5200	1.5	Back					0.00
44	5220	1.5	Back					0.00
48	5240	1.5	Back					0.00
52	5260	1.5	Back	16.5	14.6	-0.14	0.55	0.85
56	5280	1.5	Back					0.00
60	5300	1.5	Back					0.00
64	5320	1.5	Back					0.00
104	5520	1.5	Back	16.5	14.9	-0.07	0.70	1.01
116	5580	1.5	Back	16.5	14.7	-0.05	0.43	0.65
124	5620	1.5	Back	16.5	14.7	-0.05	0.47	0.71
136	5680	1.5	Back	16.5	14.4	0.02	0.37	0.60
140	5700	1.5	Back					0.00
149	5745	1.5	Back	16.5	11.6	-0.01	0.25	0.77
153	5765	1.5	Back	16.5	14.8	0.03	0.29	0.43
157	5785	1.5	Back					0.00
161	5805	1.5	Back					0.00
165	5825	1.5	Back					0.00
104	5520	1.5	Front	16.5	14.9	-0.09	0.04	0.06
104	5520	Holster	Back	16.5	14.9	-0.19	0.25	0.36
104	5520	Holster	Front	16.5	14.9	0.05	0.03	0.04
104	5520	1.5	+HS	·				

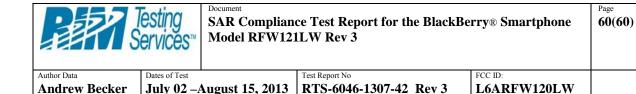
Table 11.2-7 SAR results for WiFi/WLAN/802.11a body-worn configurations

SAR Compliance Test Report for the BlackBerry® Smartphone Model RFW121LW Rev 3

ge

59(60)

Andrew Becker


July 02 –August 15, 2013

Test Report No **RTS-6046-1307-42 Rev 3**

L6ARFW120LW

12.0 REFERENCES

- [1] IEEE 1528-2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [2] EN 50360: 2001, Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)
- [3] ICNIRP, International Commission on Non-Ionizing Radiation Protection (2009), Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz).
- [4] Council Recommendation 1999/519/EC of July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)
- [5] IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave.
- [6] IEEE C95.1-2005, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.
- [7] FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation.
- [8] DASY 5 DOSIMETRIC ASSESSMENT SYSTEM SOFTWARE MANUAL, Schmid & Partner Engineering AG.
- [9] Health Canada, Safety Code 6, 2009: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency range from 3 kHz to 300 GHz.
- [10] RSS-102, issue 4-2010: Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields.
- [11] IEC 62209-1, First Edition-2005: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz).
- [12] IEC 62209-2, Edition 1.0-2010: Human exposure to radio frequency fields from hand-held and bodymount wireless communication devices Human Models, instrumentation, and procedures part 2 procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
- [13] IEC/EN 62311-2008: Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz 300 GHz).
- [14] 3GPP TS 36.521-1 V10.0.0 (2011-12): Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Conformance testing

[15] FCC OET SAR measurement 100 MHz to 6 GHz, KDB 865664 D01 v01, October 24, 2012.

[16] FCC OET SAR Measurement Procedures for 802.11 a/b/g Transmitters, KDB 248227 D01 v01r02, May, 2007.

[17] FCC OET SAR Evaluation Considerations for Handsets with Multiple Transmitters & Antennas, KDB 648474 D04 v01, October 24, 2012.

[18] FCC OET SAR Test Reduction Procedure for GSM/GPRS/EDGE, KDB 941225 D03 vo1, December, 2008.

[19] FCC OET SAR Test Procedure for Evaluating SAR for GSM/(E)GPRS Dual Transfer Mode, KDB 941225 D04 v01, January 27, 2010.

[20] FCC OET RF Exposure Procedures for Mobile and Portable Devices, and Equipment Authorization Policies, KDB 447498 D01 v05, October 24, 2012.

[21] FCC OET SAR Measurements Procedures for 3G Devices, KDB 941225 D01 v02, October, 2007.

[22] FCC OET SAR Evaluation Procedure for Portable Devices with Wireless Router capability, KDB 941225 D06 Hot Spot SAR v01, April 04, 2011.

[23] FCC OET SAR Evaluation Considerations for LTE Devices, KDB 941225 D05 v02, October 24, 2012.

[24] FCC OET RF Exposure Compliance Reporting and Documentation Considerations, KDB 865664 D02 v01, October 24, 2012.

[25] IEEE 1528-2011: Draft "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques."

[26] IEC 62209-1: 2011, Draft "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)."