

T-Coil HAC Test Report

FOR:

Manufacturer: Research In Motion Limited Model Name: RFM121LW FCC ID: L6ARFM120LW

Test Report #: HAC_CETE4_023_13001_T-Coil

Date of Report: 2013/04/04

FCC Listed #: A2LA Accredited

IC Recognized # 3462B-1

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecomusa.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2905571

V3.0 2010-12-30 © Copyright by CETECOM

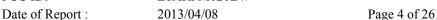
L6ARFM120LW

Date of Report : 2013/04/08

Page 2 of 26

TABLE OF CONTENTS

1.	Asse	ssment	. 4
2.	Adm	inistrative Data	. 5
	2.1.	Identification of the Testing Laboratory Issuing the HAC Test Report	5
	2.2.	Identification of the Client	5
	2.3.	Identification of the Manufacturer	5
<i>3</i> .	Equi	pment under Test (EUT)	. <i>(</i>
	3.1.	Specification of the Equipment under Test	6
	3.2.	Identification of the Equipment Under Test (EUT)	7
	3.3.	Identification of Accessory equipment	7
	3.4.	Supported Air Interfaces	8
4.	Subj	ect of Investigation	. 9
	4.1.	FCC rules and ANSI Measurement Methods	9
	4.2.	HAC performance and Equipment categorization	9
	4.2.1	Categories of Hearing Aid Compatibility for wireless devices	9
	4.2.2	T-Coil Coupling field intensity	9
	4.2.3	Magnetic Field Frequency Response	10
5.	Mea	surement Procedure	11
	5.1.	General Requirements	11
	5.2.	Configurations	11
	5.3.	Pre-Measurement Calibration Procedure	12
	5.4.	Audio Signal Preparation	13
	5.4.1	. GSM/WCDMA	13
	5.4.2	CDMA	13
	5.5.	EUT Scanning Procedure	14
6.	The .	Measurement System	15


FCC ID: L6ARFM120LW Date of Report : 2013/04/08

	6.1.	Robot system specification
	6.2.	Isotropic E-Field Probe for Dosimetric Measurements16
	6.3.	The IXA-020 probe amplifier17
<i>7</i> .	Unce	ertainty Assessment19
	7.1.	Measurement Uncertainty Budget
8.	Test	results summary20
	8.1.	HAC Results for CDMA BC020
	8.2.	HAC Results for CDMA BC120
	8.3.	HAC Results for GSM 85021
	8.4.	HAC Results for GSM 190021
	8.1.	HAC Results for WCDMA FDD II22
	8.2.	HAC Results for WCDMA FDD V22
	8.3.	System Calibration
9.	Refe	rences24
10.	Test	Equipment25
11.	Repo	ort History26

Page 3 of 26

FCC ID: L6ARFM120LW

1. Assessment

The following device was tested against the applicable criteria specified in FCC 20.19 and ANSI C63.19 – 2007 and no deviations were ascertained during the course of the tests performed.

Company	Description	Model #
Research In Motion Limited	Smartphone	RFM121LW

Responsible for Testing Laboratory:

2013/04/08	Compliance	Sajay Jose (Test Lab Manager)	
Date	Section	Name	Signature
Responsible for	the Report:		
	a 1:	Josie Sabado	
2013/04/08	Compliance	(Project Engineer)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3. CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

FCC ID: L6ARFM120LW

2. Administrative Data

2.1. Identification of the Testing Laboratory Issuing the HAC Test Report

Company Name:	CETECOM Inc.
Department:	Compliance
Address:	411 Dixon Landing Road Milpitas, CA 95035 U.S.A.
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Test Lab Director:	Heiko Strehlow
Responsible Project Leader:	Josie Sabado

2.2. <u>Identification of the Client</u>

Applicant's Name:	Research In Motion Limited	
Street Address:	305 Phillip Street	
City/Zip Code	Waterloo, ON N2L 3W8	
Country	CANADA	
Contact Person:	Masud Attayi	
Phone No.	+1 51 98 88 74 65	
Fax:	+1 51 98 88 69 06	
e-mail:	mattayi@rim.com	

2.3. Identification of the Manufacturer

Same as above client.

O 2010-12-30 This report shall not be reproduced except in full without the written approval of:

FCC ID: L6ARFM120LW Date of Report : 2013/04/08

Page 6 of 26

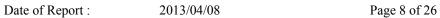
3. Equipment under Test (EUT)

3.1. Specification of the Equipment under Test

Prototype/Production:	Identical Prototype
Model No:	RFM121LW
FCC-ID:	L6ARFM120LW
Antenna Type:	Internal
Operating Voltage Range:	Battery 3.8 – 4.35 V, charger 5 Vdc
Operating Temperature Range:	32 - 95 degrees F (0 – 35 degrees C)
Supported Radios:	GSM/GPRS/EGPRS, MS Class 12, Power Class 4/1, Mobile Class A WCDMA/HSDPA/HSUPA Power Class 3, Cat 6 (5.7 Mbps uplink and QPSK) LTE CDMA Bluetooth v2.1 + EDR 802.11 a/b/g/n, HT20, HT40 NFC
Simultaneous Transmission Modes:	CDMA + LTE + WiFi CDMA + LTE + Bluetooth CDMA + Bluetooth CDMA + WiFi GSM/(E)GPRS + WiFi GSM/(E)GPRS + LTE + WiFi GSM/(E)GPRS + LTE + Bluetooth GSM + Bluetooth LTE + WiFi
Date of Testing:	March 10-19, 2013; April 3, 2013
HAC Rated Category:	T4

FCC ID: L6ARFM120LW

Date of Report : 2013/04/08 Page 7 of 26


3.2. <u>Identification of the Equipment Under Test (EUT)</u>

EUT#	Serial Number	HW Version	SW Version	
1	0809-3914-5655	CER-53013-001 Rev1-905-00	127.01.3901	
2	0809-3929-8650	CER-53013-001 Rev2-905-00	127.0.1.4429	

3.3. <u>Identification of Accessory equipment</u>

No accessory equipment

FCC ID: L6ARFM120LW

3.4. Supported Air Interfaces

Type(s) of			Transmit Frequency Range	Type	C63.19 Tested	Over the Top Voice	
Air Interface	Modulation	Band	(MHz)			Mode	
GSM	GMSK	GSM 850	824.2 - 848.8	Voice	Yes	N/A	
USM	UMSK	PCS 1900	1850.2 - 1909.8	Voice	1 68	IN/A	
(E)GPRS	GMSK, 8PSK	GSM 850	824.2 - 848.8	Data	N/A	No	
(E)GFKS	UMSK, of SK	PCS 1900	1850.2 - 1909.8	Data	IN/A	NO	
WCDMA	QPSK,	FDD II	1852.4 - 1907.6	Voice	Vac	N/A	
WCDMA	16 QAM	FDD V	826.4 - 846.6	voice	Yes	IN/A	
CDMA	QPSK, HPSK	Band Class 0	824.7 - 848.31	Voice	Yes	N/A	
CDMA	QPSK, HPSK	Band Class 1	1851.25 – 1908.75	voice	res	IN/A	
EVDO Rev. A	QPSK, 8PSK,	Band Class 0	824.7 - 848.31	Data	N/A	No	
E V DO Rev. A	16 QAM	Band Class 1	1851.25 – 1908.75	Data		NO	
LTE	QPSK, 16 QAM	Band 4	1710.7 – 1754.3	Data	N/A	Yes	
LIE		Band 13	779.5 – 784.5	Data		res	
Bluetooth	GFSK, π/4 DQPSK, 8DPSK	N/A	2402 – 2480	Data	N/A	No	
802.11 b/g/n	BPSK, QPSK, 16-QAM, 64-QAM	N/A	2412 – 2462	Data	N/A	Yes	
	DDCIZ ODCIZ	Sub-Band 1	5180 - 5240				
002 11 0/2	BPSK, QPSK,	Sub-Band 2	5260 - 5320	Doto	NT/A	Vas	
802.11 a/n	16-QAM,	Sub-Band 3	5500 – 5700	Data	N/A	Yes	
	64-QAM	Sub-Band 4	5745 – 5825				

FCC ID: L6ARFM120LW

Date of Report : 2013/04/08 Page 9 of 26

4. Subject of Investigation

The objective of the measurements done by Cetecom Inc. was to determine the HAC rating of the EUT according to requirements in ANSI C63.19 – 2007. The examinations were carried out with the IndexSAR system described in Section 6.

4.1. FCC rules and ANSI Measurement Methods

Chapter 47 of Code of Federal Regulations, Part 20 § 19 specify criteria for Hearing aid-compatible mobile handsets and ANSI C63.19-2007: American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids establish categories for hearing aids and methods of measurement.

4.2. HAC performance and Equipment categorization

4.2.1. Categories of Hearing Aid Compatibility for wireless devices

Category	Telephone parameters WD signal quality [(signal + noise)-to-noise ratio in decibels]
Category T1	0 dB to 10 dB
Category T2	10 dB to 20 dB
Category T3	20 dB to 30 dB
Category T4	>30 dB

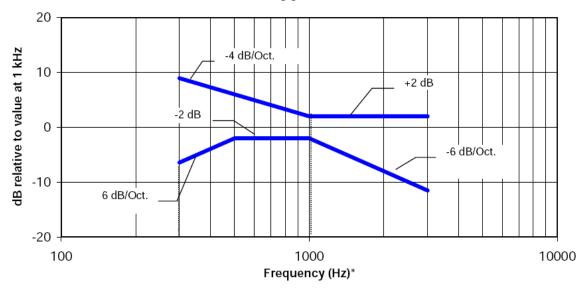
Results in appendix A show note "Signal Quality Category (T1 is band – T4 is good. Depends on AWF setting". This statement is incorrect because AWF setting is not used in category assignment.

4.2.2. T-Coil Coupling field intensity

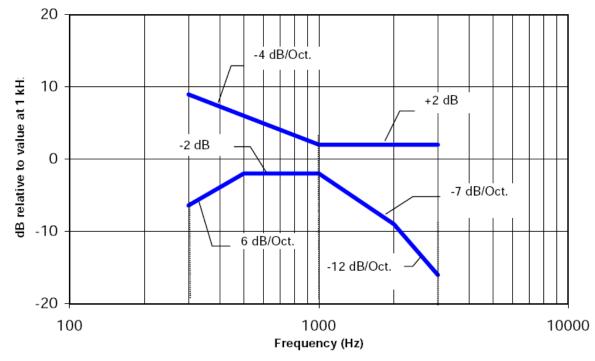
The T-Coil signal shall be \geq -18 dB (A/m) at 1 kHz for all probe orientations while the wireless device is operating at reference input levels as specified in section 5.4 of this test report.

/3.0 2010-12-30 This report shall not be reproduced except in full without the written approval of:

CETECOM Inc. • SAR • 411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.


FCC ID: L6ARFM120LW

Date of Report : 2013/04/08 Page 10 of 26



4.2.3. Magnetic Field Frequency Response

The magnetic field response for wireless devices with a field strength \leq -15 dB (A/m) at 1 kHz shall be within the constraints of the following plot:

The magnetic field response for wireless devices with a field strength > -15 dB (A/m) at 1 kHz shall be within the constraints of the following plot:

FCC ID: L6ARFM120LW

Date of Report: 2013/04/08 Page 11 of 26

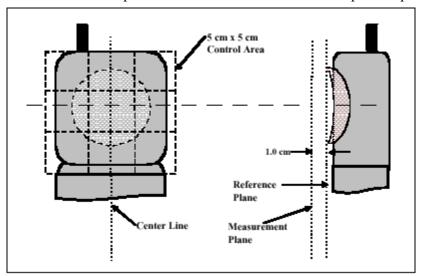
5. Measurement Procedure

ANSI has published an American National Standard (C63.19), which establishes categories for hearing aids and for wireless devices, and provide tests that can be used to assess the electromagnetic characteristics of hearing aids and for wireless devices and assign them to these categories.

5.1. General Requirements

The test shall be performed in a laboratory with an environment which avoids influence on HAC measurements by ambient EM sources and any reflection from the environment itself. The ambient temperature shall be in the range of 20°C to 26°C and 30-70% humidity.

5.2. Configurations

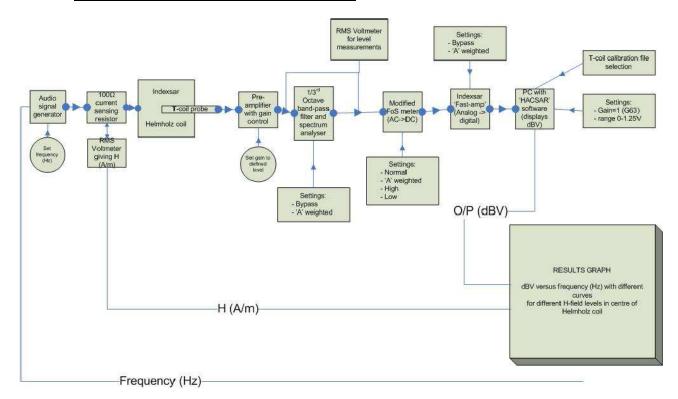

Device holder and positioning description

The IndexSAR phone holder is a skeletal design. It is designed so that most phones can be held from the bottom without putting any plastic materials in contact with the upper part of the EUT.

Test positions of device

The HAC measurements are perform according to the requirements of ANSI C63.19. It allows centering the wireless device inside a 5 x 5 cm control area marked with 4 points for position adjustment. SARA2's robot arm allows an exact adjustment of the measurement distance from the DUT.

The measurement probe is centered above the mobile phone speaker inside the control area.


0 2010-12-30 This report shall not be reproduced except in full without the written approval of:

FCC ID: L6ARFM120LW

Date of Report : 2013/04/08 Page 12 of 26

5.3. Pre-Measurement Calibration Procedure

- 1. Generate a 1 kHz and increase the amplitude until the RMS voltmeter measures 1 V across the 100Ω current sensing resistor.
- 2. Increase the gain of the preamplifier until the software measures 1 A/m.
- 3. Open a Tooil Report window in the software.
- 4. Adjust the signal generator to each 1/3 Octave Band and measure each.
- 5. Adjust the 1/3rd Octave band-pass filter until the spectrum is flat along the 0 dB relative to 1 kHz axis.

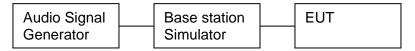
V3.0 2010-12-30

FCC ID: L6ARFM120LW

Date of Report: 2013/04/08 Page 13 of 26

5.4. Audio Signal Preparation

Normal speech input levels are as follows:


Standard	Technology	Input (dBm0)
TIA/EIA/IS-2000	CDMA	-18
TIA/EIA-136	TDMA (50 Hz)	-18
T1/T1P1/3GPP	UMTS (WCDMA)	-16
iDEN	TDMA (22 Hz and 11 Hz)	-18
J-STD-007	GSM (217 Hz)	-16

5.4.1. GSM/WCDMA

- 1. Establish a call between the base station simulator and the EUT via a conducted link.
- 2. Set the voice coder on the base station simulator to "Decoder Cal". This represents 3.14 dBm0.
- 3. Measure the voltage at the speech output pin on the speech port of the base station simulator.
- 4. Calculate the RMS value of the desired input level using the equation (RMS value of Decoder Cal) * $10^{[3.14-(desired\ input\ level)]/20}$
- 5. Change the voice coder to "Encoder Cal".
- 6. Using the audio generator of the base station simulator, generate a 1 kHz test signal.
- 7. Adjust the level of the 1 kHz test signal to match the desired input level calculated in step 4.

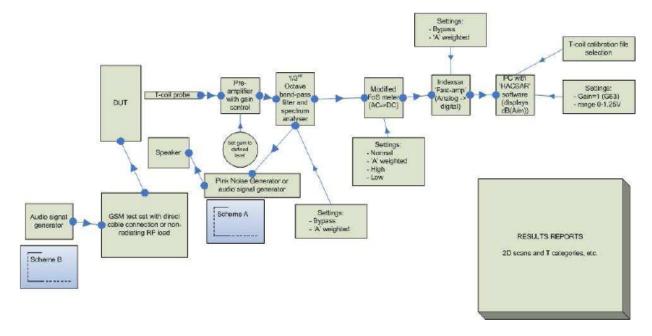
5.4.2. CDMA

Because accurate results may not be possible with voice coders used with CDMA, a P.50 artificial voice signal is used.

- 1. Establish a call between the base station simulator and the EUT via a conducted link.
- 2. Set the voice coder on the base station simulator to "Decoder Cal". This represents 3.14 dBm0.
- 3. Using the audio analyzer function of the base station simulator, note the RMS value.
- 4. Calculate the RMS value of the desired input level using the equation (RMS value of Decoder Cal) * 10^{[3.14 (desired input level)]/20}
- 5. Change the voice coder to "Encoder Cal".
- 6. Adjust the audio signal generator so that the base station simulator audio analyzer matches the RMS value of the desired input level calculated in step 4.

V3.0 2010-12-30 This report shall not be reproduced except in full without the written approval of:

CETECOM Inc. ◆ SAR ◆ 411 Dixon Landing Road ◆ Milpitas, CA 95035 ◆ U.S.A.


FCC ID: L6ARFM120LW

Date of Report : 2013/04/08 Page 14 of 26

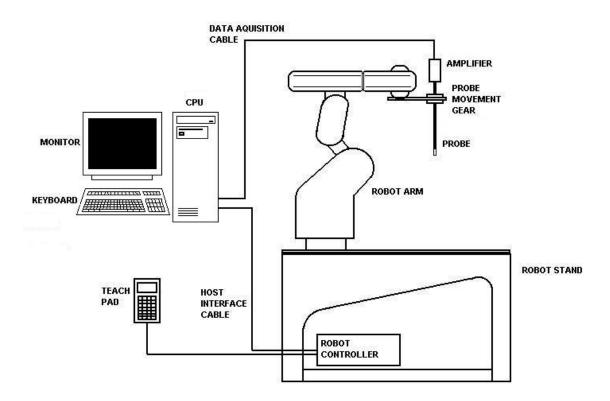
5.5. EUT Scanning Procedure

All tests are performed with the same configuration of test steps and in accordance with the requirements described in C63.19-2007 Chapter 4.

- 1. Select a probe and place it in the probe holder of the robot.
- 2. Setup a call at maximum output power on the EUT. Generate the desired audio file at the desired input level.
- 3. Perform an area scan.
- 4. Move the probe to the maximum measured point.
- 5. Measure the ABM1 value with the audio stimulus enabled.
- 6. Turn off the audio stimulus and measure AMB2.
- 7. With the axial probe only, perform spectral measurements in each of the 1/3 octave bands.

V3.0 2010-12-30

FCC ID: L6ARFM120LW



6. The Measurement System

6.1. Robot system specification

The HAC measurement system being used is the IndexSAR SARA2_HAC system, which consists of a Mitsubishi RV-E2 6-axis robot arm and controller, IndexSAR HAC probe and amplifier. The robot is used to articulate the probe to programmed positions inside the phantom head to obtain the SAR readings from the DUT.

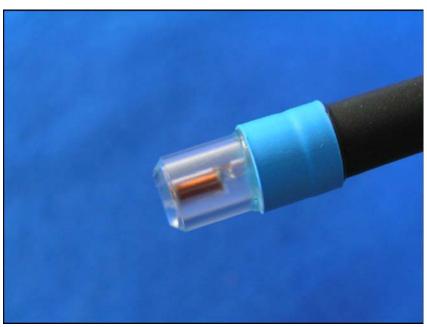
The system is controlled remotely from a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans.

The position and digitized shape of the EUTs are made available to the software for accurate positioning of the probe and reduction of set-up time.

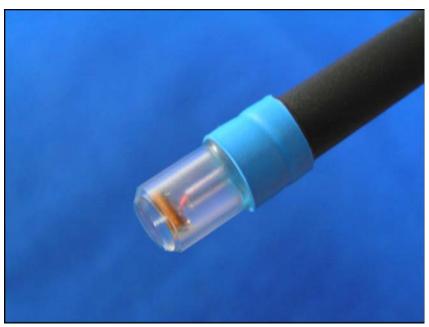
In operation, the system does an area (2D) scan at a fixed distance from the EUT.

The frequency response of the system, the sensitivity of the probe, and the linearity of the field measurements can all be assessed periodically using the same component setup as used for the routine system calibration.

V3.0 2010-12-30 This report shall not be reproduced except in full without the written approval of:


FCC ID: L6ARFM120LW

Date of Report : 2013/04/08 Page 16 of 26

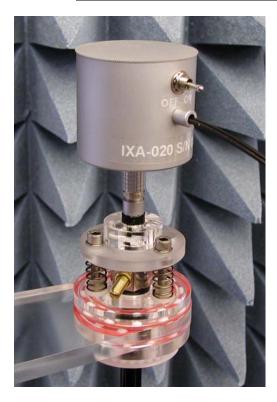


6.2. Isotropic E-Field Probe for Dosimetric Measurements

Two separate probes are provided for measuring audio frequency magnetic fields in both axial and transverse direction. The probes are measured using associated electronics and positioned by the 3-axis Cartesian robot system and the results are processed and presented using the software application running on a PC.

Axial T-coil Probe

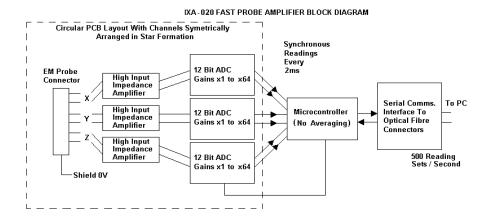
Transverse T-coil probe


FCC ID: L6ARFM120LW

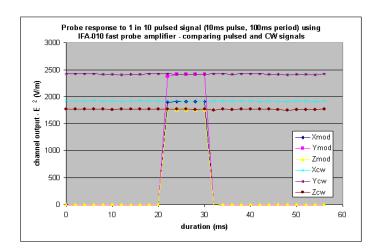
Date of Report : 2013/04/08 Page 17 of 26

When using the single channel T-coil probes, the fast amplifier is used as a voltmeter to measure the rectified and processed output of the audio-frequency T-coil probes. The calibration file for the T-coil probes is set so that only the output of the X-channel is used and the DCP is set to a high value to disable the linearization correction process. Additionally, the test procedure involves setting the conversion factor of the probe before each test using the variable gain of the pre-amplifier module. Consequently, the actual value of the conversion factor in the calibration file is not critical.

6.3. The IXA-020 probe amplifier


This component is a key component of the measurement system. When used with the T-coil probes, only the X-channel value is used and no linearization procedures are applied.

A block diagram of the fast probe amplifier electronics is shown below.


FCC ID: L6ARFM120LW

Date of Report : 2013/04/08 Page 18 of 26

This amplifier has a time constant of approx. 50µs, which is much faster than the RF probe response time. The overall system time constant is therefore that of the probe (<1ms) and reading sets for all three channels (simultaneously) are returned every 2ms to the PC. The conversion period is approx. 1 µs at the start of each 2ms period. This enables the probe to follow pulse modulated signals of periods >>2ms. The PC software applies the linearization procedure separately to each reading, so no linearization corrections for the averaging of modulated signals are needed in this case. It is important to ensure that the probe reading frequency and the pulse period are not synchronized and the behavior with pulses of short duration in comparison with the measurement interval needs additional consideration.

FCC ID: L6ARFM120LW

Date of Report : 2013/04/08 Page 19 of 26

7. <u>Uncertainty Assessment</u>

Measurement uncertainty values were evaluated for HAC measurements. The uncertainty values for components were evaluated according to the procedures given in ANSI C63.19.

7.1. Measurement Uncertainty Budget

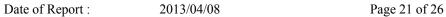
Error Contribution	Uncertainty (+/- %)	Distribution	Div.	C ABM1	C ABM2	Std Unc. ABM1	Std. Unc. ABM2
RF reflections	0.8	rect	1.73	1	1	0.46	0.46
ABM noise	25.89	rect	1.73	0	1	0	14.97
Accuracy of level setting	4.71	rect	1.73	1	1	2.72	2.72
Positioning accuracy	4.7	rect	1.73	1	1	2.71	2.71
Probe coil sensitivity	1.799	rect	1.73	1	1	2.72	2.72
Helmholtz field accuracy	2.33	rect	1.73	1	1	1.35	1.35
Equaliser accuracy	12.20	rect	1.73	1	1	7.05	7.05
Reference level setting on Test Set	4.71	rect	1.73	1	1	2.72	2.72
Stability of ABM electronics	2.33	rect	1.73	1	1	1.35	1.35
	Combined						17.53
Expanded (k=2)						18.23	35.05

FCC ID: L6ARFM120LW

Date of Report : 2013/04/08 Page 20 of 26

8. <u>Test results summary</u>

Radial A = East to West Direction
Radial B = North to South Direction


8.1. HAC Results for CDMA BC0

Operation	Channel	Frequency	Probe	ABM 1	ABM 2	Category	Results
Mode		(MHz)	Position	(dB A/m)	(dB A/m)		(Appendix A)
			Axial	5.444	-39.172	T4	
	1013	824.7	Radial A	5.441	-60.000	T4	Plot 1
			Radial B	6.086	-34.992	T4	
CDMA			Axial	5.536	-42.384	T4	
RC3,	384	836.52	Radial A	6.289	-60.000	T4	Plot 2
SO68			Radial B	7.752	-35.494	T4	
			Axial	5.542	-39.251	T4	
	777	848.31	Radial A	6.136	-60.000	T4	Plot 3
			Radial B	6.993	-60.000	T4	

8.2. HAC Results for CDMA BC1

Operation	Channel	Frequency	Probe	ABM 1	ABM 2	Category	Results
Mode		(MHz)	Position	(dB A/m)	(dB A/m)		(Appendix A)
			Axial	5.421	-60.000	T4	
	25	1851.25	Radial A	5.888	-60.000	T4	Plot 4
			Radial B	6.661	-35.918	T4	
CDMA			Axial	6.700	-60.000	T4	
RC3,	600	1880	Radial A	7.093	-60.000	T4	Plot 5
SO68			Radial B	7.181	-34.563	T4	
			Axial	9.491	-52.041	T4	
	1175	1908.75	Radial A	10.106	-60.000	T4	Plot 6
			Radial B	9.481	-34.704	T4	

FCC ID: L6ARFM120LW


8.3. HAC Results for GSM 850

Operation	Channel	Frequency	Probe	ABM 1	ABM 2	Category	Results
Mode		(MHz)	Position	(dB A/m)	(dB A/m)		(Appendix A)
			Axial	9.607	-29.143	T4	
	128	824.2	Radial A	9.498	-30.187	T4	Plot 7
			Radial B	9.486	-60.000	T4	
			Axial	9.608	-29.951	T4	
GSM	190	836.6	Radial A	9.469	-31.594	T4	Plot 8
			Radial B	9.704	-60.000	T4	
			Axial	9.611	-27.351	T4	
	251	848.8	Radial A	9.449	-32.985	T4	Plot 9
			Radial B	9.673	-60.000	T4	

8.4. HAC Results for GSM 1900

Operation	Channel	Frequency	Probe	ABM 1	ABM 2	Category	Results
Mode		(MHz)	Position	(dB A/m)	(dB A/m)		(Appendix A)
			Axial	9.600	-29.499	T4	
	512	1850.2	Radial A	9.955	-41.012	T4	Plot 10
			Radial B	9.705	-60.000	T4	
			Axial	9.614	-32.918	T4	
GSM	661	1880	Radial A	9.948	-41.210	T4	Plot 11
			Radial B	9.731	-60.000	T4	
			Axial	9.610	-28.971	T4	
	810	1909.8	Radial A	9.948	-38.562	T4	Plot 12
			Radial B	9.736	-60.000	T4	

FCC ID: L6ARFM120LW

8.5. HAC Results for WCDMA FDD II

Operation	Channel	Frequency	Probe	ABM 1	ABM 2	Category	Results
Mode		(MHz)	Position	(dB A/m)	(dB A/m)		(Appendix A)
			Axial	9.730	-31.938	T4	
	9262	1852.4	Radial A	9.432	-32.187	T4	Plot 13
			Radial B	9.805	-60.000	T4	
12.2 lebma			Axial	9.727	-31.568	T4	
12.2 kbps AMR	9400	1880	Radial A	9.449	-35.739	T4	Plot 14
AWIK			Radial B	9.808	-60.000	T4	
			Axial	9.727	-32.653	T4	
	9538	1907.6	Radial A	9.454	-35.741	T4	Plot 15
			Radial B	9.799	-60.000	T4	

8.6. HAC Results for WCDMA FDD V

Operation	Channel	Frequency	Probe	ABM 1	ABM 2	Category	Results
Mode		(MHz)	Position	(dB A/m)	(dB A/m)		(Appendix A)
			Axial	9.729	-32.616	T4	
	4132	826.4	Radial A	9.374	-40.446	T4	Plot 16
			Radial B	9.782	-60.000	T4	
12.2 labora			Axial	9.722	-31.182	T4	
12.2 kbps AMR	4183	836.6	Radial A	9.389	-33.182	T4	Plot 17
AMK			Radial B	9.744	-60.00	T4	
			Axial	9.737	-30.545	T4	
	4233	846.6	Radial A	9.396	-31.876	T4	Plot 18
			Radial B	9.756	-42.047	T4	

FCC ID: L6ARFM120LW

Date of Report : 2013/04/08 Page 23 of 26

8.7. System Calibration

Prior to formal testing a system calibration was performed in accordance with IndexSAR user manual. See section 5.3 for details.

Date	Probe	Results (Appendix A)
2013/03/10	Axial	Plot 19
2013/03/19	Axial	Plot 20
2013/03/21	Axial	Plot 21
2013/03/10	Transverse	Plot 22
2013/03/21	Transverse	Plot 23
2013/04/03	Transverse	Plot 24

FCC ID: L6ARFM120LW

Date of Report: 2013/04/08 Page 24 of 26

References 9.

1. FCC 47 CFR 20 Article 19 – Hearing aid-compatible mobile handsets

2. ANSI C63.19-2007, American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids

3. INDEXSAR – HAC Test System User's Manual, Version 4.9, December 2007.

FCC ID: L6ARFM120LW

Date of Report : 2013/04/08 Page 25 of 26

10. Test Equipment

Instrument description	Supplier / Manufacturer	Model	Serial No.	Calibration (date)	Calibration Due (date)
Bench top Robot	Mitsubishi supplied by IndexSAR	RV-E2	EA1030108	N/A	N/A
Software	IndexSAR	SARA2_HAC v.1.1.3	N/A	N/A	N/A
Axial T-Coil Probe	IndexSAR	IXP-100	T0005	2005-12-21, 2012-03/20	N/A
Radial T-Coil Probe	IndexSAR	IXP-110	T0006	2005-12-21, 2012-03/20	N/A
Digital Multimeter	Klein Tools	MM200	0710X-A1	2011-05-02	2013-05-02
Preamplifier	ARTcessories	MicroMIX	N/A	N/A	N/A
Waveform Generator	Agilent	33220A	MY43004303	N/A	N/A
Digital Equalizer	Phonic	i SupraCurve	OIA0D20168	N/A	N/A
100 ohm resistor block	IndexSAR	N/A	N/A	N/A	N/A
Helmholtz Coil	IndexSAR	IXT-020	0004	N/A	N/A
FoS Meter	IndexSAR	IXHM-010	0003	N/A	N/A
Probe Amplifier	IndexSAR	IXA-020	0072	N/A	N/A
Audio Analyzer	Rohde & Schwarz	UPL 16	838205/005	May 2011	May 2013
Digital Radio Comm. Tester	Rohde&Schwarz	CMU200	110229	May 2011	May 2013

FCC ID: L6ARFM120LW

Date of Report : 2013/04/08 Page 26 of 26

11. Report History

2013/04/08: Original Report.