Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW,			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B		2503A-RFF90LW 2503A-RFK120LW	

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report

Page **2(78)**

Author Data
Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

FCC ID: L6ARFF90LW L6ARFK120LW

2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RTS (RIM Testing Services)

tificate No: ES3-3225_Jan12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3225

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

January 11, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Name

Jeton Kastrati

Lisboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: January 12, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3225_Jan12 Page 1 of 11

Appendix D for the BlackBerry® Smartphone Model RFF91LW, **RFK121LW SAR Report**

3(78)

Andrew Becker

Author Data

Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

FCC ID: L6ARFF90LW L6ARFK120LW IC ID 2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura s Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

crest factor (1/duty_cycle) of the RF signal CF A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 8

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization % = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3225_Jan12 Page 2 of 11

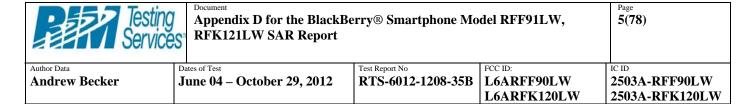
	Page 4(78)		
Dates of Test	Test Report No	FCC ID:	IC ID
June 04 – October 29, 2012	RTS-6012-1208-35B		2503A-RFF90LW 2503A-RFK120LW
	RFK121LW SAR Report Dates of Test	Appendix D for the BlackBerry® Smartphone Mo RFK121LW SAR Report Dates of Test Test Report No	Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report Dates of Test June 04 – October 29, 2012 Test Report No RTS-6012-1208-35B FCC ID: L6ARFF90LW

ES3DV3 - SN:3225

January 11, 2012

Probe ES3DV3

SN:3225


Manufactured: Calibrated: September 1, 2009 January 11, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3225_Jan12

Page 3 of 11

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.26	1.20	1.30	± 10.1 %
DCP (mV) ⁸	101.2	100.8	101.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^t (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	107.7	±1.7 %
			Y	0.00	0.00	1.00	113.4	
			Z	0.00	0.00	1.00	110.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

**Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

Testing Service	Page 6(78)			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Testir Service	Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report				
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW	

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.42	6.42	6.42	0.27	2.04	± 12.0 %
900	41.5	0.97	6.06	6.06	6.06	0.35	1.74	± 12.0 %
1810	40.0	1.40	5.23	5.23	5.23	0.73	1.21	± 12.0 %
1950	40.0	1.40	4.98	4.98	4.98	0.58	1.41	± 12.0 %
2450	39.2	1.80	4.50	4.50	4.50	0.79	1.26	± 12.0 %
2600	39.0	1.96	4.32	4.32	4.32	0.77	1.32	± 12.0 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

Certificate No: ES3-3225_Jan12

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW,			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW	

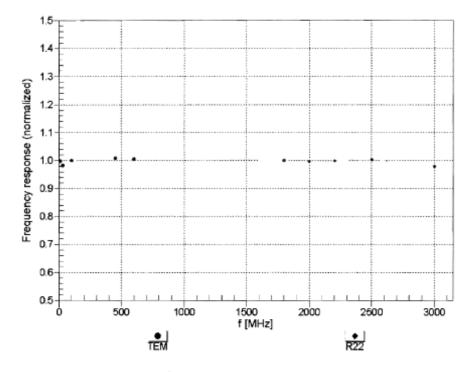
Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	Page 9(78)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B		2503A-RFF90LW 2503A-RFK120LW

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.27	6.27	6.27	0.36	1.74	± 12.0 %
900	55.0	1.05	6.07	6.07	6.07	0.29	2.02	± 12.0 %
1810	53.3	1.52	4.92	4.92	4.92	0.50	1.57	± 12.0 %
1950	53.3	1.52	4.87	4.87	4.87	0.59	1.49	± 12.0 %
2450	52.7	1.95	4.30	4.30	4.30	0.68	1.16	± 12.0 %
2600	52.5	2.16	4.12	4.12	4.12	0.80	0.99	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^r At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

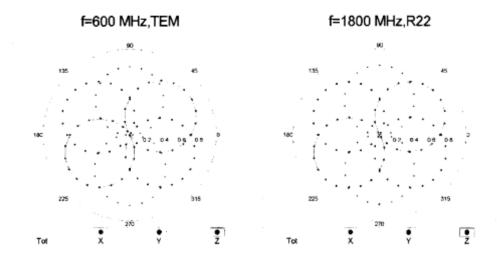

f At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

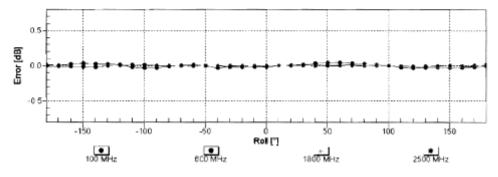
Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW,			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW	

ES3DV3-SN:3225

January 11, 2012

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

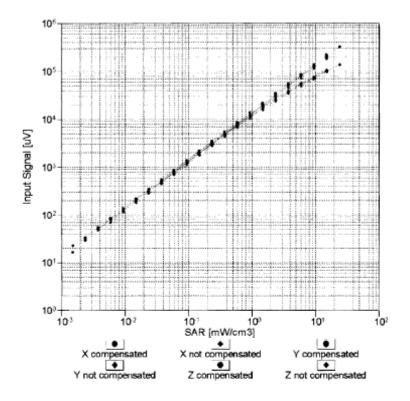

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

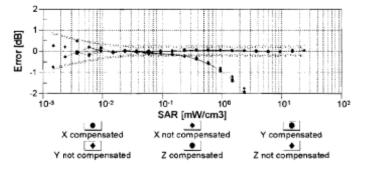

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	erry® Smartphone Mo	del RFF91LW,	Page 11(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B		2503A-RFF90LW
			L6ARFK120LW	2503A-RFK120LW

ES3DV3-SN:3225

January 11, 2012

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

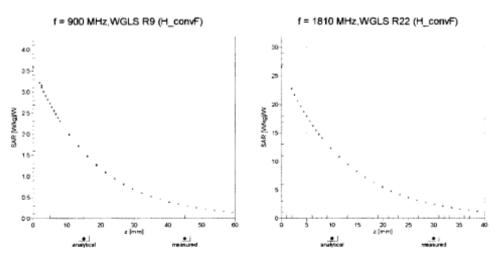



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

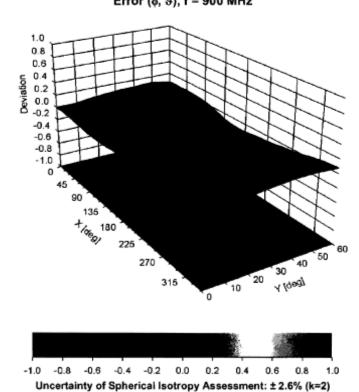
Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	erry® Smartphone Mo	del RFF91LW,	Page 12(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	erry® Smartphone Mo	del RFF91LW,	Page 13(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B		2503A-RFF90LW
			L6ARFK120LW	2503A-RFK120LW

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Testing Service	Appendix D for the BlackB RFK121LW SAR Report	Berry® Smartphone Mo	del RFF91LW,	Page 14(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	erry® Smartphone Mo	del RFF91LW,	Page 15(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B		2503A-RFF90LW 2503A-RFK120LW

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	erry® Smartphone Mo	del RFF91LW,	Page 16(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Testin Service	Appendix D for the Black! RFK121LW SAR Report	Berry® Smartphone Mo	odel RFF91LW,	Page 17(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3225_Jan12

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	erry® Smartphone Mo	del RFF91LW,	Page 18(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report

Page **19(78)**

Author Data
Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

L6ARFF90LW L6ARFK120LW

FCC ID:

2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RTS (RIM Testing Services)

Cortificate No: EX3-3592 Nov11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3592

Calibration procedure(s)

QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

November 16, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager
Issued: November 16, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: EX3-3592 Nov11

Page 1 of 11

Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report

Page **20(78)**

Author Data

Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

FCC ID:

L6ARFF90LW

L6ARFK120LW

2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

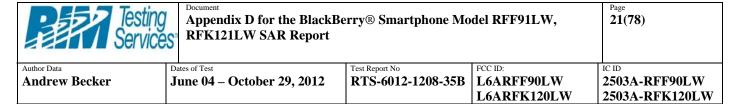
TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis


Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- i IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3592_Nov11 Page 2 of 11

EX3DV4 = SN:3592 November 16, 2011

Probe EX3DV4

SN:3592

Manufactured: September 18, 2006 Calibrated: November 16, 2011

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3592_Nov11

Page 3 of 11

Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report

Page **22(78)**

Author Data
Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B | L6ARFI

FCC ID: L6ARFF90LW L6ARFK120LW 2503A-RFF90LW 2503A-RFK120LW

EX3DV4-SN:3592

November 16, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.48	0.48	0.41	± 10.1 %
DCP (mV) ^B	95.2	95.3	98.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	WR mV	Unc ^t (k=2)
10000	CW	0.00	Х	0.00	0.00	1.00	117.9	±2.7 %
			Y	0.00	0.00	1.00	101.0	
			Z	0.00	0.00	1.00	104.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

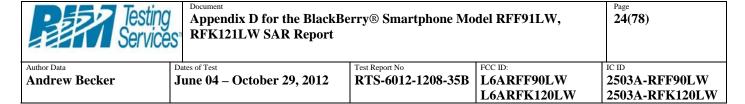
Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW, 2		Page 23(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

November 16, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592


Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
5200	36.0	4.66	4.89	4.89	4.89	0.33	1.80	± 13.1 %
5500	35.6	4.96	4.38	4.38	4.38	0.38	1.80	± 13.1 %
5800	35.3	5.27	4.17	4.17	4.17	0.40	1.80	± 13.1 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^r At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be released to ± 10% if liquid compensation formula is applied to

Certificate No: EX3-3592_Nov11

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if figuid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

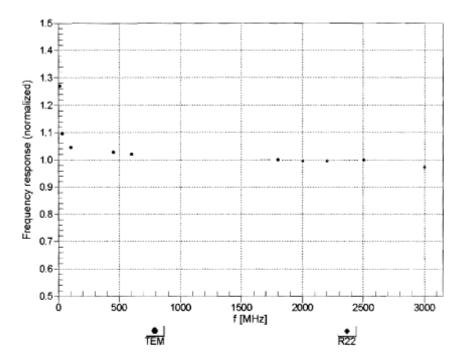
November 16, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
5200	49.0	5.30	4.05	4.05	4.05	0.50	1.90	± 13.1 %
5500	48.6	5.65	3.62	3.62	3.62	0.55	1.90	± 13.1 %
5800	48.2	6.00	3.54	3.54	3.54	0.60	1.90	± 13.1 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^f At frequencies below 3 GHz, the validity of tissue parameters (c and o) can be relaxed to ± 10% if liquid compensation formula is applied to

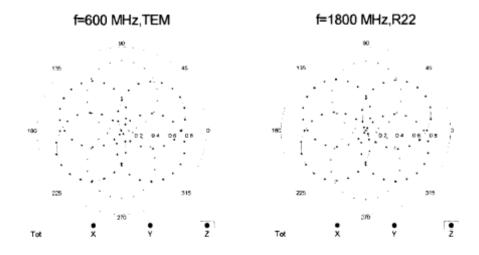

Certificate No: EX3-3592 Nov11

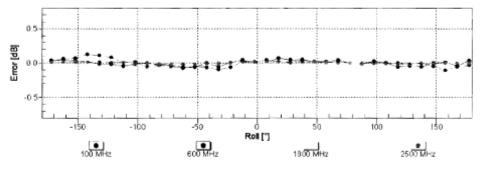
f At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Testing Service	Appendix D for the BlackBork RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW,		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW	2503A-RFF90LW
			L6ARFK120LW	2503A-RFK120LW

November 16, 2011

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: EX3-3592_Nov11 Page 7 of 11

Testin Service	7	Appendix D for the BlackBerry® Smartphone Model RFF91LW,			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW	

November 16, 2011

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3592_Nov11

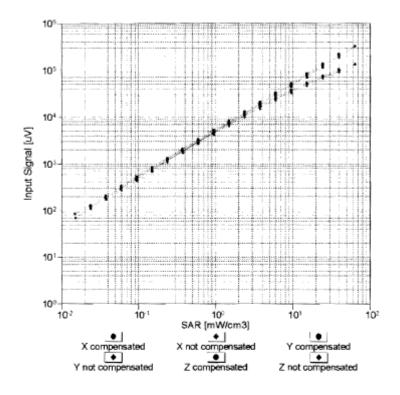
Page 8 of 11

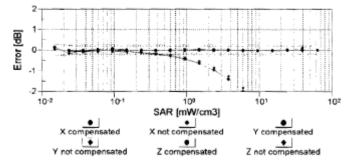
Appendix D for the BlackBerry® Smartphone Model RFF91LW,

RFK121LW SAR Report

27(78)

Author Data **Andrew Becker**


June 04 – October 29, 2012


Test Report No RTS-6012-1208-35B FCC ID: L6ARFF90LW L6ARFK120LW IC ID 2503A-RFF90LW 2503A-RFK120LW

EX3DV4-SN:3592

November 16, 2011

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3592_Nov11

Page 9 of 11

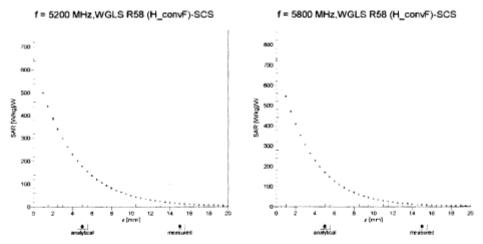
Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report

Page **28(78)**

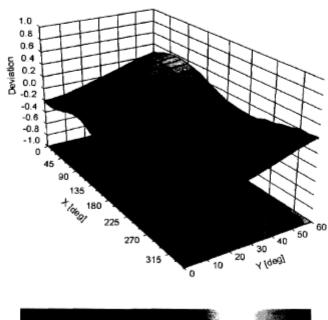
Author Data
Andrew Becker

Dates of Test

June 04 – October 29, 2012

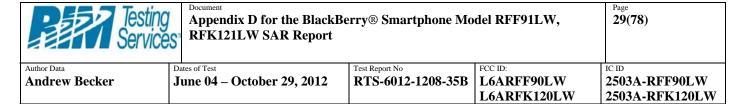

Test Report No **RTS-6012-1208-35B**

FCC ID: L6ARFF90LW L6ARFK120LW 2503A-RFF90LW 2503A-RFK120LW


EX3DV4-SN:3592

November 16, 2011

Conversion Factor Assessment



Deviation from Isotropy in Liquid Error (\(\phi, \(\phi \)), f = 900 MHz

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3592_Nov11

November 16, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3592_Nov11

Appendix D for the BlackBerry® Smartphone Model RFF91LW, **RFK121LW SAR Report**

30(78)

Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

FCC ID: L6ARFF90LW L6ARFK120LW

IC ID 2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Accreditation No.: SCS 108

Certificate No: D750V3-1021_Jan11

CALIBRATION CERTIFICATE

Object D750V3 - SN: 1021

QA CAL-05.vB Calibration procedure(s)

Calibration procedure for dipole validation kits

January 05, 2011 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Function

Calibrated by:

Approved by:

Issued: January 6, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1021_Jan11

Page 1 of 6

Testin Service	Appendix D for the BlackB RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW,		Page 31(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report

Page **32(78)**

Author Data
Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

FCC ID:

L6ARFF90LW

L6ARFK120LW

2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service sulsse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

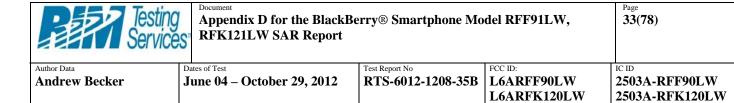
tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:


d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to
 the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low reflected
 power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No
 uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D750V3-1021_Jan11

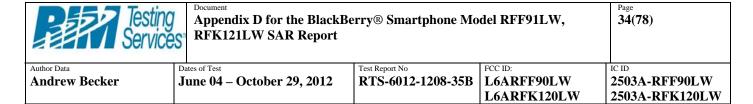
Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters


The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.3 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	****	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.12 mW / g
SAR normalized	normalized to 1W	8.48 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	8.36 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 mW / g
SAR normalized	normalized to 1W	5.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	5.45 mW /g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.1 Ω - 1.7 jΩ
Return Loss	- 29.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.033 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 01, 2010	

Certificate No: D750V3-1021_Jan11

Testin Service	Appendix D for the BlackB RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW,				
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID		
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW		

Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report

Page **36(78)**

Author Data
Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No

FCC ID:

2503A-RFF90LW 2503A-RFK120LW

DASY5 Validation Report for Head TSL

Date/Time: 05.01.2011 15:51:17

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1021

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium: HSL750

Medium parameters used: f = 750 MHz; $\sigma = 0.91 \text{ mho/m}$; $\varepsilon_r = 42.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.37, 6.37, 6.37); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

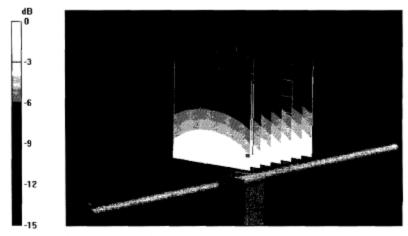
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.6 Build (401)

Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250mW; dip=15mm; dist=3.0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

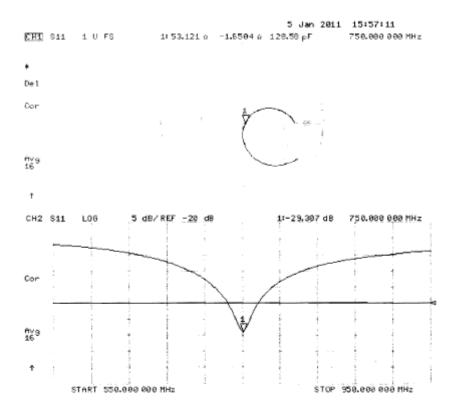

dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.5 V/m; Power Drift = -0.00432 dB

Peak SAR (extrapolated) = 3.24 W/kg

SAR(1 g) = 2.12 mW/g; SAR(10 g) = 1.38 mW/g

Maximum value of SAR (measured) = 2.48 mW/g



0 dB = 2.48 mW/g

Testing Service	Appendix D for the BlackBe RFK121LW SAR Report	erry® Smartphone Mo	del RFF91LW,	Page 37(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	erry® Smartphone Mo	del RFF91LW,	^{Page} 38(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Impedance Measurement Plot for Head TSL

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	erry® Smartphone Mo	del RFF91LW,	Page 39(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report

Page **40(78)**

Author Data
Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

FCC ID: L6ARFF90LW L6ARFK120LW 2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RTS (RIM Testing Services)

Accreditation No.: SCS 108

Certificate No: D835V2-446_Jan11

CALIBRATION CERTIFICATE

Object D835V2 - SN: 446

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits

Calibration date:

January 21, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

N

Function

Signature

Calibrated by: Dimo

Laboratory Technician

(XI) un

Approved by:

Technical Manage

Issued: January 21, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-446_Jan11

Page 1 of 6

41(78)

Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

FCC ID: L6ARFF90LW L6ARFK120LW IC ID 2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst s

Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Cortificate	No:	D835V2-446	Janiii

Appendix D for the BlackBerry $\$ Smartphone Model RFF91LW, RFK121LW SAR Report

Page **42(78)**

Author Data
Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No **RTS-6012-1208-35B**

FCC ID:

L6ARFF90LW

L6ARFK120LW

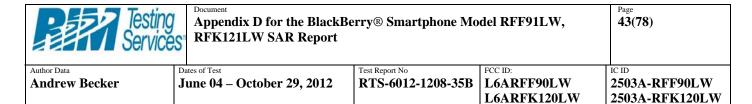
2503A-RFF90LW 2503A-RFK120LW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters


The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.3 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(21.8 ± 0.2) °C		****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 mW / g
SAR normalized	normalized to 1W	9.56 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.63 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.56 mW / g
SAR normalized	normalized to 1W	6.24 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.27 mW /g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6 Ω - 7.7 jΩ
Return Loss	- 22.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.386 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 24, 2001

Certificate No: D835V2-446_Jan11

44(78)

Author Data **Andrew Becker** Dates of Test

June 04 – October 29, 2012

Test Report No RTS-6012-1208-35B

L6ARFF90LW L6ARFK120LW

FCC ID:

IC ID 2503A-RFF90LW 2503A-RFK120LW

DASY5 Validation Report for Head TSL

Date/Time: 21.01.2011 10:18:05

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:446

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010

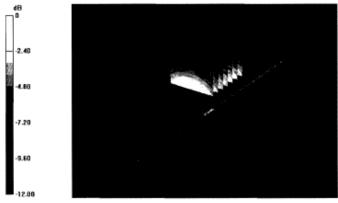
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.6.1 Build (408)

Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

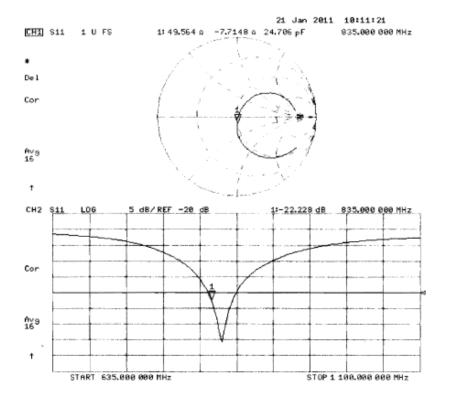

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.426 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 3.600 W/kg

SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.56 mW/gMaximum value of SAR (measured) = 2.790 mW/g



0 dB = 2.790 mW/g

Certificate No: D835V2-446_Jan11

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	erry® Smartphone Mo	del RFF91LW,	Page 45(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Impedance Measurement Plot for Head TSL

46(78)

Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

FCC ID: L6ARFF90LW L6ARFK120LW IC ID 2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

. 1 . Complication of Space of Sign Anne

The state of the s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

С Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

RTS (RIM Testing Services)

Accreditation No.: SCS 108

Certificate No: D1800V2-2d020_Jan11

CALIBRATION CERTIFICATE

D1800V2 - SN: 2d020 Object

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits

Calibration date: January 13, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Approved by:

Issued: January 13, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D1800V2-2d020_Jan11

Calibrated by:

Page 1 of 6

47(78)

Author Data Andrew Becker Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

FCC ID: L6ARFF90LW L6ARFK120LW IC ID 2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

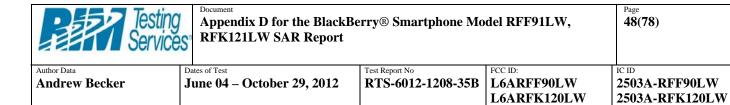
tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET). "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions". Supplement C (Edition 01-01) to Bulletin 65


Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1800V2-2d020 Jan11 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.38 mha/m ± 6 %
Head TSL temperature during test	(21.3 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.78 mW / g
SAR normalized	normalized to 1W	39.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.2 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.13 mW / g
SAR normalized	normalized to 1W	20.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.5 mW /g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.5 Ω - 7.3 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.216 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 07, 2001

50(78)

Author Data **Andrew Becker** Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B L6ARFF90LW L6ARFK120LW

FCC ID:

IC ID

2503A-RFF90LW 2503A-RFK120LW

DASY5 Validation Report for Head TSL

Date/Time: 13.01.2011 12:34:12

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d020

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.05, 5.05, 5.05); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

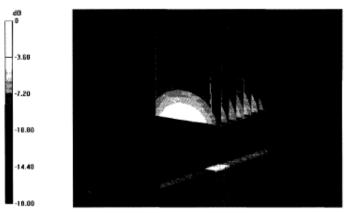
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.6.1 Build (408)

Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

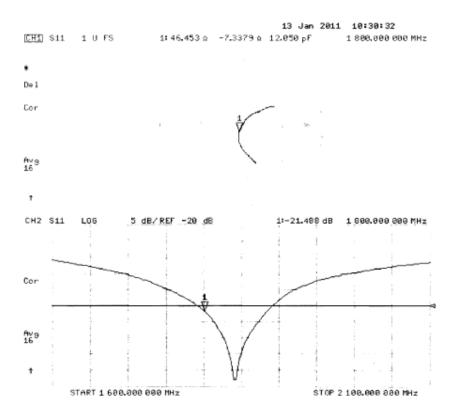
Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.654 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 17.902 W/kg

SAR(1 g) = 9.78 mW/g; SAR(10 g) = 5.13 mW/g


Maximum value of SAR (measured) = 12.051 mW/g

0 dB = 12.050 mW/g

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	erry® Smartphone Mo	del RFF91LW,	Page 51(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Impedance Measurement Plot for Head TSL

Testing Service	Appendix D for the BlackB RFK121LW SAR Report	erry® Smartphone Mo	del RFF91LW,	Page 52(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report

Page **53(78)**

Author Data
Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

FCC ID: L6ARFF90LW L6ARFK120LW 2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RTS (RIM Testing Services)

Accreditation No.: SCS 108

Certificate No: D1900V2-545_Jan11

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 545

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits

Calibration date: January 13, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
	·		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	in house check: Oct-11

Name

Function

Signatur

Calibrated by:

LAMCE INS

Laboratory Technician

2 Kier

Approved by:

Katja Pokovic

Technical Manage

for his

Issued: January 14, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-545_Jan11

Page 1 of 6

Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report

Page **54(78)**

Author Data
Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

FCC ID:

L6ARFF90LW

L6ARFK120LW

2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-545 Jan11 Page 2 of 6

Appendix D for the BlackBerry $\$ Smartphone Model RFF91LW, RFK121LW SAR Report

Page **55(78)**

Author Data
Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No **RTS-6012-1208-35B**

FCC ID: L6ARFF90LW L6ARFK120LW 2503A-RFF90LW 2503A-RFK120LW

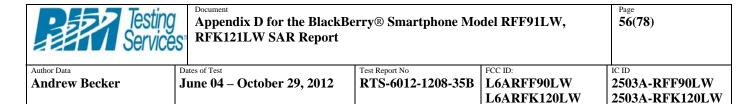
Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	Version DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.


	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	1.43 mho/m ± 6 %
Head TSL temperature during test	(21.2 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR normalized	normalized to 1W	40.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.0 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.26 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.8 mW /g ± 16.5 % (k=2)

Certificate No: D1900V2-545_Jan11

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8 Ω + 1.8 jΩ
Return Loss	- 34.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 15, 2001

Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report

Page **57(78)**

Author Data
Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No

FCC ID:

2503A-RFF90LW 2503A-RFK120LW

DASY5 Validation Report for Head TSL

Date/Time: 13.01.2011 14:52:49

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:545

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.43 \text{ mho/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.6.1 Build (408)

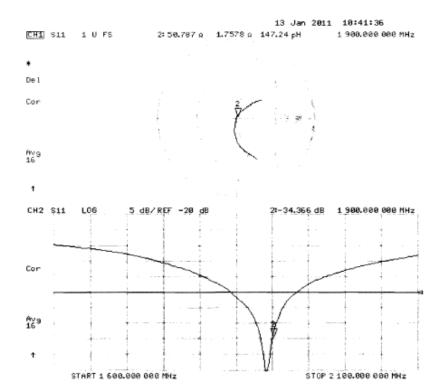
Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.053 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 18.648 W/kg


SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.26 mW/gMaximum value of SAR (measured) = 12.743 mW/g

0 dB = 12.740 mW/g

Testing Service	Appendix D for the BlackBork RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW,		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW	2503A-RFF90LW
			L6ARFK120LW	2503A-RFK120LW

Impedance Measurement Plot for Head TSL

Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report

Page **59(78)**

Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No **RTS-6012-1208-35B**

FCC ID: L6ARFF90LW L6ARFK120LW 2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service sulsse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RTS (RIM Testing Services)

Accreditation No.: SCS 108

Certificate No: D2450V2-747_Nov11

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 747

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: November 09, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Jeton Kastrati

Function Laboratory Technician

Approved by:

Technical Manage

Issued: November 9, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-747_Nov11

Page 1 of 6

Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report

Page **60(78)**

Author Data
Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

FCC ID:

L6ARFF90LW

L6ARFK120LW

2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-747_Nov11

Page 2 of 6

Testin Service	Appendix D for the BlackB RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW,		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Appendix D for the BlackBerry $\$ Smartphone Model RFF91LW, RFK121LW SAR Report

Page **62(78)**

Author Data
Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No **RTS-6012-1208-35B**

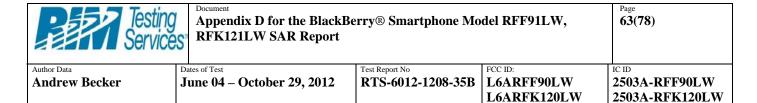
FCC ID: L6ARFF90LW L6ARFK120LW 2503A-RFF90LW 2503A-RFK120LW

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters


The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	54.1 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.39 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.3 mW /g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5 Ω + 1.3 jΩ
Return Loss	- 31.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.161 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 2003

Certificate No: D2450V2-747_Nov11

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report		Page 64(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Testing Service		Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report		Page 65 (78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

DASY5 Validation Report for Head TSL

Date: 09.11.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 747

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ mho/m}$; $\varepsilon_r = 37.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

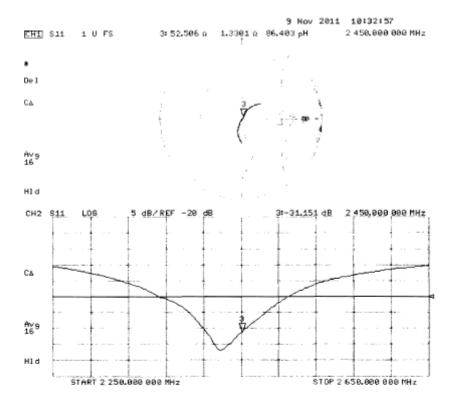
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.1 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 28.853 W/kg

SAR(1 g) = 13.8 mW/g; SAR(10 g) = 6.39 mW/gMaximum value of SAR (measured) = 17.782 mW/g



0 dB = 17.780 mW/g

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report		Page 66(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW,		Page 67(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Impedance Measurement Plot for Head TSL

Testing Service	Appendix D for the BlackB RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report		Page 68(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

69(78)

Author Data Andrew Becker Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

FCC ID: L6ARFF90LW L6ARFK120LW IC ID 2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

and the second s

RTS (RIM Testing Services)

Certificate No: D5GHzV2-1033 Nov11

CALIBRATION CERTIFICATE

D5GHzV2 - SN: 1033 Object

QA CAL-22.v1 Calibration procedure(s)

> Calibration procedure for dipole validation kits between 3-6 GHz - I de la companya de A STATE OF THE STA

November 15, 2011 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe EX3DV4	SN: 3503	04-Mar-11 (No. EX3-3503_Mar11)	Mar-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Name Function Signature Dimce Iliev Laboratory Technician Calibrated by:

Jechnical Manager Katja Pokovic Approved by:

Issued: November 16, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1033_Nov11

Page 1 of 8

Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report

Page **70(78)**

Author Data
Andrew Becker

Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

FCC ID:

L6ARFF90LW

L6ARFK120LW

2503A-RFF90LW 2503A-RFK120LW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Service suisse d'étaionnage Servizio svizzero di taratura S Swiss Calibration Service

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1033_Nov11

Appendix D for the BlackBerry® Smartphone Model RFF91LW,

RFK121LW SAR Report

71(78)

Author Data **Andrew Becker** Dates of Test

June 04 – October 29, 2012

Test Report No RTS-6012-1208-35B

FCC ID: L6ARFF90LW L6ARFK120LW IC ID 2503A-RFF90LW 2503A-RFK120LW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
	5200 MHz ± 1 MHz	
Frequency	5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.46 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.0 mW /g ± 16.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.75 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.82 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	87.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.50 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.7 mW / g ± 16.5 % (k=2)

Certificate No: D5GHzV2-1033_Nov11

72(78)

Author Data **Andrew Becker** Dates of Test

June 04 – October 29, 2012

Test Report No

RTS-6012-1208-35B

FCC ID: L6ARFF90LW L6ARFK120LW IC ID 2503A-RFF90LW 2503A-RFK120LW

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.7 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.03 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	79.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.5 mW / g ± 16.5 % (k=2)

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	erry® Smartphone Mo	del RFF91LW,	Page 73(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.1 Ω - 8.7 jΩ
Return Loss	- 21.2 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	52.3 Ω - 2.7 jΩ
Return Loss	- 29.2 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	56.7 Ω - 4.3 jΩ
Return Loss	- 22.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 09, 2004

Certificate No: D5GHzV2-1033_Nov11

Testing Service	Appendix D for the BlackBo RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW,		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B		2503A-RFF90LW 2503A-RFK120LW

DASY5 Validation Report for Head TSL

Date: 15.11.201

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1033

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.46 \text{ mho/m}$; $\varepsilon_r = 34.6$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5500 MHz; $\sigma = 4.75 \text{ mho/m}$; $\varepsilon_r = 34.2$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5800 MHz;

 $\sigma = 5.03 \text{ mho/m}; \epsilon_r = 33.7; \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 04.03.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan.

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.595 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 30.134 W/kg

SAR(1 g) = 8.16 mW/g; SAR(10 g) = 2.33 mW/gMaximum value of SAR (measured) = 18.725 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.819 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 35.056 W/kg

SAR(1 g) = 8.82 mW/g; SAR(10 g) = 2.5 mW/g

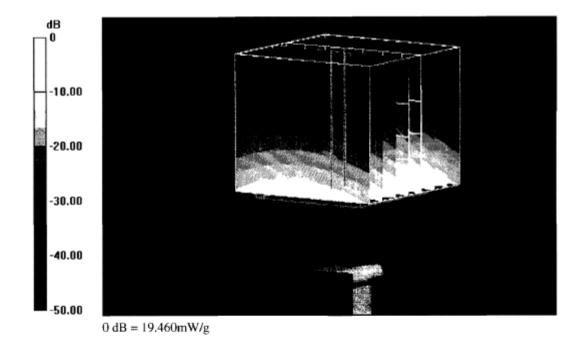
Maximum value of SAR (measured) = 21.019 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

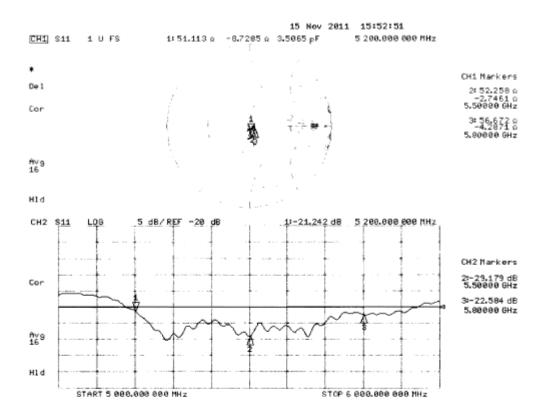
Reference Value = 62.220 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 33.743 W/kg


SAR(1 g) = 8.03 mW/g; SAR(10 g) = 2.28 mW/g

Maximum value of SAR (measured) = 19.463 mW/g

Certificate No: D5GHzV2-1033_Nov11 Page 6 of 8


Testin Service	Appendix D for the BlackB RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW,		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Testing Service	Appendix D for the BlackBerry® Smartphone Model RFF91LW, RFK121LW SAR Report			77(78)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW	2503A-RFF90LW 2503A-RFK120LW

Testing Service	Appendix D for the BlackBe RFK121LW SAR Report	Appendix D for the BlackBerry® Smartphone Model RFF91LW,		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	June 04 – October 29, 2012	RTS-6012-1208-35B	L6ARFF90LW L6ARFK120LW	2503A-RFF90LW 2503A-RFK120LW

Impedance Measurement Plot for Head TSL

