

SAR Compliance Test Report for the BlackBerry® Smartphone Model RFG81UW

1(50)

Author Data
Andrew Becker

Dates of Test

May 29 – August 16, 2012

Test Report No **RTS-6011-1208-28**

FCC ID:

L6ARFG80UW

1C ID **2503A-RFG80UW**

SAR Compliance Test Report

Testing Lab: RIM Testing Services **Applicant:** Research In Motion Limited

440 Phillip Street
Waterloo, Ontario
Canada N2L 5R9
Canada N2L 3W8
Phone: 510,888,7465
Canada N2L 588

Phone: 519-888-7465 Phone: 519-888-7465
Fax: 519-746-0189 Fax: 519-888-6906
Web site: www.rim.com

Statement ofRIM Testing Services declares under its sole responsibility that the product to which this declaration relates, is in conformity with the appropriate RF expression of the conformity with the appropriate RF expression.

to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and

recommended practices.

Device Category: This BlackBerry® Smartphone is a portable device, designed to be used in direct

contact with the user's head, hand and to be carried in approved accessories when

carried on the user's body.

RF exposure environment:This device has been shown to be in compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits

specified in OET Bulletin 65 Supplement C (Edition 01-01), FCC 96-326, IEEE Std. C95.1-2005, Health Canada's Safety Code 6, as reproduced in RSS-102 issue 4-2010 and has been tested in accordance with the measurement procedures specified in FCC OET Procedures, OET Bulletin 65 Supplement C (Edition 01-01), ANSI/IEEE Std. C95.3-2002, IEEE 1528-2003, IEC 62209-1-2005, IEC 62209 - 2-2010 and Health

Canada's Safety Code 6.

Andrew Becker SAR & HAC Compliance Specialist (Author of the Test Report) Daoud Attayi Compliance Manager (SAR & HAC) (Verification and responsible of the Test Report)

Masud S. Attayi Manager, Regulatory Compliance (Approval for the Test Report)

RTS is accredited according to EN ISO/IEC 17025 by:

592

SAR Compliance Test Report for the BlackBerry® Smartphone Model RFG81UW

2(50)

Author Data **Andrew Becker** Dates of Test May 29 – August 16, 2012 Test Report No

FCC ID: RTS-6011-1208-28 | L6ARFG80UW IC ID 2503A-RFG80UW

CONTENTS

1.0		OPERATING CONFIGURATIONS AND TEST CONDITIONS	
	1.1	PICTURE OF DEVICE	
	1.2	ANTENNA DESCRIPTION	
	1.3	DEVICE DESCRIPTION	
	1.4	BODY WORN ACCESSORIES (HOLSTERS)	
	1.5	HEADSET	
	1.6	BATTERY	
	1.7	PROCEDURE USED TO ESTABLISH TEST SIGNAL	
	1.8	HIGHLIGHTS OF THE FCC OET SAR MEASUREMENT REQUIREMENTS	
		1.8.2 SAR MEASUREMENT PROCEDURES FOR 802.11 A/B/G/N TRANSMITTER	
		1.8.3 SAR MEASUREMENT PROCEDURES FOR 3G DEVICES	
		1.8.4 SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER	10
		CAPABILITIES	12
	1.9	HIGHLIGHTS OF THE FCC OET SAR EVALUATION CONSIDERATIONS FOR HANDSETS WITH	
		MULTIPLE TRANSMITTERS/ ANTENNAS & GSM/GPRS/EDGE PROCEDURE	13
		1.9.1 SIMULTANEOUS TRANSMISSION ANALYSIS	
2.0	D	ESCRIPTION OF THE TEST EQUIPMENT	20
	2.1	SAR MEASUREMENT SYSTEM	20
		2.1.1 EQUIPMENT LIST	
	2.2	DESCRIPTION OF THE TEST SETUP	22
		2.2.1 DEVICE AND BASE STATION SIMULATOR SETUP	
		2.2.2 DASY SETUP	22
3.0		ELECTRIC FIELD PROBE CALIBRATION	22
	3.1	PROBE SPECIFICATIONS	22
	3.2	PROBE CALIBRATION AND MEASUREMENT UNCERTAINTY	23
4.0		SAR MEASUREMENT SYSTEM VERIFICATION	24
	4.1	SYSTEM ACCURACY VERIFICATION FOR HEAD ADJACENT USE	
5.0		PHANTOM DESCRIPTION	
6.0		TISSUE DIELECTRIC PROPERTIES	
	6.1	COMPOSITION OF TISSUE SIMULANT	
		6.1.1 EQUIPMENT	
	6.2	ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID	
	0.2	6.2.2 TEST CONFIGURATION	
		6.2.3 PROCEDURE	
7.0		SAR SAFETY LIMITS	31
8.0		DEVICE POSITIONING	
0.0	8.1	DEVICE HOLDER FOR SAM TWIN PHANTOM	
	8.2	DESCRIPTION OF THE TEST POSITIONING	
		8.2.1 TEST POSITIONS OF DEVICE RELATIVE TO HEAD	33
		8.2.1.1 DEFINITION OF THE "CHEEK" POSITION	34
		8.2.1.2 DEFINITION OF THE "TILTED" POSITION	35
		8.2.2 BODY-WORN CONFIGURATION	
		8.2.3 LIMB/HAND CONFIGURATION	
9.0	0.4	HIGH LEVEL EVALUATION	
	-	MAXIMUM SEARCHEXTRAPOLATION	
	9.2 9.3	BOUNDARY CORRECTION	
	9.4	PEAK SEARCH FOR 1G AND 10G CUBE AVERAGED SAR	
10.0	-	MEASUREMENT UNCERTAINTY	
11.0		TEST RESULTS	
11.0	ປ 11.1		
	11.1		აყ
	2	ACCESSORIES	44
12.0	0	REFERENCES	

SAR Compliance Test Report for the BlackBerry \otimes Smartphone Model RFG81UW

Page **3(50)**

3(50)

Author Data
Andrew Becker

Dates of Test

May 29 – August 16, 2012

Test Report No

RTS-6011-1208-28 | L6ARFG80UW

FCC ID:

1C ID 2503A-RFG80UW

APPENDIX A: SAR DISTRIBUTION COMPARISON FOR ACCURACY VERIFICATION

APPENDIX B:: SAR DISTRIBUTION PLOTS - HEAD CONFIGURATION

APPENDIX C1: SAR DISTRIBUTION PLOTS - BODY-WORN CONFIGURATION

APPENDIX C2: SAR DISTRIBUTION PLOTS - MOBILE HOT SPOT

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

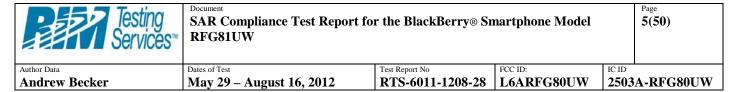
APPENDIX E: PHOTOGRAPHS

1.0 OPERATING CONFIGURATIONS AND TEST CONDITIONS

1.1 Picture of Device

Please refer to Appendix E.

Figure 1.1.1 BlackBerry Smartphone


1.2 Antenna description

Type	Internal fixed antenna		
Location	Back bottom centre (main licensed		
Location	transmitters)		
Configuration	Internal fixed antenna		

Table 1.2.1. Antenna description

1.3 Device description

Device Model	RFG81UW							
FCC ID	L6ARFG80UW							
	2A099B03 (Rev 1),	2A4A5839 (Rev 2	2)					
PIN	2A099C21 (Rev 1),	2A4A554A (Rev 2	2)					
Hardware Rev	Rev 1, Rev 2	,	•					
Software Version	10.0.5.224, 10.0.6.2	10.0.5.224, 10.0.6.264, 10.0.6.420, 127.0.1.1917						
Prototype or Production Unit	Production							
	1-slot 2-slots HSPA+/ HSPA+/ GSM 850 EDGE/GPRS WCDMA / UMTS WCDMA / UMTS							
Mode(s) of Operation	GSM 1900	850/1900	FDD V (850)	FDD II (1900)				
Nominal Maximum conducted RF	33.0	30.0		i i				
Output Power (dBm)	30.0	27.0	24.5	24.0				
Tolerance in Power Setting on centre channel (dB)	± 0.5	± 0.5	± 0.5					
Duty Cycle	1:8 2:8 1:1 1:1							
Transmitting Frequency Range (MHz)	824.2 - 848.8 1850.2 - 1909.8	824.6 – 846.6	1852.4 – 1907.6					
Mode(s) of Operation	802.11a/n (low band)	1850.2 – 1909.8 802.11a/n (middle band)	802.11a/n (upper band I)	802.11a/n (upper band II)				
Nominal Maximum conducted RF Output Power (dBm)	13.5	12.5	12.5	12.5				
Tolerance in Power Setting on centre channel (dB)	± 0.5	± 0.5	± 0.5	± 0.5				
Duty Cycle	1:1	1:1	1:1	1:1				
Transmitting Frequency Range (MHz)	5180-5240	5260-5320	5500-5700	5749-5825				
Mode(s) of Operation	802.11b	802.11g	802.11n	Bluetooth				
Nominal Maximum conducted RF Output Power (dBm)	15.0	14.5	14.5	9.68				
Tolerance in Power Setting on centre channel (dB)	g on ± 0.5 ± 0.5 ± 0.5 N/A							
Duty Cycle	1:1	1:1	1:1	N/A				
Transmitting Frequency Range	2412-2462	2412-2462	2412-2462	2402-2483				

(MHz)			
Mode(s) of Operation	NFC		
Nominal Maximum conducted RF Output Power (dBm)	N/A		
Tolerance in Power Setting on centre channel (dB)	N/A		
Duty Cycle	N/A		
Transmitting Frequency Range (MHz)	13.56		

Table 1.3.1. Test device description

Note 1: The RFG81UW device also supports GSM/GPRS/EDGE 900/1800 MHz, and UMTS/HSPA⁺ Bands I, and VIII that are operational outside Europe only, therefore no data is presented in this report for those bands.

Note 2: SAR measurements on NFC haven't been conducted, since it is very low power and frequency magnetic field transceiver. SAR probes measure higher frequency/power electric field.

Testing Services™	SAR Compliance Test Report for RFG81UW	R Compliance Test Report for the BlackBerry® Smartphone Model					
Author Data	Dates of Test						
Andrew Becker	May 29 – August 16, 2012	RTS-6011-1208-28	L6ARFG80UW	2503A-RFG80UW			

1.4 Body worn accessories (holsters)

The device has been tested with the first holster listed below. The holsters have been designed with the intended device orientation being with the LCD facing the belt clip only. Proper positioning is vital for protection of the LCD display, and to help maximize the battery life of the device. The device can also be placed in the holster with the backside facing the belt clip. Body SAR measurements were carried out with the worst-case configuration front LCD side and backside towards the belt clip.

Number	Holster Type	Part Number	Separation distance (mm)
1	Vertical Holster	HDW-49270-001	19
2	Vertical Holster, Black Leather	HDW-49272-001	19

Table 1.4.1. Body worn holster

Note: Both holsters have identical design, except for leather material

Please refer to Appendix E. **Figure 1.4.1. Body-worn holster**

1.5 Headset

The device was tested with and without the following headset model numbers.

- 1) HDW-14322-003
- 2) HDW-15766-005
- 3) HDW-44306-001

1.6 Battery

The device was tested with the following Lithium Ion Battery pack.

1) BAT-47277-001

1.7 Procedure used to establish test signal

The device was put into test mode for SAR measurements by placing a voice call from a Rohde & Schwarz CMU 200 Communications Test Instrument. The power control level was set to command the device to transmit at full power at the specified frequency. Other parameters include: Channel type = full rate, discontinuous transmission off, frequency hopping off. Software Tool was used to set wiFi to transmit at maximum power and duty cycle for each band, channel, and modulation.

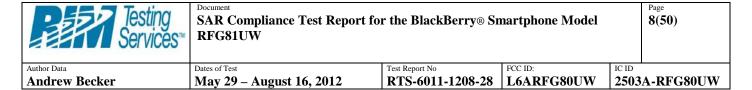
Testing Services™	SAR Compliance Test Report for RFG81UW	r the BlackBerry® Sn	nartphone Model		Page 7(50)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	May 29 – August 16, 2012	RTS-6011-1208-28	L6ARFG80UW	2503	A-RFG80UW

1.8 Highlights of the FCC OET SAR Measurement Requirements

1.8.1 SAR Measurement Procedures for 802.11 a/b/g/n Transmitter

- Maintained dielectric parameter uncertainty to \pm 5.0% of the target values, (although it is very challenging to control/maintain both permittivity and conductivity for 5-6 GHz for all test channels within \pm 5.0% of the target values, some conductivity values were measured slightly higher which resulted in more conservative SAR values.)
- Liquid depth from SAM ERP or flat phantom was kept at 15 cm.
- Probe Requirement: Used SPEAG probe model ET3DV6/ES3DV3 for 2.45 GHz and EX3DV4 for 5-6 GHz SAR testing specs are outlined below:

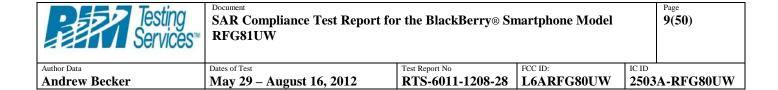
ET3DV6/ES3DV3						
Probe tip to sensor center	2.7 mm / 2.0 mm					
Probe tip diameter is	6.8 mm / 4.0 mm					
Probe calibration uncertainty	< 15 % for f = 2.45 GHz					
Probe calibration range	± 100 MHz					
EX3D	V4					
Probe tip to sensor center	1.0 mm					
Probe tip diameter is	2.5 mm					
Probe calibration uncertainty	< 15 % for f = 2.45 to $< 6.0 GHz$					
Probe calibration range	± 100 MHz					


Table 1.8.1. Probe specification requirements

- Area scan resolution was maintained at 10mm (5-6 GHz).
- \bullet System accuracy validation was conducted within \pm 100 MHz of device mid-band frequency and results were within \pm 10 % of the manufacturers target value for each band.
- Zoom Scan: The following settings were used for the validation and measurement.

ET3DV6/ES3DV3					
Closet Measurement Point to Phantom	4.0 mm				
Zoom Scan (x,y) Resolution	7.5 mm				
Zoom Scan (z) Resolution	5.0 mm				
Zoom Scan Volume	Minimum 30 x 30 x 30 mm ¹				
EX3DV	/4				
Closet Measurement Point to Phantom	2.0 mm				
Zoom Scan (x,y) Resolution	4.0 mm or 3 mm				
Zoom Scan (z) Resolution	2.5 mm or 2 mm				
Zoom Scan Volume	Minimum 24 x 24 x 20 mm ¹				

Table 1.8.2. Zoom Scan requirement


Note 1: "Auto-extend zoom scan when maxima on boundary" is enabled, which can result in the zoom scan dimensions varying between 30x30x30 to 60x60x30 mm and 24x24x20 to 48x40x20 mm.

- Frequency Channel Configuration: 802.11 b/g modes are tested on "default test channels" 1, 6 and 11.
- 802.11a is tested for UNII operations on the highest output power channel of each sub band (low, mid, upper band I, and upper band II). If the highest output power channel has a SAR level is not 3dB lower than the limit then the low, mid, and high channels of each sub band must also be tested.
- For each frequency band, testing at higher rates and higher modulations is not required when the maximum average output power for each of these configurations is less than ½ dB higher than those measured at the lowest data rate.
- SAR is not required for 802.11g/n channels when the maximum average output power is less than ¼ dB higher than that measured on the corresponding 802.11b channels.
- SAR test was conducted on each "default test channel" and each band with the worst case modulation and highest duty cycle, if the SAR level is within 3 dB of limit.
- Conducted power measurements:

802.11b @ 1Mbps			802.11g @ 6Mbps			802.11n @ 6.5 Mbps				
Chan	C	ond. Power (dBm)	Chan	Cond. F (dB1			Char	ı	Cond. Power (dBm)	
1		15.0	1		14.4		1		14.2	
6		15.2	6		14.5	5	6		14.5	
11		15.1	11		14.5	i	11		14.5	
			802.11g						802.11b	
Data			Channel 1	1	Dat	a			Channel 11	
Rate		Mod.	Cond. Pow	er	Rat	te	Mod.	(Cond. Power	
(Mbps))		(dBm)		(Mb)	ps)			(dBm)	
6		BPSK	14.5		1		BPSK		15.2	
9		BPSK	14.6		2		DQPSK		15.1	
12		QPSK	14.6		5.5	5	CCK		14.9	
18		QPSK	14.4		11		CCK		14.6	
24		16-QAM	14.0		24		CCK		15.0	
36		16-QAM	13.7							
48		64-QAM	13.5							
54		64-QAM	13.4							
							80)2.1	1 n	
Doto I	Date	e (Mbps)	Mod.		Channel 11					
Data 1	Xau	(Miops)			Cond. Power (dBm)					
	6.:	5	MCS0			14.5				
	13	3		MCS1		14.2			2	
	19.	.5	MCS	S2				14.	1	
	26			S3				14.	[
39				MCS4		13.9)	
52			MCS5			13.5				
	58.	.5	MCS	MCS6			13.3			
	65	5	MCS7			13.5				

Table 1.8.3. 802.11 b/g/n modulation type/data rate vs. conducted power with Mobile Hot Spot mode enabled and disabled.

	a (low band) 6Mbps	802.1	802.11a (mid band) 6Mbps			802.11a (upper band I) 6Mbps		
Chan Cond. Powe (dBm)		Chan	Cond. Power (dBm)		Chan	Cond. Power (dBm)		
36	13.8	52	12.6		104	12.7		
40	13.6	56	12.5		116	12.7		
44	12.3	60	12.5		124	12.7		
48	12.3	64	12.6		140	12.6		
				802	.11a (upper	band II) 6Mbps		
					Chan	Cond. Power (dBm)		
				149		12.8		
				153		12.6		
				157		12.6		
				161		12.5		
				165		12.7		
		802.11a	802.11a	802.1	l1a	802.11a		
		(lower	(middle	(upp	er band I)	(upper band II)		
		band)	band)					
		Channel	Channel	Channel 104		Channel 149		
Data		36	52	Cond. Power (dBm)				
Rate	Mod.	Cond.	Cond.			Cond. Power		
(Mbits)	1	Power	Power			(dBm)		
		(dBm)	(dBm)					
6	BPSK	13.8	12.6	12.7		12.8		
9	BPSK	13.6	12.5	12.5 12.4 12.4 12.4		12.5		
12	QPSK	13.5	12.4					
18	QPSK	13.3	12.3					
24	16-QAM	13.1	12.0	12.2				
36	16-QAM	12.9	11.8	11.9		11.9		
48	64-QAM	12.7	11.5	11.6		11.7		
54	64-QAM	12.6	11.4	11.5		11.7		
		1	802.11 n					
Data R	ate (Mbps)	Mod.	Channel 3 Cond. Pov		Bm)			
	6.5	MCS0	13.6	(41)			
	13	MCS1	13.4					
	19.5	MCS2	13.3					
		1.1000						
		MCS3	13 3					
	26	MCS3 MCS4	13.3					
	26 39	MCS4	13.0					
	26							

Table 1.8.4. 802.11 a/n modulation type/data rate vs. conducted power with Mobile Hot Spot mode enabled and disabled.

Testing Services™	SAR Compliance Test Report for RFG81UW	r the BlackBerry® Sn	nartphone Model		Page 10(50)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	May 29 – August 16, 2012 RTS-6011-1208-28 L6ARFG80UW 2503A-RFG80U				

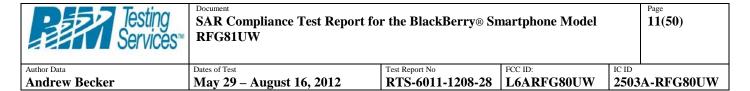
1.8.2 SAR Measurement Requirements for Bluetooth

Channel	Freq (MHz)	Mode	Conducted Transmit Power (dBm)
0	2402	DH5	7.17
39	2441	DH5	8.33
78	2480	DH5	8.33

Table 1.8.5. Bluetooth peak conducted power measurements with Mobile Hot Spot mode enabled and disabled.

1.8.3 SAR Measurement Procedures for 3G Devices

WCDMA Handsets


Output Power Verification

- Maximum output power is verified on the High, Middle and Low channels using 12.2 kbps RMC, 12.2 kbps AMR with a 3.4 kbps SRB (signal radio bearer) with TPC (transmit power control) set to all "1's" for WCDMA/HSPA or applying the required inner loop.
- For Release 6 HSPA/ Release 7 HSPA⁺, output power is measured according to requirements for HS-DPCCH Sub-test 1-4/1-5

Head SAR Measurements

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than ¼ dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signalling radio bearer) using the exposure configuration that results in the highest SAR for that RF channel in 12.2 RMC.

Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits configured to all "1s". SAR for other spreading codes and multiple DPDCH_n, when supported by the DUT, are not required when the maximum average outputs of each RF channel, for each spreading code and DPDCH_n configuration, are less than $\frac{1}{4}$ dB higher than those measured in 12.2 RMC. Otherwise, SAR is measured on the maximum output channel with an applicable RMC configuration for the corresponding spreading code or DPDCH_n using the exposure configuration that results in the highest SAR with 12.2 RMC. **Handsets with HSPA**

Body SAR is not required for handsets with HSPA capabilities, when the maximum average output of each RF channel with HSPA active is less than ¼ dB higher than that measured in 12.2 kbps RMC without HSPA Otherwise, SAR for HSPA is measured using FRC (fixed reference channel) in the body exposure configuration that results in the highest SAR for that RF channel in 12.2kbps RMC.

	Band FDD V (850)))]	FDD II (19	00)	
	Channel	4132	4182	4233	9262	9400	9538
	Freq (MHz)	826.4	836.4	846.6	1852.4	1880.0	1907.6
Mode	Subtest			Max burst averaged conducted conducted power (dBm) Max burst averaged conducted power (dBm)			
Rel99	12.2 kbps RMC	24.3	24.5	24.4	24.0	24.0	24.0
Rel99	12.2 kbps, Voice, AMR, SRB 3.4 kbps	24.3	24.5	24.5	23.8	23.8	23.9
Rel7 HSDPA ⁺	1	23.5	23.3	23.1	22.9	23.1	23.1
Rel7 HSDPA ⁺	2	22.6	22.8	23.0	22.5	22.5	22.8
Rel7 HSDPA ⁺	3	23.0	23.2	23.2	22.6	22.4	22.3
Rel7 HSDPA ⁺	4	21.8	21.9	22.1	21.3	21.5	21.4
Rel6 HSUPA	1	22.9	23.0	22.9	22.5	22.5	22.6
Rel6 HSUPA	2	23.5	23.6	23.5	22.8	22.8	23.0
Rel6 HSUPA	3	22.5	22.7	22.5	21.9	21.9	21.9
Rel6 HSUPA	4	21.5	21.6	21.6	20.8	20.9	20.9
Rel6 HSUPA	5	22.6	22.7	22.6	21.9	21.9	22.0

Table 1.8.6. WCDMA (Rel99) / HSPA conducted power measurements with Mobile Hot Spot mode enabled and disabled.

Testing Services™	SAR Compliance Test Report for RFG81UW	Page 12(50)			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	May 29 – August 16, 2012	RTS-6011-1208-28	L6ARFG80UW	2503	A-RFG80UW

1.8.4 SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

Standalone personal wireless routers and handsets with hotspot mode capabilities must address hand-held and other near-body exposure conditions to show SAR compliance. The following procedures are applicable when the overall device length and width are ≥ 9 cm x 5 cm respectively. A test separation of 10 mm is required. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25 mm from that surface or edge, for the data modes, wireless technologies and frequency bands supporting hotspot mode. The standalone SAR results in each device test orientation must be analyzed for the applicable hotspot mode simultaneous transmission configurations to determine SAR test exclusion and volume scan requirements

Testing Services™	SAR Compliance Test Report fo RFG81UW	SAR Compliance Test Report for the BlackBerry® Smartphone Model				
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID		
Andrew Becker	May 29 – August 16, 2012	RTS-6011-1208-28	L6ARFG80UW	2503	A-RFG80UW	

1.9 Highlights of the FCC OET SAR Evaluation Considerations for Handsets with Multiple Transmitters/ Antennas & GSM/GPRS/EDGE Procedure

Unlicensed Transmitters

When there is simultaneous transmission –

Stand-alone SAR not required when

- output $\leq 2 \cdot PRef$ and antenna is > 5.0 cm from other antennas
- output \leq PRef and antenna is > 2.5 cm from other antennas
- the other antenna(s), which are < 2.5 cm away, has an output ≤ PRef OR max 1g SAR < 1.2 W/kg

Otherwise stand-alone SAR is required

- test SAR on highest output channel for each wireless mode and exposure condition
- \bullet if SAR for highest output channel is > 50% of SAR limit, evaluate all channels according to normal procedure

Simultaneous Transmission SAR not required:

Unlicensed only

- when stand-alone 1-g SAR is not required and antenna is > 5 cm from other antennas
- when the other antenna(s), which are < 2.5 cm away, has an output \le PRef OR max 1g SAR < 1.2 W/kg

Licensed & Unlicensed

- \bullet when the sum of the 1-g SAR is < 1.6 W/kg for each pair of simultaneous transmitting antennas. or
- when the ratio of SAR to peak SAR separation distance of simultaneous transmitting antenna pair is < 0.3

Simultaneous Transmission SAR required:

Licensed & Unlicensed

• antenna pairs with SAR to antenna separation ratio ≥ 0.3 ; test is only required for the configuration that results in the highest SAR in standalone configuration for each wireless mode and exposure condition.

	2.45	5.15 – 5.35	5.47 – 5.85	GHz	
$\mathbf{P}_{\mathbf{Ref}}$	12	6	5	mW	
P_{Ref}	10.8	7.8	7.0	dBm	
2·P _{Ref} 13.8 10.8 10.0 dBm					
Device output power should be rounded to the pearest mW to compare with values in this table.					

Table 1.9.1. Output Power Thresholds for Unlicensed Transmitters

Testing Services™	SAR Compliance Test Report for RFG81UW	Page 14(50)			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	May 29 – August 16, 2012	RTS-6011-1208-28	L6ARFG80UW	2503	A-RFG80UW

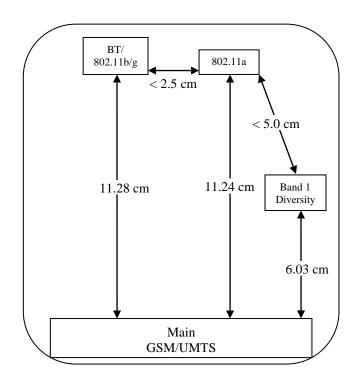


Figure 1.9.1. Back view of device showing closest distance between antenna pairs

1.9.1 Simultaneous Transmission Analysis

Simultaneous Transmission Combination	Head	Body- Worn Accessory	Mobile Hotspot
WCDMA/GSM voice + WiFi 5.0 GHz	Yes	Yes	No
WCDMA/GSM voice + WiFi 2.4 GHz	Yes	Yes	Yes
WCDMA/GSM voice + BT	Yes	Yes	Yes
HSPA/EDGE/GPRS data + WiFi 5.0 GHz	Yes	Yes	No
HSPA/EDGE/GPRS data + WiFi 2.4 GHz	Yes	Yes	Yes
HSPA/EDGE/GPRS data + BT	Yes	Yes	Yes

Table 1.9.2. Simultaneous Transmission Scenarios

- Note 1: WCDMA/HSPA/GSM share the same transmitting antenna and cannot transmit simultaneously.
- Note 2: WLAN 2.4 GHz/BT share the same transmitting antenna and cannot transmit simultaneously.
- **Note 3:** Although WLAN 2.4 GHz and 5.0 GHz do not share an antenna the two technologies would not operate simultaneously.
- Note 4: BT Stand-alone SAR test is not required and value of zero is considered for SAR summation.

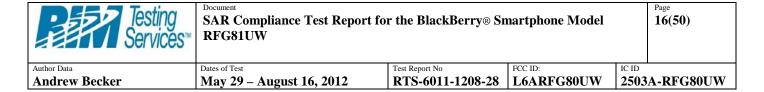

		Licensed Transn	nitters	WiFi 2.4G/5.0 G	Maximum Summation
Test	Configuration	Band	1 g avg. SAR (w/kg)	1 g avg. SAR (W/kg)	1 g avg. SAR (W/kg)
	Right Cheek	GSM/EDGE 850	0.90	0.60	1.50
	Right Cheek	WCDMA band V	0.71	0.60	1.31
	Right Cheek	GSM/EDGE 1900	0.18	0.60	0.78
	Right Cheek	WCDMA band II	0.46	0.60	1.06
	Right Tilt	GSM/EDGE 850	0.43	0.59	1.02
	Right Tilt	WCDMA band V	0.37	0.59	0.96
	Right Tilt	GSM/EDGE 1900	0.06	0.59	0.65
Head	Right Tilt	WCDMA band II	0.15	0.59	0.74
SAR	Left Cheek	GSM/EDGE 850	0.48	0.74	1.22
	Left Cheek	WCDMA band V	0.68	0.74	1.42
	Left Cheek	GSM/EDGE 1900	0.28	0.74	1.02
	Left Cheek	WCDMA band II	0.59	0.74	1.33
	Left Tilt	GSM/EDGE 850	0.30	0.97	1.27
	Left Tilt	WCDMA band V	0.38	0.97	1.35
	Left Tilt	GSM/EDGE 1900	0.08	0.97	1.05
	Left Tilt	WCDMA band II	0.20	0.97	1.17

Table 1.9.3. Highest Head SAR values and summation

Note 1: If sum of 1 g SAR < 1.6 W/kg, then Simultaneous SAR measurement is not required.

Note 2: If sum of 1 g SAR > 1.6 W/kg, then the ratio of SAR to peak separation distance for a pair of transmitters is calculated.

Note 3: If the ratio of SAR to peak separation distance is < 0.3, then Simultaneous SAR measurement is not required.

		Licensed Transi	nitters	WiFi 2.4G/5.0 G	Maximum Summation
Test	Configuration	Band	1 g avg. SAR (w/kg)	1 g avg. SAR (W/kg)	1 g avg. SAR (W/kg)
	15 mm	GPRS/EDGE 850	0.84	0.15	0.99
	separation,	WCDMA band V	0.74	0.15	0.89
	device back	GPRS/EDGE 1900	0.20	0.15	0.35
	device back	WCDMA band II	0.39	0.15	0.54
	15 mm	GPRS/EDGE 850	NA	0.12	NA
	separation,	WCDMA band V	0.71	0.12	0.83
	device front	GPRS/EDGE 1900	NA	0.12	NA
	device from	WCDMA band II	0.34	0.12	0.46
		GPRS/EDGE 850	0.75	0.15	0.90
	Holster, device back	WCDMA band V	0.68	0.15	0.83
Dode		GPRS/EDGE 1900	0.11	0.15	0.26
Body- Worn		WCDMA band II	0.30	0.15	0.45
SAR		GPRS/EDGE 850	0.74	0.03	0.77
51111	Holster, device	WCDMA band V	0.68	0.03	0.71
	front	GPRS/EDGE 1900	0.07	0.03	0.10
		WCDMA band II	NA	0.03	NA
	15 mm	GPRS/EDGE 850	NA	0.12	NA
	separation,	WCDMA band V	0.59	0.12	0.71
	device back,	GPRS/EDGE 1900	NA	0.12	NA
	with headset	WCDMA band II	0.47	0.12	0.59
	15 mm	GPRS/EDGE 850	NA	NA	NA
	separation,	WCDMA band V	NA	NA	NA
	device front,	GPRS/EDGE 1900	NA	NA	NA
	with headset	WCDMA band II	NA	NA	NA

Table 1.9.4. Highest Body-worn SAR values for the same configuration

Note 1: If sum of 1 g SAR < 1.6 W/kg, then Simultaneous SAR measurement is not required.

Note 2: If sum of 1 g SAR > 1.6 W/kg, then the ratio of SAR to peak separation distance for a pair of transmitters is calculated.

Note 3: If the ratio of SAR to peak separation distance is < 0.3, then Simultaneous SAR measurement is not required.

SAR Compliance Test Report for the BlackBerry® Smartphone Model RFG81UW

17(50)

Andrew Becker

Dates of Test May 29 – August 16, 2012

Test Report No RTS-6011-1208-28 | L6ARFG80UW

FCC ID:

IC ID 2503A-RFG80UW

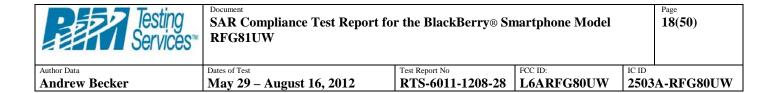

		Licensed Transm	WiFi	Maximum	
Test	Configuration	Band	1 g avg. SAR (w/kg)	2.4G/5.0 G 1 g avg. SAR (W/kg)	Summation 1 g avg. SAR (W/kg)
	10 mm	GSM/GPRS/EDGE 850	1.04	0.16	1.20
	separation,	WCDMA band V	1.03	0.16	1.19
	device back	GSM/GPRS/EDGE 1900	0.44	0.16	0.60
	device suck	WCDMA band II	0.98	0.16	1.14
	10	GSM/GPRS/EDGE 850	0.96	0.09	1.05
	10 mm	WCDMA band V	0.94	0.09	1.03
	separation, device front	GSM/GPRS/EDGE 1900	0.24	0.09	0.33
	device from	WCDMA band II	0.77	0.09	0.86
	1.0	GSM/GPRS/EDGE 850	0.76	0.02	0.78
	10 mm	WCDMA band V	0.68	0.02	0.70
	separation, device left	GSM/GPRS/EDGE 1900	0.14	0.02	0.16
		WCDMA band II	0.36	0.02	0.38
Mobile	10	GSM/GPRS/EDGE 850	0.85	0.04	0.89
Hotspot	10 mm separation, device right	WCDMA band V	0.73	0.04	0.77
SAR		GSM/GPRS/EDGE 1900	0.06	0.04	0.10
5111		WCDMA band II	0.11	0.04	0.15
	10	GSM/GPRS/EDGE 850	0.15	0.00	0.15
	10 mm	WCDMA band V	0.12	0.00	0.12
	separation, device bottom	GSM/GPRS/EDGE 1900	0.16	0.00	0.16
		WCDMA band II	1.39	0.00	1.39
	10	GSM/GPRS/EDGE 850	0.00	0.08	0.08
	10 mm	WCDMA band V	0.00	0.08	0.08
	separation, device top	GSM/GPRS/EDGE 1900	0.00	0.08	0.08
	device top	WCDMA band II	0.00	0.08	0.08
	10 mm	GSM/GPRS/EDGE 850	0.91	0.18	1.09
	separation,	WCDMA band V	NA	0.18	NA
	device back	GSM/GPRS/EDGE 1900	0.50	0.18	0.68
	with headset	WCDMA band II	NA	0.18	NA
	10 mm	GSM/GPRS/EDGE 850	NA	NA	NA
	separation,	WCDMA band V	NA	NA	NA
	device front,	GSM/GPRS/EDGE 1900	NA	NA	NA
	with headset	WCDMA band II	NA	NA	NA

Table 1.9.5. Highest Mobile Hotspot SAR values for the same configuration

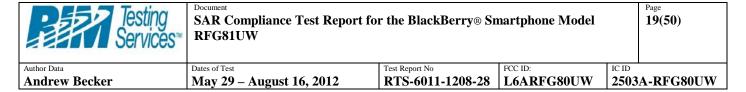
Note 1: If sum of 1 g SAR < 1.6 W/kg, then Simultaneous SAR measurement is not required.

Note 2: If sum of 1 g SAR > 1.6 W/kg, then the ratio of SAR to peak separation distance for a pair of transmitters is calculated.

Note 3: If the ratio of SAR to peak separation distance is < 0.3, then Simultaneous SAR measurement is not required.

BT & 5.0 GHz WiFi:

- BT Stand-alone SAR is not required because the 5.0 GHz WiFi antenna, which is < 2.5 cm away, has an max 1g SAR < 1.2 W/kg
- BT Simultaneous Transmission SAR is not required because BT Stand-alone SAR is not required.


BT & GSM/WCDMA

- BT Stand-alone SAR is not required because the output ≤ 2 · PRef and the antenna is > 5.0 cm from other antennas
- BT Simultaneous Transmission SAR is not required because BT Stand-alone SAR is not required.

GSM/WCDMA & 2.4/5.0 GHz WiFi:

- Head Configuration:
 - GSM/EDGE/GPRS & WCDMA Stand-alone SAR is required because they are licensed antennas.
 - O Wifi Stand-alone SAR is required because the antenna is > 5.0 cm from the main antenna, but the output power $> 2 \cdot PRef$.
 - o Simultaneous Transmission is not required as the sum of the 1-g SAR is < 1.6 W/kg.
- Body Configuration:
 - GSM/EDGE/GPRS & WCDMA Stand-alone SAR is required because they are licensed antennas.
 - Wifi Stand-alone SAR is required because the antenna is > 5.0 cm from other antennas, but the output power $> 2 \cdot PRef$.
 - \circ Simultaneous Transmission is not required as the sum of the 1-g SAR is < 1.6 W/kg.
- The device supports GPRS Category Class A/B, Multi-Slot Class 10 with maximum 5-slots (2-slots uplink and 3-slot downlink). However, it does not support DTM.
- For body SAR configurations, 2-slots GPRS (PD) mode were tested.
- In GPRS mode, GMSK Modulation was used using CS1-CS4 or MCSI-MCS4.
- 8-PSK modulation or MCS5-MCS9 code scheme were avoided since maximum burst avg power was measured lower on those modulation schemes.
- Each slot is set to maximum power, but there is software power reduction of ~ 2 dB in multislot modes.
- Please refer to the conducted power measurements table below:

	Freq.	Max burst averaged conducted power (dBm)	Max burst averaged conducted power (dBm)	Max burst averaged conducted power (dBm)
Mode	(MHz)	CS1	MCS1	MCS5
2-slots	824.2	30.2	N/A	N/A
GPRS	836.8	30.1	N/A	N/A
850 MHz	848.8	30.1	N/A	N/A

2-slots	824.2	N/A	N/A	N/A	
DTM	836.8	N/A	N/A	N/A	
850 MHz	848.8	N/A	N/A	N/A	
2-slots	824.2	30.2	30.2	27.4	
EDGE	836.8	30.1	30.1	27.5	
850 MHz	848.8	30.1	30.2	27.4	
2-slots	1850.2	26.9	N/A	N/A	
GPRS	1880.0	26.8	N/A	N/A	
1900 MHz	1909.8	26.8	N/A	N/A	
2-slots	1850.2	N/A	N/A	N/A	
DTM 1900 MHz	1880.0	N/A	N/A	N/A	
1,001,111	1909.8	N/A	N/A	N/A	
2-slots	1850.2	26.9	26.9	26.0	
EDGE	1880.0	26.8	26.8	25.9	
1900MHz	1909.8	26.8	26.8	25.9	
	F	req.	Max burst averaged		
Mode	(N	(IHz)	conducted power (dBm)		
1-slot	82	24.2	32.	1	
GSM (CS)	83	36.8	33.	3	
850 MHz	84	48.8	32.0		
1-slot	18	550.2	28.8		
GSM (CS)	18	80.0	30.2		
1900 MHz	19	09.8	28.6		

1.9.6. GSM/EDGE/GPRS channel vs. conducted power with Mobile Hot Spot mode enabled and disabled

Testing Services™	SAR Compliance Test Report for RFG81UW	r the BlackBerry® Sn	nartphone Model		Page 20(50)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID			
Andrew Becker	May 29 – August 16, 2012	May 29 – August 16, 2012 RTS-6011-1208-28 L6ARFG80UW 2503A					

2.0 DESCRIPTION OF THE TEST EQUIPMENT

2.1 SAR measurement system

SAR measurements were performed using a Dosimetric Assessment System (DASY52), an automated SAR measurement system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich, Switzerland.

The DASY 52 system for performing compliance tests consists of the following items:

- · A standard high precision 6-axis robot (Stäubli RX family) with controller and software.
- · An arm extension for accommodating the data acquisition electronics (DAE).
- · A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- · A DAE module that performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the Electro-optical coupler (EOC).
- · A unit to operate the optical surface detector that is connected to the EOC.
- · The EOC performs the conversion from an optical signal into the digital electric signal of the DAE. The EOC is connected to the PC plug-in card.
- \cdot The functions of the PC plug-in card based on a DSP is to perform the time critical tasks such as signal filtering, surveillance of the robot operation fast movement interrupts.
- · A computer operating Windows.
- · DASY52 software version 52.6(2).
- · Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- · The SAM Twin Phantom enabling testing left-hand and right-hand usage.
- · The device holder for mobile phones.
- · Tissue simulating liquid mixed according to the given recipes (see section 6.1).
- · System validation dipoles allowing for the validation of proper functioning of the system.

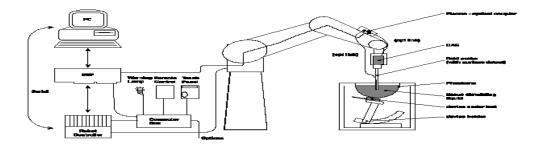
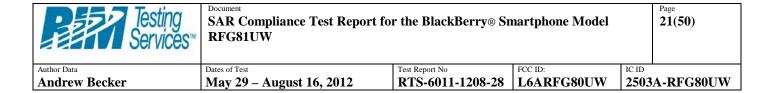



Figure 2.1.1. System Description

2.1.1 Equipment List

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date (MM/DD/YY)
SCHMID & Partner Engineering AG	E-field probe	ES3DV3	3225	01/11/2013
SCHMID & Partner Engineering AG	E-field probe	EX3DV4	3592	11/16/2012
SCHMID & Partner Engineering AG	Data Acquisition Electronics (DAE3)	DAE3 V1	473	01/13/2013
SCHMID & Partner Engineering AG	Dipole Validation Kit	D835V2	446	01/21/2013
SCHMID & Partner Engineering AG	Dipole Validation Kit	D1900V2	545	01/13/2013
SCHMID & Partner Engineering AG	Dipole Validation Kit	D2450V2	747	11/09/2013
SCHMID & Partner Engineering AG	Dipole Validation Kit	D5000V2	1033	11/15/2013
Agilent Technologies	Signal generator	8648C	4037U03155	09/23/2013
Agilent Technologies	Power meter	E4419B	GB40202821	09/23/2013
Agilent Technologies	Power sensor	8481A	MY41095417	09/27/2012
Amplifier Research	Amplifier	5S1G4M3	300986	CNR
Agilent Technologies	Power meter	N1911A	MY45100905	05/17/2013
Agilent Technologies	Power sensor	N1921A	SG45240281	06/12/2013
Agilent Technologies	Power sensor	N1921A	MY45241383	08/30/2012
Weinschel Corp	20dB Attenuator	33-20-34	BMO697	CNR
Agilent Technologies	Network analyzer	8753ES	US39174857	09/20/2012
Rohde & Schwarz	Base Station Simulator	CMU 200	109747	11/20/2012
Rohde & Schwarz	Base Station Simulator	CMU 200	118277	11/30/2012
Rohde & Schwarz	Base Station Simulator	CMU 200	112394	11/21/2012
CPI Wireless Solutions	Amplifier	VZC-6961K4	SK4310E5	CNR
Rohde & Schwarz	Signal generator	SMA 100A	101540	12/02/2013

Table 2.1.1. Equipment list

Testing Services™	SAR Compliance Test Report for RFG81UW	r the BlackBerry® Sn	nartphone Model		Page 22(50)			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID				
Andrew Becker	May 29 – August 16, 2012	May 29 – August 16, 2012 RTS-6011-1208-28 L6ARFG80UW 2503.						

2.2 Description of the test setup

Before SAR measurements are conducted, the device and the DASY equipment are setup as follows:

2.2.1 Device and base station simulator setup

- Power up the device.
- Turn on the base station simulator and set the radio channel and power to the appropriate values.
- Connect an antenna to the RF IN/OUT of the communication test set and place it close to the device.

2.2.2 DASY setup

- Turn the computer on and log on to Windows.
- Start the DASY software by clicking on the icon located on the Windows desktop.
- Mount the DAE unit and the probe. Turn on the DAE unit.
- Turn the Robot Controller on by turning the main power switch to the horizontal position
- Align the probe by clicking the 'Align probe in light beam' button.
- Open a file and configure the proper parameters probe, medium, communications system etc.
- Establish a connection between the Device and the communications test instrument. Place the Device on the stand and adjust it under the phantom.
- · Start SAR measurements.

3.0 ELECTRIC FIELD PROBE CALIBRATION

3.1 Probe Specifications

SAR measurements were conducted using the dosimetric probes ES3DV3/ET3DV6 and EX3DV4, designed by Schmid & Partner Engineering AG for the measurement of SAR. The probe is constructed using the thin film technique, with printed resistive lines on ceramic substrates. It has a symmetrical design with triangular core, built-in optical fibre for the surface detection system and built-in shielding against static discharge. The probe is sensitive to E-fields and thus incorporates three small dipoles arranged so that the overall response is close to isotropic. The table below summarizes the technical data for the probe.

Property	Data
Frequency range	30 MHz – 3 GHz
Linearity	±0.1 dB
Directivity (rotation around probe axis)	$\leq \pm 0.2 \text{ dB}$
Directivity (rotation normal to probe axis)	±0.4 dB
Dynamic Range	5 mW/kg - 100 W/kg
Probe positioning repeatability	±0.2 mm
Spatial resolution	< 0.125 mm ³
Probe model EX3DV4 for 2.4	– 6 GHz
Probe tip to sensor center	1.0 mm
Probe tip diameter is	2.5 mm
Probe calibration uncertainty	< 15 % for f = 2.45 to $< 6.0 GHz$
Probe calibration range	± 100 MHz

Table 3.1.1. Probe specifications

SAR Compliance Test Report for the BlackBerry® Smartphone Model RFG81UW

Page **23(50)**

Andrew Becker

Dates of Test

May 29 – August 16, 2012

Test Report No **RTS-6011-1208-28**

FCC ID: L6ARFG80UW

1C ID **2503A-RFG80UW**

3.2 Probe calibration and measurement uncertainty

The probe had been calibrated with an accuracy better than $\pm 12\%$. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe were tested. The probe calibration parameters are shown on Appendix D and below:

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.42	6.42	6.42	0.27	2.04	± 12.0 %
900	41.5	0.97	6.06	6.06	6.06	0.35	1.74	± 12.0 %
1810	40.0	1.40	5.23	5.23	5.23	0.73	1.21	± 12.0 %
1950	40.0	1.40	4.98	4.98	4.98	0.58	1.41	± 12.0 %
2450	39.2	1.80	4.50	4.50	4.50	0.79	1.26	± 12.0 %
2600	39.0	1.96	4.32	4.32	4.32	0.77	1.32	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.27	6.27	6.27	0.36	1.74	± 12.0 %
900	55.0	1.05	6.07	6.07	6.07	0.29	2.02	± 12.0 %
1810	53.3	1.52	4.92	4.92	4.92	0.50	1.57	± 12.0 %
1950	53.3	1.52	4.87	4.87	4.87	0.59	1.49	± 12.0 %
2450	52.7	1.95	4.30	4.30	4.30	0.68	1.16	± 12.0 %
2600	52.5	2.16	4.12	4.12	4.12	0.80	0.99	± 12.0 %

Table 3.2.1. Probe ES3DV3 SN: 3225

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	CanvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
5200	± 50 / ± 100	36.0 ± 5%	4.66 ± 5%	4.50	4.50	4.50	0.45	1.90 ± 13.1%
5500	± 50 / ± 100	35.6 ± 5%	4 96 ± 5%	4.25	4.25	4.25	0.50	1.90 ± 13.1%
5800	± 50 / ± 100	35.3 ± 5%	5.27 ± 5%	3.98	3.96	3.98	0.52	1.90 ± 13.1%
Calibra	tion Parameter	Determined	in Body Tiss	ue Simulatir	na Media			

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
5200	±50/±100	$49.0 \pm 5\%$	5.30 ± 5%	3.95	3.95	3.95	0.52	1 95 ± 13.1%
5500	±50/±100	48.6 ± 5%	5.65 ± 5%	3.73	3.73	3.73	0.55	1.95 ± 13.1%
5800	±50/±100	48.2 ± 5%	$6.00 \pm 5\%$	3.40	3.40	3.40	0.63	1.95 ± 13.1%

Table 3.2.2. Probe EX3DV4 SN: 3592

C The validity of \pm 100 MHz only applies for DASY v4.4 and higher. DASY 52 has been used for measurements, therefore \pm 100 MHz tolerance is valid.

Measured dielectric parameters are within +/-5% of the probe calibration values and target values. Expanded probe calibration uncertainty (k=2) is < 15%

Testing Services™	SAR Compliance Test Report for RFG81UW	r the BlackBerry® Sn	nartphone Model		Page 24(50)			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID				
Andrew Becker	May 29 – August 16, 2012	May 29 – August 16, 2012 RTS-6011-1208-28 L6ARFG80UW 2503.						

4.0 SAR MEASUREMENT SYSTEM VERIFICATION

Prior to conducting SAR measurements, the system was validated using the dipole validation kit and the flat section of the SAM phantom. A power level of 1.0W was applied to the dipole antenna. The verification results are in the table below with a comparison to reference values. Printouts are shown in Appendix A. All the measured parameters are within the allowed tolerances.

At above 1.5 - 2 GHz, dipoles maintain good return loss of -15 dB to -20 dB, therefore SAR measurements are limited to approximately +/- 100 MHz of the probe/dipole calibration frequency.

4.1 System accuracy verification for head adjacent use

	Limits / Measured	SAR 1 g/10 g	_	ectric meters	Liquid Temp.
f (MHz)	(MM/DD/YYYY)	(W/kg)	ε_r	σ [S/m]	(°C)
	Measured (06/04/2012)	9.33/6.12	39.9	0.88	21.9
925	Measured (07/19/2012)	9.79/6.46	39.9	0.93	22.8
835	Measured (07/24/2012)	9.39/6.16	40.2	0.88	23.1
	Recommended Limits	9.63/6.27	41.5	0.90	N/A
	Measured (05/29/12)	39.5/20.7	38.5	1.37	22.6
1900	Measured (05/31/12)	38.9/20.4	38.3	1.39	22.0
1900	Measured (07/30/12)	40.5/21.3	38.4	1.39	23.6
	Recommended Limits	40.0/20.8	40.0	1.40	N/A
2450	Measured (07/23/12)	55.0/26.0	37.5	1.75	23.1
2430	Recommended Limits	54.1/25.3	39.2	1.80	N/A
	Measured (08/09/2012)	86.1/24.8	34.5	4.80	22.7
5200	Measured (08/15/2012)	88.2/25.2	34.6	4.78	22.3
	Recommended Limits	80.8/23.0	36.0	4.66	N/A
	Measured (08/09/2012)	84.6/24.4	34.4	5.04	22.8
5500	Measured (08/15/2012)	83.9/24.2	34.0	5.06	22.3
	Recommended Limits	87.3/24.7	35.6	4.96	N/A
	Measured (08/09/2012)	85.8/24.4	33.7	5.37	22.8
5800	Measured (08/13/2012)	86.0/24.6	34.2	5.47	22.7
	Recommended Limits	79.4/22.5	35.3	5.27	N/A

Table 4.1.1. System accuracy (validation for head adjacent use)

SAR	Compliance	Test Report for	the BlackBerry	® Smartphone N	Iodel
RFG	811JW				

Test Report No

FCC ID:

IC ID

25(50)

Andrew Becker May 29 – August 16, 2012

RTS-6011-1208-28

L6ARFG80UW 2503A-RFG80UW

5.0 PHANTOM DESCRIPTION

The SAM Twin Phantom, manufactured by SPEAG, was used during the SAR measurements. The phantom is made of a fibreglass shell integrated with a wooden table.

The SAM Twin Phantom is a fibreglass shell phantom with 2 mm shell thickness. It has three measurement areas:

Left side head Right side head

Flat phantom

The phantom table dimensions are: 100x50x85 cm (LxWxH). The table is intended for use with freestanding robots.

The bottom shelf contains three pair of bolts for locking the device holder in place. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different solutions).

A white cover is provided to top the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible; however the optical surface detector does not work properly at the cover surface. Place a sheet of white paper on the cover when using optical surface detection.

Liquid depth of ≥ 15 cm is maintained in the phantom for all the measurements.

Figure 5.0.1. SAM Twin Phantom

Testing Services™	SAR Compliance Test Report for RFG81UW	r the BlackBerry® Sn	nartphone Model		Page 26(50)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID			
Andrew Becker	May 29 – August 16, 2012	May 29 – August 16, 2012 RTS-6011-1208-28 L6ARFG80UW 2503A					

6.0 TISSUE DIELECTRIC PROPERTIES

6.1 Composition of tissue simulant

The composition of the brain and muscle simulating liquids are shown in the table below.

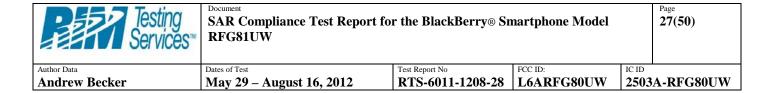

INGREDIE	MIXTURE 800- 900MHz			MIXTURE 1800- 1900MHz		MIXTURE 2450 MHz		MIXTURE 5 - 6 GHz	
NT	Brain %	Muscle %	Brain %	Muscle %	Brain %	Muscle %	Brain %	Muscl e %	
Water	40.29	65.45	55.24	69.91	55.0	68.75	64	64-78	
Sugar	57.90	34.31	0	0	0	0	0	0	
Salt	1.38	0.62	0.31	0.13	0	0	0	0	
HEC	0.24	0	0	0	0	0	0	0	
Bactericide	0.18	0.10	0	0	0	0	0	0	
DGBE	0	0	44.45	29.96	40.0	31.25	0	0	
Triton X-	0	0	0	0	5.0	0	0	0	
Additives and Salt	0	0	0	0	0	0	3	2-3	
Emulsifiers	0	0	0	0	0	0	15	9-15	
Mineral Oil	0	0	0	0	0	0	18	11-18	

Table 6.1.1. Tissue simulant recipe

6.1.1 Equipment

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date (MM/DD/YY)
Pyrex, England	Graduated Cylinder	N/A	N/A	N/A
Pyrex, USA	Beaker	N/A	N/A	N/A
Acculab	Weight Scale	V1-1200	018WB2003	N/A
IKA Works Inc.	Hot Plate	RC Basic	3.107433	N/A
Dell	PC using GPIB card	GX110	347	N/A
Agilent Technologies	Dielectric probe kit	HP 85070C	US9936135	CNR
Agilent Technologies	Network Analyzer	8753ES	US39174857	09/20/2012
Control Company	Digital Thermometer	23609-234	21352860	09/30/2012

Table 6.1.2. Tissue simulant preparation equipment

6.1.2 Preparation procedure

800-900 MHz liquids

- Fill the container with water. Begin heating and stirring.
- Add the **Cellulose**, the **preservative substance** and the **salt**. After several hours, the liquid will become more transparent again. The container must be covered to prevent evaporation.
- Add **Sugar**. Stir it well until the sugar is sufficiently dissolved.
- Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation.
- Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

1800-2450 MHz liquid

- Fill the container with water and place it on hotplate. Begin heating and stirring.
- Add the salt, Glycol/Triton X-100. The container must be covered to prevent evaporation.
- Keep the liquid hot enough to dissolve sugar for at least an hour. The container must be covered to prevent evaporation.
- Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

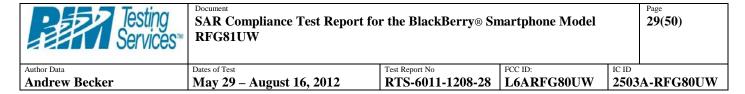
6.2 Electrical parameters of the tissue simulating liquid

The tissue dielectric parameters shall be measured before a batch can be used for SAR measurements to ensure that the simulated tissue was properly made and will simulate the desired human characteristic. Limits and measured electrical parameters are shown in the table below.

Recommended limits are adopted from IEEE P1528-2003:

"Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", DASY manual and from FCC Tissue Dielectric Properties web page at http://www.fcc.gov/fcc-bin/dielec.sh

				Dielectric Parameters		Liquid
Band (MHz)	Tissue Type	Limits / Measured (MM/DD/YYYY)	f (MHz)	$\epsilon_{\rm r}$	σ [S/m]	Temp (°C)
			815	40.0	0.86	
		Management (06/04/2012)	825	40.0	0.87	21.9
		Measured (06/04/2012)	835	39.9	0.88	21.9
			850	39.8	0.90	
	Head	Measured (07/19/2012)	815	40.5	0.91	
			825	40.2	0.92	22.8
835			835	39.9	0.93	22.0
			850	39.5	0.94	1
			815	40.5	0.86	
		Measured (07/24/2012	825	40.4	0.87	23.1
		Wieasureu (07/24/2012	835	40.2	0.88	23.1
			850	40.0	0.89	
		Recommended Limits	835	41.5	0.90	N/A


SAR Compliance Test Report for the BlackBerry $\mathbin{\!\!@}$ Smartphone Model RFG81UW

Page **28(50)**

 Author Data
 Dates of Test
 Test Report No
 FCC ID:
 IC ID

 Andrew Becker
 May 29 – August 16, 2012
 RTS-6011-1208-28
 L6ARFG80UW
 2503A-RFG80UW

		815	53.3	0.95			
		Measured (06/04/2012)	825	53.2	0.96	21.9	
			835	53.2	0.96	21.9	
			850	53.0	0.98		
			815	52.9	0.92		
		Managamad (07/10/2012)	825	52.8	0.93	22.0	
	Muscle	Measured (07/19/2012)	835	52.7	0.94	22.8	
			850	52.6	0.92		
			815	53.8	0.93		
		Measured (07/24/2012)	825	53.8	0.96	23.1	
		Measured (07/24/2012)	835	53.8	0.97	25.1	
			850	53.7	1.00		
		Recommended Limits	835	55.2	0.97	N/A	
			1850	38.8	1.33		
		Measured (05/29/12)	1900	38.5	1.37	22.6	
			1910	38.5	1.38		
			1850	38.6	1.36		
		Measured (05/31/12)	1900	38.3	1.39	22.0	
			1910	38.3	1.40		
	Head	Measured (07/30/12)	1850	38.6	1.34		
			1900	38.4	1.39	22.1	
1000			1910	38.4	1.40	23.1	
1900			1980	38.1	1.47		
		Recommended Limits	1900	40.0	1.40	N/A	
		Measured (05/29/12) Measured (07/30/12)	1850	51.2	1.48		
			1900	51.0	1.52	22.6	
			1910	51.0	1.54	1	
			1850	51.1	1.50	23.0	
			1900	50.9	1.57		
			1910	50.9	1.57	1	
		Recommended Limits	1900	53.3	1.52	N/A	
			2410	37.6	1.72		
		Measured (07/23/12)	2450	37.5	1.75	23.0	
			2480	37.3	1.80		
	Head		2410	39.8	1.72		
		Measured (06/01/12)	2450	39.6	1.76	22.7	
2450			2480	39.6	1.79		
		Recommended Limits	2450	39.2	1.80	N/A	
			2410	52.7	1.88		
	M 1	Measured (07/23/12)	2450	52.5	1.95	23.1	
	Muscle	`	2480	52.4	2.00	1	
		Recommended Limits	2450	52.7	1.95	N/A	
			5180	34.6	4.77		
		Measured (08/09/2012)	5200	34.5	4.80	22.7	
5200	Head	\	5280	34.4	4.88	7	
3200		Measured (08/15/2012)	5180	34.6	4.76	22.2	
			5200	34.6	4.78	22.3	

			5280	34.4	4.87	
		Recommended Limits	5200	36.0	4.66	N/A
		Measured (08/09/2012)	5180	46.8	5.20	
	Muscle		5200	47.8	5.23	22.7
	Muscie		5280	46.6	5.34	
		Recommended Limits	5200	49.0	5.30	N/A
		Managamad (09/00/2012)	5500	34.4	5.04	22.9
		Measured (08/09/2012)	5620	34.1	5.19	22.8
	Head	Manager 1 (09/15/2012)	5500	34.0	5.06	22.7
5500		Measured (08/15/2012)	5620	33.8	5.19	22.7
5500		Recommended Limits	5500	35.6	4.96	N/A
		scle Measured (08/09/2012)	5500	48.1	5.68	22.7
	Muscle		5620	47.8	5.86	22.7
		Recommended Limits	5500	48.6	5.65	N/A
		Managamad (09/00/2012)	5745	33.7	5.27	22.9
		Measured (08/09/2012)	5800	33.7	5.37	22.8
	Head	Management (09/12/2012)	5745	34.4	5.41	22.7
5000		Measured (08/13/2012)	5800	34.2	5.47	22.7
5800		Recommended Limits	5800	35.3	5.27	N/A
		Maggared (09/00/2012)	5745	47.0	5.92	22.7
	Muscle	Measured (08/09/2012)	5800	47.0	5.92	22.7
		Recommended Limits	5800	48.2	6.00	N/A

Table 6.2.1. Electrical parameters of tissue simulating liquid

Testing Services™					Page 30 (50)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	May 29 – August 16, 2012	RTS-6011-1208-28	L6ARFG80UW	2503	A-RFG80UW

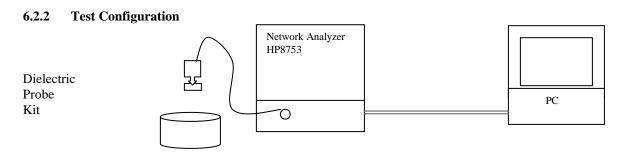


Figure 6.2.1. Test configuration

6.2.3 Procedure

- 1. Turn NWA on and allow at least 30 minutes for warm up.
- 2. Mount dielectric probe kit so that interconnecting cable to NWA will not be moved during measurements or calibration.
- 3. Pour de-ionized water and measure water temperature $(\pm 1^{\circ})$.
- 4. Set water temperature in HP-Software (Calibration Setup).
- 5. Perform calibration.
- 6. Relative permittivity $\mathcal{E}\mathbf{r} = \mathbf{E}'$ and conductivity can be calculated from \mathbf{E}'' $\sigma = \omega \, \varepsilon_0 \, \varepsilon''$
- 7. Measure liquid shortly after calibration.
- 8. Stir the liquid to be measured. Take a sample (~50ml) with a syringe from the center of the liquid container.
- 9. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
- 10. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
- 11. Perform measurements.
- 12. Adjust medium parameters in DASY software for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Head 835 MHz) and press 'Option'-button.
- 13. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 835 MHz).

Testing Services™	SAR Compliance Test Report for RFG81UW	Page 31(50)			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	May 29 – August 16, 2012	RTS-6011-1208-28	L6ARFG80UW	2503	A-RFG80UW

7.0 SAR SAFETY LIMITS

	Localized SAR Limit	Localized SAR Limits
	(W/kg) General public	(W/kg) Workers
Standards/Guideline	(uncontrolled)	(controlled)
ICNIRP Standard	2.0 (10g)	10.0 (10g)
IEEE C95.1 Standard	1.6 (1g)	8.0 (1g)

Table 7.0.1. SAR safety limits for Controlled / Uncontrolled environment

Human Exposure	Localized SAR Limits (W/kg) 10g, ICNIRP Standard	Localized SAR Limits (W/kg) 1g, IEEE C95.1 Standard
Spatial Average (averaged over the whole		
body)	0.08	0.08
Spatial Peak (averaged over any X g of		
tissue)	2.00	1.60
Spatial Peak (hands/wrists/feet/ankles		
averaged over 10 g)	4.00	4.00 (10g)

Table 7.0.2. SAR safety limits

Uncontrolled Environments are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

SAR Compliance Test Report for the BlackBerry® Smartphone Model RFG81UW

32(50)

Andrew Becker

Dates of Test May 29 - August 16, 2012 Test Report No

FCC ID: RTS-6011-1208-28

L6ARFG80UW

IC ID 2503A-RFG80UW

DEVICE POSITIONING 8.0

8.1 **Device holder for SAM Twin Phantom**

The Device was positioned for all test configurations using the DASY5 holder. The device holder facilitates the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately and with repeatability positioned according to FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 8.1.1. Device Holder

- 1. Put the phone in the clamp mechanism (1) and hold it straight while tightening. (Curved phones or phones with asymmetrical ear pieces should be positioned so that the earpiece is in the symmetry plane of the clamp).
- 2. Adjust the sliding carriage (2) to 90°. Then adjust the phone holder angle (3) until the reference line of the phone is horizontal (parallel to the flat phantom bottom). The phone reference line is defined as the front tangential line between the earpiece and the center of the device bottom (or the center of the flip hinge). For devices with parallel front and backsides, the phone holder angle (3) is 0°.
- 3. Place the device holder at the desired phantom section and move it securely against the positioning pins (4). The screw in front of the turning plate can be applied for correct positioning (5). (Do not tighten it too strongly).
- 4. Shift the phone clamp (6) so that the earpiece is exactly below the ear marking of the phantom. The phone is now correctly positioned in the holder for all standard phantom measurements, even after changing the phantom or phantom section.
- 5. Adjust the device position angles to the desired measurement position.
- 6. After fixing the device angles, move the phone fixture up until the phone touches the ear marking. (The point of contact depends on the design of the device and the positioning angle).

Testing Services™	SAR Compliance Test Report for the BlackBerry® Smartphone Model RFG81UW				
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	May 29 – August 16, 2012	RTS-6011-1208-28	L6ARFG80UW	2503	A-RFG80UW

8.2 Description of the test positioning

8.2.1 Test Positions of Device Relative to Head

The handset was tested in two test positions against the head phantom, the "cheek" position and the "tilted" position, on both left and right sides of the phantom.

The handset was tested in the above positions according to IEEE 1528- 2003 "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques".

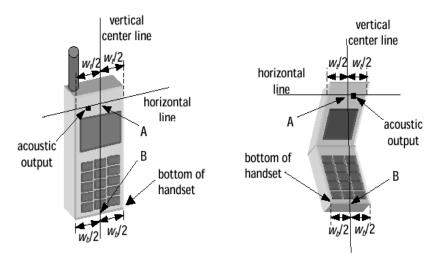


Figure 8.2.1a. Handset vertical and horizontal reference lines – fixed case

Figure 8.2.1b. Handset vertical and horizontal reference lines – "clam-shell"

Testing Services™	SAR Compliance Test Report for RFG81UW	r the BlackBerry® Sn	nartphone Model		Page 34(50)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Recker	May 20 _ August 16 2012	RTS_6011_1208_28	I 6A RECROUW	2503	A-RECROUW

8.2.1.1 Definition of the "cheek" position

- 1) Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover.
- 2) Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A on Figures 8.2.1a and 8.2.1b), and the midpoint of the width wt of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 8.2.1a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 8.2.1b), especially for clamshell handsets, handsets with flip pieces, and other irregularly shaped handsets.
- 3) Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 8.2.1), such that the plane defined by the vertical center line and the horizontal center line is in a plane approximately parallel to the sagittal plane of the phantom.
- 4) Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear.
- 5) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is the plane normal to MB ("mouth-back") NF ("neck-front") including the line MB (reference plane).
- **6)** Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF.
- 7) While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the ear (cheek).

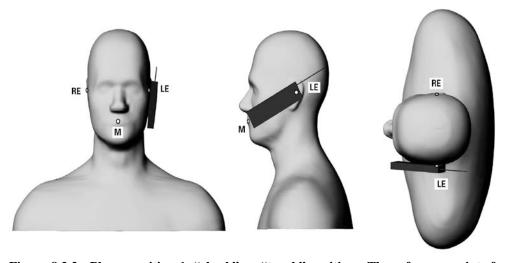


Figure 8.2.2. Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

Testing Services™	SAR Compliance Test Report for RFG81UW	or the BlackBerry® Sr	nartphone Model	Page 35(50)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	May 29 – August 16, 2012	RTS-6011-1208-28	L6ARFG80UW	2503A-RFG80UW

8.2.1.2 Definition of the "Tilted" Position

- 1) Repeat steps 1 to 7 of 5.4.1 (in this report 8.2.1.1) to replace the device in the "cheek position."
- 2) While maintaining the device in the reference plane (described above) and pivoting against the ear, move the device outward away from the mouth by an angle of 15 degrees, or until the antenna touches the phantom.

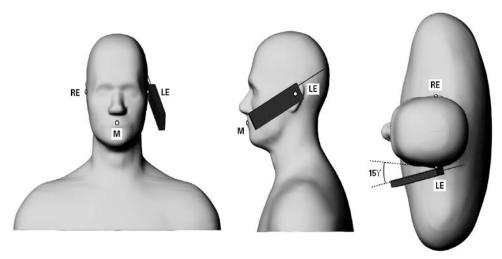
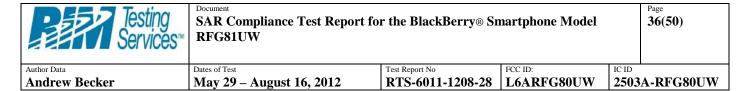


Figure 8.2.3. Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

8.2.2 Body-worn Configuration

Body-worn holsters, as shown on Figure 1.4.1, have been test with the device for FCC RF exposure compliance. The EUT was positioned in each holster case and the belt clip was placed against the flat section of the phantom. A headset was then connected to the device to simulate hands-free operation in a body worn holster configuration.


In addition, device was tested with 20 mm RIM recommended separation distance to allow typical aftermarket holster to be used. RIM body-worn holsters with belt-clip have been designed to maintain \sim 20 mm separation distance from body.

8.2.3 Limb/Hand Configuration

BlackBerry device is not a limb-worn device and hasn't been tested for such a configuration.

As per Clause 6.1.4.9 in the IEC/EN 62209-2 standard:

"Additional studies remain needed for devising a representative method for evaluating SAR in the hand of hand-held devices. Future versions of this standard are intended to contain a test method based on scientific data and rationale. Annex J presents the currently available test procedure."

Clause J.2 of the IEC/EN 62209-2 states that testing for compliance for the exposure of the hand is not applicable for devices that are intended to being hand-held to enable use at the ear (see EN 62209-1) or worn on the body when transmitting.

In addition, BlackBerry device is not intended to be held in hand at a distance of larger than 200 mm from the head and body during normal use.

9.0 HIGH LEVEL EVALUATION

9.1 Maximum search

The maximum search is automatically performed after each coarse scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations.

9.2 Extrapolation

The extrapolation can be used in z-axis scans with automatic surface detection. The SAR values can be extrapolated to the inner phantom surface. The extrapolation distance is the sum of the probe sensor offset, the surface detection distance and the grid offset. The extrapolation is based on fourth order polynomial functions. The extrapolation is only available for SAR values.

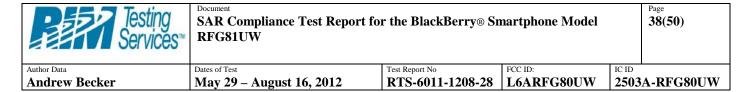
9.3 Boundary correction

The correction of the probe boundary effect in the vicinity of the phantom surface is done in the standard (worst case) evaluation; the boundary effect is reduced by different weights for the lowest measured points in the extrapolation routine. The result is a slight overestimation of the extrapolated SAR values (2% to 8%) depending on the SAR distribution and gradient. The advanced evaluation makes a full compensation of the boundary effect before doing the extrapolation. This is only possible for probes with specifications on the boundary effect.

9.4 Peak search for 1g and 10g cube averaged SAR

The 1g and 10g peak evaluations are only available for the predefined cube 5x5x7 / 7x7x9 scan. The routines are verified and optimized for the grid dimensions used in these cube measurements.

The measured volume of 30x30x30mm / 24x24x20 with 7.5mm / 4.0 resolution in (x,y) and 5mm / 2.5mm resolution in z axis amounts to 175 / 693 measurement points. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is then moved around until the highest averaged SAR is found. This last procedure is repeated for a 10 g cube. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.


Testing Services™	SAR Compliance Test Report for RFG81UW	r the BlackBerry® Sn	nartphone Model		Page 37(50)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	May 29 – August 16, 2012	RTS-6011-1208-28	L6ARFG80UW	2503	A-RFG80UW

10.0 MEASUREMENT UNCERTAINTY

DASY5 Uncertainty Budget According to IEEE 1528/2003 [1]											
	Uncert.	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)			
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}			
Measurement System											
Probe Calibration	±5.5 %	N	1	1	1	±5.5 %	±5.5 %	∞			
Axial Isotropy	$\pm 4.7 \%$	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9 \%$	$\pm 1.9 \%$	∞			
Hemispherical Isotropy	$\pm 9.6 \%$	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9 \%$	$\pm 3.9 \%$	∞			
Boundary Effects	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞			
Linearity	$\pm 4.7\%$	R	$\sqrt{3}$	1	1	$\pm 2.7\%$	$\pm 2.7\%$	∞			
System Detection Limits	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	$\pm 0.6 \%$	∞			
Readout Electronics	$\pm 0.3 \%$	N	1	1	1	$\pm 0.3 \%$	$\pm 0.3 \%$	∞			
Response Time	$\pm 0.8 \%$	R	$\sqrt{3}$	1	1	±0.5 %	$\pm 0.5 \%$	∞			
Integration Time	$\pm 2.6\%$	R	$\sqrt{3}$	1	1	$\pm 1.5 \%$	$\pm 1.5 \%$	∞			
RF Ambient Noise	$\pm 3.0 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞			
RF Ambient Reflections	$\pm 3.0 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞			
Probe Positioner	$\pm 0.4 \%$	R	$\sqrt{3}$	1	1	$\pm 0.2 \%$	$\pm 0.2 \%$	∞			
Probe Positioning	$\pm 2.9 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞			
Max. SAR Eval.	±1.0 %	R	$\sqrt{3}$	1	1	±0.6 %	$\pm 0.6 \%$	∞			
Test Sample Related											
Device Positioning	$\pm 2.9 \%$	N	1	1	1	$\pm 2.9 \%$	$\pm 2.9 \%$	145			
Device Holder	$\pm 3.6 \%$	N	1	1	1	±3.6 %	$\pm 3.6 \%$	5			
Power Drift	$\pm 5.0 \%$	R	$\sqrt{3}$	1	1	$\pm 2.9 \%$	$\pm 2.9 \%$	∞			
Phantom and Setup											
Phantom Uncertainty	$\pm 4.0 \%$	R	$\sqrt{3}$	1	1	$\pm 2.3 \%$	$\pm 2.3 \%$	∞			
Liquid Conductivity (target)	$\pm 5.0 \%$	R	$\sqrt{3}$	0.64	0.43	±1.8 %	$\pm 1.2 \%$	∞			
Liquid Conductivity (meas.)	$\pm 2.5\%$	N	1	0.64	0.43	±1.6 %	±1.1 %	∞			
Liquid Permittivity (target)	±5.0 % ±2.5 %	R	$\sqrt{3}$	0.6	0.49	$\pm 1.7 \%$	$\pm 1.4 \%$	∞			
Liquid Permittivity (meas.)	N	1	0.6	0.49	$\pm 1.5 \%$	$\pm 1.2 \%$	∞				
Combined Std. Uncertainty						$\pm 10.7 \%$	$\pm 10.5 \%$	387			
Expanded STD Uncertain	ty					$\pm 21.4\%$	$\pm 21.0\%$				

Table 10.0.1. Worst-Case uncertainty budget for DASY52 assessed according to IEEE P1528. Source: Schmid & Partner Engineering AG.

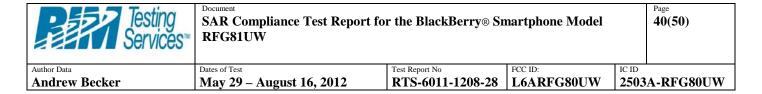
[1] The budget is valid for the frequency range 300MHz - 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

DASY5 Uncertainty Budget for the 3 - 6 GHz range											
	Uncert.	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)			
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}			
Measurement System	10 55 07	N	4	4	4	10 55 07	10 55 07				
Probe Calibration	±6.55 %		1	1	1	±6.55 %	±6.55 %	00			
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9 %	±1.9 %	∞			
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9 \%$	$\pm 3.9 \%$	∞			
Boundary Effects	$\pm 2.0 \%$	R	$\sqrt{3}$	1	1	±1.2 %	±1.2 %	∞			
Linearity	$\pm 4.7 \%$	R	$\sqrt{3}$	1	1	$\pm 2.7 \%$	±2.7%	∞			
System Detection Limits	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	±0.6 %	∞			
Readout Electronics	$\pm 0.3 \%$	N	1	1	1	±0.3 %	±0.3 %	∞			
Response Time	$\pm 0.8 \%$	R	$\sqrt{3}$	1	1	±0.5 %	±0.5 %	∞			
Integration Time	$\pm 2.6 \%$	R	$\sqrt{3}$	1	1	±1.5 %	±1.5 %	∞			
RF Ambient Noise	±3.0 %	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞			
RF Ambient Reflections	±3.0 %	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	00			
Probe Positioner	$\pm 0.8\%$	R	$\sqrt{3}$	1	1	±0.5 %	±0.5 %	00			
Probe Positioning	$\pm 9.9 \%$	R	$\sqrt{3}$	1	1	±5.7 %	±5.7 %	∞			
Max. SAR Eval.	±4.0%	R	√3	1	1	±2.3 %	±2.3 %	00			
Test Sample Related											
Device Positioning	±2.9 %	N	1	1	1	$\pm 2.9 \%$	$\pm 2.9 \%$	145			
Device Holder	$\pm 3.6 \%$	N	1	1	1	±3.6 %	±3.6 %	5			
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9 %	$\pm 2.9 \%$	∞			
Phantom and Setup											
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3 %	±2.3 %	∞			
Liquid Conductivity (target)	±5.0 %	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2 %	∞			
Liquid Conductivity (meas.)	±2.5 %	N	1	0.64	0.43	±1.6%	±1.1 %	∞			
Liquid Permittivity (target)	±5.0 %	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4 %	∞			
Liquid Permittivity (meas.)	N	1	0.6	0.49	±1.5 %	±1.2 %	00				
Combined Std. Uncertainty						±12.8 %	±12.6 %	330			
Expanded STD Uncertain	ty					$\pm 25.6\%$	$\pm 25.2 \%$				

Table 10.0.2. Worst-Case uncertainty budget for DASY52 assessed according to IEEE P1528. Source: Schmid & Partner Engineering AG.

Testing Services™	SAR Compliance Test Report fo RFG81UW	r the BlackBerry® Sn	nartphone Model	39(50)	
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	May 29 – August 16, 2012	RTS-6011-1208-28	L6ARFG80UW	2503A-RFG80UV	V

11.0 TEST RESULTS

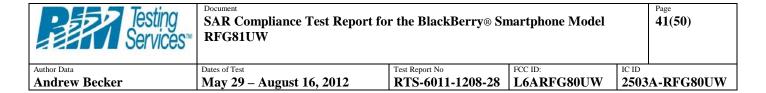

11.1 SAR Measurement results at highest power measured against the head

				Cond.	SAR	, average	d over 1 g
				Output		Power	
Test		f		Power	Measured	Drift	*Extrapolated
Position	Mode	(MHz)	Channel	(dBm	(W/kg)	(dB)	(W/kg)
Right	2-slots	824.2	128	30.2	0.72	-0.21	0.76
Head	GSM/EDGE	836.8	190	30.1	0.82	-0.27	0.87
Cheek	850 MHz	848.8	251	30.1	0.90	-0.01	0.90
Right	2-slots	824.2					
Head	GSM/EDGE	836.8	190	30.1	0.43	-0.11	0.43
15° Tilt	850 MHz	848.8					
Right	1-slot	824.2					
Head	GSM	836.8					
Cheek	850 MHz	848.8	251	32.0	0.71	0.12	0.71
Left	2-slots	824.2					
Head	GSM/EDGE	836.8	190	30.1	0.48	0.40	0.48
Cheek	850 MHz	848.8					
Left	2-slots	824.2					
Head	GSM/EDGE	836.8	190	30.1	0.30	-0.03	0.30
15° Tilt	15° Tilt 850 MHz						
Left	1-slot	824.2					
Head	GSM	836.8	190	33.3	0.46	-0.10	0.46
Cheek	850 MHz	848.8					

Table 11.1.1. SAR results for GSM/EDGE 850 head configuration

Note 1: If the power drift is ≤ -0.200 dB, the extrapolated SAR is calculated using the formula: Extrapolated SAR = (Measured SAR) * 10^(|Power Drift (dB)| / 10)

Note 2: Only Middle channel was tested when 1g Average SAR < 0.8 W/Kg or 3dB lower than the limit.

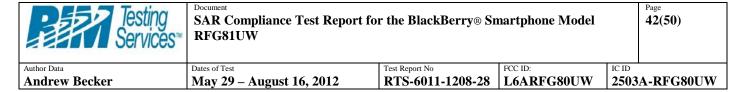


				Cond.	SAR	, averaged	l over 1 g
Test Position	Mode	f (MHz)	Channel	Output Power (dBm	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Right	WCDMA	826.4					
Head	FDD V	836.4	4182	24.5	0.71	-0.15	0.71
Cheek	850 MHz	846.6					
Right	WCDMA	826.4					
Head	FDD V	836.4	4182	24.5	0.37	0.00	0.37
15° Tilt	850 MHz	846.6					
Left	WCDMA	826.4					
Head	FDD V	836.4	4182	24.5	0.65	0.03	0.65
Cheek	850 MHz	846.6					
Left WCDMA	WCDMA	826.4					
Head	FDD V	836.4	4182	24.5	0.38	0.02	0.38
15° Tilt	850 MHz	846.6					

Table 11.1.2A. Rev 1 SAR results for WCDMA FDD V head configuration

				Cond.	SAR, averaged over 1 g			
Test Position	Mode	f (MHz)	Channel	Output Power (dBm	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)	
Right	WCDMA	826.4						
Head	FDD V	836.4	4182	24.5	0.66	-0.07	0.66	
Cheek	850 MHz	846.6						
Left	WCDMA FDD V	826.4						
Head		836.4	4182	24.5	0.63	-0.35	0.68	
Cheek	850 MHz	846.6						

Table 11.1.2B. Rev 2 SAR results for WCDMA FDD V head configuration

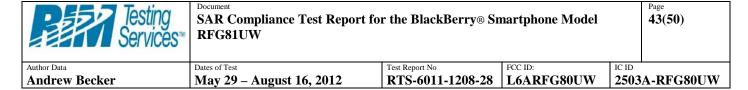


				Cond.	SAR	, average	d over 1 g
Test Position	Mode	f (MHz)	Channel	Output Power (dBm	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Right	2-slots	1850.2					
Head	GSM/EDGE	1880.0	661	26.8	0.18	0.13	0.18
Cheek	1900 MHz	1909.8					
Right	2-slots	1850.2					
Head	GSM/EDGE	1880.0	661	26.8	0.06	0.17	0.06
15° Tilt	1900 MHz	1909.8					
Right	1-slot	1850.2					
Head	GSM	1880.0	661	30.2	0.14	0.01	0.14
Cheek	1900 MHz	1909.8					
Left	2-slots	1850.2					
Head	GSM/EDGE	1880.0	661	26.8	0.24	0.06	0.24
Cheek	1900 MHz	1909.8					
Left	2-slots	1850.2					
Head	GSM/EDGE	1880.0	661	26.8	0.08	-0.09	0.08
15° Tilt	1900 MHz	1909.8					
Left	1-slot	1850.2					
Head	GSM	1880.0	661	30.2	0.28	0.11	0.28
Cheek	1900 MHz	1909.8					

Table 11.1.3. SAR results for GSM/EDGE 1900 head configuration

				Cond.	SAI	R, averaged	over 1 g
Test Position	Mode	f (MHz)	Channel	Output Power (dBm)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Right	WCDMA	1852.4					
Head	FDD II	1880.0	9400	24.0	0.25	0.18	0.25
Cheek	1900 MHz	1907.6					
Right	WCDMA	1852.4					
Head	FDD II	1880.0	9400	24.0	0.15	0.10	0.15
15° Tilt	1900 MHz	1907.6					
Left	WCDMA	1852.4					
Head	FDD II	1880.0	9400	24.0	0.49	-0.03	0.49
Cheek	1900 MHz	1907.6					
Left	Left WCDMA Head FDD II	1852.4					
		1880.0	9400	24.0	0.20	0.06	0.20
15° Tilt	1900 MHz	1907.6					

Table 11.1.4A. Rev 1 SAR results for WCDMA FDD II head configuration



				<i>a</i> ,	SAF	R, averaged	over 1 g
Test Position	Mode	f (MHz)	Channel	Cond. Output Power (dBm)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Right	WCDMA	1852.4					
Head	FDD II	1880.0	9400	24.0	0.46	-0.19	0.46
Cheek	1900 MHz	1907.6					
Left	WCDMA	1852.4					
Head	FDD II	1880.0	9400	24.0	0.59	-0.17	0.59
Cheek	1900 MHz	1907.6					

Table 11.1.4B. Rev 2 SAR results for WCDMA FDD II head configuration

				Cond.		Measured SAR	(W/kg)
Test Position	Mode	f (MHz)	Channel	Output Power (dBm)	Power Drift (dB)	*Extrapolated Averaged over 1 g	*Extrapolated Averaged over 10 g
Right	802.11 b	2412	1				
Head	2450	2437	6	15.2	0.36	0.34	0.16
Cheek	MHz	2462	11				
Right	802.11 b	2412	1				
Head	2450	2437	6	15.2	-0.29	0.32	0.15
15° Tilt	MHz	2462	11				
Left	802.11 b	2412	1				
Head	2450	2437	6	15.2	0.00	0.41	0.19
Cheek	MHz	2462	11				
Left	Left 802.11 b	2412	1				
Head 2450	2437	6	15.2	0.03	0.47	0.22	
15° Tilt	MHz	2462	11				

Table 11.1.5. SAR results for WiFi/WLAN/802.11b head configuration

				Cond.		Measured SAR ((W/kg)
Test Position	Mode	f (MHz)	Channel	Output Power (dBm)	Power Drift (dB)	*Extrapolated Averaged over 1 g	*Extrapolated Averaged over 10 g
	802.11 a	5180	36	13.8	-0.07	0.60	0.21
Right	5180-5805	5260	52	12.6	0.57	0.36	0.13
Head Cheek	MHz	5520	104	12.7	0.24	0.36	0.14
		5745	149	12.8	0.17	0.54	0.20
		5 180	36	13.8	-0.15	0.59	0.21
		5240	48				
		5260	52	12.6	0.03	0.41	0.16
Right 802.11 a	5320	64					
	5520	104	12.7	-0.05	0.42	0.17	
Head	5180-5805	5580	116				
15° Tilt	MHz	5620	124				
		5680	136				
		5745	149	12.8	-0.14	0.56	0.22
		5785	157				
		5825	165				
		5180	36	13.8	0.10	0.52	0.19
Left	802.11 a	5260	52	12.6	0.07	0.43	0.16
Head Cheek	5180-5805 MHz	5520	104	12.7	-0.04	0.44	0.16
		5745	149	12.8	-0.16	0.74	0.25
		5180	36	13.8	-0.03	0.72	0.26
		5240	48				
		5260	52	12.6	-0.02	0.56	0.20
		5320	64				
Left	802.11 a	5520	104	12.7	-0.02	0.61	0.21
Head	5180-5805	5580	116				
15° Tilt	MHz	5620	124				
		5680	136				
		5745	149	12.8	-0.01	0.82	0.27
		5785	157	12.6	-0.07	0.95	0.30
		5825	165	12.7	-0.09	0.97	0.31

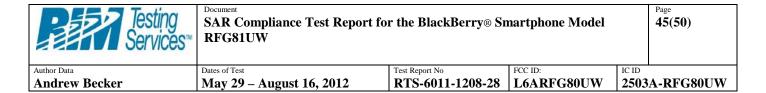
Table 11.1.6. SAR results for WiFi/WLAN/802.11a head configuration

Note 3: Only the highest output power channel per sub band was tested when 1g Average SAR < 0.8 W/Kg or 3dB lower than the limit.

Testing Services™	SAR Compliance Test Report for RFG81UW	r the BlackBerry® Sn	nartphone Model		Page 44(50)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	May 29 – August 16, 2012	-RFG80UW			

11.2 SAR measurement results at highest power measured against the body using accessories

						Conducted	SAR, a	veraged ov	er 1 g
Mode	f (MHz)	Channel	Test Position	Spacing (cm)/ Holster	Side	Output Power (dBm)	Measured (W/kg)	Power Drift (dB)	*Extrapol ated (W/kg)
	824.2	128		1.0	Back	30.2	0.98	-0.04	0.98
	836.8	190		1.0	Back	30.1	1.04	0.01	1.04
	848.8	251		1.0	Back	30.1	0.97	-0.03	0.97
	824.2	128	D 1	1.0	Front	30.2	0.93	0.04	0.93
2-slots	836.8	190	Body Mobile Hotspot Mode	1.0	Front	30.1	0.96	0.06	0.96
GPRS	GPRS 848.8	251		1.0	Front	30.1	0.95	-0.04	0.95
850	836.8	190		1.0	Left	30.1	0.76	-0.12	0.76
MHz	824.2	128		1.0	Right	30.2	0.83	0.00	0.83
	836.8	190		1.0	Right	30.1	0.85	0.13	0.85
	848.8	251		1.0	Right	30.1	0.83	0.06	0.83
	836.8	190		1.0	Bottom	30.1	0.15	0.05	0.15
	836.8	190		1.0	Back+HS	30.1	0.91	0.03	0.91
	824.2	128		1.5	Back	30.2	0.82	0.04	0.82
2-slots	836.8	190	Body-	1.5	Back	30.1	0.84	-0.13	0.84
GPRS 850	848.8	251	worn	1.5	Back	30.1	0.79	-0.06	0.79
MHz	836.8	190		Holster	Back	30.1	0.75	0.07	0.75
	836.8	190		Holster	Front	30.1	0.74	-0.01	0.74

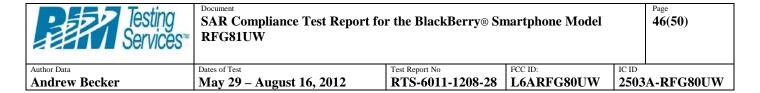

Table 11.2.1. SAR results for GPRS 850 body-worn and with Mobile Hot Spot mode configurations

Note 1: If the power drift is ≤ -0.200 dB, the extrapolated SAR is calculated using the formula: Extrapolated SAR = (Measured SAR) * $10^{(|Power Drift (dB)| / 10)}$

Note 2: Only Middle channel was tested when 1g Average SAR < 0.8 W/Kg or 3dB lower than the limit.

Note 3: Device was tested with 15 mm RIM recommended separation distance to allow typical after-market holster to be used. RIM body-worn holsters with belt-clip have been designed to maintain ~ 20 mm separation distance from body.

Note 4: Any side of the phone that is further than 2.5 cm away from the transmitting antenna can be exempted from testing.

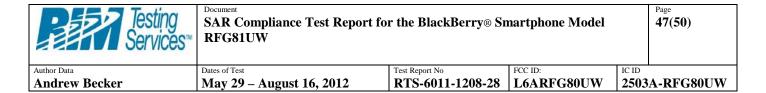


						Conducted	SAR, a	veraged o	ver 1 g
Mode	f (MHz)	Channel	Test Position	Spacing (cm)/ Holster	Side	Output Power (dBm)	Measured (W/kg)	Power Drift (dB)	*Extrapol ated (W/kg)
	826.4	4132		1.0	Back	24.3	0.94	-0.01	0.94
	836.4	4182	Body Mobile	1.0	Back	24.5	0.91	0.02	0.91
	846.6	4233		1.0	Back	24.4	1.03	0.02	1.03
WCDMA	826.4	4132		1.0	Front	24.3	0.85	0.00	0.85
FDD V	836.4	4182		1.0	Front	24.5	0.90	-0.03	0.90
850 MHz	846.6	4233	Hotspot	1.0	Front	24.4	0.94	0.03	0.94
	836.4	4182	Mode	1.0	Left	24.5	0.68	0.00	0.68
	836.4	4182		1.0	Right	24.5	0.73	-0.18	0.73
	836.4	4182		1.0	Bottom	24.5	0.12	-0.10	0.12
	836.4	4182		1.5	Back	24.5	0.74	-0.17	0.74
WCDMA	836.4	4182	Body-	1.5	Front	24.5	0.71	-0.02	0.71
FDD V	836.4	4182	worn	Holster	Back	24.5	0.68	-0.11	0.68
850 MHz	836.4	4182		Holster	Front	24.5	0.68	0.12	0.68
	836.4	4182		1.5	Back +HS	24.5	0.59	-0.07	0.59

Table 11.2.2A. Rev 1 SAR results for WCDMA FDD V body-worn and Mobile Hot Spot configurations

						Conducted	SAR, averaged over 1 g		
Mode	f (MHz)	Channel	Test Position	Spacing (cm)/ Holster	Side	Output Power (dBm)	Measured (W/kg)	Power Drift (dB)	*Extrapo lated (W/kg)
WCDMA FDD V 850 MHz	846.6	4233	Body Mobile Hotspot Mode	1.0	Back	24.4	0.86	-0.04	0.86
WCDMA FDD V 850 MHz	836.4	4182	Body- worn	1.5	Back	24.5	0.70	0.03	0.70

Table 11.2.2B. Rev 2 SAR results for WCDMA FDD V body-worn and Mobile Hot Spot configurations

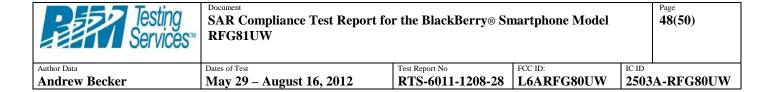


			Test Position			Conducted	SAR, a	veraged o	ver 1 g
Mode	f (MHz)	Channel		Spacing (cm)/ Holster	Side	Output Power (dBm)	Measured (W/kg)	Power Drift (dB)	*Extrapol ated (W/kg)
	1850.2			1.0	Back				
	1880.0	661	Body Mobile	1.0	Back	26.8	0.44	-0.12	0.44
2.1.4	1909.8			1.0	Back				
2-slots GPRS	1880.0	661		1.0	Front	26.8	0.24	-0.06	0.24
1900 MHz	1880.0	661		1.0	Left	26.8	0.14	-0.12	0.14
1900 WIIIZ	1880.0	661	Hotspot Mode	1.0	Right	26.8	0.06	-0.04	0.06
	1880.0	661	Mode	1.0	Bottom	26.8	0.16	-0.18	0.16
	1880.0	661		1.0	Back+HS	26.8	0.50	-0.06	0.50
2-slots	1880.0	661	Body-	1.5	Back	26.8	0.20	-0.07	0.20
GPRS	1880.0	661	worn	Holster	Back	26.8	0.11	0.22	0.11
1900 MHz	1880.0	661		Holster	Front	26.8	0.07	0.15	0.07

Table 11.2.3. SAR results for GPRS 1900 body-worn and Mobile Hot Spot configurations

			Test Position			Conducted	SAR, a	veraged o	ver 1 g
Mode	f (MHz)	Channel		Spacing (cm)/ Holster	Side	Output Power (dBm)	Measured (W/kg)	Power Drift (dB)	*Extrapol ated (W/kg)
	1852.4	9262		1.0	Back	24.0	0.96	-0.04	0.96
	1880.0	9400		1.0	Back	24.0	0.98	-0.06	0.98
WCDMA	1907.6	9538	Body	1.0	Back	24.0	0.98	0.00	0.98
WCDMA	1880.0	9400		1.0	Front	24.0	0.77	0.01	0.77
FDD II 1900	1880.0	9400	Mobile	1.0	Left	24.0	0.36	0.04	0.36
MHz	1880.0	9400	Hotspot	1.0	Right	24.0	0.11	-0.12	0.11
WILIZ	1852.4	9262	Mode	1.0	Bottom	24.0	1.14	-0.01	1.14
	1880.0	9400		1.0	Bottom	24.0	1.23	0.06	1.23
	1907.6	9538		1.0	Bottom	24.0	1.39	0.03	1.39
WCDMA	1880.0	9400	D - J	1.5	Back	24.0	0.39	-0.08	0.39
FDD II	1880.0	9400	Body-	1.5	Front	24.0	0.34	0.04	0.34
1900	1880.0	9400	worn	Holster	Back	24.0	0.30	-0.02	0.30
MHz	1880.0	9400		1.5	Back+HS	24.0	0.40	0.08	0.40

Table 11.2.4A. Rev 1 SAR results for WCDMA FDD II body-worn and Mobile Hot Spot configurations



						Conducted	SAR, a	veraged o	ver 1 g
Mode	f (MHz)	Channel	Test Position	Spacing (cm)/ Holster	Side	Output Power (dBm)	Measured (W/kg)	Power Drift (dB)	*Extrapol ated (W/kg)
	1852.4			1.0	Back				
	1880.0			1.0	Back				
WCDMA	1907.6		Body	1.0	Back				
WCDMA FDD II	1880.0			1.0	Front				
1900	1880.0		Mobile	1.0	Left				
MHz	1880.0		Hotspot	1.0	Right				
WILIZ	1852.4		Mode	1.0	Bottom				
	1880.0			1.0	Bottom				
	1907.6	9538		1.0	Bottom	24.0	0.42	-0.11	0.42
WCDMA	1880.0			1.5	Back				
FDD II	1880.0		Body-	1.5	Front				
1900	1880.0		worn	Holster	Back				
MHz	1880.0	9400		1.5	Back+HS	24.0	0.47	-0.09	0.47

Table 11.2.4B. Rev 2 SAR results for WCDMA FDD II body-worn and Mobile Hot Spot configurations

						Conducted	Measur	red SAR (W/kg)
Mode	f (MHz)	Channel	Test Position	Spacing (cm)/ Holster	Side	Output Power (dBm)	Power Drift (dB)	*Extrapolated Averaged over 1 g
	2450	6	D 1	1.0	Back	15.2	0.12	0.16
802.11b/	2450	6	Body	1.0	Front	15.2	0.39	0.09
WLAN	2450	6	Mobile	1.0	Left	15.2	0.39	0.02
2450	2450	6	Hotspot	1.0	Right	15.2	-0.07	0.04
MHz	2450	6	Mode	1.0	Top	15.2	0.06	0.08
	2450	6	Wiode	1.0	Back+HS	15.2	0.09	0.18
802.11b/	2450	6		1.5	Back	15.2	0.00	0.07
WLAN 2450	2450	6	Body-	Holster	Back	15.2	0.14	0.06
MHz	2450	6	worn	Hoster	Front	15.2	-0.02	0.03

Table 11.2.5. SAR results for WiFi/WLAN/802.11b body-worn and Mobile Hot Spot configurations

				Conducted	Measu	red SAR (W/kg)
Mode	Freq. (MHz)	Channel	Holster type / device configuration	Output Power (dBm	Power Drift (dB)	*Extrapolated Averaged over 1 g
	5180	36	No Holster, back side 15 mm away	13.8	0.07	0.08
	5260	52	No Holster, back side 15 mm away	12.6	0.02	0.12
802.11a	5520	104	No Holster, back side 15 mm away	12.7	0.17	0.15
5180 - 5805	5745	149	No Holster, back side 15 mm away	12.8	-0.26	0.15
MHz	5745	149	No Holster, front side 15mm away	12.8	-0.01	0.12
	5745	149	Vertical Holster, back side facing	12.8	0.02	0.15
	5745	149	No Holster, HS, back side 15mm away	12.8	-0.27	0.12

Table 11.2.6. SAR results for WiFi/WLAN/802.11a body-worn configurations

Note 5: Only the highest output power channel per sub band was tested when 1g Average SAR < 0.8 W/Kg or 3dB lower than the limit.

SAR Compliance Test Report for the BlackBerry® Smartphone Model RFG81UW

IC ID

49(50)

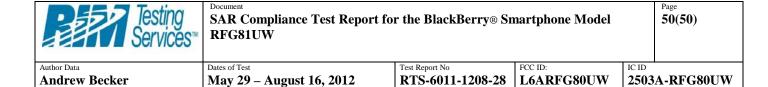
Andrew Becker

Dates of Test

May 29 – August 16, 2012

Test Report No

RTS-6011-1208-28


L6ARFG80UW

FCC ID:

2503A-RFG80UW

12.0 **REFERENCES**

- [1] IEEE 1528-2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [2] EN 50360: 2001, Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz - 3 GHz)
- [3] ICNIRP, International Commission on Non-Ionizing Radiation Protection (2009), Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz).
- [4] Council Recommendation 1999/519/EC of July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)
- [5] IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave.
- [6] IEEE C95.1-2005, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.
- [7] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.
- [8] FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation.
- [9] DASY 5 DOSIMETRIC ASSESSMENT SYSTEM SOFTWARE MANUAL, Schmid & Partner Engineering AG.
- [10] Health Canada, Safety Code 6, 2009: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency range from 3 kHz to 300 GHz.
- [11] RSS-102, issue 4-2010: Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields.
- [12] IEC 62209-1, First Edition-2005: Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- [13] FCC OET SAR Measurement Requirements for 3 6 GHz, October, 2006.
- [14] FCC OET SAR Measurement Procedures for 802.11 a/b/g Transmitters, May, 2007.
- [15] FCC OET SAR Evaluation Considerations for Handsets with Multiple Transmitters & Antennas, September, 2008.
- [16] FCC OET SAR Test Reduction Procedure for GSM/GPRS/EDGE, December, 2008.

[17] FCC OET SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz – 3 GHz, January, 2007.

- [18] FCC OET RF Exposure Procedures for Mobile and Portable Devices, and Equipment Authorization Policies, November, 2009.
- [19] FCC OET SAR Measurements Procedures for 3G Devices, October, 2007.
- [20] Dipole Requirements for SAR System Validation and Verification, Novmeber, 2009.
- [21] IEC 62209-2, Edition 1.0-2010: Human exposure to radio frequency fields from hand-held and bodymount wireless communication devices Human Models, instrumentation, and procedures part 2 procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
- [22] FCC OET SAR Evaluation Procedure for Portable Devices with Wireless Router capability.
- [23] IEC/EN 62311-2008: Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz 300 GHz).