	esting ervices™	Annex B to Hearing Aid Compatil Report for the BlackBerry® Smart		Page 1(25)
Author Data	Dates of Test	Report No		FCC ID
Daoud Attayi	Feb 17-	-22, June 28-July 11, 2012 RTS-5992-1207-35		L6ARFE70UW

Annex B: Probe and dipole description and calibration certificates

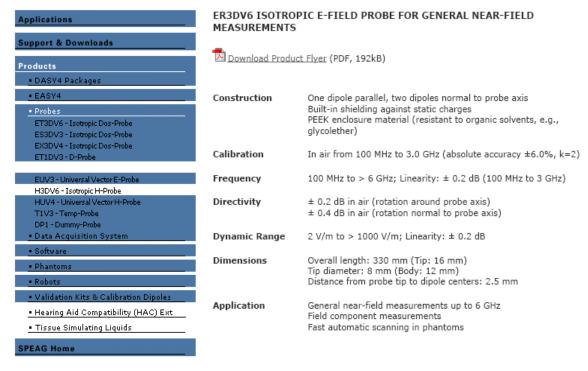
B.1 Probe, measurement chain description, specification and calibration certificate

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFE71UW

Page

2(25)

Author Data


Daoud Attayi

Dates of Test Feb 17-22, June 28-July 11, 2012 Report No RTS-5992-1207-35

L6ARFE70UW

DASY Dosimetric Assessment System by Schmid & Partner Engineering AG

http://www.dasy4.com/er3.htm

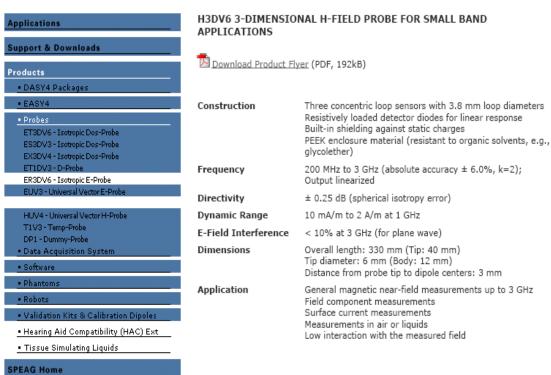
Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFE71UW

Page

3(25)

Author Data

Daoud Attayi

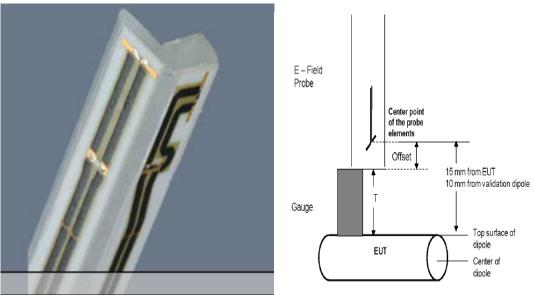

Feb 17-22, June 28-July 11, 2012

Report No RTS-5992-1207-35

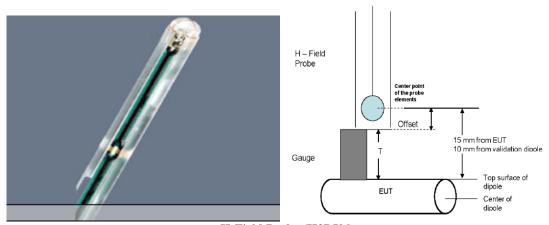
L6ARFE70UW

DASY Dosimetric Assessment System by Schmid & Partner Engineering AG

http://www.dasy4.com/h3d.htm


	esting ervices™	Annex B to Hearing Aid Compatibility RF Emissions Test		Page 4(25)
Author Data	Dates of Test	Report No		FCC ID
Daoud Attayi	Feb 17-2	22, June 28-July 11, 2012	RTS-5992-1207-35	L6ARFE70UW

All measurements were performed to the nearest element point as per the C63.19 standard. Offset distances were entered in the DASY5 software so that the measurement was to the nearest element.


Figures 1 and 2, provided by the manufacturer, illustrate detail of the probe tip and its dimensions.

ER3DV6 E-Field probe: The distances from the probe tip to the closest points on the dipole sensors are 1.45mm for X and Y and 1.25mm for Z. From the probe tip to the center of the sensors is 2.5mm.

H3DV6 H-Field probe: The distance from the probe tip to the closest point of the X, Y and Z loop sensors is 1.1mm. From the probe tip to the center of the sensor is 3.00mm.

E-Field Probe (ER3DV6)

H-Field Probe (H3DV6)

Page

5(25)

Author Data

Daoud Attavi

Feb 17-22, June 28-July 11, 2012

RTS-5992-1207-35

Report No

L6ARFE70UW

The following information is from the system manufacturer user manual describing the process chain:

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$
(20.1)

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes : $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$

 ${
m H-field probes}$: $H_i = \sqrt{V_i} \cdot rac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$

with V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

 $\mu V/(V/m)^2$ for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$
(20.2)

The measurement / integration time per point is > 500 ms, as per the system manufacturer:

The time response of the field probes has been assessed by exposing the probe to a well-controlled field producing signals larger than HAC E- and H-fields of class M4. The signal response time is evaluated as the time required by the system to reach 90% of the expected final value after an on/off switch of the power source with an integration time of 500 ms and a probe response time of <5 ms. In the current implementation, DASY4 waits longer than 100 ms after having reached the grid point before starting a measurement, i.e., the response time uncertainty is negligible.

If the device under test does not emit a CW signal, the integration time applied to measure the electric field at a specific point may introduce additional uncertainties due to the discretization. The tolerances for the different systems had the worst-case of 2.6%.

Documer

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFE71UW

Page

6(25)

Author Data

Daoud Attayi

Dates of Test

Feb 17-22, June 28-July 11, 2012

Report No

С

RTS-5992-1207-35

L6ARFE70UW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RTS (RIM Testing Services)

Certificate No: ER3-2286_Jan12

CALIBRATION CERTIFICATE

Object ER3DV6 - SN:2286

Calibration procedure(s) QA CAL-02.v6, QA CAL-25.v4

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date: January 9, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.) Scheduled Calibration	
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372) Apr-12	
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372) Apr-12	
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369) Apr-12	
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367) Apr-12	
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370) Apr-12	
Reference Probe ER3DV6	SN: 2328	11-Oct-11 (No. ER3-2328_Oct11) Oct-12	
DAE4	SN: 789	6-Apr-11 (No. DAE4-789_Apr11) Apr-12	
Secondary Standards	ID	Check Date (in house) Scheduled Check	
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11) In house check: Oct-12	

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	Ally.
			Issued: January 12, 2012
This calibration certificate	shall not be reproduced except in fu	ill without written approval of the labo	oratory.

Certificate No: ER3-2286_Jan12

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFE71UW

Page

7(25)

Author Data

Daoud Attayi

Dates of Test

Feb 17-22, June 28-July 11, 2012

Report No

RTS-5992-1207-35

L6ARFE70UW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle Information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 8 = 0 for XY sensors and 8 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ER3-2286_Jan12 Page 2 of 10

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFE71UW

Page

8(25)

Daoud Attayi

Feb 17-22, June 28-July 11, 2012

Report No **RTS-5992-1207-35**

L6ARFE70UW

ER3DV6 - SN:2286

January 9, 2012

Probe ER3DV6

SN:2286

Manufactured: Calibrated: September 18, 2002 January 9, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ER3-2286_Jan12

Page 3 of 10

Page

9(25)

Author Data **Daoud Attayi**

Feb 17-22, June 28-July 11, 2012

Report No

RTS-5992-1207-35

L6ARFE70UW

ER3DV6- SN:2286

January 9, 2012

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2286

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²)	2.19	1.48	1.51	± 10.1 %
DCP (mV) ^B	98.8	100.1	98.9	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^t (k=2)
10000	CW	0.00	Х	0.00	0.00	1.00	107.7	±3.0 %
			Y	0.00	0.00	1.00	107.0	
			Z	0.00	0.00	1.00	93.5	
10011	UMTS-FDD (WCDMA)	3.40	Х	3.54	66.3	18.9	116.1	±0.7 %
			Υ	3.38	65.4	18.2	114.7	
			Z	3.58	66.5	18.9	138.6	
10021	GSM-FDD (TDMA, GMSK)	9.20	Х	16.11	100.0	28.4	105.3	±1.4 %
			Υ	4.39	79.8	20.9	135.3	
			Z	5.62	83.0	23.2	123.8	
10039	CDMA2000 (1xRTT, RC1)	5.30	Х	5.37	67.3	20.2	118.3	±1.4 %
			Υ	4.87	65.7	19.1	113.6	
			Z	5.10	66.4	19.5	137.9	
10081	CDMA2000 (1xRTT, RC3)	4.60	Х	4.41	66.3	19.5	115.0	±0.9 %
			Υ	4.07	64.9	18.5	112.0	
			Z	4.30	65.9	19.1	135.1	
10151	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	7.73	х	8.16	72.5	24.6	117.6	±4.1 %
			Υ	6.86	68.2	21.9	111.8	
			Z	7.47	69.9	22.7	138.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ER3-2286_Jan12

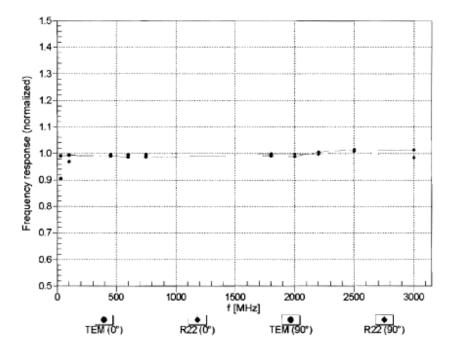
Numerical linearization parameter: uncertainty not required.
Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

Page

10(25)

Author Data Daoud Attayi

Feb 17-22, June 28-July 11, 2012


Report No RTS-5992-1207-35

L6ARFE70UW

ER3DV6-SN:2286

January 9, 2012

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ER3-2286_Jan12

Page 5 of 10

Documer

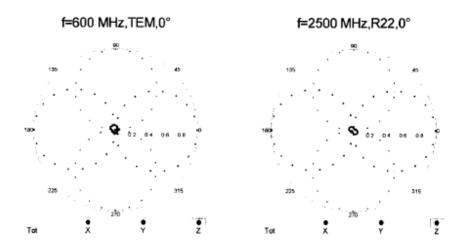
Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFE71UW

Page

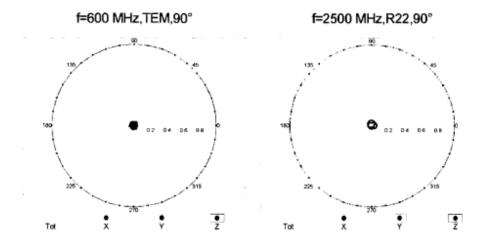
11(25)

Daoud Attayi

Feb 17-22, June 28-July 11, 2012


RTS-5992-1207-35

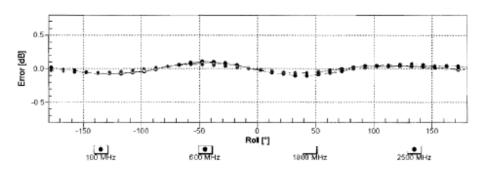
L6ARFE70UW


ER3DV6-SN:2286

January 9, 2012

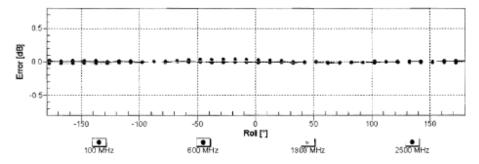
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$


Certificate No: ER3-2286_Jan12

Page 6 of 10

	esting ervices™		Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFE71UW	
Author Data	Dates of Test	Report No		FCC ID
Daoud Attayi	Feb 17-	-22, June 28-July 11, 2012 RTS-5992-1207-35		L6ARFE70UW


ER3DV6- SN:2286 January 9, 2012

Receiving Pattern (ϕ), $9 = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (\$\phi\$), \$\text{9} = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Page

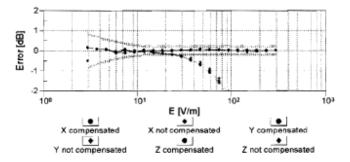
13(25)

Author Data

Daoud Attayi

Feb 17-22, June 28-July 11, 2012

Report No RTS-5992-1207-35


L6ARFE70UW

ER3DV6- SN:2286

January 9, 2012

Dynamic Range f(E-field) (TEM cell, f = 900 MHz)

10³
10³
10³
10³
10³
10³
10³
10³
10³
E [V/m]

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

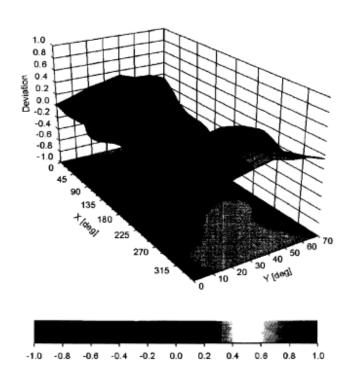
Page

14(25)

Author Data **Daoud Attayi**

Feb 17-22, June 28-July 11, 2012

Report No RTS-5992-1207-35


L6ARFE70UW

ER3DV6- SN:2286

January 9, 2012

Deviation from Isotropy in Air

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ER3-2286_Jan12

Page 9 of 10

Page

15(25)

Author Data

Daoud Attayi

Feb 17-22, June 28-July 11, 2012

Report No **RTS-5992-1207-35**

L6ARFE70UW

ER3DV6- SN:2286

January 9, 2012

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2286

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (*)	-7.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	8 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm

Certificate No: ER3-2286_Jan12

Page

16(25)

Author Data **Daoud Attayi**

Feb 17-22, June 28-July 11, 2012

Report No

RTS-5992-1207-35

L6ARFE70UW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst s Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: H3-6105 Nov11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

QA CAL-03.v6, QA CAL-25.v4 Calibration procedure(s)

Calibration procedure for H-field probes optimized for close near field

evaluations in air

RTS (RIM Testing Services)

November 8, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID .	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372) Apr-12	
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372) Apr-12	
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369) Apr-12	
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367) Apr-12	
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370) Apr-12	
Reference Probe H3DV6	SN: 6182	11-Oct-11 (No. H3-6182_Oct11)	Oct-12
DAE4	SN: 789	6-Apr-11 (No. DAE4-789_Apr11)	Apr-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11) In house check: Oct-12	

Function Signatu Calibrated by: Laboratory Techn Approved by: Issued: November 11, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: H3-6105 Nov11

Page 1 of 10

Page

17(25)

Author Data **Daoud Attayi**

Feb 17-22, June 28-July 11, 2012

Report No

RTS-5992-1207-35

L6ARFE70UW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Service suisse d'étalonnage С Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space DCP diode compression point

crest factor (1/duty_cycle) of the RF signal CF A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 3 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz*, December 2005.

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- X,Y,Z(f)_a0a1a2= X,Y,Z_a0a1a2* frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the X_a0a1a2 (no uncertainty required).

Certificate No: H3-6105 Nov11

Page 2 of 10

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFE71UW

Page

18(25)

Daoud Attayi

Feb 17-22, June 28-July 11, 2012

Report No

RTS-5992-1207-35

L6ARFE70UW

H3DV6 - SN:6105

November 8, 2011

Probe H3DV6

SN:6105

Manufactured: Calibrated:

January 5, 2002 November 8, 2011

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: H3-6105_Nov11

Page 3 of 10

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFE71UW

Page

19(25)

Author Data **Daoud Attayi**

Feb 17-22, June 28-July 11, 2012

Report No. RTS-5992-1207-35

L6ARFE70UW

H3DV6-SN:6105

November 8, 2011

DASY/EASY - Parameters of Probe: H3DV6 - SN:6105

Basic Calibration Parameters

		Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (A/m / √(mV))	a0	2.92E-003	2.70E-003	2.98E-003	± 5.1 %
Norm (A/m / √(mV))	a1	3.94E-005	2.79E-005	-6.42E-005	± 5.1 %
Norm (A/m / √(mV))	a2	-8.65E-006	5.42E-006	4.39E-006	± 5.1 %
DCP (mV) ⁸		93.1	94.1	91.5	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^t (k=2)
10000	CW	0.00	х	0.00	0.00	1.00	117.6	±2.7 %
			Y	0.00	0.00	1.00	94.8	
			Z	0.00	0.00	1.00	99.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Numerical linearization parameter: uncertainty not required.
 Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFE71UW

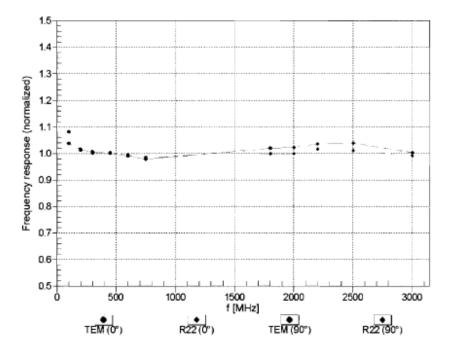
Page

20(25)

Daoud Attayi

Feb 17-22, June 28-July 11, 2012

Report No RTS-5992-1207-35


L6ARFE70UW

H3DV6-SN:6105

November 8, 2011

Frequency Response of H-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of H-field: ± 6.3% (k=2)

Testing Services

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFE71UW

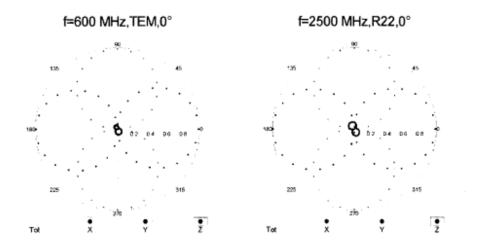
Page

21(25)

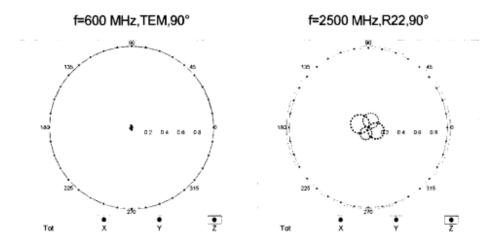
Author Data

Daoud Attayi

Dates of Test


Feb 17-22, June 28-July 11, 2012

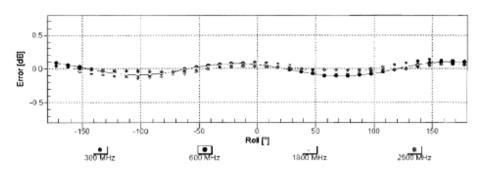
Report No **RTS-5992-1207-35**


L6ARFE70UW

H3DV6- SN:6105 November 8, 2011

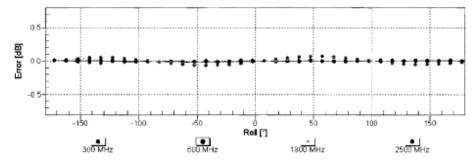
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (\$\phi\$), \$\partial = 90°


Certificate No: H3-6105_Nov11

Page 6 of 10

	esting ervices™	Annex B to Hearing Aid Compatibili Report for the BlackBerry® Smartph		Page 22(25)
Author Data	Dates of Test		Report No	FCC ID
Daoud Attayi	Feb 17-22, June 28-July 11, 2012		RTS-5992-1207-35	L6ARFE70UW


H3DV6- SN:6105 November 8, 2011

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (\$\phi\$), \$\theta = 90°

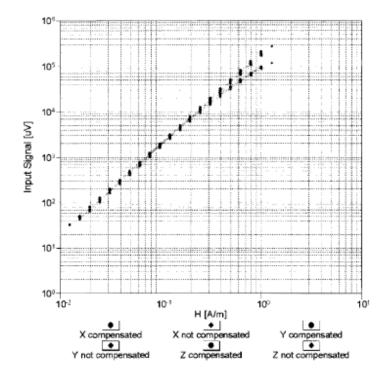
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

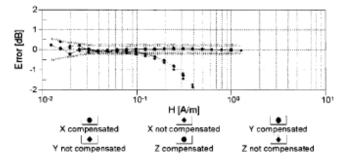
Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFE71UW

Page

23(25)

Daoud Attayi


Feb 17-22, June 28-July 11, 2012


Report No **RTS-5992-1207-35**

L6ARFE70UW

H3DV6- SN:6105 November 8, 2011

Dynamic Range f(H-field) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: H3-6105_Nov11 Page 8 of 10

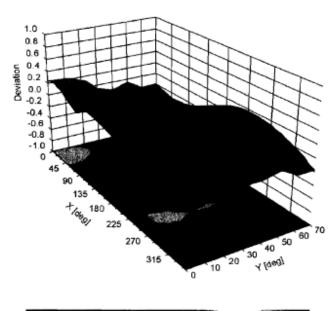
Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFE71UW Page

24(25)

Author Data **Daoud Attayi**

Feb 17-22, June 28-July 11, 2012

Report No RTS-5992-1207-35


L6ARFE70UW

H3DV6- SN:6105

November 8, 2011

Deviation from Isotropy in Air

Error (¢, 9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: H3-6105_Nov11

Page 9 of 10

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFE71UW

Page

25(25)

Daoud Attayi

Feb 17-22, June 28-July 11, 2012

Report No **RTS-5992-1207-35**

L6ARFE70UW

H3DV6- SN:6105

November 8, 2011

DASY/EASY - Parameters of Probe: H3DV6 - SN:6105

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	-62.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	20 mm
Tip Diameter	6 mm
Probe Tip to Sensor X Calibration Point	3 mm
Probe Tip to Sensor Y Calibration Point	3 mm
Probe Tip to Sensor Z Calibration Point	3 mm

Certificate No: H3-6105_Nov11 Page 10 of 10