SAR Compliance Test Report for the BlackBerry® Smartphone Model RFE71UW 1(50) Andrew Becker Dates of Test July 05 – July 30, 2012 Fax: Test Report No **RTS-5992-1207-37** L6ARFE70UW 2503A-RFE70UW # **SAR Compliance Test Report** **Testing Lab:** RIM Testing Services **Applicant:** Research In Motion Limited 440 Phillip Street Waterloo, Ontario Canada N2L 5R9 Phone: 519-888-7465 519-746-0189 Waterloo, Ontario Canada N2L 3W8 Phone: 519-888-7465 Fax: 519-888-6906 295 Phillip Street Fax: 519-888-6906 Web site: www.rim.com **Statement of** RIM Testing Services declares under its sole responsibility that the product to which this declaration relates, is in conformity with the appropriate RF examples. to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Device Category: This BlackBerry® Smartphone is a portable device, designed to be used in direct contact with the user's head, hand and to be carried in approved accessories when carried on the user's body. **RF exposure environment:**This device has been shown to be in compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in OET Bulletin 65 Supplement C (Edition 01-01), FCC 96-326, IEEE Std. C95.1-2005, Health Canada's Safety Code 6, as reproduced in RSS-102 issue 4-2010 and has been tested in accordance with the measurement procedures specified in FCC OET Procedures, OET Bulletin 65 Supplement C (Edition 01-01), ANSI/IEEE Std. C95.3-2002, IEEE 1528-2003, IEC 62209-1-2005, IEC 62209 - 2-2010 and Health Canada's Safety Code 6. Andrew Becker SAR & HAC Compliance Specialist (Author of the Test Report) Daoud Attayi Team Lead: Safety, SAR & HAC Compliance (Verification and responsible of the Test Report) Masud S. Attayi Manager, Regulatory Compliance (Approval for the Test Report) RTS is accredited according to EN ISO/IEC 17025 by: 592 Document SAR Compliance Test Report for the BlackBerry® Smartphone Model RFE71UW Page **2(50)** Author Data Andrew Becker Dates of Test July 05 – July 30, 2012 Test Report No **RTS-5992-1207-37** FCC ID: L6ARFE70UW IC ID **2503A-RFE70UW** # **CONTENTS** | 1.0 | | OPERATING CONFIGURATIONS AND TEST CONDITIONS | 4 | |------|------|--|----| | | 1.1 | PICTURE OF DEVICE | 4 | | | 1.2 | ANTENNA DESCRIPTION | 4 | | | 1.3 | DEVICE DESCRIPTION | 4 | | | 1.4 | BODY WORN ACCESSORIES (HOLSTERS) | | | | 1.5 | HEADSET | | | | 1.6 | BATTERY | | | | 1.7 | PROCEDURE USED TO ESTABLISH TEST SIGNAL | | | | 1.8 | HIGHLIGHTS OF THE FCC OET SAR MEASUREMENT REQUIREMENTS | | | | 1.0 | 1.8.1 SAR MEASUREMENT PROCEDURES FOR 802.11 B/G/N TRANSMITTER | | | | | 1.8.2 SAR MEASUREMENT REQUIREMENTS FOR BLUETOOTH | | | | | 1.8.3 SAR MEASUREMENT PROCEDURES FOR 3G DEVICES | | | | | 1.8.4 SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER CAPABI | | | | | 1.8.4 SAK EVALUATION PROCEDURES FOR FORTABLE DEVICES WITH WIRELESS ROUTER CAFABI | | | | 1.9 | HIGHLIGHTS OF THE FCC OET SAR EVALUATION CONSIDERATIONS FOR HANDSETS WITH MULTII | | | | 1.9 | TRANSMITTERS/ ANTENNAS & GSM/GPRS/EDGE PROCEDURE | | | | | | | | 2.0 | DEC | 1.9.1 SIMULTANEOUS TRANSMISSION ANALYSIS | | | 2.0 | | SCRIPTION OF THE TEST EQUIPMENT | | | | 2.1 | SAR MEASUREMENT SYSTEM | | | | | 2.1.1 EQUIPMENT LIST | | | | 2.2 | DESCRIPTION OF THE TEST SETUP | | | | | 2.2.1 DEVICE AND BASE STATION SIMULATOR SETUP | | | | | 2.2.2 DASY SETUP | | | 3.0 | | ELECTRIC FIELD PROBE CALIBRATION | | | | 3.1 | PROBE SPECIFICATIONS | | | | 3.2 | PROBE CALIBRATION AND MEASUREMENT UNCERTAINTY | 24 | | 4.0 | | SAR MEASUREMENT SYSTEM VERIFICATION | 25 | | | 4.1 | SYSTEM ACCURACY VERIFICATION FOR HEAD ADJACENT USE | 25 | | 5.0 | | PHANTOM DESCRIPTION | 26 | | 6.0 | | TISSUE DIELECTRIC PROPERTIES | 27 | | | 6.1 | COMPOSITION OF TISSUE SIMULANT | 27 | | | | 6.1.1 EQUIPMENT | 27 | | | | 6.1.2 PREPARATION PROCEDURE | 28 | | | 6.2 | ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID | | | | | 6.2.2 TEST CONFIGURATION | | | | | 6.2.3 PROCEDURE | | | 7.0 | | SAR SAFETY LIMITS | | | 8.0 | | DEVICE POSITIONING | | | 0.0 | 8.1 | DEVICE HOLDER FOR SAM TWIN PHANTOM | | | | 8.2 | DESCRIPTION OF THE TEST POSITIONING. | | | | 0.2 | 8.2.1 TEST POSITIONS OF DEVICE RELATIVE TO HEAD | | | | | 8.2.1.1 DEFINITION OF THE "CHEEK" POSITION | | | | | 8.2.1.2 DEFINITION OF THE CHEEK TOSITION | | | | | 8.2.1 BODY-WORN CONFIGURATION | | | | | 8.2.3 LIMB/HAND CONFIGURATION | | | 9.0 | | HIGH LEVEL EVALUATION | | | 9.0 | 0.1 | | | | | 9.1 | MAXIMUM SEARCH | | | | 9.2 | EXTRAPOLATION | | | | 9.3 | BOUNDARY CORRECTION | | | | 9.4 | PEAK SEARCH FOR 1G AND 10G CUBE AVERAGED SAR | | | 10.0 | | MEASUREMENT UNCERTAINTY | | | 11.0 | | TEST RESULTS | | | | 11.1 | SAR MEASUREMENT RESULTS AT HIGHEST POWER MEASURED AGAINST THE HEAD | 38 | | | 11.2 | | | | | | ACCESSORIES | | | 12.0 | | REFERENCES | 49 | | SAR Compliance Test Report for the BlackBerry Sartphone Model RFE71UW | | erry® | Page 3(50) | | | |---|---------------|----------------|-------------------|------------|---------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | APPENDIX A: SAR DISTRIBUTION COMPARISON FOR ACCURACY VERIFICATION APPENDIX B:: SAR DISTRIBUTION PLOTS - HEAD CONFIGURATION APPENDIX C1: SAR DISTRIBUTION PLOTS - BODY-WORN CONFIGURATION APPENDIX C2: SAR DISTRIBUTION PLOTS - MOBILE HOT SPOT APPENDIX D: PROBE & DIPOLE CALIBRATION DATA APPENDIX E: PHOTOGRAPHS | | Testing
Pervices™ | SAR Compliance Test F
Smartphone Model RFI | | erry® | Page 4(50) | |---------------|----------------------|---|------------------|------------|-------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | # 1.0 OPERATING CONFIGURATIONS AND TEST CONDITIONS # 1.1 Picture of Device Please refer to Appendix E. Figure 1.1.1 BlackBerry Smartphone # 1.2 Antenna description | Type | Internal fixed antenna | |---------------|-----------------------------------| | Location | Back bottom centre (main licensed | | Location | transmitters) | | Configuration | Internal fixed antenna | Table 1.2.1. Antenna description # 1.3 Device description | D : M 11 | RFE71UW | | | | | |--------------------------------------|--|--------------------|-----------------------|---------------|--| | Device Model | | | | | | | FCC ID | L6ARFE70UW | | | | | | | Radiated: 2A2114F7 (Rev3), 2A41842F (Rev4) | | | | | | PIN | Conducted: 2A2115 | 570 (Rev3), 2A418. | 3A0 (Rev4) | | | | Hardware Rev | Rev 3, Rev 4 | | | | | | Software Version | 7.1.0.557 Bundle 10 | 695; 7.1.0.586 Bun | dle 1749; 7.1.0.621 l | Bundle 1827 | | | Prototype or Production Unit | Production | | | | | | | 1-slot | 2-slots | WCDMA / | WCDMA / | | | | GSM 850 | EDGE/GPRS | UMTS FDD V | UMTS FDD IV | | | Mode(s) of Operation | GSM 1900 | 850/1900 | (850) | (1700) | | | Nominal Maximum conducted | 33.0 | 31.0 | 24.0 | 22.5 | | | RF Output Power (dBm) | 29.0 | 28.0 | 24.0 | 23.5 | | | Tolerance in Power Setting on | ± 0.5 | ± 0.5 | ± 0.5 | ± 0.5 | | | centre channel (dB) | ± 0.3 | ± 0.5 | ± 0.5 | ± 0.3 | | | Duty Cycle | 1:8 2:8 1:1 1:1 | | | | | | Transmitting Frequency | 824.2 - 848.8 | 824.2 - 848.8 | 824.6 – 846.6 | 1712.4-1752.6 | | | Range (MHz) | 1850.2 - 1909.8 | 1850.2 - 1909.8 | 824.0 - 840.0 | 1/12.4-1/32.0 | | | | WCDMA / | | | | | | | UMTS FDD II | 802.11b | 802.11g | 802.11n | | | Mode(s) of Operation | (1900) | | | | | | Nominal Maximum conducted | 24.0 | 18.00 | 15.0 | 15.0 | | | RF Output Power (dBm) | 24.0 | 18.00 | 13.0 | 13.0 | | | Tolerance in Power Setting on | ± 0.5 | ± 0.5 | ± 0.5 | ± 0.5 | | | centre channel (dB) | ± 0.5 | ± 0.3 | ± 0.3 | ± 0.3 | | | Duty Cycle | 1:1 | 1:1 | 1:1 | 1:1 | | | Transmitting Frequency | 1852.4 – 1907.6 | 2412-2462 | 2412-2462 | 2402-2483 | | | Range (MHz) | 1034.4 - 1307.0 | 2412-2402 | Z41Z-Z4UZ | 2402-2403 | | | I JOOTING | | | | Page 5(50) | | |---------------|---------------|----------------|------------------|-------------------|---------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | | Mode(s) of Operation | Bluetooth | * NFC | | |---|-----------|-------|--| | Nominal Maximum conducted RF Output Power (dBm) | 10.3 | N/A | | | Tolerance in Power Setting on centre channel (dB) | N/A | N/A | | | Duty Cycle | N/A | N/A | | | Transmitting Frequency
Range (MHz) | 2402-2483 | 13.56 | | Table 1.3.1. Test device description ^{*} SAR measurements on NFC haven't been conducted, since it is very low power and frequency magnetic field transceiver. SAR probes measure higher frequency/power electric field. | PATS S | Testing
Pervices™ | SAR Compliance Test F
Smartphone Model RFI | | erry® | Page 6(50) | |----------------------|----------------------|---|------------------|------------|-------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | # 1.4 Body worn accessories (holsters) The device has been tested with the first holster listed below. The holsters have been designed with the intended device orientation being with the LCD facing the belt clip
only. Proper positioning is vital for protection of the LCD display, and to help maximize the battery life of the device. The device can also be placed in the holster with the backside facing the belt clip. Body SAR measurements were carried out with the worst-case configuration front LCD side and backside towards the belt clip. | Number | Holster Type | Part Number | Separation
distance
(mm) | |--------|------------------------------|---------------|--------------------------------| | 1 | Holster, Black Leather | HDW-46595-001 | 20 | | 2* | Holster, Black Leather Rev C | HDW-46595-001 | 22 | Table 1.4.1. Body worn holster *Note: both holsters have identical design, except for different separation distances Please refer to Appendix E. Figure 1.4.1. Body-worn holster ## 1.5 Headset The device was tested with and without the following headset model numbers. - 1) HDW-14322-003 - 2) HDW-15766-005 - 3) HDW-44306-001 #### 1.6 Battery The device was tested with the following Lithium Ion Battery pack. 1) BAT-44582-001 # 1.7 Procedure used to establish test signal The device was put into test mode for SAR measurements by placing a voice call from a Rohde & Schwarz CMU 200 Communications Test Instrument. The power control level was set to command the device to transmit at full power at the specified frequency. Other parameters include: Channel type = full rate, discontinuous transmission off, frequency hopping off. | PAS S | esting
ervices™ | • | 110 110 | | Page 7(50) | |----------------------|--------------------|----------------|------------------|------------|-------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 - | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | # 1.8 Highlights of the FCC OET SAR Measurement Requirements # 1.8.1 SAR Measurement Procedures for 802.11 b/g/n Transmitter - Maintained dielectric parameter uncertainty to \pm 5.0% of the target value. - Liquid depth from SAM ERP or flat phantom was kept at 15 cm. - Probe Requirement: Used SPEAG probe model ET3DV6/ES3DV3 for 2.45 GHz SAR testing specs are outlined below: | Probe tip to sensor center | 2.7 mm / 2.0 mm | |-------------------------------|-------------------------| | Probe tip diameter is | 6.8 mm / 4.0 mm | | Probe calibration uncertainty | < 15 % for f = 2.45 GHz | | Probe calibration range | ± 100 MHz | Table 1.8.1. Probe specification requirements - System accuracy validation was conducted within \pm 100 MHz of device mid-band frequency and results were within \pm 10 % of the manufacturers target value for each band. - Zoom Scan: The following settings were used for the validation and measurement. | Closet Measurement Point to Phantom | 4.0 mm | |-------------------------------------|--------------------------| | Zoom Scan (x,y) Resolution | 7.5 mm | | Zoom Scan (z) Resolution | 5.0 mm | | Zoom Scan Volume | Minimum 30 x 30 x 30 mm* | Table 1.8.2. Zoom Scan requirement *Note: "Auto-extend zoom scan when maxima on boundry" is enabled, which can result in the zoom scan dimensions varying between 30x30x30 to 60x60x30. - Frequency Channel Configuration: 802.11 b/g modes are tested on "default test channels" 1, 6 and 11. - For each frequency band, testing at higher rates and higher modulations is not required when the maximum average output power for each of these configurations is less than ½ dB higher than those measured at the lowest data rate. - SAR is not required for 802.11g/n channels when the maximum average output power is less than $\frac{1}{4}$ dB higher than that measured on the corresponding 802.11b channels. - SAR test was conducted on each "default test channel" and each band with the worst case modulation and highest duty cycle. - Conducted power measurements: | PATS S | Testing
Services™ | SAR Compliance Test F
Smartphone Model RFI | Page 8(50) | | | |----------------------|----------------------|---|-------------------|---------|---------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | uly 30, 2012 RTS-5992-1207-37 L6ARFE70UW | | | 2503A-RFE70UW | | 802.111 | @ 1Mb | ps | 802.11g (| @ 6 | Mbps | | 802.11 | n @ | 9 6.5 Mbps | | | |----------------|----------------------|-----|-------------|------------|-------------------------|-----|-------------------|------|----------------------|--|-------------------| | Chan | Cond
Powe
(dBn | er | Chan | | Cond.
Power
(dBm) | | Power | | Chan | | Cond. Power (dBm) | | 1 | 17.8 | 3 | 1 | 1 14.1 | | 1 | | 14.0 | | | | | 6 | 18.0 |) | 6 | | 15.1 | | 6 | | 14.9 | | | | 11 | 18.1 | | 11 | | 15.2 | | 11 | | 15.0 | | | | | | | 802.11g | | | | | | 802.11b | | | | Data | | | Channel 1 | 1 | Dat | a | | | Channel 11 | | | | Rate
(Mbps) | | od. | Cond. Power | er | Rat
(Mb) | | Mod. | (| Cond. Power
(dBm) | | | | 6 | BP | SK | 15.2 | | 1 | | BPSK | | 18.1 | | | | 9 | BP | SK | 14.7 | | 2 | | DQPSK | | 17.9 | | | | 12 | QP | SK | 13.0 | | 5.5 | 5 | CCK | | 17.3 | | | | 18 | QP | SK | 12.2 | | 11 | | CCK | | 16.8 | | | | 24 | 16-0 |)AM | 10.2 | | 22 | | CCK | | 18.1 | | | | 36 | 16-0 | QAM | 9.4 | | | | | | | | | | 48 | 64-0 |)AM | 7.2 | | | | | | | | | | 54 | 64-0 |)AM | 7.1 | | | | | | | | | | | | | | | | | 80 |)2.1 | 1 n | | | | Data K | Rate (Mb | ns) | Mod | d | | | | | el 11 | | | | Duta | ` . | Po) | | | | | Cond. Power (dBm) | | | | | | | 6.5 | | MCS | | | | | 15.0 | | | | | | 13 | | MCS | | | | | 12.9 | | | | | | 19.5 MCS2 | | | | 12.2 | | | | | | | | | 26 MCS3 | | | 10.2 | | | | | | | | | | 39 MCS4 | | | 9.5 | | | | | | | | | | 52 MCS5 | | | 7.5 | | | | | | | | | | 58.5 | | MCS | | | 7.4 | | | | | | | | 65 | | MCS | S 7 | | 6.4 | | | | | | $Table\ 1.8.3.\ 802.11\ b/g/n\ modulation\ type/data\ rate\ vs.\ conducted\ power$ | PAS S | Testing
ervices™ | SAR Compliance Test R
Smartphone Model RFR | • | erry® | Page 9 (50) | |----------------------|---------------------|---|----------------|---------|--------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 - | uly 30, 2012 RTS-5992-1207-37 L6ARFE70UW | | | 2503A-RFE70UW | | 802.111 | @ 1Mbps | 802.11g | 802.11g @ 6Mbps | | | 802.11n @ 6.5 Mbps | | | | | | | |----------------|-------------------------|--------------------|-----------------|-------------------------|------|--------------------|------|-------------------|--|--|--|-------------------| | Chan | Cond.
Power
(dBm) | Chan | | Cond.
Power
(dBm) | | Power | | Power | | | | Cond. Power (dBm) | | 1 | 17.8 | 1 | 14.1 | | | 1 | | 14.0 | | | | | | 6 | 18.0 | 6 | | 15.1 | | 6 | | 14.9 | | | | | | 11 | 18.1 | 11 | | 15.2 | | 11 | | 15.0 | | | | | | | | 802.11g | | | | | | 802.11b | | | | | | Data | | Channel 1 | 1 | Dat | a | | | Channel 11 | | | | | | Rate
(Mbps) | Mod. | Cond. Pow
(dBm) | er | Rat
(Mb) | | Mod. | (| Cond. Power (dBm) | | | | | | 6 | BPSK | 15.2 | | 1 | | BPSK | | 18.1 | | | | | | 9 | BPSK | 14.7 | 2 | | | DQPSK | | 17.9 | | | | | | 12 | QPSK | 13.0 | | 5.5 | ; | CCK | | 17.3 | | | | | | 18 | QPSK | 12.2 | | 11 | | CCK | | 16.8 | | | | | | 24 | 16-QAM | 10.2 | | 22 | | CCK | | 18.1 | | | | | | 36 | 16-QAM | 9.4 | | | | | | | | | | | | 48 | 64-QAM | 7.2 | | | | | | | | | | | | 54 | 64-QAM | 7.1 | | | | | | | | | | | | | | | | | | 80 |)2.1 | 1 n | | | | | | Doto I | Data (Mhna) | Mo | J | | | Cha | anne | el 11 | | | | | | Data r | Rate (Mbps) | WIO | u. | | | Cond. I | Powe | er (dBm) | | | | | | | 6.5 | MC | S0 | | | 15.0 | | | | | | | | | 13 | MC | S1 | | | | 12.9 |) | | | | | | | 19.5 | MC | S2 | | 12.2 | | 2 | | | | | | | | 26 | MC | MCS3 | | | 10.2 | 2 | | | | | | | | 39 MCS4 | | | | 9.5 | | | | | | | | | | 52 | MC | MCS5 7.5 | | | | | | | | | | | | 58.5 | MC | S6 | | | | 7.4 | | | | | | | | 65 | MC | S 7 | | | | 6.4 | | | | | | Table 1.8.4. 802.11 b/g/n modulation type/data rate vs. conducted power with Mobile Hot Spot mode enabled | PA S | esting
ervices™ | SAR Compliance Test R Smartphone Model RFI | - | erry® | Page
10(50) | |----------------------|--------------------|--|--|---------|----------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 - | July 30 , 2012 | uly 30, 2012 RTS-5992-1207-37 L6ARFE70UW | | | # 1.8.2 SAR Measurement Requirements for Bluetooth | Channe
l | Freq (MHz) | Mode | Conducted
Transmit Power
(dBm) | |-------------|------------|------|--------------------------------------| | 0 | 2402 | DH5 | 9.5 | | 39 | 2441 | DH5 | 10.3 | | 78 | 2480 | DH5 | 10.2 | Table 1.8.5. Bluetooth peak conducted power measurements | Channe
1 | Freq
(MHz) | Mode | Conducted
Transmit Power
(dBm) | |-------------|---------------|------|--------------------------------------| | 0 | 2402 | DH5 | 9.5 | | 39 | 2441 | DH5 | 10.3 | | 78 | 2480 | DH5 | 10.2 | Table 1.8.6. Bluetooth peak conducted power measurements with Mobile Hot Spot mode enabled # 1.8.3 SAR Measurement Procedures for 3G Devices # WCDMA Handsets # **Output Power Verification** - Maximum output power is verified on the High, Middle and Low channels using 12.2 kbps RMC, 12.2 kbps AMR with a 3.4 kbps SRB (signal radio bearer) with TPC (transmit power control) set to all "1's" for WCDMA/HSPA or applying the required inner loop. - \bullet For Release 6 HSPA, output power is measured according to requirements for HS-DPCCH Sub-test 1-4/1-5 #### **Head SAR Measurements** SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than ¼ dB higher than that
measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signalling radio bearer) using the exposure configuration that results in the highest SAR for that RF channel in 12.2 RMC. | PAS S | esting
ervices™ | SAR Compliance Test R
Smartphone Model RFF | 1 | erry® | Page
11(50) | |---------------|--------------------|---|------------------|------------|----------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 - | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | #### **Body SAR Measurements** SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits configured to all "1s". SAR for other spreading codes and multiple DPDCH_n, when supported by the DUT, are not required when the maximum average outputs of each RF channel, for each spreading code and DPDCH_n configuration, are less than $\frac{1}{4}$ dB higher than those measured in 12.2 RMC. Otherwise, SAR is measured on the maximum output channel with an applicable RMC configuration for the corresponding spreading code or DPDCH_n using the exposure configuration that results in the highest SAR with 12.2 RMC. #### Handsets with HSPA Body SAR is not required for handsets with HSPA capabilities, when the maximum average output of each RF channel with HSPA active is less than ¼ dB higher than that measured in 12.2 kbps RMC without HSPA Otherwise, SAR for HSPA is measured using FRC (fixed reference channel) in the body exposure configuration that results in the highest SAR for that RF channel in 12.2kbps RMC. | | Band | F | FDD V (850 |)) | F | FDD IV (1700) | | | | |------------|--|--------|------------|---------|---------|---------------|-------------|--|--| | | Channel | 4132 | 4182 | 4233 | 1312 | 1413 | 1513 | | | | | Freq (MHz) | 826.4 | 836.4 | 846.6 | 1712.4 | 1732.6 | 1752.6 | | | | Mode | Subtest | Max | burst aver | aged | Max bur | st averageo | l conducted | | | | Mode | | conduc | cted power | r (dBm) | | power (dB | m) | | | | Rel99 | 12.2 kbps RMC | 24.1 | 24.1 | 24.1 | 22.8 | 23.9 | 23.7 | | | | Rel99 | 12.2 kbps, Voice,
AMR, SRB 3.4 kbps | | | 22.8 | 23.8 | 23.7 | | | | | Rel5 HSDPA | 1 | 24.1 | 24.1 | 24.0 | 22.8 | 23.8 | 23.7 | | | | Rel5 HSDPA | 2 | 24.1 | 24.1 | 24.0 | 22.8 | 23.8 | 23.8 | | | | Rel5 HSDPA | 3 | 23.7 | 23.6 | 23.5 | 22.4 | 23.6 | 23.4 | | | | Rel5 HSDPA | 4 | 21.1 | 21.4 | 21.1 | 20.1 | 21.2 | 21.0 | | | | Rel6 HSUPA | 1 | 24.2 | 24.1 | 24.1 | 22.8 | 23.9 | 23.7 | | | | Rel6 HSUPA | 2 | 24.2 | 24.1 | 24.1 | 22.8 | 23.9 | 23.7 | | | | Rel6 HSUPA | 3 | 23.7 | 23.6 | 23.6 | 22.4 | 23.4 | 23.3 | | | | Rel6 HSUPA | 4 | 24.1 | 24.0 | 24.0 | 22.7 | 23.8 | 23.6 | | | | Rel6 HSUPA | 5 | 22.0 | 21.8 | 21.9 | 20.5 | 21.9 | 21.4 | | | | | Band | F | DD II (190 | 0) | | | | | | | | Channel | 9262 | 9400 | 9538 | | | | | | | | Freq (MHz) | 1852.4 | 1880.0 | 1907.6 | | | | | | | Mode | Subtest | | burst aver | | | | | | | | Rel99 | 12.2 kbps RMC | 24.0 | 23.9 | 23.9 | | | | | | | Rel99 | 12.2 kbps, Voice,
AMR, SRB 3.4 kbps | 24.1 | 24.0 | 24.0 | | | | | | | Rel5 HSDPA | 1 | 24.1 | 24.0 | 24.0 | | | | | | | Rel5 HSDPA | 2 | 24.1 | 24.0 | 24.0 | | | | | | | Rel5 HSDPA | 3 | 23.7 | 23.6 | 23.5 | | | | | | | Rel5 HSDPA | 4 | 21.2 | 21.2 | 21.4 | | | | | | | | SAR Compliance Test Report for the BlackBerry® Smartphone Model RFE71UW | | | | | Page 12(50) | | | |--|---|---------|----------------|------|----------------------------|-------------|---------------------|----------------------| | Author Data Andrew Becker Dates of Test July 05 – July 30, | | | July 30 . 2012 | | Test Report No RTS-5992-12 | 207-37 | FCC ID: L6ARFE70UW | 2503A-RFE70UW | | | | oury or | July 00 , 2012 | I | 1115 0772 11 | -0. 0. | 201222210011 | 20 0011 111 27 00 11 | | | Rel6 HSUPA | 1 | | 24.2 | 24.0 | 24.0 | | | | | Rel6 HSUPA | 2 | | 24.1 | 24.1 | 23.9 | | | | | Rel6 HSUPA | 3 | | 23.7 | 23.6 | 23.5 | | | | | Rel6 HSUPA | 4 | - | 21.5 | 21.3 | 21.3 | | | | | Rel6 HSUPA | 5 | - | 21.4 | 21.3 | 21.3 | | | Table 1.8.7. WCDMA (Rel99) / HSPA conducted power measurements | | Band | F | FDD V (850 |)) | F | DD IV (17 | 700) | | |------------|--|--------|------------|------------|-------------|-----------|-------------|--| | | Channel | 4132 | 4182 | 4233 | 1312 | 1413 | 1513 | | | | Freq (MHz) | 826.4 | 836.4 | 846.6 | 1712.4 | 1732.6 | 1752.6 | | | Mode | Subtest | _ | burst aver | l | | l . | l conducted | | | Mode | Subtest | conduc | cted power | (dBm) | power (dBm) | | | | | Rel99 | 12.2 kbps RMC | 24.2 | 24.1 | 24.1 | 16.7 | 17.8 | 17.6 | | | Rel99 | 12.2 kbps, Voice,
AMR, SRB 3.4 kbps | 24.1 | 24.1 | 24.1 | 16.6 | 17.7 | 17.6 | | | Rel5 HSDPA | 1 | 24.1 | 24.0 | 24.0 | 16.6 | 17.7 | 17.5 | | | Rel5 HSDPA | 2 | | | | | | | | | Rel5 HSDPA | 3 | | | | | | | | | Rel5 HSDPA | 4 | | | | | | | | | Rel6 HSUPA | 1 | 24.2 | 24.1 | 24.1 | 16.7 | 17.8 | 17.6 | | | Rel6 HSUPA | 2 | | | | | | | | | Rel6 HSUPA | 3 | | | | | | | | | Rel6 HSUPA | 4 | | | | | | | | | Rel6 HSUPA | 5 | 22.1 | 21.8 | 21.9 | 14.8 | 15.6 | 15.8 | | | | Band | F | DD II (190 | 0) | | | | | | | Channel | 9262 | 9400 | 9538 | | | | | | | Freq (MHz) | 1852.4 | 1880.0 | 1907.6 | | | | | | Mode | Subtest | | burst aver | 0 | | | | | | Rel99 | 12.2 kbps RMC | 20.0 | 19.7 | 19.8 | | | | | | Rel99 | 12.2 kbps, Voice,
AMR, SRB 3.4 kbps | 19.9 | 19.7 | 19.7 | | | | | | Rel5 HSDPA | 1 | 19.8 | 19.6 | 19.6 | | | | | | Rel5 HSDPA | 2 | | | | | | | | | Rel5 HSDPA | 3 | | | | | | | | | Rel5 HSDPA | 4 | | | | | | | | | Rel6 HSUPA | 1 | 19.9 | 19.7 | 19.7 | | | | | | Rel6 HSUPA | 2 | | | | | | | | | Rel6 HSUPA | 3 | | | | | | | | | Rel6 HSUPA | 4 | | | | | | | | | Rel6 HSUPA | 5 | 18.1 | 17.8 | 17.8 | | | | | Table 1.8.8. WCDMA (Rel99) / HSPA conducted power measurements with Mobile Hot Spot mode enabled | PA S | Testing
Pervices™ | SAR Compliance Test F
Smartphone Model RFI | Page
13(50) | | | |----------------------|----------------------|---|------------------|------------|---------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | # 1.8.4 SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities Standalone personal wireless routers and handsets with hotspot mode capabilities must address hand-held and other near-body exposure conditions to show SAR compliance. The following procedures are applicable when the overall device length and width are ≥ 9 cm x 5 cm respectively. A test separation of 10 mm is required. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25 mm from that surface or edge, for the data modes, wireless technologies and frequency bands supporting hotspot mode. The standalone SAR results in each device test orientation must be analyzed for the applicable hotspot mode simultaneous transmission configurations to determine SAR test exclusion and volume scan requirements | PA S | Testing
Services™ | SAR Compliance Test F
Smartphone Model RFI | • | erry® | Page
14(50) | | |---------------|----------------------|---|------------------------|-------|----------------|--| | Author Data | Dates of Test | | Test Report No FCC ID: | | | | | Andrew Becker | July 05 – | uly 30, 2012 RTS-5992-1207-37 L6ARFE70UW | | | 2503A-RFE70UW | | # 1.9 Highlights of the FCC OET SAR Evaluation Considerations for Handsets with Multiple Transmitters/ Antennas & GSM/GPRS/EDGE Procedure #### **Unlicensed Transmitters** When there is simultaneous transmission - Stand-alone SAR not required when - output $\leq 2 \cdot PRef$ and antenna is > 5.0 cm from other antennas - output \leq PRef and antenna is > 2.5 cm from other antennas - the other antenna(s), which are < 2.5 cm away, has an output ≤ PRef OR max 1g SAR < 1.2 W/kg ### Otherwise stand-alone SAR is required - test SAR on highest output channel for each wireless mode and exposure condition - if SAR for highest output channel is > 50% of SAR limit, evaluate all channels according to normal procedure ### Simultaneous Transmission SAR not required: Unlicensed only - when stand-alone 1-g SAR is not required and antenna is > 5 cm from other antennas - when the other antenna(s), which are < 2.5 cm away, has an output \le PRef OR max 1g SAR < 1.2 W/kg #### Licensed & Unlicensed - \bullet when the sum of the 1-g SAR is < 1.6 W/kg for each pair of simultaneous transmitting antennas. - when the ratio of SAR to peak SAR separation distance of simultaneous transmitting antenna pair is < 0.3 # Simultaneous Transmission SAR required: Licensed & Unlicensed • antenna pairs with SAR to antenna separation ratio ≥ 0.3 ; test is only required for the configuration that results in the highest SAR in standalone configuration for each wireless mode and exposure condition. | | 2.45 | 5.15 - 5.35 | 5.47 - 5.85 | GHz | | | | | |---------------|---|-------------|-------------|-----|--|--|--|--| | P_{Ref} | 12 | 6 | 5 | mW | | | | | | Device output | Device output power should be rounded to the nearest mW to compare with values specified in this table. | | | | | | | | **Table 1.9.1. Output Power Thresholds for Unlicensed Transmitters** | | Testing
Services™ | SAR Compliance Test Smartphone Model RE | • | serry® | Page 15(50) | |---------------|----------------------|---|------------------|------------|--------------------| |
Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | Figure 1.9.1. Back view of device showing closest distance between antenna pairs # 1.9.1 Simultaneous Transmission Analysis | Simultaneous Transmission Combination | Head | Body-
Worn
Accessory | Mobile
Hotspot | |---|------|----------------------------|-------------------| | WCDMA/GSM voice + WiFi 2.4 GHz + BT | Yes | Yes | Yes | | WCDMA/GSM voice + WiFi 2.4 GHz | Yes | Yes | Yes | | WCDMA/GSM voice + BT | Yes | Yes | Yes | | HSPA/EDGE/GPRS data + WiFi 2.4 GHz + BT | Yes | Yes | Yes | | HSPA/EDGE/GPRS data + WiFi 2.4 GHz | Yes | Yes | Yes | | HSPA/EDGE/GPRS data + BT | Yes | Yes | Yes | | WiFi 2.4 GHz + BT | Yes | Yes | Yes | Table 1.9.2. Simultaneous Transmission Scenarios # Note: - 1) WCDMA/HSPA/GSM share the same transmitting antenna and cannot transmit simultaneously. - 2) BT Stand-alone SAR test is not required and value of zero is considered for SAR summation. | 計 | Testing
Services™ | SAR Compliance Test F Smartphone Model RFI | - | erry® | Page
16(50) | |---------------|----------------------|--|----------------|---------|----------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | uly 30, 2012 RTS-5992-1207-37 L6ARFE70UW | | | 2503A-RFE70UW | | | Con Con and a | Licensed Transr | nitters | WiFi 2.4 G | Maximum | |------|-------------------|-----------------|---------------------------|---------------------------|-------------------------------------| | Test | Configuratio
n | Band | 1 g avg.
SAR
(w/kg) | 1 g avg.
SAR
(W/kg) | Summation
1 g avg.
SAR (W/kg) | | | Right Cheek | WCDMA band V | 1.04 | 0.36 | 1.40 | | | Right Cheek | WCDMA band IV | 1.17 | 0.36 | 1.53 | | | Right Cheek | WCDMA band II | 0.66 | 0.36 | 1.02 | | | Right Cheek | GSM/EDGE 850 | 1.22 | 0.36 | 1.58 | | | Right Cheek | GSM/EDGE 1900 | 0.41 | 0.36 | 0.77 | | | Right Tilt | WCDMA band V | 0.52 | 0.22 | 0.74 | | | Right Tilt | WCDMA band IV | 0.33 | 0.22 | 0.55 | | | Right Tilt | WCDMA band II | 0.44 | 0.22 | 0.66 | | | Right Tilt | GSM/EDGE 850 | 0.55 | 0.22 | 0.77 | | Head | Right Tilt | GSM/EDGE 1900 | 0.28 | 0.22 | 0.50 | | SAR | Left Cheek | WCDMA band V | 0.90 | 0.29 | 1.19 | | | Left Cheek | WCDMA band IV | 1.24 | 0.29 | 1.53 | | | Left Cheek | WCDMA band II | 1.27 | 0.29 | 1.56 | | | Left Cheek | GSM/EDGE 850 | 1.02 | 0.29 | 1.31 | | | Left Cheek | GSM/EDGE 1900 | 0.84 | 0.29 | 1.13 | | | Left Tilt | WCDMA band V | 0.56 | 0.20 | 0.76 | | | Left Tilt | WCDMA band IV | 0.50 | 0.20 | 0.70 | | | Left Tilt | WCDMA band II | 0.47 | 0.20 | 0.67 | | | Left Tilt | GSM/EDGE 850 | 0.58 | 0.20 | 0.78 | | | Left Tilt | GSM/EDGE 1900 | 0.61 | 0.20 | 0.81 | Table 1.9.3. Highest Head SAR values and summation ### Note: - 1) If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required. - 2) If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters calculated. - 3) If the ratio of SAR to peak separation distance is < 0.3, Simultaneous SAR measurement is not required. | PH S | Testing
ervices™ | SAR Compliance Test F
Smartphone Model RFI | • | erry® | Page
17(50) | |----------------------|---------------------|---|----------------|---------|----------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 - | uly 30, 2012 RTS-5992-1207-37 L6ARFE70UW | | | 2503A-RFE70UW | | | | Licensed Transı | nitters | WiFi 2.4
G | Maximum
Summatio | |-------|--------------------------|-----------------|---------------------------|---------------------------|--------------------------------| | Test | Configuration | Band | 1 g avg.
SAR
(w/kg) | 1 g avg.
SAR
(W/kg) | n
1 g avg.
SAR
(W/kg) | | | | WCDMA band V | 0.80 | 0.07 | 0.87 | | | Holston davisa | WCDMA band IV | 1.38 | 0.07 | 1.45 | | | Holster, device back | WCDMA band II | 0.56 | 0.07 | 0.63 | | | | GPRS/EDGE 850 | 0.86 | 0.07 | 0.93 | | | | GPRS/EDGE 1900 | 0.34 | 0.07 | 0.41 | | | | WCDMA band V | 0.60 | 0.09 | 0.69 | | Body- | 20 mm | WCDMA band IV | 1.23 | 0.09 | 1.32 | | Worn | separation, | WCDMA band II | 0.59 | 0.09 | 0.68 | | SAR | device back | GPRS/EDGE 850 | 0.61 | 0.09 | 0.70 | | | | GPRS/EDGE 1900 | 0.40 | 0.09 | 0.49 | | | 20 | WCDMA band V | 0.43 | 0.05 | 0.48 | | | 20 mm | WCDMA band IV | 1.41 | 0.05 | 1.46 | | | separation, device back, | WCDMA band II | 0.62 | 0.05 | 0.67 | | | headset | GPRS/EDGE 850 | 0.50 | 0.05 | 0.55 | | | neadset | GPRS/EDGE 1900 | 0.40 | 0.05 | 0.45 | Table 1.9.4. Highest Body-worn SAR values for the same configuration | Test | Configuration | Licensed Tran | smitters | WiFi 2.4 G
1 g avg. | Maximum
Summation | |---------|---------------|----------------|------------------------|------------------------|------------------------| | Test | Configuration | Band | 1 g avg.
SAR (w/kg) | SAR
(W/kg) | 1 g avg. SAR
(W/kg) | | | | WCDMA band V | 1.21 | 0.23 | 1.44 | | Mobile | 10 mm | WCDMA band IV | 1.11 | 0.23 | 1.34 | | Hotspot | separation, | WCDMA band II | 1.39 | 0.23 | 1.62 | | SAR | device back | GPRS/EDGE 850 | 1.33 | 0.23 | 1.56 | | | | GPRS/EDGE 1900 | 1.39 | 0.23 | 1.62 | Table 1.9.5. Highest Mobile Hotspot SAR values for the same configuration # Note: - 4) If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required. - 5) If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters calculated. If the ratio of SAR to peak separation distance is \leq 0.3, Simultaneous SAR measurement is not required | PA S | Testing
Pervices™ | SAR Compliance Test R Smartphone Model RFI | • | erry® | Page
18(50) | |---------------|----------------------|--|------------------------|-------|----------------| | Author Data | Dates of Test | | Test Report No FCC ID: | | | | Andrew Becker | July 05 – | July 30 , 2012 | 1 | | | | Togt | Configuration | Licensed Transmitters | | SAR peak location
(cm) | | Closest | Pair | Dotio | | |--------------------|----------------------------|------------------------|-------|---------------------------|--------|------------------|---------------|-------|------| | Test Configuration | Band | 1 g avg.
SAR (w/kg) | X | Y | Z | Distance
(cm) | Sum
(W/kg) | Ratio | | | M. 1. 11. | 10 | WiFi 2.4G | 0.23 | -42.5 | -7.0 | -208.2 | 5.97 | 1.62 | 0.27 | | Mobile | 10 mm | WCDMA band II | 1.39 | -17.0 | 47.0 | -207.8 | 3.97 | 1.02 | 0.27 | | Hotspot
SAR | separation,
device back | WiFi 2.4G | 0.23 | -42.5 | -7.0 | -208.2 | 6.74 | 1.62 | 0.24 | | SAK device back | GPRS 1900 | 1.39 | -18.5 | 56.0 | -207.8 | 0.74 | 1.02 | 0.24 | | Table 1.9.6. Highest Mobile Hotspot SAR values and ratio of SAR to peak location #### BT & WiFi: - BT Stand-alone SAR is not required because the WiFi antenna, which is < 2.5 cm away, has an max 1g SAR < 1.2 W/kg - BT Simultaneous Transmission SAR is not required because BT Stand-alone SAR is not required. # BT & GSM/WCDMA: - BT Stand-alone SAR is not required because the BT output ≤ 2 PRef and antenna is > 5.0 cm from the main antenna - BT Simultaneous Transmission SAR is not required because BT Stand-alone SAR is not required. ### GSM & WiFi: - Head Configuration: - o GSM/EDGE/GPRS & WiFi Stand-alone SAR is required. - o Simultaneous Transmission is not required as the sum of the 1-g SAR is < 1.6 W/kg. - Body Configuration: - o GSM/EDGE/GPRS & WiFi Stand-alone SAR is required. - o Simultaneous Transmission is not required as the sum of the 1-g SAR is < 1.6 W/kg, or the ratio of SAR to peak separation distance is < 0.3. # WCDMA & WiFi: - Head Configuration: - WCDMA & WiFi Stand-alone SAR is required. - o Simultaneous Transmission is required as the sum of the 1-g SAR is > 1.6 W/kg. - Body Configuration: - o WCDMA & WiFi Stand-alone SAR is required. - o Simultaneous Transmission is not required as the sum of the 1-g SAR is < 1.6 W/kg, or the ratio of SAR to peak separation distance is < 0.3. - The device supports DTM, GPRS Category Class A/B, Multi-Slot Class 10 with maximum 5-slots (2-slots uplink and 3-slot downlink). - For body SAR configurations, 2-slots GPRS (PD) mode were tested. - In GPRS mode, GMSK Modulation was used using CS1-CS4 or MCSI-MCS4. | PA S | esting
ervices™ | SAR Compliance Test R Smartphone Model RFI | - | erry® | Page
19(50) | |----------------------|--------------------|--|------------------------|-------|----------------| | Author Data | Dates of Test | | Test Report No FCC ID: | | | | Andrew Becker | July 05 - | July 30 , 2012 | * | | | - 8-PSK modulation or MCS5-MCS9 code scheme were avoided since maximum burst avg power was measured lower on those modulation schemes. - Each slot is set to maximum power, but there is software power reduction of ~ 2 dB in multislot modes. - Please refer to the conducted power measurements table below: | Mode | Freq.
(MHz) | Max burst
averaged
conducted
power
(dBm)
CS1 | Max burst
averaged
conducted
power
(dBm)
MCS1 | Max burst
averaged
conducted
power
(dBm)
MCS5 | | |----------|----------------|---|--|--|--| | 2-slots | 824.2 | 31.0 | N/A | N/A | | | GPRS | 836.8 | 31.0 | N/A | N/A | | | 850 MHz | 848.8 | 31.1 | N/A | N/A | | | 2-slots | 824.2 | 30.9 | 30.9 | 28.2/30.9 | | | DTM | 836.8 | 30.8 | 30.8 | 28.2/30.9 | | | 850 MHz | 848.8 | 30.9 | 30.9 | 28.2/30.9 | | | 2-slots | 824.2 | 31.0 | 31.1 | 27.0 | | | EDGE | 836.8 | 31.0 | 31.0 | 27.0 | | | 850 MHz
 848.8 | 31.0 | 31.0 | 27.0 | | | 2-slots | 1850.2 | 28.0 | N/A | N/A | | | GPRS | 1880.0 | 27.9 | N/A | N/A | | | 1900 MHz | 1909.8 | 27.8 | N/A | N/A | | | 2-slots | 1850.2 | 27.8 | 27.7 | 25.6/27.8 | | | DTM | 1880.0 | 27.7 | 27.7 | 25.6/27.7 | | | 1900 MHz | 1909.8 | 27.7 | 27.7 | 25.6/27.7 | | | 2-slots | 1850.2 | 28.0 | 28.0 | 25.8 | | | EDGE | 1880.0 | 27.8 | 27.8 | 25.7 | | | 1900 MHz | 1909.8 | 27.8 | 27.8 | 25.6 | | | Mode | | req.
(Mz) | Max burst conducted po | | | | 1-slot | 8: | 24.2 | 33. | 1 | | | GSM (CS) | 8: | 36.8 | 33. | 0 | | | 850 MHz | 8- | 48.8 | 33.0 | | | | 1-slot | 18 | 350.2 | 28.7 | | | | GSM (CS) | 18 | 880.0 | 29.4 | | | | 1900 MHz | 19 | 009.8 | 29.4 | | | 1.9.7. GSM/EDGE/GPRS channel vs. conducted power | Mode | Freq. | Max burst
averaged
conducted
power
(dBm)
CS1 | Max burst
averaged
conducted
power
(dBm)
MCS1 | Max burst
averaged
conducted
power
(dBm)
MCS5 | | | |----------|--------|---|--|--|--|--| | 2-slots | 824.2 | 30.0 | N/A | N/A | | | | GPRS | 836.8 | 30.0 | N/A | N/A | | | | 850 MHz | 848.8 | 30.0 | N/A | N/A | | | | 2-slots | 824.2 | 29.9 | 29.9 | 29.9 / 26.9 | | | | DTM | 836.8 | 29.9 | 29.9 | 29.9 / 26.9 | | | | 850 MHz | 848.8 | 29.9 | 29.9 | 29.9 / 26.9 | | | | 2-slots | 824.2 | 30.0 | 30.0 | 27.0 | | | | EDGE | 836.8 | 30.0 | 30.0 | 27.0 | | | | 850 MHz | 848.8 | 30.0 | 30.0 | 27.0 | | | | 2-slots | 1850.2 | 25.7 | N/A | N/A | | | | GPRS | 1880.0 | 25.6 | N/A | N/A | | | | 1900 MHz | 1909.8 | 25.6 | N/A | N/A | | | | 2-slots | 1850.2 | 25.6 | 25.6 | 25.6 / 24.9 | | | | DTM | 1880.0 | 25.6 | 25.6 | 25.6 / 24.9 | | | | 1900 MHz | 1909.8 | 25.6 | 25.6 | 25.6 / 24.9 | | | | 2-slots | 1850.2 | 25.7 | 25.6 | 25.5 | | | | EDGE | 1880.0 | 25.6 | 25.6 | 25.4 | | | | 1900 MHz | 1909.8 | 25.6 | 25.6 | 25.4 | | | | Mode | | req.
MHz) | Max burst conducted po | _ | | | | 1-slot | | 24.2 | 32. | , , | | | | GSM (CS) | 8 | 36.8 | 32.9 | | | | | 850 MHz | 8 | 48.8 | 33.0 | | | | | 1-slot | 18 | 350.2 | 28. | 4 | | | | GSM (CS) | 18 | 380.0 | 29.1 | | | | | 1900 MHz | 19 | 909.8 | 29.1 | | | | 1.9.8. GSM/EDGE/GPRS channel vs. conducted power with Mobile Hot Spot mode enabled | | Testing
Services™ | SAR Compliance Test F
Smartphone Model RFI | | erry® | Page 21(50) | |----------------------|----------------------|---|------------------|------------|--------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | # 2.0 DESCRIPTION OF THE TEST EQUIPMENT # 2.1 SAR measurement system SAR measurements were performed using a Dosimetric Assessment System (DASY52), an automated SAR measurement system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich, Switzerland. The DASY 52 system for performing compliance tests consists of the following items: - · A standard high precision 6-axis robot (Stäubli RX family) with controller and software. - · An arm extension for accommodating the data acquisition electronics (DAE). - · A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system. - · A DAE module that performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the Electro-optical coupler (EOC). - · A unit to operate the optical surface detector that is connected to the EOC. - \cdot The EOC performs the conversion from an optical signal into the digital electric signal of the DAE. The EOC is connected to the PC plug-in card. - \cdot The functions of the PC plug-in card based on a DSP is to perform the time critical tasks such as signal filtering, surveillance of the robot operation fast movement interrupts. - · A computer operating Windows. - · DASY52 software version 52.6(2). - · Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc. - · The SAM Twin Phantom enabling testing left-hand and right-hand usage. - · The device holder for mobile phones. - Tissue simulating liquid mixed according to the given recipes (see section 6.1). - · System validation dipoles allowing for the validation of proper functioning of the system. Figure 2.1.1. System Description | in s | Testing
ervices™ | SAR Compliance Test R
Smartphone Model RFR | 1 | erry® | Page 22(50) | |----------------------|---------------------|---|------------------|------------|--------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 - | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | # 2.1.1 Equipment List | Manufacturer | Test Equipment | Model Number | Serial Number | Cal. Due Date
(MM/DD/YY) | |------------------------------------|--|--------------|---------------|-----------------------------| | SCHMID & Partner
Engineering AG | E-field probe | ES3DV3 | 3225 | 01/11/2013 | | SCHMID & Partner
Engineering AG | Data Acquisition
Electronics (DAE3) | DAE3 V1 | 473 | 01/13/2013 | | SCHMID & Partner
Engineering AG | Dipole Validation Kit | D835V2 | 446 | 01/21/2013 | | SCHMID & Partner
Engineering AG | Dipole Validation Kit | D1800V2 | 2d020 | 01/13/2013 | | SCHMID & Partner
Engineering AG | Dipole Validation Kit | D1900V2 | 545 | 01/13/2013 | | SCHMID & Partner
Engineering AG | Dipole Validation Kit | D2450V2 | 747 | 11/09/2013 | | Agilent Technologies | Signal generator | 8648C | 4037U03155 | 09/23/2013 | | Agilent Technologies | Power meter | E4419B | GB40202821 | 09/23/2013 | | Agilent Technologies | Power sensor | 8481A | MY41095417 | 09/27/2012 | | Amplifier Research | Amplifier | 5S1G4M3 | 300986 | CNR | | Agilent Technologies | Power meter | N1911A | MY45100905 | 05/17/2013 | | Agilent Technologies | Power sensor | N1921A | MY45241383 | 08/30/2012 | | Weinschel Corp | 20dB Attenuator | 33-20-34 | BMO697 | CNR | | Agilent Technologies | Network analyzer | 8753ES | US39174857 | 09/20/2012 | | Rohde & Schwarz | Base Station Simulator | CMU 200 | 109747 | 11/20/2012 | | Rohde & Schwarz | Base Station Simulator | CMU 200 | 118277 | 11/30/2012 | | Rohde & Schwarz | Base Station Simulator | CMU 200 | 112394 | 11/21/2012 | Table 2.1.1. Equipment list | PA S | Testing
Pervices™ | SAR Compliance Test R
Smartphone Model RFI | • | erry® | Page 23(50) | |----------------------|----------------------|---|------------------|------------|--------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | # 2.2 Description of the test setup Before SAR measurements are conducted, the device and the DASY equipment are setup as follows: #### 2.2.1 Device and base station simulator setup - Power up the device. - Turn on the base station simulator and set the radio channel and power to the appropriate values. - Connect an antenna to the RF IN/OUT of the communication test set and place it close to the device. # 2.2.2 DASY setup - Turn the computer on and log on to Windows. - Start the DASY software by clicking on the icon located on the Windows desktop. - Mount the DAE unit and the probe. Turn on the DAE unit. - Turn the Robot Controller on by turning the main power switch to the horizontal position - Align the probe by clicking the 'Align probe in light beam' button. - Open a file and configure the proper parameters probe, medium, communications system etc. - Establish a connection between the Device and the communications test instrument. Place the Device on the stand and adjust it under the phantom. - · Start SAR measurements. # 3.0 ELECTRIC FIELD PROBE CALIBRATION # 3.1 Probe Specifications SAR measurements were conducted using the dosimetric probes ES3DV3/ET3DV6, designed by Schmid & Partner Engineering AG for the measurement of SAR. The probe is constructed using the thin film technique, with printed resistive lines on ceramic substrates. It has a symmetrical design with triangular core, built-in optical fibre for the surface detection system and built-in shielding against static discharge. The probe is sensitive to E-fields and thus incorporates three small dipoles arranged so that the overall response is close to isotropic. The table below summarizes the technical data for the probe. | Property | Data | |---|-------------------------| | Frequency range | 30 MHz – 3 GHz | | Linearity | ±0.1 dB | | Directivity (rotation around probe axis) | ≤±0.2 dB | | Directivity (rotation normal to probe axis) | ±0.4 dB | | Dynamic Range | 5 mW/kg – 100 W/kg | | Probe positioning repeatability | ±0.2 mm | | Spatial resolution | < 0.125 mm ³ | Table 3.1.1. Probe specifications | | Testing
Services™ | SAR Compliance Test R
Smartphone Model RFI | • | erry® | Page 24(50) | |---------------|----------------------|---|------------------|------------|--------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 - | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | # 3.2 Probe calibration and measurement uncertainty The probe had been calibrated with an accuracy better than $\pm 12\%$. The sensitivity parameters (NormX, NormY, NormZ),
the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe were tested. The probe calibration parameters are shown on Appendix D and below: #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-----------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 41.9 | 0.89 | 6.28 | 6.28 | 6.28 | 0.67 | 1.99 | ± 12.0 % | | 900 | 41.5 | 0.97 | 5.96 | 5.96 | 5.96 | 0.72 | 1.88 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 5.10 | 5.10 | 5.10 | 0.63 | 2.36 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.34 | 4.34 | 4.34 | 0.89 | 1.73 | ± 12.0 % | #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 55.5 | 0.96 | 6.18 | 6.18 | 6.18 | 0.79 | 1.86 | ± 12.0 % | | 900 | 55.0 | 1.05 | 5.92 | 5.92 | 5.92 | 0.61 | 2.26 | ± 12.0 % | | 1810 | 53.3 | 1.52 | 4.69 | 4.69 | 4.69 | 0.65 | 2.60 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.14 | 4.14 | 4.14 | 1.00 | 1.37 | ± 12.0 % | Table 3.2.1. Probe ET3DV6 SN: 1644 # Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-----------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 41.9 | 0.89 | 6.42 | 6.42 | 6.42 | 0.27 | 2.04 | ± 12.0 % | | 900 | 41.5 | 0.97 | 6.06 | 6.06 | 6.06 | 0.35 | 1.74 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 5.23 | 5.23 | 5.23 | 0.73 | 1.21 | ± 12.0 % | | 1950 | 40.0 | 1.40 | 4.98 | 4.98 | 4.98 | 0.58 | 1.41 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.50 | 4.50 | 4.50 | 0.79 | 1.26 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 4.32 | 4.32 | 4.32 | 0.77 | 1.32 | ± 12.0 % | # Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------| | 750 | _55.5 | 0.96 | 6.27 | 6.27 | 6.27 | 0.36 | 1.74 | ± 12.0 % | | 900 | 55.0 | 1.05 | 6.07 | 6.07 | 6.07 | 0.29 | 2.02 | ± 12.0 % | | 1810 | 53.3 | 1.52 | 4.92 | 4.92 | 4.92 | 0.50 | 1.57 | ± 12.0 % | | 1950 | 53.3 | 1.52 | 4.87 | 4.87 | 4.87 | 0.59 | 1.49 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.30 | 4.30 | 4.30 | 0.68 | 1.16 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 4.12 | 4.12 | 4.12 | 0.80 | 0.99 | ± 12.0 % | **Table 3.2.2. Probe ES3DV3 SN: 3225** C The validity of \pm 100 MHz only applies for DASY v4.4 and higher. DASY 52 has been used for measurements, therefore \pm 100 MHz tolerance is valid. Measured dielectric parameters are within \pm 5% of the probe calibration values and target values. Expanded probe calibration uncertainty (k=2) is < 15 % | | | | | erry® | Page 25(50) | |----------------------|---------------|---|----------------|---------------|--------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | ruly 30, 2012 RTS-5992-1207-37 L6ARFE70UW | | 2503A-RFE70UW | | # 4.0 SAR MEASUREMENT SYSTEM VERIFICATION Prior to conducting SAR measurements, the system was validated using the dipole validation kit and the flat section of the SAM phantom. A power level of 1.0W was applied to the dipole antenna. The verification results are in the table below with a comparison to reference values. Printouts are shown in Appendix A. All the measured parameters are within the allowed tolerances. At above 1.5 - 2 GHz, dipoles maintain good return loss of -15 dB to -20 dB, therefore SAR measurements are limited to approximately +/- 100 MHz of the probe/dipole calibration frequency. # 4.1 System accuracy verification for head adjacent use | | | SAR | Dielectric
Parameters | | Liquid | |---------|-----------------------------------|--------------------|--------------------------|---------|---------------| | f (MHz) | Limits / Measured
(MM/DD/YYYY) | 1 g/10 g
(W/kg) | $\epsilon_{\rm r}$ | σ [S/m] | Temp.
(°C) | | | Measured (07/12/2012) | 9.44/6.18 | 42.1 | 0.90 | 22.5 | | 835 | Measured (07/16/2012) | 9.50/6.24 | 42.9 | 0.90 | 23.0 | | 833 | Measured (07/24/2012) | 9.39/6.16 | 40.2 | 0.88 | 23.1 | | | Recommended Limits | 9.63/6.27 | 41.5 | 0.90 | N/A | | | Measured (07/05/2012) | 36.1/18.8 | 38.0 | 1.42 | 21.5 | | 1800 | Measured (07/26/2012) | 38.1/19.9 | 38.1 | 1.47 | 22.6 | | | Recommended Limits | 39.2/20.5 | 40.0 | 1.40 | N/A | | | Measured (07/09/2012) | 40.1/21.1 | 38.9 | 1.38 | 23.0 | | 1900 | Measured (07/30/2012) | 40.5/21.3 | 38.4 | 1.39 | 23.0 | | | Recommended Limits | 40.0/20.8 | 40.0 | 1.40 | N/A | | 2450 | Measured (07/11/2012) | 56.4/26.6 | 39.7 | 1.82 | 22.3 | | 2430 | Recommended Limits | 54.1/25.3 | 39.2 | 1.80 | N/A | Table 4.1.1. System accuracy (validation for head adjacent use) | | | | | | | Page 26(50) | |---|--|-----------|----------------|------------------|------------|--------------------| | ſ | Author Data Dates of Test Test Report No FCC ID: | | | IC ID | | | | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | # 5.0 PHANTOM DESCRIPTION The SAM Twin Phantom, manufactured by SPEAG, was used during the SAR measurements. The phantom is made of a fibreglass shell integrated with a wooden table. The SAM Twin Phantom is a fibreglass shell phantom with 2 mm shell thickness. It has three measurement areas: Left side head Right side head Flat phantom The phantom table dimensions are: 100x50x85 cm (LxWxH). The table is intended for use with freestanding robots. The bottom shelf contains three pair of bolts for locking the device holder in place. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different solutions). A white cover is provided to top the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible; however the optical surface detector does not work properly at the cover surface. Place a sheet of white paper on the cover when using optical surface detection. Liquid depth of \geq 15 cm is maintained in the phantom for all the measurements. Figure 5.0.1. SAM Twin Phantom | SAR Compliance Test Report for the BlackBerry® Smartphone Model RFE71UW | | | | Page 27 (50) | | |---|---------------|----------------|--|---------------------|-------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | uly 30, 2012 RTS-5992-1207-37 L6ARFE70UW | | | # 6.0 TISSUE DIELECTRIC PROPERTIES # 6.1 Composition of tissue simulant The composition of the brain and muscle simulating liquids are shown in the table below. | INGREDIE | MIXTURE 800-
900MHz | | MIXTURE 1800-
1900MHz | | MIXTURE 2450
MHz | | MIXTURE 5 - 6
GHz | | |-----------------------|------------------------|-------------|--------------------------|-------------|---------------------|-------------|----------------------|--------------| | NT | Brain
% | Muscle
% | Brain % | Muscle
% | Brain
% | Muscle
% | Brain
% | Muscl
e % | | Water | 40.29 | 65.45 | 55.24 | 69.91 | 55.0 | 68.75 | 64 | 64-78 | | Sugar | 57.90 | 34.31 | 0 | 0 | 0 | 0 | 0 | 0 | | Salt | 1.38 | 0.62 | 0.31 | 0.13 | 0 | 0 | 0 | 0 | | HEC | 0.24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Bactericide | 0.18 | 0.10 | 0 | 0 | 0 | 0 | 0 | 0 | | DGBE | 0 | 0 | 44.45 | 29.96 | 40.0 | 31.25 | 0 | 0 | | Triton X- | 0 | 0 | 0 | 0 | 5.0 | 0 | 0 | 0 | | Additives
and Salt | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2-3 | | Emulsifiers | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 9-15 | | Mineral Oil | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 11-18 | Table 6.1.1. Tissue simulant recipe # 6.1.1 Equipment | Manufacturer | Test Equipment | Model Number | Serial
Number | Cal. Due Date
(MM/DD/YY) | |-------------------------|----------------------|--------------|------------------|-----------------------------| | Pyrex, England | Graduated Cylinder | N/A | N/A | N/A | | Pyrex, USA | Beaker | N/A | N/A | N/A | | Acculab | Weight Scale | V1-1200 | 018WB2003 | N/A | | IKA Works Inc. | Hot Plate | RC Basic | 3.107433 | N/A | | Dell | PC using GPIB card | GX110 | 347 | N/A | | Agilent
Technologies | Dielectric probe kit | HP 85070C | US9936135 | CNR | | Agilent | | | | | | Technologies | Network Analyzer | 8753ES | US39174857 | 09/20/2012 | | Control Company | Digital Thermometer | 23609-234 | 21352860 | 09/30/2012 | Table 6.1.2. Tissue simulant preparation equipment | PA S | SAR Compliance Test Report for the BlackBerry® Smartphone Model RFE71UW | | Page 28 (50) | | | |---------------|---|----------------|---------------------|------------|---------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 - | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | ### **6.1.2** Preparation procedure # 800-900 MHz liquids - Fill the container with water. Begin heating and stirring. - Add the
Cellulose, the **preservative substance** and the **salt**. After several hours, the liquid will become more transparent again. The container must be covered to prevent evaporation. - Add **Sugar**. Stir it well until the sugar is sufficiently dissolved. - Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation. - Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements. # 1800-2450 MHz liquid - Fill the container with water and place it on hotplate. Begin heating and stirring. - Add the salt, Glycol/Triton X-100. The container must be covered to prevent evaporation. - Keep the liquid hot enough to dissolve sugar for at least an hour. The container must be covered to prevent evaporation. - Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements. # 6.2 Electrical parameters of the tissue simulating liquid The tissue dielectric parameters shall be measured before a batch can be used for SAR measurements to ensure that the simulated tissue was properly made and will simulate the desired human characteristic. Limits and measured electrical parameters are shown in the table below. Recommended limits are adopted from IEEE P1528-2003: "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", DASY manual and from FCC Tissue Dielectric Properties web page at http://www.fcc.gov/fcc-bin/dielec.sh | | | | | Dielectric | Parameters | Liquid | | |---------------|----------------|--------------------------------|------------|--------------------|-------------------|--------------|--| | Band
(MHz) | Tissue
Type | Limits / Measured (MM/DD/YYYY) | f
(MHz) | $\epsilon_{\rm r}$ | σ [S/m] | Temp
(°C) | | | | | | 825 | 42.3 | 0.89 | | | | | | Measured (07/12/2012) | 835 | 42.1 | 0.90 | 22.5 | | | | | | 850 | 42.0 | 0.92 | | | | | | | 825 | 42.9 | 0.87 | | | | | | Measured (07/16/2012) | 835 | 42.9 | 0.90 | 23.0 | | | | Head | | 850 | 42.8 | 0.90 | | | | | | Measured (07/24/2012) | 815 | 40.5 | 0.86 | 23.1 | | | 835 | | | 825 | 40.4 | 0.87 | | | | | | | 835 | 40.2 | 0.88 | | | | | | | 850 | 40.0 | 0.89 | | | | | | Recommended Limits | 835 | 41.5 | 0.90 | N/A | | | | | | 825 | 52.7 | 0.96 | | | | | Muscle | Measured (07/12/2012) | 835 | 52.7 | 0.97 | 22.4 | | | | iviuscie | | 850 | | 52.6 | 0.99 | | | | | Measured (07/24/2012) | 815 | 53.8 | 0.93 | 23.1 | | This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services Copyright 2005-2012, RIM Testing Services, A division of Research In Motion Limited | Services Smartphone Model RFE71UW Document SAR Compliance Test Report for the BlackBerry® Smartphone Model RFE71UW | | | | Page 29 (50) | | |---|--|----------------|--|---------------------|--| | Author Data | thor Data Dates of Test Test Report No FCC ID: | | | IC ID | | | Andrew Becker | July 05 – | July 30 , 2012 | uly 30, 2012 RTS-5992-1207-37 L6ARFE70UW | | | | | | T | 825 | 53.8 | 0.96 | | |------|-----------------------|--------------------------|-------------------|------|------|---------------| | | | - | 835 | 53.8 | 0.90 | | | | | - | 850 | 53.7 | 1.00 | | | | | Recommended Limits | 835 | 55.2 | 0.97 | N/A | | | | Recommended Limits | | | 1.33 | N/A | | | | Manager 1 (07/05/2012) | 1710 | 38.5 | | 21.5 | | | | Measured (07/05/2012) | 1750 | 38.3 | 1.37 | 21.5 | | | | 1800 | 38.0 | 1.42 | | | | | Head | 1 (07/2 (/2012) | 1710 | 38.7 | 1.39 | 22.6 | | 4000 | | Measured (07/26/2012) | 1750 | 38.5 | 1.42 | 22.6 | | 1800 | | | 1800 | 38.1 | 1.47 | | | | | Recommended Limits | 1800 | 40.0 | 1.40 | N/A | | | | <u> </u> | 1710 | 51.6 | 1.45 | | | | Muscle | Measured (07/26/2012) | 1750 | 51.4 | 1.50 | 22.6 | | | Musere | | 1800 | 51.1 | 1.55 | | | | | Recommended Limits | 1800 | 53.3 | 1.52 | N/A | | | | | 1850 | 39.0 | 1.33 | | | | | Measured (07/09/2012) | 1900 | 38.9 | 1.38 | 23.0 | | | | Measured (07/09/2012) | 1910 | 38.8 | 1.40 | | | | | 1980 | 38.6 | 1.47 | | | | | Head | ad Measured (07/30/2012) | 1850 | 38.6 | 1.34 | 23.0 | | | | | 1900 | 38.4 | 1.39 | | | | | | 1910 | 38.4 | 1.40 | | | 1000 | | | 1980 | 38.1 | 1.47 | | | 1900 | Ī | Recommended Limits | 1900 | 40.0 | 1.40 | N/A | | | | | 1850 | 51.0 | 1.51 | 23.0 | | | | Measured (07/09/2012) | 1900 | 50.7 | 1.56 | | | | | ` | 1910 | 50.6 | 1.57 | | | | Muscle | | 1850 | 51.1 | 1.50 | | | | | Measured (07/30/2012) | 1900 | 50.9 | 1.56 | 23.0 | | | | | 1910 | 50.9 | 1.57 | - 10 | | | | Recommended Limits | 1900 | 53.3 | 1.52 | N/A | | | | | 2400 | 39.5 | 1.78 | | | Head | Measured (07/11/2012) | 2450 | 39.7 | 1.82 | 22.3 | | | | (0,,11,2012) | 2480 | 39.5 | 1.85 | 5 | | | | | Recommended Limits | 2450 | 39.2 | 1.80 | N/A | | 2450 | | Teetoninended Dinito | 2400 | 53.8 | 1.92 | 14/11 | | | | Measured (07/11/2012) | 2450 | 53.9 | 1.96 | 22.3 | | | Muscle | 171Cu3u1cu (07/11/2012) | 2480 | 53.7 | 2.01 | 22.3 | | | | Recommended Limits | 2450 | 52.7 | 1.95 | N/A | | | | Accommended Limits | 2 4 30 | 34.1 | 1.73 | 1 V /A | ${\bf Table~6.2.1.~Electrical~parameters~of~tissue~simulating~liquid}$ | Document SAR Compliance Test Report for the BlackBerry® SAR Compliance Test Report for the BlackBerry® 30(50) | | | | | | |---|---------------|----------------|------------------|------------|---------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | Figure 6.2.1. Test configuration #### 6.2.3 Procedure - 1. Turn NWA on and allow at least 30 minutes for warm up. - 2. Mount dielectric probe kit so that interconnecting cable to NWA will not be moved during measurements or calibration. - 3. Pour de-ionized water and measure water temperature ($\pm 1^{\circ}$). - 4. Set water temperature in HP-Software (Calibration Setup). - 5. Perform calibration. - 6. Relative permittivity $\mathcal{E}\mathbf{r} = \mathcal{E}'$ and conductivity can be calculated from \mathcal{E}'' - $\sigma = \omega \, \epsilon_0 \, \epsilon''$ - 7. Measure liquid shortly after calibration. - 8. Stir the liquid to be measured. Take a sample (~50ml) with a syringe from the center of the liquid container. - 9. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles. - 10. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit. - 11. Perform measurements. - 12. Adjust medium parameters in DASY software for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Head 835 MHz) and press 'Option'-button. - 13. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 835 MHz). | PAT S | Testing
Pervices™ | SAR Compliance Test F
Smartphone Model RFI | 1 | erry® | Page
31(50) | |---------------|--|---|---|-------|----------------| | Author Data | or Data Dates of Test Test Report No FCC ID: | | | IC ID | | | Andrew Becker | July 05 – | uly 30, 2012 RTS-5992-1207-37 L6ARFE70UW | | | 2503A-RFE70UW | # 7.0 SAR SAFETY LIMITS | Standards/Guideline | Localized SAR Limit
(W/kg) General public
(uncontrolled) | Localized SAR Limits
(W/kg) Workers
(controlled) | | |---------------------|--|--|--| | ICNIRP Standard | 2.0 (10g) | 10.0 (10g) | | | IEEE C95.1 Standard | 1.6 (1g) | 8.0 (1g) | | Table 7.0.1. SAR safety limits for Controlled / Uncontrolled environment | | Localized SAR Limits (W/kg) 10g, ICNIRP | Localized SAR Limits (W/kg) 1g, IEEE C95.1 | | |--|---|--|--| | Human Exposure | Standard | Standard | | | Spatial Average (averaged over the whole | | | | | body) | 0.08 | 0.08 | | | Spatial Peak (averaged over any X g of | | | | | tissue) | 2.00 | 1.60 | | | Spatial Peak (hands/wrists/feet/ankles | | | | | averaged over 10 g) | 4.00 | 4.00 (10g) | | Table 7.0.2. SAR safety limits **Uncontrolled Environments** are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure. **Controlled Environments** are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). | | in s | SAR Compliance Test Report for the BlackBerry® Smartphone Model RFE71UW | | | | Page 32(50) | |---------------------------|----------------------|---|----------------|------------------|------------|---------------| | Author Data Dates of Test | | | Test Report No | FCC ID: | IC ID | | | | Andrew Becker | July 05 - | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | # 8.0 DEVICE POSITIONING #### 8.1 Device holder for SAM Twin Phantom The Device was positioned for all test configurations using the DASY5 holder. The device holder facilitates the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The
devices can be easily, accurately and with repeatability positioned according to FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom). Figure 8.1.1. Device Holder - 1. Put the phone in the clamp mechanism (1) and hold it straight while tightening. (Curved phones or phones with asymmetrical ear pieces should be positioned so that the earpiece is in the symmetry plane of the clamp). - 2. Adjust the sliding carriage (2) to 90° . Then adjust the phone holder angle (3) until the reference line of the phone is horizontal (parallel to the flat phantom bottom). The phone reference line is defined as the front tangential line between the earpiece and the center of the device bottom (or the center of the flip hinge). For devices with parallel front and backsides, the phone holder angle (3) is 0° . - 3. Place the device holder at the desired phantom section and move it securely against the positioning pins (4). The screw in front of the turning plate can be applied for correct positioning (5). (Do not tighten it too strongly). - 4. Shift the phone clamp (6) so that the earpiece is exactly below the ear marking of the phantom. The phone is now correctly positioned in the holder for all standard phantom measurements, even after changing the phantom or phantom section. - 5. Adjust the device position angles to the desired measurement position. | | 。
第8 | esting
ervices™ | SAR Compliance Test R
Smartphone Model RFR | • | erry® | Page 33(50) | |---------------------------|---------------|--------------------|---|------------------|------------|--------------------| | Author Data Dates of Test | | | | Test Report No | FCC ID: | IC ID | | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | 6. After fixing the device angles, move the phone fixture up until the phone touches the ear marking. (The point of contact depends on the design of the device and the positioning angle). # 8.2 Description of the test positioning #### 8.2.1 Test Positions of Device Relative to Head The handset was tested in two test positions against the head phantom, the "cheek" position and the "tilted" position, on both left and right sides of the phantom. The handset was tested in the above positions according to IEEE 1528- 2003 "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". Figure 8.2.1a. Handset vertical and horizontal reference lines – fixed case Figure 8.2.1b. Handset vertical and horizontal reference lines – "clam-shell" | Author Data Dates of Test Dates of Test | | esting
ervices™ | SAR Compliance Test Report for the BlackBerry® Smartphone Model RFE71UW | | Page 34(50) | | |---|----------------------|--------------------|---|------------------|-------------|---------------| | Author Data Dates of Test | | Dates of Test | | Test Report No | FCC ID: | IC ID | | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | ### 8.2.1.1 Definition of the "cheek" position - 1) Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover. - 2) Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A on Figures 8.2.1a and 8.2.1b), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 8.2.1a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 8.2.1b), especially for clamshell handsets, handsets with flip pieces, and other irregularly shaped handsets. - 3) Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 8.2.1), such that the plane defined by the vertical center line and the horizontal center line is in a plane approximately parallel to the sagittal plane of the phantom. - 4) Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear. - 5) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is the plane normal to MB ("mouth-back") NF ("neck-front") including the line MB (reference plane). - **6)** Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF. - 7) While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the ear (cheek). Figure 8.2.2. Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only. | Document SAR Compliance Test Report for the BlackBerry® Smartphone Model RFE71UW Author Data Andrew Realess Dates of Test Andr | | | | Page 35(50) | | |---|---------------|----------------|------------------|--------------------|---------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | #### 8.2.1.2 Definition of the "Tilted" Position - 1) Repeat steps 1 to 7 of 5.4.1 (in this report 8.2.1.1) to replace the device in the "cheek position." - 2) While maintaining the device in the reference plane (described above) and pivoting against the ear, move the device outward away from the mouth by an angle of 15 degrees, or until the antenna touches the phantom. Figure 8.2.3. Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only. #### 8.2.2 Body-worn Configuration Body-worn holsters, as shown on Figure 1.4.1, have been test with the device for FCC RF exposure compliance. The EUT was positioned in each holster case and the belt clip was placed against the flat section of the phantom. A headset was then connected to the device to simulate hands-free operation in a body worn holster configuration. In addition, device was tested with 20 mm RIM recommended separation distance to allow typical aftermarket holster to be used. RIM body-worn holsters with belt-clip have been designed to maintain \sim 20 mm separation distance from body. # 8.2.3 Limb/Hand Configuration BlackBerry device is not a limb-worn device and hasn't been tested for such a configuration. As per Clause 6.1.4.9 in the IEC/EN 62209-2 standard: "Additional studies remain needed for devising a representative method for evaluating SAR in the hand of hand-held devices. Future versions of this standard are intended to contain a test method based on scientific data and rationale. Annex J presents the currently available test procedure." | Document SAR Compliance Test
Report for the BlackBerry® Smartphone Model RFE71UW Author Data Archeser Beaker Light 95 Light 20 2012 Document SAR Compliance Test Report for the BlackBerry® Smartphone Model RFE71UW Test Report No BTES 5002 1207 27 L (△A DEFE70UW) | | | | Page 36(50) | | |--|---------------|----------------|------------------|--------------------|---------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | Clause J.2 of the IEC/EN 62209-2 states that testing for compliance for the exposure of the hand is not applicable for devices that are intended to being hand-held to enable use at the ear (see EN 62209-1) or worn on the body when transmitting. In addition, BlackBerry device is not intended to be held in hand at a distance of larger than 200 mm from the head and body during normal use. #### 9.0 HIGH LEVEL EVALUATION # 9.1 Maximum search The maximum search is automatically performed after each coarse scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. # 9.2 Extrapolation The extrapolation can be used in z-axis scans with automatic surface detection. The SAR values can be extrapolated to the inner phantom surface. The extrapolation distance is the sum of the probe sensor offset, the surface detection distance and the grid offset. The extrapolation is based on fourth order polynomial functions. The extrapolation is only available for SAR values. # 9.3 Boundary correction The correction of the probe boundary effect in the vicinity of the phantom surface is done in the standard (worst case) evaluation; the boundary effect is reduced by different weights for the lowest measured points in the extrapolation routine. The result is a slight overestimation of the extrapolated SAR values (2% to 8%) depending on the SAR distribution and gradient. The advanced evaluation makes a full compensation of the boundary effect before doing the extrapolation. This is only possible for probes with specifications on the boundary effect. # 9.4 Peak search for 1g and 10g cube averaged SAR The 1g and 10g peak evaluations are only available for the predefined cube 5x5x7 / 7x7x9 scan. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm / 24x24x20 with 7.5mm / 4.0 resolution in (x,y) and 5mm / 2.5mm resolution in z axis amounts to 175 / 693 measurement points. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is then moved around until the highest averaged SAR is found. This last procedure is repeated for a 10 g cube. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center. | PAS S | esting
ervices™ | SAR Compliance Test R
Smartphone Model RFF | 1 | erry® | Page 37 (50) | |---------------|--------------------|---|------------------|------------|---------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 - | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | #### 10.0 MEASUREMENT UNCERTAINTY | D | ASY5
Accordin | | | | | | | | |------------------------------|------------------|-------|------------|---------|---------------|---------------|--------------|-----------| | | Uncert. | Prob. | Div. | (c_i) | (c_i) | Std. Unc. | Std. Unc. | (v_i) | | Error Description | value | Dist. | | 1g | 10g | (1g) | (10g) | v_{eff} | | Measurement System | | | | | | | | | | Probe Calibration | $\pm 5.5 \%$ | N | 1 | 1 | 1 | ±5.5 % | $\pm 5.5 \%$ | ∞ | | Axial Isotropy | $\pm 4.7 \%$ | R | $\sqrt{3}$ | 0.7 | 0.7 | ±1.9 % | $\pm 1.9 \%$ | ∞ | | Hemispherical Isotropy | ±9.6 % | R | $\sqrt{3}$ | 0.7 | 0.7 | ±3.9 % | $\pm 3.9 \%$ | ∞ | | Boundary Effects | ±1.0 % | R | $\sqrt{3}$ | 1 | 1 | $\pm 0.6 \%$ | $\pm 0.6 \%$ | ∞ | | Linearity | $\pm 4.7 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 2.7 \%$ | $\pm 2.7 \%$ | ∞ | | System Detection Limits | ±1.0 % | R | $\sqrt{3}$ | 1 | 1 | $\pm 0.6 \%$ | $\pm 0.6 \%$ | ∞ | | Readout Electronics | $\pm 0.3 \%$ | N | 1 | 1 | 1 | ±0.3 % | $\pm 0.3 \%$ | ∞ | | Response Time | ±0.8 % | R | $\sqrt{3}$ | 1 | 1 | ±0.5 % | $\pm 0.5 \%$ | ∞ | | Integration Time | $\pm 2.6 \%$ | R | $\sqrt{3}$ | 1 | 1 | ±1.5 % | $\pm 1.5 \%$ | ∞ | | RF Ambient Noise | ±3.0 % | R | $\sqrt{3}$ | 1 | 1 | ±1.7 % | $\pm 1.7 \%$ | ∞ | | RF Ambient Reflections | ±3.0 % | R | $\sqrt{3}$ | 1 | 1 | ±1.7 % | $\pm 1.7 \%$ | ∞ | | Probe Positioner | $\pm 0.4 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 0.2 \%$ | $\pm 0.2 \%$ | ∞ | | Probe Positioning | $\pm 2.9 \%$ | R | $\sqrt{3}$ | 1 | 1 | ±1.7 % | $\pm 1.7 \%$ | ∞ | | Max. SAR Eval. | ±1.0 % | R | $\sqrt{3}$ | 1 | 1 | ±0.6 % | ±0.6 % | ∞ | | Test Sample Related | | | | | | | | | | Device Positioning | $\pm 2.9 \%$ | N | 1 | 1 | 1 | $\pm 2.9 \%$ | $\pm 2.9 \%$ | 145 | | Device Holder | $\pm 3.6 \%$ | N | 1 | 1 | 1 | ±3.6 % | ±3.6 % | 5 | | Power Drift | $\pm 5.0 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 2.9 \%$ | $\pm 2.9 \%$ | ∞ | | Phantom and Setup | | | | | | | | | | Phantom Uncertainty | $\pm 4.0 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 2.3 \%$ | $\pm 2.3 \%$ | ∞ | | Liquid Conductivity (target) | $\pm 5.0 \%$ | R | $\sqrt{3}$ | 0.64 | 0.43 | ±1.8 % | $\pm 1.2 \%$ | ∞ | | Liquid Conductivity (meas.) | $\pm 2.5\%$ | N | 1 | 0.64 | 0.43 | $\pm 1.6 \%$ | $\pm 1.1 \%$ | ∞ | | Liquid Permittivity (target) | $\pm 5.0 \%$ | R | $\sqrt{3}$ | 0.6 | 0.49 | ±1.7 % | $\pm 1.4 \%$ | ∞ | | Liquid Permittivity (meas.) | $\pm 2.5\%$ | N | 1 | 0.6 | 0.49 | $\pm 1.5 \%$ | $\pm 1.2 \%$ | ∞ | | Combined Std. Uncertainty | | | | | $\pm 10.7 \%$ | $\pm 10.5 \%$ | 387 | | | Expanded STD Uncertain | | | | | $\pm 21.4\%$ | $\pm 21.0\%$ | | | Table 10.0.1. Worst-Case uncertainty budget for DASY52 assessed according to IEEE P1528. Source: Schmid & Partner Engineering AG. [1] The budget is valid for the frequency range 300MHz - 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller. | PAT S | Testing
Pervices™ | SAR Compliance Test F
Smartphone Model RFI | Page 38(50) | | | |---------------|----------------------|---|--------------------|------------|---------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | ### 11.0 TEST RESULTS ### 11.1 SAR Measurement results at highest power measured against the head | | | | Cond. | | SAR, averaged over 1 g | | | |----------|--------------------------|-------|--------|--------|------------------------|-------|---------------| | | | | Output | Liquid | | Power | | | Test | | f | Power | Temp. | Measured | Drift | *Extrapolated | | Position | Mode | (MHz) | (dBm) | (°C) | (W/kg) | (dB) | (W/kg) | | Right | 2-slots | 824.2 | 31.0 | 22.9 | 0.84 | 0.00 | 0.84 | | Head | GSM/EDGE | 836.8 | 31.0 | 22.9 | 0.94 | -0.01 | 0.94 | | Cheek | 850 MHz | 848.8 | 31.0 | 22.9 | 1.22 | 0.13 | 1.22 | | Right | 2-slots | 824.2 | | | | | | | Head | GSM/EDGE | 836.8 | 31.0 | 22.8 | 0.55 | -0.10 | 0.55 | | 15° Tilt | 850 MHz | 848.8 | | | | | | | Right | 1-slot
GSM
850 MHz | 824.2 | | | | | | | Head | | 836.8 | | | | | | | Cheek | | 848.8 | 33.0 | 22.8 | 1.00 | -0.08 | 1.00 | | Left | 2-slots | 824.2 | 31.0 | 23.0 | 0.74 | -0.02 | 0.74 | | Head | GSM/EDGE | 836.8 | 31.0 | 23.0 | 0.85 | -0.05 | 0.85 | | Cheek | 850 MHz | 848.8 | 31.0 | 23.0 | 1.02 | 0.00 | 1.02 | | Left | 2-slots | 824.2 | | | | | | | Head | GSM/EDGE | 836.8 | 31.0 | 22.9 | 0.58 | -0.02 | 0.58 | | 15° Tilt | 850 MHz | 848.8 | | | | | | | Left | 1-slot | 824.2 | | | | | | | Head | GSM | 836.8 | | | | | | | Cheek | 850 MHz | 848.8 | 33.0 | 23.0 | 0.80 | -0.03 | 0.80 | Table 11.1.1. SAR results for GSM/EDGE 850 head configuration **Note 1:** If the power drift is ≤ -0.200 dB, the extrapolated SAR is calculated using the formula: Extrapolated SAR = (Measured SAR) * 10^(|Power Drift (dB)| / 10) Note 2: Only Middle channel was tested when 1g Average SAR < 0.8 W/Kg or 3dB lower than the limit. | 。
第8 | esting
ervices™ | SAR Compliance Test F
Smartphone Model RFI | Page 39(50) | | | |---------------|--------------------|---|--------------------|------------|---------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | | | | | Cond. | | SAR, averaged over 1 g | | | | |------------------|---------------------------|------------|--------------------------|-------------------------
------------------------|------------------------|-------------------------|--| | Test
Position | Mode | f
(MHz) | Output
Power
(dBm) | Liquid
Temp.
(°C) | Measured
(W/kg) | Power
Drift
(dB) | *Extrapolated
(W/kg) | | | Right | WCDMA | 826.4 | 24.1 | 22.8 | 0.76 | 0.02 | 0.76 | | | Head | FDD V | 836.4 | 24.1 | 22.8 | 0.94 | -0.06 | 0.94 | | | Cheek | 850 MHz | 846.6 | 24.1 | 22.8 | 1.04 | -0.02 | 1.04 | | | Right | WCDMA
FDD V
850 MHz | 826.4 | | | | | | | | Head | | 836.4 | 24.1 | 22.8 | 0.52 | 0.03 | 0.52 | | | 15° Tilt | | 846.6 | | | | | | | | Left | WCDMA | 826.4 | 24.1 | 22.5 | 0.66 | -0.01 | 0.66 | | | Head | FDD V | 836.4 | 24.1 | 22.5 | 0.85 | -0.02 | 0.85 | | | Cheek | 850 MHz | 846.6 | 24.1 | 22.5 | 0.90 | 0.02 | 0.90 | | | Left | WCDMA | 826.4 | | | | | | | | Head | FDD V | 836.4 | 24.1 | 23.0 | 0.56 | 0.03 | 0.56 | | | 15° Tilt | 850 MHz | 846.6 | | | | | | | Table 11.1.2. SAR results for WCDMA FDD V head configuration | | | | G 1 | | SAR, averaged over 1 g | | | |------------------|-----------------------------|------------|--------------------------|-------------------------|------------------------|------------------------|-------------------------| | Test
Position | Mode | f
(MHz) | Cond. Output Power (dBm) | Liquid
Temp.
(°C) | Measured
(W/kg) | Power
Drift
(dB) | *Extrapolated
(W/kg) | | Right | WCDMA | 1712.4 | 22.8 | 22.3 | 1.16 | -0.04 | 1.16 | | Head | FDD IV | 1732.6 | 23.9 | 22.3 | 1.17 | -0.04 | 1.17 | | Cheek | 1700 MHz | 1752.6 | 23.7 | 22.3 | 1.15 | -0.05 | 1.15 | | Right | WCDMA
FDD IV
1700 MHz | 1712.4 | | | | | | | Head | | 1732.6 | 23.9 | 22.3 | 0.33 | 0.03 | 0.33 | | 15° Tilt | | 1752.6 | | | | | | | Left | WCDMA | 1712.4 | 22.8 | 21.5 | 1.12 | -0.09 | 1.12 | | Head | FDD IV | 1732.6 | 23.9 | 21.6 | 1.24 | -0.12 | 1.24 | | Cheek | 1700 MHz | 1752.6 | 23.7 | 21.5 | 1.24 | -0.09 | 1.24 | | Left | WCDMA | 1712.4 | | | | | | | Head | FDD IV | 1732.6 | 23.9 | 21.4 | 0.50 | 0.09 | 0.50 | | 15° Tilt | 1700 MHz | 1752.6 | | | | | | Table 11.1.3A. Rev 3 SAR results for WCDMA FDD IV head configuration | PH S | Testing
Services™ | SAR Compliance Test R
Smartphone Model RFF | - | erry® | Page 40 (50) | |---------------------------------------|----------------------|---|----------------|---------------|---------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker July 05 – July 30, 2012 | | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | | | | | | G 1 | | SAI | SAR, averaged over 1 g | | | | |------------------|--------------------|------------|--------------------------|-------------------------|--------------------|------------------------|-------------------------|--|--| | Test
Position | Mode | f
(MHz) | Cond. Output Power (dBm) | Liquid
Temp.
(°C) | Measured
(W/kg) | Power
Drift
(dB) | *Extrapolated
(W/kg) | | | | Right | WCDMA | 1712.4 | | | | | | | | | Head | FDD IV | 1732.6 | 23.9 | 22.6 | 1.02 | -0.07 | 1.02 | | | | Cheek | 1700 MHz | 1752.6 | | | | | | | | | Left | WCDMA | 1712.4 | | | | | | | | | Head | FDD IV
1700 MHz | 1732.6 | | | | | | | | | Cheek | | 1752.6 | 23.7 | 22.6 | 1.17 | -0.20 | 1.22 | | | Table 11.1.3B. Rev 4 SAR results for WCDMA FDD IV head configuration | | | | G 1 | | SAR | , average | d over 1 g | |------------------|---------------------------|------------|--------------------------|-------------------------|--------------------|------------------------|-------------------------| | Test
Position | Mode | f
(MHz) | Cond. Output Power (dBm) | Liquid
Temp.
(°C) | Measured
(W/kg) | Power
Drift
(dB) | *Extrapolated
(W/kg) | | Right | 2-slots | 1850.2 | 27.0 | 22.0 | 0.44 | 0.11 | 0.44 | | Head | GSM/EDGE | 1880.0 | 27.8 | 22.0 | 0.41 | 0.11 | 0.41 | | Cheek | 1900 MHz | 1909.8 | | | | | | | Right | 2-slots | 1850.2 | | | | | | | Head | GSM/EDGE | 1880.0 | 27.8 | 22.0 | 0.28 | 0.08 | 0.28 | | 15° Tilt | 1900 MHz | 1909.8 | | | | | | | Right | 1-slot
GSM
1900 MHz | 1850.2 | | | | | | | Head | | 1880.0 | 29.4 | 22.0 | 0.34 | -0.08 | 0.34 | | Cheek | | 1909.8 | | | | | | | Left | 2-slots | 1850.2 | 28.0 | 22.0 | 0.76 | 0.04 | 0.76 | | Head | GSM/EDGE | 1880.0 | 27.8 | 22.0 | 0.81 | 0.16 | 0.81 | | Cheek | 1900 MHz | 1909.8 | 27.8 | 22.0 | 0.84 | -0.07 | 0.84 | | Left | 2-slots | 1850.2 | | | | | | | Head | GSM/EDGE | 1880.0 | 27.8 | 22.1 | 0.25 | 0.14 | 0.25 | | 15° Tilt | 1900 MHz | 1909.8 | | | | | | | Left | 1-slot | 1850.2 | | | | | | | Head | GSM | 1880.0 | | | | | | | Cheek | 1900 MHz | 1909.8 | 29.4 | 21.9 | 0.67 | 0.01 | 0.61 | Table 11.1.4. SAR results for GSM/EDGE 1900 head configuration | 。
第8 | esting
ervices™ | SAR Compliance Test R
Smartphone Model RFR | Page 41 (50) | | | |----------------------|--------------------|---|---------------------|------------|---------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | | | | | G 1 | | SAR, | averaged ove | er 1 g | |------------------|----------|------------|--------------------------|-------------------------|--------------------|------------------------|-----------------------------| | Test
Position | Mode | f
(MHz) | Cond. Output Power (dBm) | Liquid
Temp.
(°C) | Measured
(W/kg) | Power
Drift
(dB) | *Extrapol
ated
(W/kg) | | Right | WCDMA | 1852.4 | | | | | | | Head | FDD II | 1880.0 | 23.9 | 22.9 | 0.66 | -0.08 | 0.66 | | Cheek | 1900 MHz | 1907.6 | | | | | | | Right | WCDMA | 1852.4 | | | | | | | Head | FDD II | 1880.0 | 23.9 | 23.0 | 0.44 | 0.08 | 0.44 | | 15° Tilt | 1900 MHz | 1907.6 | | | | | | | Left | WCDMA | 1852.4 | 24.0 | 23.0 | 1.02 | 0.04 | 1.02 | | Head | FDD II | 1880.0 | 23.9 | 23.0 | 1.10 | -0.05 | 1.10 | | Cheek | 1900 MHz | 1907.6 | 23.9 | 23.0 | 1.27 | 0.02 | 1.27 | | Left | WCDMA | 1852.4 | | | | | | | Head | FDD II | 1880.0 | 23.9 | 22.9 | 0.47 | 0.04 | 0.47 | | 15° Tilt | 1900 MHz | 1907.6 | | | | | | Table 11.1.5. SAR results for WCDMA FDD II head configuration $\,$ | | | | Cond. | | SAR, | averaged | l over 1 g | |------------------|----------|------------|--------------------------|-------------------------|--------------------|------------------------|-------------------------| | Test
Position | Mode | f
(MHz) | Output
Power
(dBm) | Liquid
Temp.
(°C) | Measured
(W/kg) | Power
Drift
(dB) | *Extrapolated
(W/kg) | | Right | 802.11 b | 2412 | | | | | | | Head | 2450 | 2437 | | | | | | | Cheek | MHz | 2462 | 18.1 | 22.3 | 0.36 | 0.07 | 0.36 | | Right | 802.11 b | 2412 | | | | | | | Head | 2450 | 2437 | | | | | | | 15° Tilt | MHz | 2462 | 18.1 | 22.3 | 0.22 | 0.00 | 0.22 | | Left | 802.11 b | 2412 | | | | | | | Head | 2450 | 2437 | | | | | | | Cheek | MHz | 2462 | 18.1 | 22.3 | 0.29 | 0.27 | 0.29 | | Left | 802.11 b | 2412 | | | | | | | Head | 2450 | 2437 | | | | | | | 15° Tilt | MHz | 2462 | 18.1 | 22.3 | 0.20 | -0.17 | 0.20 | Table 11.1.6. SAR results for WiFi/WLAN/802.11b head configuration | in s | Page 42 (50) | | | | | |---------------------------------------|---------------------|------------------|----------------|---------------|-------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker July 05 – July 30, 2012 | | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | | ## 11.2 SAR measurement results at highest power measured against the body using accessories | | | | | | SA | R, average | d over 1 g | |-----------------|----------------|-------------------------|--|-------------------------|--------------------|------------------------|-------------------------| | Mode | Freq.
(MHz) | Cond.
Power
(dBm) | Holster type / device
configuration | Liquid
Temp.
(°C) | Measured
(W/kg) | Power
Drift
(dB) | *Extrapolated
(W/kg) | | | 824.2 | | No Holster, back side 20 mm away | | | | | | | 836.8 | 31.0 | No Holster, back side
20 mm away | 22.5 | 0.61 | 0.00 | 0.61 | | | 848.8 | | No Holster, back side
20 mm away | | | | | | 2-slots
GPRS | 836.8 | 31.0 | No Holster, front side
20 mm away | 22.5 | 0.50 | 0.02 | 0.50 | | 850
MHz | 824.2 | 31.0 | Vertical Holster,
back side facing | 22.6 | 0.78 | 0.00 | 0.78 | | | 836.8 | 31.0 | Vertical Holster,
back side facing | 22.6 | 0.85 | 0.01 | 0.85 | | | 848.8 | 31.1 | Vertical Holster,
back side facing | 22.6 | 0.86 | -0.05 | 0.86 | | | 836.8 | 31.0 | Vertical Holster, HS
back side facing | 22.5 | 0.50 | -0.04 | 0.50 | Table 11.2.1. SAR results for GPRS 850 body-worn configurations **Note 1:** If the power drift is ≤ -0.200 dB, the extrapolated SAR is calculated using the formula: Extrapolated SAR = (Measured SAR) * 10^(|Power Drift (dB)| / 10) Note 2: Only Middle channel was tested when 1g Average SAR < 0.8 W/Kg or 3dB lower than the limit. **Note 3:** Device was tested with 20 mm RIM recommended separation distance to allow typical aftermarket holster to be used. RIM body-worn holsters with belt-clip have been designed to maintain ~ 20 mm separation distance from body. | | | | | | SAR, averaged over 1 g | | l over 1 g | |-------------|----------------|-------------------------|---------------------------------|-------------------------|------------------------|------------------|-------------------------| | Mode | Freq.
(MHz) | Cond.
Power
(dBm) | MHS mode / device configuration | Liquid
Temp.
(°C) | Measured
(W/kg) | Power Drift (dB) | *Extrapolated
(W/kg) | | | 824.2 | 30.0 | Back side
10 mm away | 22.6 | 1.08 | -0.05 | 1.08 | | | 836.8 | 30.0 | Back side
10 mm away | 22.6 | 1.23 | 0.02 | 1.23 | | 848.8 | 848.8 | 30.0 | Back side
10 mm away | 22.6 | 1.33 | -0.14 | 1.33 | | 2-slots | 836.8 | 30.0 | Front
side
10 mm away | 22.7 | 0.63 | 0.01 | 0.63 | | GPRS
850 | 824.2 | 30.0 | Right side
10 mm away | 22.6 | 0.70 | 0.06 | 0.70 | | MHz | 836.8 | 30.0 | Right side
10 mm away | 22.6 | 0.80 | 0.03 | 0.80 | | | 848.8 | 30.0 | Right side
10 mm away | 22.6 | 0.81 | 0.02 | 0.81 | | | 836.8 | 30.0 | Left side
10 mm away | 22.7 | 0.63 | 0.07 | 0.63 | | | 836.8 | 30.0 | Bottom side
10 mm away | 22.7 | 0.05 | -0.09 | 0.05 | # Table 11.2.2. SAR results for GPRS 850 body-worn configurations with Mobile Hot Spot mode enabled **Note 4:** Any side of the phone that is further than 2.5 cm away from the transmitting antenna can be exempted from testing. | | | | | | SAR | , averageo | d over 1 g | |----------------|----------------|-------------------------|--|-------------------------|--------------------|------------------------|-------------------------| | Mode | Freq.
(MHz) | Cond.
Power
(dBm) | Holster type / device
configuration | Liquid
Temp.
(°C) | Measured
(W/kg) | Power
Drift
(dB) | *Extrapolated
(W/kg) | | | 826.4 | | No Holster, back side 20 mm away | | | | | | | 836.4 | 24.1 | No Holster, back side 20 mm away | 22.5 | 0.60 | 0.00 | 0.60 | | | 846.6 | | No Holster, back side 20 mm away | | | | | | WCDMA
FDD V | 836.4 | 24.1 | No Holster, front side 20 mm away | 22.5 | 0.51 | -0.05 | 0.51 | | 850 MHz | 826.4 | 24.1 | Vertical Holster, back side facing | 22.6 | 0.71 | -0.06 | 0.71 | | | 836.4 | 24.1 | Vertical Holster, back side facing | 22.6 | 0.80 | -0.01 | 0.80 | | | 846.6 | 24.1 | Vertical Holster, back side facing | 22.6 | 0.78 | -0.03 | 0.78 | | | 836.4 | 24.1 | Vertical Holster, HS, back side facing | 22.5 | 0.43 | 0.01 | 0.43 | Table 11.2.3. SAR results for WCDMA FDD V body-worn configurations | | | | | | SAR, | averaged | over 10 g | |---------------------------|----------------|-------------------------|---------------------------------|-------------------------|--------------------|------------------|-------------------------| | Mode | Freq.
(MHz) | Cond.
Power
(dBm) | MHS mode / device configuration | Liquid
Temp.
(°C) | Measured
(W/kg) | Power Drift (dB) | *Extrapolated
(W/kg) | | | 826.4 | 24.2 | Back side
10 mm away | 22.2 | 1.01 | 0.01 | 1.01 | | | 836.4 | 24.1 | Back side
10 mm away | 22.2 | 1.18 | -0.02 | 1.18 | | | 846.6 | 24.1 | Back side
10 mm away | 22.2 | 1.21 | -0.02 | 1.21 | | WCDMA | 826.4 | 24.2 | Front side
10 mm away | 22.4 | 0.68 | -0.03 | 0.68 | | WCDMA
FDD V
850 MHz | 836.4 | 24.1 | Front side
10 mm away | 22.4 | 0.84 | 0.02 | 0.84 | | 830 MHZ | 846.6 | 24.1 | Front side
10 mm away | 22.4 | 0.88 | 0.00 | 0.88 | | | 836.4 | 24.1 | Right side
10 mm away | 22.6 | 0.75 | 0.00 | 0.75 | | | 836.4 | 24.1 | Left side
10 mm away | 22.6 | 0.59 | 0.02 | 0.59 | | | 836.4 | 24.1 | Bottom side
10 mm away | 22.6 | 0.06 | 0.01 | 0.06 | ## Table 11.2.4. SAR results for WCDMA FDD V body-worn configurations with Mobile Hot Spot mode enabled **Note 3:** Any side of the phone that is further than 2.5 cm away from the transmitting antenna can be exempted from testing. | | | | | | SAR, averaged over 1 g | | d over 1 g | |-----------------|----------------|-------------------------|---|-------------------------|------------------------|------------------|-------------------------| | Mode | Freq.
(MHz) | Cond.
Power
(dBm) | Holster type / device configuration | Liquid
Temp.
(°C) | Measured
(W/kg) | Power Drift (dB) | *Extrapolated
(W/kg) | | | 1712.4 | 22.8 | No Holster, back side 20 mm away | 21.8 | 0.83 | 0.04 | 0.83 | | | 1732.6 | 23.9 | No Holster, back side 20 mm away | 22.6 | 1.20 | -0.02 | 1.20 | | | 1752.6 | 23.7 | No Holster, back side 20 mm away | 21.8 | 1.23 | 0.03 | 1.23 | | WCDMA
FDD IV | 1732.6 | 23.9 | No Holster, front side 20 mm away | 21.8 | 0.47 | 0.06 | 0.47 | | 1700 MHz | 1712.4 | 22.8 | Vertical Holster,
back side facing | 22.6 | 1.16 | 0.05 | 1.16 | | | 1732.6 | 23.9 | Vertical Holster,
back side facing | 22.6 | 1.27 | 0.10 | 1.27 | | | 1752.6 | 23.7 | Vertical Holster,
back side facing | 22.6 | 1.38 | -0.01 | 1.38 | | | 1752.6 | 23.7 | Vertical Holster, HS,
back side facing | 22.5 | 1.41 | 0.22 | 1.41 | Table 11.2.5. SAR results for WCDMA FDD IV body-worn configurations | 。
解
s | Page 45(50) | | | | | |---------------|--------------------|----------------|------------------|------------|---------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | | | | | | | SAR, averaged over 10 g | | | |-----------------------------|----------------|-------------------------|---------------------------------------|-------------------------|-------------------------|------------------------|-------------------------| | Mode | Freq.
(MHz) | Cond.
Power
(dBm) | MHS mode /
device
configuration | Liquid
Temp.
(°C) | Measured
(W/kg) | Power
Drift
(dB) | *Extrapolated
(W/kg) | | | 1712.4 | 16.7 | Back side
10 mm away | 21.5 | 0.72 | 0.05 | 0.72 | | Wann | 1732.6 | 17.8 | Back side
10 mm away | 21.8 | 1.11 | 0.07 | 1.11 | | | 1752.6 | 17.6 | Back side
10 mm away | 21.5 | 1.07 | -0.03 | 1.07 | | WCDMA
FDD IV
1700 MHz | 1732.6 | 17.8 | Front side
10 mm away | 21.5 | 0.37 | -0.05 | 0.37 | | 1700 MHZ | 1732.6 | 17.8 | Right side
10 mm away | 22.5 | 0.09 | 0.04 | 0.09 | | | 1732.6 | 17.8 | Left side
10 mm away | 22.5 | 0.08 | 0.08 | 0.08 | | | 1732.6 | 17.8 | Bottom side
10 mm away | 22.5 | 0.68 | -0.01 | 0.68 | Table 11.2.6. SAR results for WCDMA FDD IV body-worn configurations with Mobile Hot Spot mode enabled **Note 3:** Any side of the phone that is further than 2.5 cm away from the transmitting antenna can be exempted from testing. | | | | | | SAR, averaged over 1 g | | l over 1 g | |-----------------|-------------|-------------------------|---|-------------------------|------------------------|------------------|-------------------------| | Mode | Freq. (MHz) | Cond.
Power
(dBm) | Holster type / device
configuration | Liquid
Temp.
(°C) | Measured
(W/kg) | Power Drift (dB) | *Extrapolated
(W/kg) | | | 1850.2 | | No Holster, back side 20 mm away | | | | | | | 1880.0 | 27.9 | No Holster, back side
20 mm away | 21.8 | 0.40 | -0.09 | 0.40 | | 2-slots
GPRS | 1909.8 | | No Holster, back side
20 mm away | | | | | | 1900
MHz | 1880.0 | 27.9 | No Holster, front side 20 mm away | 21.8 | 0.18 | 0.30 | 0.18 | | 1 | 1880.0 | 27.9 | Vertical Holster,
back side facing | 21.8 | 0.34 | -0.04 | 0.34 | | | 1880.0 | 27.9 | No Holster, HS,
back side 20 mm away | 21.8 | 0.40 | 0.01 | 0.40 | Table 11.2.7. SAR results for GPRS 1900 body-worn configurations | PA S | Page 46(50) | | | | | |----------------------|--------------------|----------------|------------------|------------|---------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | | | | | | | SAR, averaged over 1 g | | over 1 g | |--------------|----------------|-------------------------|---------------------------------|-------------------------|------------------------|------------------|-------------------------| | Mode | Freq.
(MHz) | Cond.
Power
(dBm) | MHS mode / device configuration | Liquid
Temp.
(°C) | Measured
(W/kg) | Power Drift (dB) | *Extrapolated
(W/kg) | | | 1850.2 | 25.7 | Back side
10 mm away | 22.9 | 1.39 | 0.18 | 1.39 | | | 1880.0 | 25.6 | Back side
10 mm away | 22.9 | 1.26 | 0.09 | 1.26 | | | 1909.8 | 25.6 | Back side
10 mm away | 22.9 | 1.20 | 0.10 | 1.20 | | GPRS
1900 | 1880.0 | 25.6 | Front side
10 mm away | 22.0 | 0.33 | -0.03 | 0.33 | | MHz | MHz 1880.0 | 25.6 | Right side
10 mm away | 22.0 | 0.06 | -0.09 | 0.06 | | | 1880.0 | 25.6 | Left side
10 mm away | 22.0 | 0.19 | -0.02 | 0.19 | | | 1880.0 | 25.6 | Bottom side
10 mm away | 22.0 | 0.71 | -0.02 | 0.71 | Table 11.2.8. SAR results for GPRS 1900 body-worn configurations with Mobile Hot Spot mode enabled | PATS S | Testing
Pervices™ | SAR Compliance Test R Smartphone Model RFR | • | erry® | Page 47 (50) | |---------------|----------------------|--|------------------|------------|---------------------| | Author Data | Dates of Test | Test Report No FCC ID: | | | IC ID | | Andrew Becker | July 05 - | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | | | | | | | SAR, averaged over 1 g | | | |-----------------|-------------|-------------|---|---------------|------------------------|------------|-------------------------| | | | Cond. | | Liquid | | Power | | | Mode | Freq. (MHz) | Power (dBm) | Holster type / device configuration | Temp.
(°C) | Measured
(W/kg) | Drift (dB) | *Extrapolated
(W/kg) | | | 1852.4 | | No Holster, back side
20 mm away | | | | | | | 1880.0 | 23.9 | No Holster, back side
20 mm away | 21.8 | 0.59 | -0.02 | 0.59 | | WCDMA
FDD II | 1907.6 | | No Holster, back side
20 mm away | | | | | | 1900 MHz | 1880.0 | 23.9 | No Holster, front side 20 mm away | 21.8 | 0.30 | -0.06 | 0.30 | | | 1880.0 | 23.9 | Vertical Holster,
back side facing | 21.8 | 0.56 | 0.01 | 0.56 | | | 1880.0 | 23.9 | No Holster, HS,
back side 20 mm away | 21.8 | 0.62 | 0.41 | 0.62 | Table 11.2.9. SAR results for WCDMA FDD II body-worn configurations | | | | | | SAR, averaged over 1 g | | | |-----------------------------|----------------|-------------------------|---------------------------------|-------------------------|------------------------|------------------|-------------------------| | Mode | Freq.
(MHz) |
Cond.
Power
(dBm) | MHS mode / device configuration | Liquid
Temp.
(°C) | Measured
(W/kg) | Power Drift (dB) | *Extrapolated
(W/kg) | | | 1852.4 | 20.0 | Back side
10 mm away | 22.9 | 1.39 | -0.09 | 1.39 | | | 1880.0 | 19.7 | Back side
10 mm away | 23.2 | 1.36 | -0.13 | 1.36 | | WCDMA | 1907.6 | 19.8 | Back side
10 mm away | 22.9 | 1.24 | 0.01 | 1.24 | | WCDMA
FDD II
1900 MHz | 1880 | 19.7 | Front side
10 mm away | 22.0 | 0.37 | 0.04 | 0.37 | | 1300 MHZ | 1880 | 19.7 | Right side
10 mm away | 22.0 | 0.07 | 0.11 | 0.07 | | | 1880 | 19.7 | Left side
10 mm away | 22.0 | 0.18 | -0.04 | 0.18 | | | 1880 | 19.7 | Bottom side
10 mm away | 22.0 | 0.74 | 0.05 | 0.74 | Table 11.2.10. SAR results for WCDMA FDD II body-worn configurations with Mobile Hot Spot mode enabled | | in s | esting
ervices™ | • | SAR Compliance Test Report for the BlackBerry® Smartphone Model RFE71UW | | | |---------------------------|---------------------------------------|--------------------|------------------|---|---------------|--| | Author Data Dates of Test | | | Test Report No | FCC ID: | IC ID | | | | Andrew Becker July 05 – July 30, 2012 | | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | | | | | | | | SAR, averaged over 1 g | | | |------------------|----------------|-------------------------|---|-------------------------|------------------------|------------------------|-------------------------| | Mode | Freq.
(MHz) | Cond.
Power
(dBm) | Holster type / device
configuration | Liquid
Temp.
(°C) | Measured
(W/kg) | Power
Drift
(dB) | *Extrapolated
(W/kg) | | | 2462 | 18.1 | No Holster, back side
20 mm away | 22.4 | 0.09 | 0.18 | 0.09 | | 802.11b/
WLAN | 2462 | 18.1 | No Holster, front side 20 mm away | 22.4 | 0.05 | 0.15 | 0.05 | | 2450
MHz | 2462 | 18.1 | Vertical Holster, back side facing | 22.5 | 0.07 | -0.16 | 0.07 | | | 2462 | 18.1 | No Holster, HS,
back side 20 mm away | 22.4 | 0.05 | -0.03 | 0.05 | Table~11.2.11.~SAR~results~for~WiFi/WLAN/802.11b~body-worn~configurations | | | | | | SAR, averaged over 1 g | | d over 1 g | |------------------|----------------|-------------------------|---------------------------------|-------------------------|------------------------|------------------|-------------------------| | Mode | Freq.
(MHz) | Cond.
Power
(dBm) | MHS mode / device configuration | Liquid
Temp.
(°C) | Measured
(W/kg) | Power Drift (dB) | *Extrapolated
(W/kg) | | | 2462 | 18.1 | Back side
10 mm away | 22.4 | 0.23 | -0.09 | 0.23 | | | 2462 | 18.1 | Front side
10 mm away | 22.5 | 0.06 | 0.31 | 0.06 | | 802.11b/
WLAN | 2462 | 18.1 | Right side
10 mm away | 22.5 | 0.07 | 0.01 | 0.07 | | 2450
MHz | 2462 | | Left side
10 mm away | | | | | | | 2462 | | Top side
10 mm away | | | | | | | 2462 | | Bottom side
10 mm away | | | | | Table 11.2.12. SAR results for WiFi/WLAN/802.11b body-worn configurations with Mobile Hot Spot mode enabled | PA S | Page 49(50) | | | | | |----------------------|--------------------|----------------|------------------|------------|---------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | #### 12.0 REFERENCES - [1] IEEE 1528-2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. - [2] EN 50360: 2001, Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz) - [3] ICNIRP, International Commission on Non-Ionizing Radiation Protection (2009), Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). - [4] Council Recommendation 1999/519/EC of July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz) - [5] IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave. - [6] IEEE C95.1-2005, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. - [7] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields. - [8] FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation. - [9] DASY 5 DOSIMETRIC ASSESSMENT SYSTEM SOFTWARE MANUAL, Schmid & Partner Engineering AG. - [10] Health Canada, Safety Code 6, 2009: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency range from 3 kHz to 300 GHz. - [11] RSS-102, issue 4-2010: Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields. - [12] IEC 62209-1, First Edition-2005: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz) - [13] FCC OET SAR Measurement Requirements for 3 6 GHz, October, 2006. - [14] FCC OET SAR Measurement Procedures for 802.11 a/b/g Transmitters, May, 2007. - [15] FCC OET SAR Evaluation Considerations for Handsets with Multiple Transmitters & Antennas, September, 2008. - [16] FCC OET SAR Test Reduction Procedure for GSM/GPRS/EDGE, December, 2008. | PAT S | Page 50(50) | | | | | |---------------|--------------------|----------------|------------------|------------|---------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | IC ID | | Andrew Becker | July 05 – | July 30 , 2012 | RTS-5992-1207-37 | L6ARFE70UW | 2503A-RFE70UW | [17] FCC OET SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz – 3 GHz, January, 2007. - [18] FCC OET RF Exposure Procedures for Mobile and Portable Devices, and Equipment Authorization Policies, November, 2009. - [19] FCC OET SAR Measurements Procedures for 3G Devices, October, 2007. - [20] Dipole Requirements for SAR System Validation and Verification, Novmeber, 2009. - [21] IEC 62209-2, Edition 1.0-2010: Human exposure to radio frequency fields from hand-held and bodymount wireless communication devices Human Models, instrumentation, and procedures part 2 procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz). - [22] FCC OET SAR Evaluation Procedure for Portable Devices with Wireless Router capability. - [23] IEC/EN 62311-2008: Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz 300 GHz).