Document SAR Compliance Test Rest SAR Compliance Test Rest Author Data Dates of Test			erry®	Page 1(43)	
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

SAR Compliance Test Report

Testing Lab:		ting Services	Applicant:		In Motion Limited
	440 Phill	ip Sueet		295 Phill	ip Sueet
	Waterloo	, Ontario		Waterloo	, Ontario
	Canada N	N2L 5R9		Canada N	12L 3W8
	Phone:	519-888-7465		Phone:	519-888-7465
	Fax:	519-746-0189		Fax:	519-888-6906
				Web site [.]	www rim com

- Statement of
Compliance:RIM Testing Services declares under its sole responsibility that the product
to which this declaration relates, is in conformity with the appropriate RF exposure
standards, recommendations and guidelines. It also declares that the product was
tested in accordance with the appropriate measurement standards, guidelines and
recommended practices.
- **Device Category:** This BlackBerry[®] Smartphone is a portable device, designed to be used in direct contact with the user's head, hand and to be carried in approved accessories when carried on the user's body.

RF exposureThis device has been shown to be in compliance for localized specific absorptionenvironment:This device has been shown to be in compliance for localized specific absorptionrate (SAR) for uncontrolled environment/general population exposure limitsspecified in OET Bulletin 65 Supplement C (Edition 01-01), FCC 96-326, IEEE Std.C95.1-2005, Health Canada's Safety Code 6, as reproduced in RSS-102 issue 4-2010and has been tested in accordance with the measurement procedures specified in FCCOET Procedures, OET Bulletin 65 Supplement C (Edition 01-01), ANSI/IEEE Std.C95.3-2002, IEEE 1528-2003, IEC 62209-1-2005, IEC 62209 - 2-2010 and HealthCanada's Safety Code 6.

Tested by: Hang Wang 2011 Compliance Testing Associate

Tested and documented by: Andrew Becker SAR & HAC Compliance Specialist

Tested and reviewed by: Daoud Attayi Team Lead: Safety, SAR & HAC Compliance

Approved by: Masud S. Attayi Manager, Regulatory Compliance

Signatures

Date 02-September-

16-September-2011

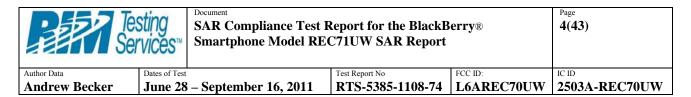
21-September-2011

Doord Attagi Mand Altagi

22-September-2011

•	Testing	Document SAR Compliance Test H	Report for the BlackB	erry®	Page 2(43)
	Services™	Smartphone Model RE		-	
Author Data Andrew Becker	Dates of Test	8 – September 16, 2011	Test Report No RTS-5385-1108-74	FCC ID: L6AREC70UW	іс ір 2503А-REC70UW
Andrew Decker	Julie 20	5 – September 10, 2011	K15-5505-1100-74	LOAKEC/00W	2505A-KEC700W
CONTEN	TS				
		EST REPORT			
	· ·	TS			
1.0		ING CONFIGURATIONS A			
1.1					
1.2					
1.3 1.4		SCRIPTION RN ACCESSORIES (HOLS			
		IN ACCESSORIES (HOLS	,		
1.5					
1.6	-				
1.7		RE USED TO ESTABLISH			
1.8	HIGHLIG	HTS OF THE FCC OET S	AR MEASUREMENT F	REQUIREMENTS	7
		IEASUREMENT REQUIRE			
		CEDURES FOR 802.11 A			
		IEASUREMENT REQUIRE		-	-
1.9		R MEASUREMENT PROCE			-
1.9		IS OF THE FCC OET SAR JLTIPLE TRANSMITTERS			
2.1		UREMENT SYSTEM			
		JIPMENT LIST			-
2.2	DESCRIPT	ION OF THE TEST SETUR	٥		
	2.2.1 DEV	ICE AND BASE STATION	SIMULATOR SETUP.		18
		Y SETUP			
3.0		IC FIELD PROBE CALIBR			
3.1		ECIFICATIONS			
3.2		LIBRATION AND MEASUR			
4.0 4.1	-	ASUREMENT SYSTEM VE CCURACY VERIFICATION			-
5.0		M DESCRIPTION			
6.0	-	DIELECTRIC PROPERTIE			
6.1		ION OF TISSUE SIMULAN			
	6.1.1 EQL	JIPMENT			
		PARATION PROCEDURE			
6.2		AL PARAMETERS OF THE			
		T CONFIGURATION			
7.0		CEDURE ETY LIMITS			
8.0		POSITIONING			
8.1		DLDER FOR SAM TWIN PI			
8.2		ION OF THE TEST POSIT			
	8.2.1 TES	T POSITIONS OF DEVICE	RELATIVE TO HEAD		
		DEFINITION OF THE "CH			
		DEFINITION OF THE "TIL			
0.0		Y HOLSTER CONFIGURA			
9.0	-	VEL EVALUATION			
9.1 9.2	-	SEARCH ATION			-
9.3	-	Y CORRECTION			
9.4		RCH FOR 1G AND 10G CL			
10.0		REMENT UNCERTAINTY			
11.0		ESULTS			
11.1		SUREMENT RESULTS AT			
11.2		SUREMENT RESULTS AT			
40.0		CCESSORIES			
12.0	KEFERE	NCES			42

Ter Ser	sting rvices™	SAR Compliance Test Report for the BlackBerry® 3 Smartphone Model REC71UW SAR Report 3		Page 3(43)	
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW


APPENDIX A: SAR DISTRIBUTION COMPARISON FOR ACCURACY VERIFICATION

APPENDIX B: SAR DISTRIBUTION PLOTS - HEAD CONFIGURATION

APPENDIX C: SAR DISTRIBUTION PLOTS - BODY-WORN CONFIGURATION

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

APPENDIX E: PHOTOGRAPHS

1.0 OPERATING CONFIGURATIONS AND TEST CONDITIONS

1.1 Picture of Device

Please refer to Appendix E. Figure 1.1.1 BlackBerry Smartphone

1.2 Antenna description

Type Internal fixed antenna	
Location	Back bottom centre (main licensed
Location	transmitters)
Configuration	Internal fixed antenna

Table 1.2.1. Antenna description

1.3 Device description

Device Model	REC71UW				
FCC ID	L6AREC70UW				
	27DD7A26 (Rev 1), 282484F3 (Rev 2), 2846CB6A (Rev 3),				
PIN	27DD7A7D (Conducted, Rev 1), 2846E250 (Conducted, Rev 3)				
Hardware Rev	Rev 1/Rev 2/Rev 3		· · ·		
Software Version	7.0.0.1423/1639/17	763			
Prototype or Production	Production				
Unit					
	1-slot	2-slots	WCDMA /	WCDMA /	
Mode(s) of Operation in	GSM 850	EDGE/GPRS	UMTS FDD V	UMTS FDD II	
North America	GSM 1900	850/1900	(850)	(1900)	
Nominal Maximum	33.0	31.0			
conducted RF Output Power	30.0	28.0	24.0	22.5	
(dBm)	50.0	20.0			
Tolerance in Power Setting	± 0.5	± 0.5	± 0.5	± 0.5	
on centre channel (dB)	= 0.5	= 0.5	= 0.5	- 0.5	
Duty Cycle	1:8	2:8	1:1	1:1	
Transmitting Frequency	824.2 - 848.8	824.2 - 848.8	824.6 - 846.6	1852.4 - 1907.6	
Range (MHz)	1850.2 - 1909.8	1850.2 - 1909.8	824.0 - 840.0	1832.4 - 1907.0	
Mode(s) of Operation	802.11b	802.11g	802.11n	Bluetooth	
Nominal Maximum					
conducted RF Output Power	17.0	15.0	15.0	8.50	
(dBm)					
Tolerance in Power Setting	± 0.5	± 0.5	± 0.5	N/A	
on centre channel (dB)	± 0.5	± 0.5	± 0.5	1 1/ 2 1	
Duty Cycle	1:1	1:1	1:1	N/A	
Transmitting Frequency Range (MHz)	2412-2462	2412-2462	2412-2462	2402-2483	

		Compliance Test I phone Model RE	Page 5(43)		
Author Data Andrew Becker	Dates of Test June 28 – Septe	ember 16, 2011	Test Report No RTS-5385-1108-74	FCC ID: L6AREC70UW	іс ір 2503А-REC70UW
Mode(s) of (Operation	802.11a/n (low band)	802.11a/n (middle band)	802.11a/n (upper band I)	802.11a/n (upper band II)
Nominal Ma conducted R (dBm)	aximum RF Output Power	13.5	13.5	14.0	15.0
Tolerance in on centre ch	Power Setting annel (dB)	± 0.5	± 0.5	± 0.5	± 0.5
Duty Cycle		1:1	1:1	1:1	1:1

Table 1.3.1. Test device description

5260-5320

5500-5700

5749-5805

5180-5240

Transmitting Frequency

Range (MHz)

The REC71UW device supports GSM/GPRS/EDGE 900/1800 MHz bands and UMTS band I that are not operational in North America, therefore no data is presented in this report for those bands.

Te Se	sting rvices™	SAR Compliance Test Report for the BlackBerry® 6 Smartphone Model REC71UW SAR Report 6		Page 6(43)	
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

1.4 Body worn accessories (holsters)

The device has been tested with the holsters below. The holster is designed with the intended device orientation being with the LCD facing the belt clip. Proper positioning is vital for protection of the LCD display, and to help maximize the battery life of the device. The device can also be placed in the holster with the backside facing the belt clip. Body SAR measurements were carried out with the worst-case configuration front LCD side and backside towards the belt clip.

Number	Holster Type	Part Number	Separation distance (mm)
1	Vertical Holster	HDW-41464-001	20
2	Vertical Holster	HDW-38843-001	20

Table 1.4.1. Body worn holster

Please refer to Appendix E. Figure 1.4.1. Body-worn holster

1.5 Headset

The device was tested with and without the following headset model numbers.

- 1) HDW-14322-003
- 2) HDW-15766-005
- 3) HDW-24529-001

1.6 Battery

The device was tested with the following Lithium Ion Battery pack.

1) BAT-30615-006

Te Se	sting rvices™	SAR Compliance Test Report for the BlackBerry® 7(Smartphone Model REC71UW SAR Report 7(Page 7(43)	
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

1.7 Procedure used to establish test signal

The device was put into test mode for SAR measurements by placing a voice call from a Rohde & Schwarz CMU 200 Communications Test Instrument. The power control level was set to command the device to transmit at full power at the specified frequency. Other parameters include: Channel type = full rate, discontinuous transmission off, frequency hopping off.

1.8 Highlights of the FCC OET SAR Measurement Requirements

1.8.1 SAR Measurement Requirements for 3-6 GHz and Measurement Procedures for 802.11 a/b/g/n Transmitter

• Maintained dielectric parameter uncertainty as close to $\pm 5.0\%$ of the target value as possible.

• Liquid depth from SAM ERP or flat phantom was kept at 15 cm.

• Probe Requirement: Used SPEAG probe model EX3DV4 for 5 - 6 GHz SAR testing specs are outlined below:

Probe tip to sensor center	1.0 mm
Probe tip diameter is	2.5 mm
Probe calibration uncertainty	< 15 % for f = 2.45 to < 6.0 GHz
Probe calibration range	± 100 MHz

Table 1.8.1. Probe requirement

• Area scan resolution was maintained at 10mm

• System accuracy validation was conducted within \pm 100 MHz of device mid-band frequency and results were within \pm 10 % of the manufacturers target value for each band.

• Zoom Scan: The following settings were used for the validation and measurement.

Closet Measurement Point to Phantom	2.0 mm
Zoom Scan (x,y) Resolution	4.0 mm or 3 mm
Zoom Scan (z) Resolution	2.5 mm or 2 mm
Zoom Scan Volume	Minimum 24 x 24 x 20 mm*
Graded Ratio	1.5

Table 1.8.2. Zoom Scan requirement

*Note: "Auto-extend zoom scan when maxima on boundry" is enabled, which can result in the zoom scan dimensions varying between 24x24x20 to 36x36x20.

• As per FCC KDB 865664, graded grids have been used (z), the first measurement point was kept within 2 mm at 5-6 GHz. The subsequent graded grid ratio of 1.5 was used. A zoom scan of minimum 24x24x20 mm³ was used. Step size of 4.0 mm on (x,y) and 2.5 mm (z) axis were used.

• Frequency Channel Configuration: 802.11 b/g modes are tested on "default test channels" 1, 6 and 11.

• 802.11a is tested for UNII operations on channels 36 and 48 in the lower band 5.15 - 5.25 GHz band; channels 52 and 64 in the 5.25 - 5.35 GHz band; channels 149 and 161 in the 5.8 GHz band.

Te Se	sting rvices™	SAR Compliance Test R Smartphone Model REC	Page 8(43)		
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

• For each frequency band, testing at higher rates and higher modulations is not required when the maximum average output power for each of these configurations is less than $\frac{1}{4}$ dB higher than those measured at the lowest data rate.

• SAR is not required for 802.11g channels when the maximum average output power is less than ¹/₄ dB higher than that measured on the corresponding 802.11b channels. The average output power for 802.11a should be measured on all channels in each frequency band.

• SAR test are conducted on each "default test channel" and each band with the worst case modulation that resulted in maximum duty cycle

• Conducted power measurements:

	· ·		l 1a (mid) 6Mbps		a (upper) 6Mbps	802.11a (upper band II) 6Mbps	
Chan	Cond. Power (dBm)	Chan	Cond. Power (dBm)	Chan	Cond. Power (dBm)	Chan	Cond. Power (dBm)
36	13.42	52	13.44	104	13.50	149	15.46
40	13.30	56	13.57	116	13.37	153	15.22
44	13.33	60	13.51	124	14.60	157	15.16
48	13.28	64	13.52	140	14.38	161	15.04

 Table 1.8.3.
 802.11a channel vs. conducted power

		802.11a (lower band)	802.11a (middle band)	802.11a (upper band II)		
Data		Channel 36	Channel 52	Channel 149		
Rate	Mod.	Cond. Power (dBm)	Cond. Power (dBm)	Cond. Power (dBm)		
(Mbits)						
6	BPSK	13.42	13.44	15.46		
9	BPSK	12.33	12.65	14.36		
12	QPSK	11.75	11.80	12.79		
18	QPSK	10.92	11.12	12.03		
24	16-QAM	10.33	10.52	10.55		
36	16-QAM	9.48	9.62	9.65		
48	64-QAM	7.92	7.92	7.45		
54	64-QAM	7.71	7.82	7.32		
			802.11 n			
Data Ra	ate (Mbps)	Mod.	Channel 149			
		Iviod.	Cond. Power (dBm)			
	6.5	MCS0	1	4.72		
	13	MCS1	1	2.61		
19.5		MCS2	1	1.91		
	26	MCS3		9.48		
39 MCS4				8.72		
52 MCS5			7.68			
58.5 MCS6			7.56			
	65	MCS7	6.60			

Table 1.8.4. 802.11a modulation type/data rate vs. conducted power

Ter Ser	sting rvices™	Document SAR Compliance Test R Smartphone Model REC	Page 9(43)		
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	5 – September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

802.111	o @ 1Mbps	802.11g	@ 6Mbps	802.11n @	6.5 Mbps
Chan	Cond. Power (dBm)	Chan	Cond. Power (dBm)	Chan	Cond. Power (dBm)
1	16.98	1	12.73	1	12.54
6	16.89	6	14.87	6	14.72
11	16.51	11	12.32	11	12.13

Table 1.8.5.	802.11 b/g/n	channel vs.	conducted power
--------------	--------------	-------------	-----------------

		802.11g			802.11b	
ta Rate (Mbps)	Mod.	Channel 6 Cond. Power (dBm)	Data Rate (Mbps)	Mod.	Channel 6 Cond. Power (dBm)	
6	BPSK	14.87	1	BPSK	16.89	
9	BPSK	14.30	2	DQPSK	16.62	
12	QPSK	12.73	5.5	CCK	15.92	
18	QPSK	11.95	11	CCK	15.41	
24	16-QAM	9.52	22	CCK	16.80	
36	16-QAM	8.57				
48	64-QAM	7.54				
54	64-QAM	7.34				
				802.11 n		
Data Dat	to (Mhng)	Mod		Channel 6		
Data Ka	te (Mbps)	WIOU		Cond. Power (dBm)		
6	.5	MCS	0	14.72		
1	3	MCS	1	12.61		
19	19.5 MC		2	11.91		
26 MC		MCS	3	9.48		
39		MCS	4		8.72	
52		MCS	5		7.68	
58	8.5	MCS	6	7.56		
6	55	MCS	7	6.60		

Table 1.8.6. 802.11 b/g/n modulation type/data rate vs. conducted power

Ter Ser	sting rvices™	SAR Compliance Test R Smartphone Model REC	Page 10(43)		
Author Data	Dates of Test	Test Report No FCC ID:		IC ID	
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

1.8.2 SAR Measurement Requirements for Bluetooth

Channe l	Freq (MHz)	Mode	Conducted Transmit Power (dBm)
0	2402	DH5	6.67
39	2441	DH5	8.33
78	2480	DH5	8.50

Table 1.8.7. Bluetooth peak conducted power measurements

1.8.3 SAR Measurement Procedures for 3G Devices

WCDMA Handsets

Output Power Verification

• Maximum output power is verified on the High, Middle and Low channels using 12.2 kbps RMC, 12.2 kbps AMR with a 3.4 kbps SRB (signal radio bearer) with TPC (transmit power control) set to all "1's" for WCDMA/HSPA or applying the required inner loop.

• For Release 6 HSPA, output power is measured according to requirements for HS-DPCCH Sub-test 1-4/1-5

Head SAR Measurements

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than ¼ dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signalling radio bearer) using the exposure configuration that results in the highest SAR for that RF channel in 12.2 RMC.

Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits configured to all "1s". SAR for other spreading codes and multiple DPDCH_n, when supported by the DUT, are not required when the maximum average outputs of each RF channel, for each spreading code and DPDCH_n configuration, are less than $\frac{1}{4}$ dB higher than those measured in 12.2 RMC. Otherwise, SAR is measured on the maximum output channel with an applicable RMC configuration for the corresponding spreading code or DPDCH_n using the exposure configuration that results in the highest SAR with 12.2 RMC.

Text Ser	sting vices™	Document SAR Compliance Test R Smartphone Model REC	Page 11(43)		
Author Data	Dates of Test		Test Report No FCC ID:		IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

Handsets with HSPA

Body SAR is not required for handsets with HSPA capabilities, when the maximum average output of each RF channel with HSPA active is less than ¹/₄ dB higher than that measured in 12.2 kbps RMC without HSPA Otherwise, SAR for HSPA is measured using FRC (fixed reference channel) in the body exposure configuration that results in the highest SAR for that RF channel in 12.2kbps RMC.

	Band	ŀ	FDD V (850))	FDD II (1900)			
	Channel	4132	4182	4233	9262	9400	9538	
	Freq (MHz)	826.4	836.4	846.6	1852.4	1880.0	1907.6	
Mode	Subtest	Max burst averaged conducted power (dBm)				Max burst averaged conducted power (dBm)		
Rel99	12.2 kbps RMC	24.12	24.40	24.24	22.20	22.54	22.93	
Rel99	12.2 kbps, Voice, AMR, SRB 3.4 kbps	24.09	24.39	24.23	22.22	22.55	22.96	
Rel5 HSDPA	1	23.99	24.23	24.11	21.97	22.34	22.70	
Rel5 HSDPA	2	23.98	24.25	24.12	21.98	22.30	22.75	
Rel5 HSDPA	3	23.97	24.22	24.09	22.12	22.40	22.85	
Rel5 HSDPA	4	23.98	24.24	24.10	21.97	22.32	22.75	
Rel6 HSUPA	1	23.98	24.23	24.11	21.90	22.25	22.70	
Rel6 HSUPA	2	23.96	24.26	24.11	21.97	22.35	22.60	
Rel6 HSUPA	3	23.98	24.23	24.09	21.95	22.40	22.65	
Rel6 HSUPA	4	23.97	24.25	24.12	21.98	22.38	22.72	
Rel6 HSUPA	5	23.98	24.24	24.10	21.94	22.27	22.60	

 Table 1.8.8.
 WCDMA (Rel99) / HSPA conducted power measurements

Te Se	sting rvices™	Document SAR Compliance Test R Smartphone Model REC	Page 12(43)		
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

1.9 Highlights of the FCC OET SAR Evaluation Considerations for Handsets with Multiple Transmitters/ Antennas & GSM/GPRS/EDGE Procedure

Unlicensed Transmitters

When there is simultaneous transmission -

Stand-alone SAR not required when

- output $\leq 2 \cdot PRef$ and antenna is > 5.0 cm from other antennas
- output \leq PRef and antenna is > 2.5 cm from other antennas
- the other antenna(s), which are < 2.5 cm away, has an output \leq PRef OR max 1g SAR < 1.2 W/kg

Otherwise stand-alone SAR is required

• test SAR on highest output channel for each wireless mode and exposure condition

 \bullet if SAR for highest output channel is > 50% of SAR limit, evaluate all channels according to normal procedure

Simultaneous Transmission SAR not required:

Unlicensed only

- when stand-alone 1-g SAR is not required and antenna is > 5 cm from other antennas
- when the other antenna(s), which are < 2.5 cm away, has an output \leq PRef OR max 1g SAR < 1.2 W/kg

Licensed & Unlicensed

• when the sum of the 1-g SAR is < 1.6 W/kg for each pair of simultaneous transmitting antennas. or

• when the ratio of SAR to peak SAR separation distance of simultaneous transmitting antenna pair is < 0.3

Simultaneous Transmission SAR required:

Licensed & Unlicensed

• antenna pairs with SAR to antenna separation ratio ≥ 0.3 ; test is only required for the configuration that results in the highest SAR in standalone configuration for each wireless mode and exposure condition.

	2.45	5.15 - 5.35	5.47 - 5.85	GHz	
P _{Ref}	12	6	5	mW	
Device output power should be rounded to the nearest mW to compare with values specified in this table.					

Table 1.9.1. Output Power Thresholds for Unlicensed Transmitters

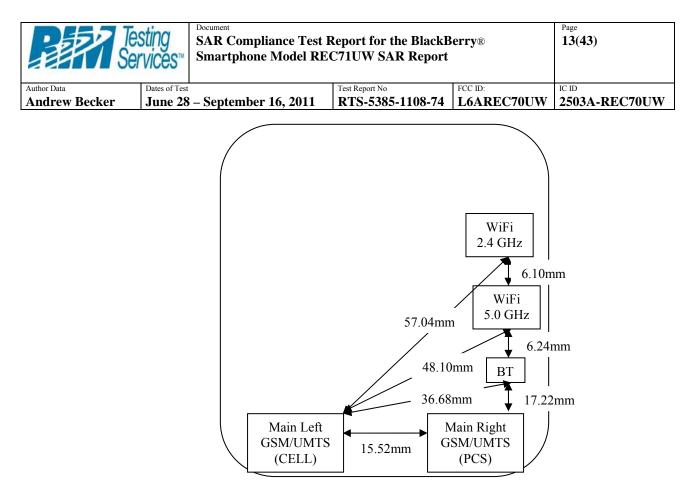


Figure 1.9.1. Back view of device showing closest distance between antenna pairs

Mode	Configuration	Highest 1 g SAR (W/kg)
GSM/GPRS/EDGE/	Head-Left-Touch	1.35
UMTS	No Holster, back side 15 mm away	0.81
902 11- / /- /-	Head-Left-Touch	0.37
802.11a/b/g/n	No Holster, back side 15 mm away	0.17
ВТ	Head-Left-Touch	0.01
BI	No Holster, back side 15 mm away	0.00

Table 1.9.2. Highest SAR values for the same setup

Mode	Configuration	Zoom Scan 1g SAR (W/Kg)	Volume Scan 1g SAR (W/Kg)	Multi-Band Average 1g SAR (W/Kg)	
UMTS Band V		1.08	1.35		
802.11b	Head-Right-Touch	0.61	0.55	1.28	
Bluetooth		0.00	N/A		
EDGE 1900		1.03	1.03		
802.11b	Head-Right-Touch	0.61	0.55	1.14	
Bluetooth		0.00	N/A]	
EDGE 1900		1.30	1.27		
802.11b	Head-Left-Touch	0.37	0.38	1.35	
Bluetooth		0.01	0.00		
UMTS Band II		1.17	1.15		
802.11b	Head-Right-Touch	0.61	0.55	1.26	
Bluetooth		0.00	N/A		

Testing Services™		Document SAR Compliance Test Report for the BlackBerry® Smartphone Model REC71UW SAR Report			Page 14(43)
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

UMTS Band II		1.31	1.31	
802.11b	Head-Left-Touch	0.37	0.38	1.38
Bluetooth		0.01	0.00	

Table 1.9.3. Simultaneous transmission SAR results

BT & WiFi:

- BT Stand-alone SAR is not required because the WiFi antenna(s), which are < 2.5 cm away, has a max 1g SAR < 1.2 W/kg
- BT Simultaneous Transmission SAR is not required because the WiFi antenna(s), which are < 2.5 cm away, has a max 1g SAR < 1.2 W/kg

BT & GSM/WCDMA:

- BT Stand-alone SAR is required because the main antenna, which is < 2.5 cm away, has an output \ge PRef AND max 1g SAR > 1.2 W/kg
- BT Simultaneous Transmission SAR is not required because the sum of the 1-g SAR between the main antenna and BT antenna is < 1.6 W/kg

GSM & WiFi:

- Head Configuration:
 - Simultaneous Transmission is required as the sum of the 1-g SAR is > 1.6 W/kg and the SAR to antenna separation ratio is ≥ 0.3 ;
- Body Configuration:
 - Simultaneous Transmission is not required as the sum of the 1-g SAR is < 1.6 W/kg.;

WCDMA & WiFi:

- Head Configuration:
 - Simultaneous Transmission is required as the sum of the 1-g SAR is > 1.6 W/kg and the SAR to antenna separation ratio is ≥ 0.3 ;
- Body Configuration:
 - Simultaneous Transmission is not required as the sum of the 1-g SAR is < 1.6 W/kg.;

• The device supports DTM, GPRS Category Class A, Multi-Slot Class 10 with maximum 5-slots (2-slots uplink and 3-slot downlink).

- For head SAR configurations, 1 and 2-slots GMSK modulation have been tested.
- For body SAR configurations, 2-slots GMSK modulation has been tested.
- In EDGE/GPRS mode, GMSK Modulation was used using CS1-CS4 or MCSI-MCS4.
- 8-PSK modulation or MCS5-MCS9 code scheme were avoided since maximum burst avg power was measured lower on those modulation schemes.

• Each slot is set to maximum power, but there is software power back off $\sim 2 \text{ dB}$ in DTM/EDGE/GPRS 2-slots uplink modes.

• Please refer to the conducted power measurements table below:

Author Data		SAR Compliance Test Report for the BlackBerry® Smartphone Model REC71UW SAR Report		Page 15(43)	
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

Mode	Freq. (MHz)	Max burst averaged conducted power (dBm) CS1	Max burst averaged conducted power (dBm) CS4	Max burst averaged conducted power (dBm) MCS1	Max burst averaged conducted power (dBm) MCS4	Max burst averaged conducted power (dBm) MCS5	Max burst averaged conducted power (dBm) MCS9	
2-slots	824.2	30.6	30.7	N/A	N/A	N/A	N/A	
GPRS	836.8	31.0	31.1	N/A	N/A	N/A	N/A	
850 MHz	848.8	31.3	31.3	N/A	N/A	N/A	N/A	
2-slots	824.2	30.7	30.8	30.7	30.7	26.3	26.3	
EDGE	836.8	31.1	31.1	31.1	31.1	26.5	26.4	
850 MHz	848.8	31.3	31.4	31.3	31.3	26.5	26.4	
2-slots	824.2	30.5	30.5	30.5	30.5			
DTM	836.8	30.9	30.9	30.9	30.9			
850 MHz	848.8	31.2	31.2	31.2	31.2			
2-slots	1850.2	28.0	28.1	N/A	N/A	N/A	N/A	
GPRS	1880.0	28.1	28.1	N/A	N/A	N/A	N/A	
1900 MHz	1909.8	28.0	28.0	N/A	N/A	N/A	N/A	
2-slots	1850.2	27.9	28.0	28.0	28.0	24.9	24.9	
EDGE	1880.0	28.1	28.1	28.1	28.1	24.9	24.8	
1900 MHz	1909.8	28.0	28.0	28.0	28.0	24.9	24.8	
Mode	Freq. Max burst averag (MHz) power (d		urst averaged (power (dBm					
1-slot	1-slot 824.2				32.6			
GSM (CS)			836.8			32.9		
850 MHz		848.8			33.2			
1-slot		1850.2			29.8			
GSM (CS) 1	900		1880.0			29.9		
MHz			1909.8			30.1		

1.9.4. GSM/EDGE/GPRS channel vs. conducted power

Te Se	sting rvices™	SAR Compliance Test R Smartphone Model REC	-	erry®	Page 16(43)
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

2.0 DESCRIPTION OF THE TEST EQUIPMENT

2.1 SAR measurement system

SAR measurements were performed using a Dosimetric Assessment System (DASY52), an automated SAR measurement system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich, Switzerland.

The DASY 52 system for performing compliance tests consists of the following items:

• A standard high precision 6-axis robot (Stäubli RX family) with controller and software.

• An arm extension for accommodating the data acquisition electronics (DAE).

· A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in

tissue simulating liquid. The probe is equipped with an optical surface detector system.

• A DAE module that performs the signal amplification, signal

multiplexing, A/D conversion, offset measurements, mechanical surface detection,

collision detection, etc. The unit is battery powered with standard or rechargeable

batteries. The signal is optically transmitted to the Electro-optical coupler (EOC).

• A unit to operate the optical surface detector that is connected to the EOC.

 \cdot The EOC performs the conversion from an optical signal into the digital electric signal of the DAE. The EOC is connected to the PC plug-in card.

 \cdot The functions of the PC plug-in card based on a DSP is to perform the time critical tasks such as signal filtering, surveillance of the robot operation fast movement interrupts.

· A computer operating Windows.

· DASY52 software version 52.6(2).

• Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.

• The SAM Twin Phantom enabling testing left-hand and right-hand usage.

• The device holder for mobile phones.

• Tissue simulating liquid mixed according to the given recipes (see section 6.1).

· System validation dipoles allowing for the validation of proper functioning of the system.

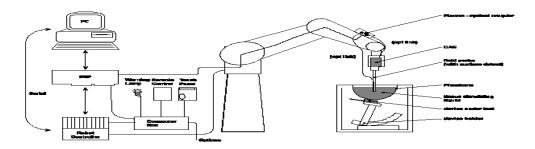


Figure 2.1.1. System Description

Text Ser	sting rvices™	SAR Compliance Test Report for the BlackBerry® Smartphone Model REC71UW SAR Report			Page 17(43)
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

2.1.1 Equipment List

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date (MM/DD/YY)
SCHMID & Partner Engineering AG	E-field probe	ES3DV3	3225	01/13/2012
SCHMID & Partner Engineering AG	E-field probe	EX3DV4	3592	11/17/2011
SCHMID & Partner Engineering AG	Data Acquisition Electronics (DAE3)	DAE3 V1	472	03/07/2012
SCHMID & Partner Engineering AG	Dipole Validation Kit	D835V2	446	01/21/2013
SCHMID & Partner Engineering AG	Dipole Validation Kit	D1900V2	545	01/13/2013
SCHMID & Partner Engineering AG	Dipole Validation Kit	D2450V2	747	11/11/2011
SCHMID & Partner Engineering AG	Dipole Validation Kit	D5GHzV2	1033	11/13/2011
Agilent Technologies	Signal generator	8648C	4037U03155	09/24/2011
Amplifier Research	Amplifier	5S1G4M3	300986	CNR
Agilent Technologies	Power meter	E4419B	GB40202821	09/15/2011
Agilent Technologies	Power sensor	8481A	MY41095417	09/23/2011
Weinschel Corp	20dB Attenuator	33-20-34	BMO697	CNR
Agilent Technologies	Power meter	N1911A	MY45100905	05/17/2013
Agilent Technologies	Power sensor	N1921A	SG45240281	05/16/2012
Agilent Technologies	Network analyzer	8753ES	US39174857	09/17/2011
Rohde & Schwarz	Base Station Simulator	CMU 200	109747	11/25/2011
Rohde & Schwarz	Signal generator	SMA 100A	11-9428537-0045	11/29/2011
CPI Wireless Solutions	Amplifier	VZC-6961K4	SK4310E5	CNR
Rohde & Schwarz	Bluetooth Tester	CBT	100678	11/28/2011

Table 2.1.1. Equipment list

Testing Services™		SAR Compliance Test Report for the BlackBerry® Smartphone Model REC71UW SAR Report			Page 18(43)
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

2.2 Description of the test setup

Before SAR measurements are conducted, the device and the DASY equipment are setup as follows:

2.2.1 Device and base station simulator setup

- Power up the device.
- Turn on the base station simulator and set the radio channel and power to the appropriate values.
- Connect an antenna to the RF IN/OUT of the communication test set and place it close to the device.

2.2.2 DASY setup

- Turn the computer on and log on to Windows.
- Start the DASY software by clicking on the icon located on the Windows desktop.
- Mount the DAE unit and the probe. Turn on the DAE unit.
- Turn the Robot Controller on by turning the main power switch to the horizontal position
- Align the probe by clicking the 'Align probe in light beam' button.
- Open a file and configure the proper parameters probe, medium, communications system etc.
- Establish a connection between the Device and the communications test instrument. Place the Device on the stand and adjust it under the phantom.
- Start SAR measurements.

3.0 ELECTRIC FIELD PROBE CALIBRATION

3.1 Probe Specifications

SAR measurements were conducted using the dosimetric probes ES3DV3/ET3DV6 and EX3DV4, designed by Schmid & Partner Engineering AG for the measurement of SAR. The probe is constructed using the thin film technique, with printed resistive lines on ceramic substrates. It has a symmetrical design with triangular core, built-in optical fibre for the surface detection system and built-in shielding against static discharge. The probe is sensitive to E-fields and thus incorporates three small dipoles arranged so that the overall response is close to isotropic. The table below summarizes the technical data for the probe.

Property	Data
Frequency range	30 MHz – 3 GHz
Linearity	±0.1 dB
Directivity (rotation around probe axis)	$\leq \pm 0.2 \text{ dB}$
Directivity (rotation normal to probe axis)	±0.4 dB
Dynamic Range	5 mW/kg – 100 W/kg
Probe positioning repeatability	±0.2 mm
Spatial resolution	< 0.125 mm ³
Probe model EX3DV4 for 2.4	– 6 GHz
Probe tip to sensor center	1.0 mm
Probe tip diameter is	2.5 mm
Probe calibration uncertainty	< 15 % for f = 2.45 to < 6.0 GHz
Probe calibration range	± 100 MHz

Table 3.1.1. Probe specifications

Ter Ser	sting rvices™	SAR Compliance Test R Smartphone Model REC			Page 19(43)
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

3.2 Probe calibration and measurement uncertainty

The probe had been calibrated with an accuracy better than $\pm 12\%$. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe were tested. The probe calibration parameters are shown on Appendix D and below:

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X Cor	NVFY Co	nvF Z	Alpha	Depth Unc (k=2)
900	± 50 / ± 100	41.5 ± 5%	0.97 ± 5%	6.12	6.12	6.12	0.99	1.07 ± 11.0%
1810	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	5.14	5.14	5.14	0.46	1.60 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	1. 40 ± 5%	4.96	4.96	4.96	0.47	1.57 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.53	4.53	4.53	0.41	1.89 ±11.0%

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvFX Cor	VFY Co	nvF Z	Alpha	Depth Unc (k=2)
900	± 50 / ± 100	55.0 ± 5%	1.05 ± 5%	5.97	5.97	5.97	0.98	1.12 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.90	4.90	4.90	0.35	2.07 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.83	4.83	4.83	0.32	2.45 ±11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.32	4.32	4.32	0.74	1.27 ± 11.0%

c The validity of \pm 100 MHz only applies for DASY v4.4 and higher.

DASY 52 has been used for measurements, therefore \pm 100 MHz tolerance is valid.

Measured dielectric parameters are within $\pm 5\%$ of the probe calibration values and target values. Expanded probe calibration uncertainty (k=2) is $\leq 15\%$

Author Data		SAR Compliance Test Report for the BlackBerry® Smartphone Model REC71UW SAR Report			Page 20(43)
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	5 – September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

4.0 SAR MEASUREMENT SYSTEM VERIFICATION

Prior to conducting SAR measurements, the system was validated using the dipole validation kit and the flat section of the SAM phantom. A power level of 1.0W was applied to the dipole antenna. The verification results are in the table below with a comparison to reference values. Printouts are shown in Appendix A. All the measured parameters are within the allowed tolerances.

At above 1.5 - 2 GHz, dipoles maintain good return loss of -15 dB to -20 dB, therefore SAR measurements are limited to approximately +/- 100 MHz of the probe/dipole calibration frequency.

			-	ectric	
		SAR	Para	meters	Liquid
	Limits / Measured	1 g/10 g		σ [S/m]	Temp.
f (MHz)	(MM/DD/YYYY)	(W/kg)	ε _r		(°C)
	Measured (07/28/2011)	9.23/6.03	39.9	0.90	23.1
835	Measured (08/02/2011)	8.92/5.83	41.6	0.87	23.1
833	Measured (09/15/2011)	9.85/6.43	39.9	0.94	22.6
	Recommended Limits	9.63/6.27	41.5	0.90	N/A
	Measured (08/11/2011)	40.3/21.1	38.3	1.38	22.9
1000	Measured (08/15/2011)	38.5/20.3	40.0	1.34	23.0
1900	Measured (09/13/2011)	39.7/20.7	39.0	1.39	23.0
	Recommended Limits	40.0/20.8	40.0	1.40	N/A
	Measured (08/19/2011)	54.6/25.6	37.7	1.85	23.1
2450	Measured (08/22/2011)	55.0/25.5	37.5	1.88	23.0
2430	Measured (09/06/2011)	57.2/26.7	38.0	1.88	23.7
	Recommended Limits	53.4/24.9	39.2	1.80	N/A
	Measured (08/17/2011)	78.1/22.6	34.4	4.67	23.1
5200	Measured (09/16/2011)	77.3/22.3	34.6	4.84	22.0
	Recommended Limits	77.2/21.8	36.0	4.66	N/A
	Measured (08/17/2011)	85.3/24.4	35.4	5.15	23.0
5500	Measured (09/16/2011)	88.5/24.4	34.3	5.13	22.0
	Recommended Limits	82.9/23.2	35.6	4.96	N/A
5800	Measured (08/17/2011)	81.4/23.1	33.9	5.30	23.2
5800	Recommended Limits	75.6/21.3	35.3	5.27	N/A

4.1 System accuracy verification for head adjacent use

 Table 4.1.1. System accuracy (validation for head adjacent use)

P Se	sting rvices™	SAR Compliance Test R Smartphone Model REC	-	erry®	Page 21(43)
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

5.0 PHANTOM DESCRIPTION

The SAM Twin Phantom, manufactured by SPEAG, was used during the SAR measurements. The phantom is made of a fibreglass shell integrated with a wooden table.

The SAM Twin Phantom is a fibreglass shell phantom with 2 mm shell thickness. It has three measurement areas: Left side head

Right side head Flat phantom

The phantom table dimensions are: 100x50x85 cm (LxWxH). The table is intended for use with freestanding robots.

The bottom shelf contains three pair of bolts for locking the device holder in place. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is

necessary if two phantoms are used (e.g., for different solutions).

A white cover is provided to top the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible; however the optical surface detector does not work properly at the cover surface. Place a sheet of white paper on the cover when using optical surface detection.

Liquid depth of \geq 15 cm is maintained in the phantom for all the measurements.

Figure 5.0.1. SAM Twin Phantom

Te Te	sting rvices™	SAR Compliance Test R Smartphone Model REC	-	erry®	Page 22(43)
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

6.0 TISSUE DIELECTRIC PROPERTIES

6.1 Composition of tissue simulant

The composition of the brain and muscle simulating liquids are shown in the table below.

INGREDIE	MIXTURE 800- 900MHz			MIXTURE 1800- 1900MHz		MIXTURE 2450 MHz		MIXTURE 5-6 GHz	
NT	Brain %	Muscle %	Brain %	Muscle %	Brain %	Muscle %	Brain %	Muscl e %	
Water	40.29	65.45	55.24	69.91	55.0	68.75	64	64-78	
Sugar	57.90	34.31	0	0	0	0	0	0	
Salt	1.38	0.62	0.31	0.13	0	0	0	0	
HEC	0.24	0	0	0	0	0	0	0	
Bactericide	0.18	0.10	0	0	0	0	0	0	
DGBE	0	0	44.45	29.96	40.0	31.25	0	0	
Triton X-	0	0	0	0	5.0	0	0	0	
Additives and Salt	0	0	0	0	0	0	3	2-3	
Emulsifiers	0	0	0	0	0	0	15	9-15	
Mineral Oil	0	0	0	0	0	0	18	11-18	

Table 6.1.1. Tissue simulant recipe

6.1.1 Equipment

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date (MM/DD/YY)
Pyrex, England	Graduated Cylinder	N/A	N/A	N/A
Pyrex, USA	Beaker	N/A	N/A	N/A
Acculab	Weight Scale	V1-1200	018WB2003	N/A
IKA Works Inc.	Hot Plate	RC Basic	3.107433	N/A
Dell	PC using GPIB card	GX110	347	N/A
Agilent Technologies	Dielectric probe kit	HP 85070C	US9936135	CNR
Agilent	•			
Technologies	Network Analyzer	8753ES	US39174857	09/17/2011
Control Company	Digital Thermometer	23609-234	21352860	09/14/2011
Control Company	Digital Thermometer	05-077-21	51129471	05/17/2012

 Table 6.1.2.
 Tissue simulant preparation equipment

	esting ervices™	SAR Compliance Test F Smartphone Model RE	-	•	Page 23(43)
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

6.1.2 Preparation procedure

800-900 MHz liquids

- Fill the container with water. Begin heating and stirring.
- Add the **Cellulose**, the **preservative substance** and the **salt**. After several hours, the liquid will become more transparent again. The container must be covered to prevent evaporation.
- Add Sugar. Stir it well until the sugar is sufficiently dissolved.

• Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation.

• Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

1800-2450 MHz liquid

• Fill the container with water and place it on hotplate. Begin heating and stirring.

Add the salt, Glycol/Triton X-100. The container must be covered to prevent evaporation.

• Keep the liquid hot enough to dissolve sugar for at least an hour. The container must be covered to prevent evaporation.

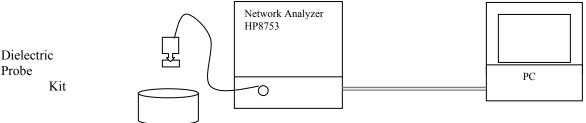
• Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

6.2 Electrical parameters of the tissue simulating liquid

The tissue dielectric parameters shall be measured before a batch can be used for SAR measurements to ensure that the simulated tissue was properly made and will simulate the desired human characteristic. Limits and measured electrical parameters are shown in the table below.

Recommended limits are adopted from IEEE P1528-2003:

"Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", DASY manual and from FCC Tissue Dielectric Properties web page at <u>http://www.fcc.gov/fcc-bin/dielec.sh</u>


Band	Tissue	Limits / Measured		Dielectric	e Parameters	Liquid
(MHz)	Type	(MM/DD/YYYY)	f (MHz)	ε _r	σ [S/m]	Temp (°C)
	H I	Measured (07/28/2011)	835	39.9	0.90	23.1
		Measured (08/02/2011)	835	41.6	0.87	23.1
			825	40.1	0.93	22.6
	Head	Measured (09/15/2011)	835	39.9	0.94	22.6
835			850	39.7	0.95	22.6
		Recommended Limits	835	41.5	0.90	N/A
		Measured (07/28/2011)	835	54.1	0.99	23.1
	Muscle	Measured (08/02/2011)	835	52.5	0.94	23.1
		Recommended Limits	835	55.2	0.97	N/A

		sting	ocument SAR Compliance Test Ro Smartphone Model REC	Page 24(43)				
Author Data Andrew B				Test Report No RTS-5385-11	rReport No FCC ID: ITS-5385-1108-74 L6AREC70UV		IC ID 2503A-REC70UW	
Г			Maaaaa 1 (00/11/2011)	1000	201	1 20	24.1	
			Measured (08/11/2011)		38.3		24.1	
			Measured (08/15/2011)		40.0		23.0	
				1850	39.3		23.0	
	1000	Head	Measured (09/13/2011)	1880	39.2		23.0	
	1900			1900	39.0		23.0	
				1910	39.0		23.0	
			Recommended Limits		40.0		N/A	
		Muscle	Measured (08/15/2011)		52.0		23.2	
_		wiuseie	Recommended Limits		53.3		N/A	
			Measured (08/19/2011)		37.7		23.1	
		Head	Measured (08/22/2011)) 2450	37.5	5 1.88	23.0	
	2450	neau	Measured (09/06/2011)) 2450	38.0) 1.88	23.7	
			Recommended Limits	2450	39.2	2 1.80	N/A	
			Measured (08/22/2011)) 2450	50.5	5 2.01	23.2	
		Muscle	Recommended Limits		52.7		N/A	
-			Measured (08/17/2011)		34.4	4 4.67	23.1	
					5180	34.6		22.0
		Head	Measured (09/16/2011)		34.0		22.0	
	5200	11000		5280	34.7		22.0	
	2200		Recommended Limits		36.0		N/A	
			Measured (08/17/2011)		46.6		23.1	
		Muscle	Recommended Limits		49.0		N/A	
-			Measured (08/17/2011)		35.4		23.0	
			``````````````````````````````````````	5500	34.3		22.0	
		Head	Measured (09/16/2011)	) 5620	34.		22.0	
	5500		Recommended Limits		34.0		 N/A	
	5500						23.0	
		M 1 .	Measured (08/17/2011)		46.7		23.0	
		Muscle	Measured (09/16/2011)		47.5			
ŀ			Recommended Limits		48.0		N/A	
		Head	Measured (08/17/2011)		33.9		23.2	
	5800		Recommended Limits	5800	35.3		N/A	
		Muscle	Measured (08/17/2011)		46.5		23.2	
			Recommended Limits	5800	48.2	2 6.00	N/A	

Table 6.2.1. Electrical parameters of tissue simulating liquid

Ter Ser	sting vices™	Document SAR Compliance Test R Smartphone Model REC	Page 25(43)		
Author Data	Dates of Test		Test Report No FCC ID:		
Andrew Becker	June 28	5 – September 16, 2011	- September 16, 2011 RTS-5385-1108-74 L6AREC70UW		

## 6.2.2 Test Configuration



## Figure 6.2.1. Test configuration

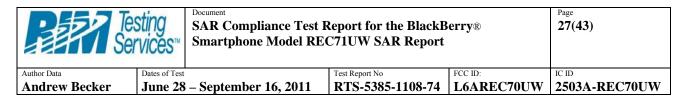
# 6.2.3 Procedure

- 1. Turn NWA on and allow at least 30 minutes for warm up.
- 2. Mount dielectric probe kit so that interconnecting cable to NWA will not be moved during measurements or calibration.
- 3. Pour de-ionized water and measure water temperature  $(\pm 1^{\circ})$ .
- 4. Set water temperature in HP-Software (Calibration Setup).
- 5. Perform calibration.
- 6. Relative permittivity  $\mathcal{E}\mathbf{r} = \mathcal{E}'$  and conductivity can be calculated from  $\mathcal{E}''$
- $\sigma = \omega \epsilon_0 \epsilon''$
- 7. Measure liquid shortly after calibration.
- 8. Stir the liquid to be measured. Take a sample (~50ml) with a syringe from the center of the liquid container.
- 9. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
- 10. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
- 11. Perform measurements.
- 12. Adjust medium parameters in DASY software for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Head 835 MHz) and press 'Option'-button.
- 13. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 835 MHz).

Text Ser	sting rvices™	SAR Compliance Test R Smartphone Model REC	Page <b>26(43)</b>		
Author Data	Dates of Test		Test Report No FCC ID:		
Andrew Becker	June 28	- September 16, 2011 RTS-5385-1108-74 L6AREC70UW			2503A-REC70UW

# 7.0 SAR SAFETY LIMITS

Standards/Guideline	Localized SAR Limit (W/kg) General public (uncontrolled)	Localized SAR Limits (W/kg) Workers (controlled)
ICNIRP Standard	2.0 (10g)	10.0 (10g)
IEEE C95.1 Standard	1.6 (1g)	8.0 (1g)


# Table 7.0.1. SAR safety limits for Controlled / Uncontrolled environment

Human Exposure	Localized SAR Limits (W/kg) 10g, ICNIRP Standard	Localized SAR Limits (W/kg) 1g, IEEE C95.1 Standard
Spatial Average (averaged over the whole		
body)	0.08	0.08
Spatial Peak (averaged over any X g of		
tissue)	2.00	1.60
Spatial Peak (hands/wrists/feet/ankles		
averaged over 10 g)	4.00	4.00 (10g)

# Table 7.0.2. SAR safety limits

**Uncontrolled Environments** are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure.

**Controlled Environments** are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).



# 8.0 **DEVICE POSITIONING**

# 8.1 Device holder for SAM Twin Phantom

The Device was positioned for all test configurations using the DASY5 holder. The device holder facilitates the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately and with repeatability positioned according to FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

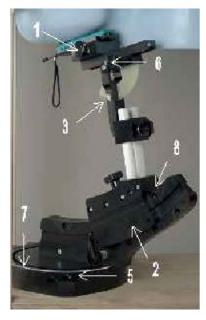





Figure 8.1.1. Device Holder

1. Put the phone in the clamp mechanism (1) and hold it straight while tightening. (Curved phones or phones with asymmetrical ear pieces should be positioned so that the earpiece is in the symmetry plane of the clamp).

2. Adjust the sliding carriage (2) to 90°. Then adjust the phone holder angle (3) until the reference line of the phone is horizontal (parallel to the flat phantom bottom). The phone reference line is defined as the front tangential line between the earpiece and the center of the device bottom (or the center of the flip hinge). For devices with parallel front and backsides, the phone holder angle (3) is  $0^{\circ}$ .

3. Place the device holder at the desired phantom section and move it securely against the positioning pins (4). The screw in front of the turning plate can be applied for correct positioning (5). (Do not tighten it too strongly).

4. Shift the phone clamp (6) so that the earpiece is exactly below the ear marking of the phantom. The phone is now correctly positioned in the holder for all standard phantom measurements, even after changing the phantom or phantom section.

5. Adjust the device position angles to the desired measurement position.

Ter Ser	sting rvices™	SAR Compliance Test Report for the BlackBerry® Smartphone Model REC71UW SAR Report			Page 28(43)	
Author Data	Dates of Test		Test Report No FCC ID:			
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW	

6. After fixing the device angles, move the phone fixture up until the phone touches the ear marking. (The point of contact depends on the design of the device and the positioning angle).

# 8.2 Description of the test positioning

## 8.2.1 Test Positions of Device Relative to Head

The handset was tested in two test positions against the head phantom, the "cheek" position and the "tilted" position, on both left and right sides of the phantom.

The handset was tested in the above positions according to IEEE 1528- 2003 "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques".

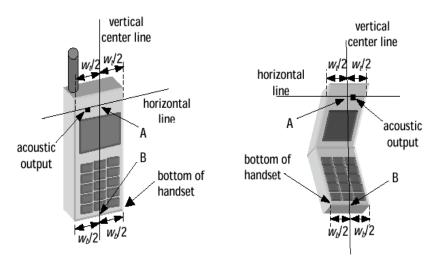



Figure 8.2.1a. Handset vertical and horizontal reference lines – fixed case

Figure 8.2.1b. Handset vertical and horizontal reference lines – "clam-shell"

Text Ser	sting rvices™	SAR Compliance Test R Smartphone Model REC	st Report for the BlackBerry® REC71UW SAR Report		Page <b>29(43)</b>
Author Data	Dates of Test		Test Report No FCC ID:		
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

## 8.2.1.1 Definition of the "cheek" position

1) Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover.

2) Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width *wt* of the handset at the level of the acoustic output (point A on Figures 8.2.1a and 8.2.1b), and the midpoint of the width *wb* of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 8.2.1a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 8.2.1b), especially for clamshell handsets, handsets with flip pieces, and other irregularly shaped handsets.

**3**) Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 8.2.1), such that the plane defined by the vertical center line and the horizontal center line is in a plane approximately parallel to the sagittal plane of the phantom.

**4**) Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear.

**5**) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is the plane normal to MB ("*mouth-back*") - NF ("*neck-front*") including the line MB (reference plane).

**6**) Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF.

7) While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the ear (cheek).

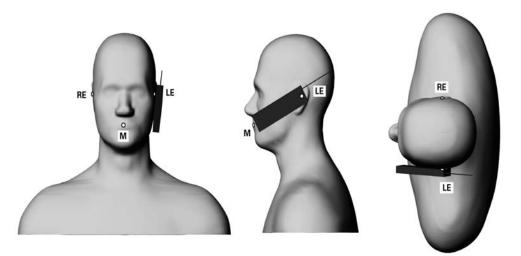



Figure 8.2.2. Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

Text Ser	sting rvices™		Compliance Test Report for the BlackBerry® Smartphone Model REC71UW SAR Report		
Author Data	Dates of Test		Test Report No FCC ID:		
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

## 8.2.1.2 Definition of the "Tilted" Position

1) Repeat steps 1 to 7 of 5.4.1 (in this report 8.2.1.1) to replace the device in the "cheek position."

2) While maintaining the device in the reference plane (described above) and pivoting against the ear, move the device outward away from the mouth by an angle of 15 degrees, or until the antenna touches the phantom.

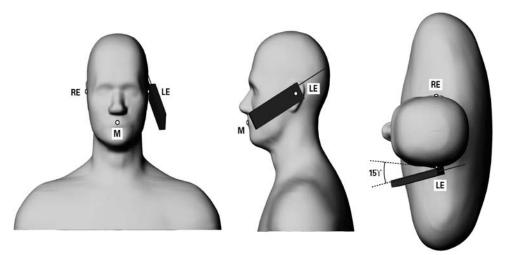
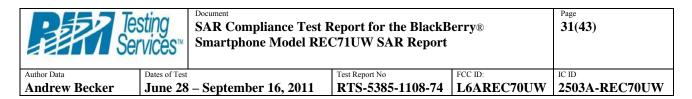




Figure 8.2.3. Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

### 8.2.2 Body Holster Configuration

Body worn holsters, as shown on Figure 1.4.1, have been test with the device for FCC RF exposure compliance. The EUT was positioned in each holster case and the belt clip was placed against the flat section of the phantom. A headset was then connected to the device to simulate hands-free operation in a body worn holster configuration.



# 9.0 HIGH LEVEL EVALUATION

# 9.1 Maximum search

The maximum search is automatically performed after each coarse scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations.

# 9.2 Extrapolation

The extrapolation can be used in z-axis scans with automatic surface detection. The SAR values can be extrapolated to the inner phantom surface. The extrapolation distance is the sum of the probe sensor offset, the surface detection distance and the grid offset. The extrapolation is based on fourth order polynomial functions. The extrapolation is only available for SAR values.

# 9.3 Boundary correction

The correction of the probe boundary effect in the vicinity of the phantom surface is done in the standard (worst case) evaluation; the boundary effect is reduced by different weights for the lowest measured points in the extrapolation routine. The result is a slight overestimation of the extrapolated SAR values (2% to 8%) depending on the SAR distribution and gradient. The advanced evaluation makes a full compensation of the boundary effect before doing the extrapolation. This is only possible for probes with specifications on the boundary effect.

# 9.4 Peak search for 1g and 10g cube averaged SAR

The 1g and 10g peak evaluations are only available for the predefined cube 5x5x7 / 7x7x9 scan. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm / 24x24x20 with 7.5mm / 4.0 resolution in (x,y) and 5mm / 2.5mm resolution in z axis amounts to 175 / 693 measurement points. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is then moved around until the highest averaged SAR is found. This last procedure is repeated for a 10 g cube. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

Text Ser	sting vices™	-	R Compliance Test Report for the BlackBerry® artphone Model REC71UW SAR Report Test Report No FCC ID:		Page 32(43)	
Author Data	Dates of Test		Test Report No FCC ID:			
Andrew Becker	June 28	– September 16, 2011	···· ···			

# **10.0 MEASUREMENT UNCERTAINTY**

DASY5 Uncertainty Budget According to IEEE 1528/2003 [1]										
	Uncert.	Prob.	Div.	$(c_i)$	$(c_i)$	Std. Unc.	Std. Unc.	$(v_i)$		
Error Description	value	Dist.		1g	10g	(1g)	(10g)	$v_{eff}$		
Measurement System										
Probe Calibration	$\pm 5.5\%$	N	1	1	1	$\pm 5.5\%$	$\pm 5.5\%$	$\infty$		
Axial Isotropy	$\pm 4.7\%$	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9\%$	$\pm 1.9\%$	$\infty$		
Hemispherical Isotropy	$\pm 9.6\%$	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9\%$	$\pm 3.9\%$	$\infty$		
Boundary Effects	$\pm 1.0\%$	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	$\pm 0.6\%$	$\infty$		
Linearity	$\pm 4.7 \%$	R	$\sqrt{3}$	1	1	$\pm 2.7 \%$	$\pm 2.7\%$	$\infty$		
System Detection Limits	$\pm 1.0\%$	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	$\pm 0.6\%$	$\infty$		
Readout Electronics	$\pm 0.3\%$	Ν	1	1	1	$\pm 0.3\%$	$\pm 0.3\%$	$\infty$		
Response Time	$\pm 0.8\%$	R	$\sqrt{3}$	1	1	$\pm 0.5 \%$	$\pm 0.5 \%$	$\infty$		
Integration Time	$\pm 2.6\%$	R	$\sqrt{3}$	1	1	$\pm 1.5 \%$	$\pm 1.5 \%$	$\infty$		
RF Ambient Noise	$\pm 3.0\%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	$\infty$		
RF Ambient Reflections	$\pm 3.0\%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	$\infty$		
Probe Positioner	$\pm 0.4\%$	R	$\sqrt{3}$	1	1	$\pm 0.2\%$	$\pm 0.2\%$	$\infty$		
Probe Positioning	$\pm 2.9\%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	$\infty$		
Max. SAR Eval.	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	$\infty$		
Test Sample Related										
Device Positioning	$\pm 2.9\%$	Ν	1	1	1	$\pm 2.9\%$	$\pm 2.9\%$	145		
Device Holder	$\pm 3.6\%$	Ν	1	1	1	$\pm 3.6\%$	$\pm 3.6\%$	5		
Power Drift	$\pm 5.0\%$	R	$\sqrt{3}$	1	1	$\pm 2.9\%$	$\pm 2.9\%$	$\infty$		
Phantom and Setup										
Phantom Uncertainty	$\pm 4.0\%$	R	$\sqrt{3}$	1	1	$\pm 2.3\%$	$\pm 2.3\%$	$\infty$		
Liquid Conductivity (target)	$\pm 5.0\%$	R	$\sqrt{3}$	0.64	0.43	$\pm 1.8 \%$	$\pm 1.2\%$	$\infty$		
Liquid Conductivity (meas.)	$\pm 2.5 \%$	Ν	1	0.64	0.43	$\pm 1.6 \%$	$\pm 1.1 \%$	$\infty$		
Liquid Permittivity (target)	$\pm 5.0\%$	R	$\sqrt{3}$	0.6	0.49	$\pm 1.7 \%$	$\pm 1.4\%$	$\infty$		
Liquid Permittivity (meas.)	$\pm 2.5\%$	Ν	1	0.6	0.49	$\pm 1.5\%$	$\pm 1.2\%$	$\infty$		
Combined Std. Uncertainty						$\pm 10.7\%$	$\pm 10.5\%$	387		
Expanded STD Uncertain	ty					$\pm 21.4\%$	$\pm 21.0\%$			

# Table 10.0.1. Worst-Case uncertainty budget for DASY52 assessed according to IEEE P1528.Source: Schmid & Partner Engineering AG.

[1] The budget is valid for the frequency range 300MHz - 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

Text Ser	sting rvices™	-	Compliance Test Report for the BlackBerry® phone Model REC71UW SAR Report Test Report No FCC ID:		Page 33(43)
Author Data	Dates of Test		Test Report No FCC ID:		
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

DASY5 Uncertainty Budget for the 3 - 6 GHz range										
	Uncert.	Prob.	Div.	$(c_i)$	$(c_i)$	Std. Unc.	Std. Unc.	$(v_i)$		
Error Description	value	Dist.		1g	10g	(1g)	(10g)	veff		
Measurement System										
Probe Calibration	$\pm 6.55\%$	N	1	1	1	$\pm 6.55\%$	$\pm 6.55\%$	$\infty$		
Axial Isotropy	$\pm 4.7\%$	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9\%$	$\pm 1.9\%$	$\infty$		
Hemispherical Isotropy	$\pm 9.6\%$	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9\%$	$\pm 3.9\%$	$\infty$		
Boundary Effects	$\pm 2.0\%$	R	$\sqrt{3}$	1	1	$\pm 1.2\%$	$\pm 1.2\%$	$\infty$		
Linearity	$\pm 4.7\%$	R	$\sqrt{3}$	1	1	$\pm 2.7\%$	$\pm 2.7\%$	$\infty$		
System Detection Limits	$\pm 1.0\%$	R	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	$\infty$		
Readout Electronics	$\pm 0.3\%$	N	1	1	1	$\pm 0.3\%$	$\pm 0.3\%$	00		
Response Time	$\pm 0.8\%$	R	$\sqrt{3}$	1	1	$\pm 0.5\%$	$\pm 0.5\%$	$\infty$		
Integration Time	$\pm 2.6\%$	R	$\sqrt{3}$	1	1	$\pm 1.5\%$	$\pm 1.5\%$	$\infty$		
RF Ambient Noise	$\pm 3.0\%$	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	00		
RF Ambient Reflections	$\pm 3.0\%$	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	00		
Probe Positioner	±0.8%	R	$\sqrt{3}$	1	1	$\pm 0.5\%$	$\pm 0.5\%$	00		
Probe Positioning	$\pm 9.9\%$	R	$\sqrt{3}$	1	1	$\pm 5.7\%$	$\pm 5.7\%$	$\infty$		
Max. SAR Eval.	$\pm 4.0\%$	R	$\sqrt{3}$	1	1	$\pm 2.3\%$	$\pm 2.3\%$	$\infty$		
Test Sample Related										
Device Positioning	$\pm 2.9\%$	Ν	1	1	1	$\pm 2.9\%$	$\pm 2.9\%$	145		
Device Holder	$\pm 3.6\%$	N	1	1	1	$\pm 3.6\%$	$\pm 3.6\%$	5		
Power Drift	$\pm 5.0\%$	R	$\sqrt{3}$	1	1	$\pm 2.9\%$	$\pm 2.9\%$	$\infty$		
Phantom and Setup										
Phantom Uncertainty	$\pm 4.0\%$	R	$\sqrt{3}$	1	1	$\pm 2.3\%$	$\pm 2.3\%$	$\infty$		
Liquid Conductivity (target)	$\pm 5.0\%$	R	$\sqrt{3}$	0.64	0.43	±1.8%	$\pm 1.2\%$	$\infty$		
Liquid Conductivity (meas.)	$\pm 2.5\%$	N	1	0.64	0.43	$\pm 1.6\%$	±1.1%	00		
Liquid Permittivity (target)	$\pm 5.0\%$	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	$\infty$		
Liquid Permittivity (meas.)	$\pm 2.5\%$	N	1	0.6	0.49	$\pm 1.5\%$	$\pm 1.2\%$	$\infty$		
Combined Std. Uncertainty						$\pm 12.8\%$	$\pm 12.6\%$	330		
Expanded STD Uncertain	ty					$\pm 25.6\%$	$\pm 25.2\%$			

 Table 10.0.2. Worst-Case uncertainty budget for DASY52 assessed according to IEEE P1528.

 Source: Schmid & Partner Engineering AG.

Ter Ser	sting rvices™		R Compliance Test Report for the BlackBerry® artphone Model REC71UW SAR Report			
Author Data	Dates of Test		Test Report No FCC ID:			
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW	

# **11.0 TEST RESULTS**

# 11.1 SAR Measurement results at highest power measured against the head

			Cond.		SA	R, averaged	l over 1 g
Test Position	Mode	f (MHz)	Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Right	2-slots	824.2					
Head	GSM/EDGE	836.8	31.1	22.8	0.76	0.02	0.76
Cheek	850 MHz	848.8					
Right	2-slots	824.2					
Head	GSM/EDGE	836.8	31.1	22.8	0.44	0.03	0.44
15° Tilt	850 MHz	848.8					
Right	1-slot	824.2					
Head	GSM	836.8	32.9	22.8	0.62	0.11	0.62
Cheek	850 MHz	848.8					
Left	2-slots	824.2					
Head	GSM/EDGE	836.8	31.1	23.1	0.53	-0.07	0.53
Cheek	850 MHz	848.8					
Left	2-slots	824.2					
Head	GSM/EDGE	836.8	31.1	23.0	0.35	0.05	0.35
15° Tilt	850 MHz	848.8					

# Table 11.1.1. SAR results for GSM/EDGE 850 head configuration

Note 1: If the power drift is  $\leq -0.200 \text{ dB}$ , the extrapolated SAR is calculated using the formula: Extrapolated SAR = (Measured SAR) * 10^( |Power Drift (dB)| / 10) Note 2: Only Middle channel was tested when 1g Average SAR <0.8 W/Kg or 3dB lower than the limit.

Ter Ser	sting rvices™	SAR Compliance Test R Smartphone Model REC	-	erry®	Page 35(43)
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

				Cond.		SAI	R, average	ed over 1 g
Test Position	Mode	f (MHz)	Volume Scan	Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
		826.4		24.1	22.7	0.96	0.03	0.96
Right	WCDMA	836.4		24.4	22.8	1.08	0.04	1.08
Head Cheek	FDD V 850 MHz	836.4	Volume Scan	24.4	22.7	1.17	-0.63	1.35
		846.6		24.2	22.7	1.04	0.02	1.04
Right	WCDMA	826.4						
Head	FDD V	836.4		24.4	22.6	0.56	0.04	0.56
15° Tilt	850 MHz	846.6						
Left	WCDMA	826.4		24.1	23.4	0.73	0.05	0.73
Head	FDD V	836.4		24.4	23.4	0.83	-0.13	0.83
Cheek	850 MHz	846.6		24.2	23.5	0.72	-0.02	0.72
Left	WCDMA	826.4						
Head	FDD V	836.4		24.4	22.4	0.45	-0.03	0.45
15° Tilt	850 MHz	846.6						

 Table 11.1.2. SAR results for WCDMA FDD V head configuration

				Cond.		SA	R, averaged	l over 1 g
Test Position	Mode	f (MHz)	Peaks	Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
	Moue	1850.2	I cuito	27.9	22.5	0.86	-0.12	0.87
Right	2-slots	1880.0	Peak 1	28.1	22.2	0.93	0.01	0.93
Head Cheek	GSM/EDGE 1900 MHz	1880.0	Peak 2	28.1	22.2	0.93	0.03	0.93
Cheek	1900 WITIZ	1909.8		28.0	22.5	1.10	-0.14	1.10
Right	2-slots	1850.2						
Head	GSM/EDGE	1880.0		28.1	22.2	0.37	0.00	0.37
15° Tilt	1900 MHz	1909.8						
Left	2-slots	1850.2		27.9	22.4	0.97	-0.02	0.97
Head	GSM/EDGE	1880.0		28.1	22.8	1.19	-0.01	1.19
Cheek	1900 MHz	1909.8		28.0	22.3	1.33	-0.06	1.33
Left	2-slots	1850.2						
Head	GSM/EDGE	1880.0		28.1	22.6	0.38	0.00	0.38
15° Tilt	1900 MHz	1909.8						
Left	1-slot	1850.2						
Head		1880.0						
Cheek	1900 MHz	1909.8		30.1	22.3	1.25	-0.02	1.25

Table 11.1.3. Rev 1 SAR results for GSM/EDGE 1900 head configuration

P Te	sting rvices™	SAR Compliance Test R Smartphone Model REC	-	erry®	Page 36(43)
Author Data	Dates of Test	Test Report No FCC ID:			IC ID
Andrew Becker	June 28	– September 16, 2011	2503A-REC70UW		

					Cond.	Liquid	SA	R, averaged	l over 1 g
Test Position	Mode	f (MHz)	Volume Scan	Peaks	Output Power (dBm)	Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
		1850.2							
D: 1.	2.1.	1880.0							
Right Head	2-slots GSM/EDGE	1909.8		Peak 1	28.0	22.8	1.03	0.06	1.03
Cheek	1900 MHz	1909.8		Peak 2	28.0	22.8	1.02	0.04	1.02
		1909.8	Volume Scan		28.0	22.8	1.03	0.00	1.03
		1850.2							
Left	2-slots	1880.0							
Head	Head GSM/EDGE	1909.8			28.0	23.1	1.30	-0.08	1.30
Cheek	1900 MHz	1909.8	Volume Scan		28.0	23.1	1.27	-0.13	1.27

Table 11.1.4. Rev 3 SAR results for GSM/EDGE 1900 head configuration

						SAF	R, averaged	over 1 g
Test Position	Mode	f (MHz)	Volume Scan	Cond. Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
		1852.4		20.2	22.3	0.97	-0.04	0.97
Right	WCDMA	1880.0		22.5	22.2	1.08	-0.11	1.08
Head	FDD II	1907.6		22.9	22.4	1.17	-0.06	1.17
Cheek	1900 MHz	1907.6	Volume Scan	22.9	22.4	1.15	-0.11	1.15
Right	WCDMA	1852.4						
Head	FDD II	1880.0		22.5	22.8	0.43	-0.07	0.43
15° Tilt	1900 MHz	1907.6						
		1852.4		20.2	22.6	1.06	-0.30	1.14
Left	WCDMA	1880.0		22.5	22.5	1.25	-0.12	1.25
Head	FDD II	1907.6		22.9	22.4	1.31	-0.07	1.31
Cheek 1900 MHz	1907.6	Volume Scan	22.9	22.3	1.31	-0.12	1.31	
Left	WCDMA	1852.4						
Head FDD II	1880.0		22.5	22.2	0.51	-0.05	0.51	
15° Tilt	1900 MHz	1907.6						

 Table 11.1.5. SAR results for WCDMA FDD II head configuration

	esting ervices™	SAR Compliance Test R Smartphone Model REC	Page 37(43)		
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

						SAR	, average	d over 1 g
Test Position	Mode	f (MHz)	Volume Scan	Cond. Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
		2412		17.0	22.8	0.50	0.09	0.50
Right	802.11 b	2437		16.9	22.9	0.61	0.06	0.61
Head Cheek	2450 MHz	2437	Volume Scan	16.9	23.2	0.55	-0.07	0.55
		2462		16.5	22.8	0.43	-0.03	0.43
Right	802.11 b	2412						
Head	2450	2437		16.9	22.9	0.16	-0.13	0.16
15° Tilt	MHz	2462						
		2412		17.0	23.0	0.26	0.07	0.26
Left	802.11 b	2437		16.9	23.0	0.37	-0.14	0.37
Head Cheek	2450 MHz	2437	Volume Scan	16.9	23.2	0.38	-0.07	0.38
		2462		16.5	22.9	0.23	-0.02	0.23
Left	802.11 b	2412						
Head	2450	2437		16.9	22.9	0.12	0.00	0.12
15° Tilt	MHz	2462						

 Table 11.1.6.
 SAR results for WiFi/WLAN/802.11b head configuration

				Cond.		SAR	, averaged	over 1 g
Test Position	Mode	f (MHz)	Volume Scan	Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Right	Bluetooth	2402						
Head	2450	2441						
Cheek	MHz	2480		8.50	22.5	0.00	0.39	0.00
		2402						
Left	Bluetooth	2441						
Head		2480		8.50	22.5	0.01	5.02	0.01
Cheek	MHz	2480	Volume Scan	8.50	22.6	0.00	1.60	0.00

 Table 11.1.7. SAR results for Bluetooth head configuration

*Note: Tested only highest output power channel

	esting ervices™	SAR Compliance Test R Smartphone Model REC	Page 38(43)		
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

				Cond.		SAR, a	veraged ov	er 1 g
Test Position	Mode	f (MHz)	Graded or Nongraded	Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
		5180	Graded	13.4	23.0	0.12	0.17	0.12
Right	802.11 a	5280	Graded	13.6	22.9	0.12	-0.07	0.12
Head	5180-5805 MHz	5280	Nongraded	13.6	23.0	0.18	0.34	0.18
Cheek		5620	Graded	14.6	22.8	0.09	-0.17	0.09
		5745	Graded	15.5	22.8	0.08	0.07	0.08
Right Head 15° Tilt	802.11 a 5180-5805 MHz	5280	Graded	13.6	22.9	0.05	-0.08	0.05
		5180	Graded	13.4	22.8	0.12	0.06	0.12
Left	802.11 a	5280	Graded	13.6	22.4	0.14	0.32	0.14
Head	5180-5805	5280	Nongraded	13.6	22.8	0.15	0.13	0.15
Cheek	MHz	5620	Graded	14.6	22.3	0.10	0.17	0.10
		5745	Graded	15.5	22.3	0.09	0.12	0.09
Left Head 15° Tilt	802.11 a 5180-5805 MHz	5280	Graded	13.6	22.9	0.04	0.85	0.04

# Table 11.1.8. SAR results for 802.11a head configuration

*Note: Tested only highest output power channel per band

Text Ser	sting vices™	Document SAR Compliance Test R Smartphone Model REC	Page <b>39(43)</b>		
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	5 – September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

# **11.2** SAR measurement results at highest power measured against the body using accessories

					SAR, averaged over 1 g		
Mode	Freq. (MHz)	Cond. Power (dBm)	Holster type / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
	836.8	31.0	No Holster, back side 15 mm away	22.7	0.54	-0.06	0.54
2-slots GPRS	836.8	31.0	No Holster, front side 15 mm away	22.5	0.42	0.03	0.42
850 MHz	836.8	31.0	Vertical Holster, back side facing phantom	22.5	0.54	-0.02	0.54
	836.8	31.0	No Holster, HS, back side 15 mm away	22.7	0.50	0.07	0.50

# Table 11.2.1. SAR results for GPRS850 body-worn configurations

Note 1: If the power drift is  $\leq -0.200$  dB, the extrapolated SAR is calculated using the formula: Extrapolated SAR = (Measured SAR) * 10^( |Power Drift (dB)| / 10) Note 2: Only Middle channel was tested when 1g Average SAR <0.8 W/Kg or 3dB lower than the limit.

					SAR, averaged over 1 g		
Mode	Freq. (MHz)	Cond. Power (dBm)	Holster type / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
	826.4	24.4	No Holster, back side 15 mm away	22.8	0.73	0.00	0.73
	836.4	24.4	No Holster, back side 15 mm away	23.0	0.81	-0.06	0.81
WCDMA FDD V	848.6	24.4	No Holster, back side 15 mm away	22.8	0.64	0.02	0.64
850 MHz	836.4	24.4	No Holster, front side 15mm away	23.0	0.61	-0.01	0.61
	836.4	24.4	Vertical Holster, back side facing	22.8	0.59	-0.01	0.59
	836.4	24.4	No Holster, HS, back side 15mm away	23.0	0.74	0.00	0.74

Table 11.2.2. SAR results for WCDMA FDD V body-worn configurations

Document         SAR Compliance Test Report for the BlackBerry®           Smartphone Model REC71UW SAR Report					Page 40(43)
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	8 – September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

					SAR, averaged over 1 g		
Mode	Freq. (MHz)	Cond. Power (dBm)	Holster type / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
	1880.0	28.1	No Holster, back side 15 mm away	22.6	0.44	0.01	0.44
2-Slots GPRS 1900	1880.0	28.1	No Holster, front side 15mm away	22.4	0.33	0.03	0.33
MHz	1880.0	28.1	Vertical Holster, back side facing	22.3	0.35	0.12	0.35
	1880.0	28.1	No Holster, HS, back side 15mm away	22.4	0.38	0.05	0.38

					SAR, averaged over 1 g		
Mode	Freq. (MHz)	Cond. Power (dBm)	Holster type / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
	1880.0	22.5	15mm Spacer, back side facing phantom	23.3	0.68	-0.03	0.68
WCDMA FDD II	1880.0	22.5	15mm Spacer, front side facing phantom	23.1	0.60	-0.01	0.60
1900 MHz	1880.0	22.5	Vertical Holster, back side facing phantom	23.1	0.48	0.17	0.48
	1880.0	22.5	15mm Spacer, HS, back side facing phantom	23.1	0.74	0.01	0.74

Table 11.2.4. SAR results for WCDMA FDD II body-worn configurations

					SAR, averaged over 1 g		d over 1 g
Mode	Freq. (MHz)	Cond. Power (dBm)	Holster type / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
	2437	16.9	15mm Spacer, back side facing phantom	23.0	0.17	0.34	0.17
802.11b/ WLAN	2437	16.9	15mm Spacer, front side facing phantom	22.8	0.05	0.08	0.05
2450 MHz	2437	16.9	Vertical Holster, back side facing phantom	22.8	0.10	-0.17	0.10
	2437	16.9	15mm Spacer, HS, back side facing phantom	22.7	0.19	0.05	0.19

Table 11.2.5. SAR results for WiFi/WLAN/802.11b body-worn configurations

Te Te	sting rvices™	Document SAR Compliance Test R Smartphone Model REC			Page 41(43)
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

					SAR	, average	d over 1 g
Mode	Freq. (MHz)	Cond. Power (dBm)	Holster type / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Bluetooth 2450 MHz	2480	8.50	15mm Spacer, back side facing phantom	22.4	0.00	2.6	0.00

## Table 11.2.6. SAR results for Bluetooth body-worn configurations

*Note: Tested only highest output power channel

						SAI	R, averaged	over 1 g
Mode	Freq. (MHz)	Graded or Nongraded	Cond. Power (dBm)	Holster type / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
	5180	Graded	13.4	No Holster, back side 15mm away from phantom	22.5	0.07	-0.17	0.07
	5280	Graded	13.6	No Holster, back side 15mm away from phantom	22.6	0.09	-0.21	0.09
	5620	Graded	14.6	No Holster, back side 15mm away from phantom	22.7	0.13	0.24	0.13
802.11 a 5180-	5620	Nongraded	14.6	No Holster, back side 15mm away from phantom	22.6	0.12	0.11	0.12
5805 MHz	5745	Graded	15.5	No Holster, back side 15mm away from phantom	22.5	0.12	-0.16	0.12
	5620	Graded	14.6	No Holster, front side 15mm away from phantom	22.3	0.03	0.60	0.03
	5620	Graded	14.6	Vertical Holster, back side facing phantom	22.4	0.10	-0.17	0.10
	5620	Graded	14.6	No Holster, HS, back side 15mm away from phantom	22.2	0.12	0.07	0.12

Table 11.2.7. SAR results for 802.11a body-worn configurations

*Note: Tested only highest output power channel per band

Ter Ser	Page 42(43)				
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

# **12.0 REFERENCES**

[1] IEEE 1528-2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

[2] EN 50360: 2001, Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz - 3 GHz)

[3] ICNIRP, International Commission on Non-Ionizing Radiation Protection (2009), Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz).

[4] Council Recommendation 1999/519/EC of July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)

[5] IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave.

[6] IEEE C95.1-2005, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

[7] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.

[8] FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation.

[9] DASY 5 DOSIMETRIC ASSESSMENT SYSTEM SOFTWARE MANUAL, Schmid & Partner Engineering AG.

[10] Health Canada, Safety Code 6, 2009: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency range from 3 kHz to 300 GHz.

[11] RSS-102, issue 4-2010: Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields.

[12] IEC 62209-1, First Edition-2005: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

[13] FCC OET SAR Measurement Requirements for 3 – 6 GHz, October, 2006.

[14] FCC OET SAR Measurement Procedures for 802.11 a/b/g Transmitters, May, 2007.

[15] FCC OET SAR Evaluation Considerations for Handsets with Multiple Transmitters & Antennas, September, 2008.

[16] FCC OET SAR Test Reduction Procedure for GSM/GPRS/EDGE, December, 2008.

Testing Services™		Document SAR Compliance Test Report for the BlackBerry® Smartphone Model REC71UW SAR Report			Page 43(43)
Author Data	Dates of Test		Test Report No	FCC ID:	IC ID
Andrew Becker	June 28	– September 16, 2011	RTS-5385-1108-74	L6AREC70UW	2503A-REC70UW

[17] FCC OET SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz – 3 GHz, January, 2007.

[18] FCC OET RF Exposure Procedures for Mobile and Portable Devices, and Equipment Authorization Policies, November, 2009.

[19] FCC OET SAR Measurements Procedures for 3G Devices, October, 2007.

[20] Dipole Requirements for SAR System Validation and Verification, Novmeber, 2009.

[21] IEC 62209-2, Edition 1.0-2010: Human exposure to radio frequency fields from hand-held and bodymount wireless communication devices – Human Models, instrumentation, and procedures - part 2 procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).