Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 1(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

SAR Compliance Test Report

RIM Testing Services Testing Lab: Applicant: Research In Motion Limited

> 440 Phillip Street 295 Phillip Street Waterloo, Ontario Waterloo, Ontario Canada N2L 5R9 Canada N2L 3W8 Phone: 519-888-7465 Phone: 519-888-7465 519-746-0189 Fax: Fax: 519-888-6906

Web site: www.rim.com

Statement of RIM Testing Services declares under its sole responsibility that the product **Compliance:**

to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and

recommended practices.

Device Category: This BlackBerry® Smartphone is a portable device, designed to be used in direct

contact with the user's head, hand and to be carried in approved accessories when

carried on the user's body.

RF exposure This device has been shown to be in compliance for localized specific absorption environment:

rate (SAR) for uncontrolled environment/general population exposure limits

specified in OET Bulletin 65 Supplement C (Edition 01-01), FCC 96-326, IEEE Std. C95.1-2005, Health Canada's Safety Code 6, as reproduced in RSS-102 issue 4-2010 and has been tested in accordance with the measurement procedures specified in FCC OET Procedures, OET Bulletin 65 Supplement C (Edition 01-01), ANSI/IEEE Std. C95.3-2002, IEEE 1528-2003, IEC 62209-1-2005, IEC 62209 - 2-2010 and Health

Canada's Safety Code 6.

Tested and documented by: **Signatures Date**

09-June-2011 Hang Wang

Compliance Testing Associate

Tested and reviewed by:

Daoud Attayi

Dand Attagi Masul Altay Team Lead: Safety, SAR & HAC

Compliance

09-June-2011

Approved by:

Masud S. Attavi

Manager, Regulatory Compliance

09-June-2011

$SAR\ Compliance\ Test\ Report\ for\ the\ BlackBerry @\ Smartphone$ Model RDH71CW/RDP71UW

Page 2(49)

Dates of Test Author Data **Hang Wang**

Jan 14 – June 09, 2011

Test Report No RTS-2605-1102-05A

FCC ID: L6ARDH70CW L6ARDP70UW

IC ID 2503A-RDH70CW 2503A-RDP70UW

COV		
-		
_		
1.8	HIGHLIGHTS OF THE FCC OET SAR MEASUREMENT REQUIREMENTS	
	1.8.1 SAR MEASUREMENT REQUIREMENTS FOR 3-6 GHZ AND MEASUREMENT PROCEDURES FOI	R
	802.11 A/B/G/N TRANSMITTER	
		11
TAB		
4.0		
1.9		
2 1	TRANSWITTERS ANTENNAS & GSW/GPRS/EDGE PROCEDURE	IS
۷.۱		
22	DESCRIPTION OF THE TEST SETUP	20
	2.2.1 DEVICE AND BASE STATION SIMULATOR SETUP	20
	2.2.2 DASY SETUP	20
	ELECTRIC FIELD PROBE CALIBRATION	20
3.1	PROBE SPECIFICATIONS	
3.2		
4.1		
6 1		
0.1		
6.2		
	6.2.2 TEST CONFIGURATION	
	6.2.3 PROCEDURE	27
	SAR SAFETY LIMITS	
8.2	DESCRIPTION OF THE TEST POSITIONING	30
	8.2.1.2 DEFINITION OF THE "TILTED" POSITION	31
9.1	MAXIMUM SEARCH	
9.2	EXTRAPOLATION	
9.3	BOUNDARY CORRECTION	33
9.4		
	1EST KESULIS	36
		აი
11.2		43
	REFERENCES	
	TAB 1.9 2.1 3.2 4.1 6.1 6.2 8.1 8.2 9.1 9.2 9.3 9.4 11.1	1.2 ANTENNA DESCRIPTION. 1.3 DEVICE DESCRIPTION. 1.4 BODY WORN ACCESSORIES (HOLSTERS). 1.5 HEADSET. 1.6 BATTERY. 1.7 PROCEDURE USED TO ESTABLISH TEST SIGNAL. 1.8 HICHLIGHTS OF THE FCC OET SAR MEASUREMENT REQUIREMENTS. 1.8.1 SAR MEASUREMENT REQUIREMENTS FOR 3-6 GHZ AND MEASUREMENT PROCEDURES FOR 30 DEVICES. 1.8.2 SAR MEASUREMENT PROCEDURES FOR 36 DEVICES. 1.8.3 SAR MEASUREMENT PROCUDIRE FOR CDMA/1XEV-DO. 1.8.1 SAR MEASUREMENTS PROCUDIRE FOR CDMA/1XEV-DO. 1.8.2 SAR MEASUREMENTS PROCUDIRE FOR CDMA/1XEV-DO. 1.8.1 SAR MEASUREMENTS PROCUDIRE FOR CDMA/1XEV-DO. 1.8.2 SAR MEASUREMENTS PROCUDIRE FOR CDMA/1XEV-DO. 1.8.1 SAR MEASUREMENTS PROCUDIRE FOR CDMA/1XEV-DO. 1.9 HIGHLIGHTS OF THE FCC OET SAR EVALUATION CONSIDERATIONS FOR HANDSETS WITH MULTI TRANSMITTERS / ANTENNAS & GSM/GPRS/EDGE PROCEDURE. 1.9 HIGHLIGHTS OF THE FCC OET SAR EVALUATION CONSIDERATIONS FOR HANDSETS WITH MULTI TRANSMITTERS / ANTENNAS & GSM/GPRS/EDGE PROCEDURE. 2.1 SAR MEASUREMENT SYSTEM. 2.1 EQUIPMENT UST. 2.2 DESCRIPTION OF THE TEST SETUP. 2.2.1 DEVICE AND BASE STATION SIMULATOR SETUP. 2.2.2 DASY SETUP. 2.2.1 DEVICE AND BASE STATION SIMULATOR SETUP. 2.2.2 DASY SETUP. 2.2.2 DASY SETUP. 2.2.3 PROBE CALIBRATION AND MEASUREMENT UNCERTAINTY. SAR MEASUREMENT SYSTEM VERIFICATION. 3.1 PROBE CALIBRATION AND MEASUREMENT UNCERTAINTY. SAR MEASUREMENT SYSTEM VERIFICATION. 4.1 SYSTEM ACCURACY VERIFICATION FOR HEAD ADJACENT USE PHANTOM DESCRIPTION. TISSUE DIELECTRIC PROPERTIES. 6.1 COMPOSITION OF TISSUE SIMULANT. 6.1.1 EQUIPMENT. 6.1.2 PREPARATION PROCEDURE. 6.2 TEST CONFIGURATION. 8.2 DESCRIPTION OF THE TEST POSITIONING. 8.2.1 TEST POSITIONS OF DEVICE RELATIVE TO HEAD. 8.2.1.1 DEFINITION OF THE "CHEEK* POSITION. 8.2.1 DEFINITION OF THE "CHEEK* POSITION. 8.2.2 BODY HOLSTER CONFIGURATION. 9.1 MAXIMUM SEARCH 9.2 EXTRAPOLATION MEASUREMENT PROSULTS AT HIGHEST POWER MEASURED AGAINST THE HEAD. 9.1 PRASUREMENT UNCERTAINTY TEST RESULTS. 9.1 PROSE CALIBRATION AND GOUGHE AVERAGED SAR MEASUREMENT RESULTS AT HIGHEST POWER MEASURED AGAINST THE HEAD. 9.1 PROSE CRUPTION OF THE TEST

Testing Services™	SAR Compliance Test I Model RDH71CW/RDF	Page 3(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW 2503A-RDP70UW

APPENDIX A: SAR DISTRIBUTION COMPARISON FOR ACCURACY VERIFICATION

APPENDIX B: SAR DISTRIBUTION PLOTS - HEAD CONFIGURATION

APPENDIX C: SAR DISTRIBUTION PLOTS - BODY-WORN CONFIGURATION

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

APPENDIX E: PHOTOGRAPHS

Testing Services™	SAR Compliance Test R Model RDH71CW/RDP	Page 4(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	2503A-RDH70CW		
			L6ARDP70UW	2503A-RDP70UW

1.0 OPERATING CONFIGURATIONS AND TEST CONDITIONS

1.1 Picture of Device

Please refer to Appendix E.

Figure 1.1.1 BlackBerry Smartphone

1.2 Antenna description

Type	Internal fixed antenna		
Location	Back bottom centre (main licensed		
Location	transmitters)		
Configuration	Internal fixed antenna		

Table 1.2.1. Antenna description

1.3 Device description

Device Model	RDH71CW					
FCC ID	L6ARDH70CW					
IC ID	2503A-RDH70CW	2503A-RDH70CW				
	329A77DF (Radiated	Rev1), 32DF5ED2	(Radiated Rev2),			
PIN	329CDE2B (Conduct	ed), 32EE924B (Co	onducted Rev3)			
Hardware Version	Rev 1/Rev2/Rev3					
Software Version	6.1.0.106/392, 7.0.0.9	984				
Prototype or Production Unit	Production					
	1-slot	2-slots	3-slots	4-slots		
Mode(s) of Operation in North	GSM 850	EDGE/GPRS	EDGE/GPRS	EDGE/GPRS		
America	GSM 1900	850/1900	850/1900	850/1900		
Maximum nominal conducted	32.5	30.0	28.5	26.5		
RF Output Power (dBm)	29.0	26.0	24.5	23.5		
Tolerance in Power Setting on	Folerance in Power Setting on ± 0.50 ± 0.50 ± 0.50 ± 0.50					
centre channel (dB)	± 0.50	± 0.50	± 0.50	± 0.50		
Duty Cycle	1:8	2:8	3:8	4:8		
Transmitting Tx Frequency	824.2 - 848.8	824.2 - 848.8	824.2 - 848.8	824.2 - 848.8		
Range (MHz)	1850.2 – 1909.8	1850.2 – 1909.8	1850.2 - 1909.8	1850.2 – 1909.8		
	CDMA 2000	CDMA 2000				
Mode(s) of Operation in North	1xEVDO	1xEVDO	802.11b	802.11g		
America	800	1900				
Maximum nominal conducted	24.0 23.5 18.0 15.5					
RF Output Power (dBm)	24.0 23.5 18.0 15.5					
Tolerance in Power Setting on	± 0.50 ± 0.50 ± 0.50 ± 0.50					
centre channel (dB)	± 0.50 ± 0.50 ± 0.50					
Duty Cycle	1:1 1:1 1:1					
Transmitting Tx Frequency Range (MHz)	2412-2462	2412-2462	2412-2462	2412-2462		

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 5(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	2503A-RDH70CW		
			L6ARDP70UW	2503A-RDP70UW

Mode(s) of Operation in North America	802.11n	Bluetooth	
Maximum nominal conducted RF Output Power (dBm)	15.5	7.00	
Tolerance in Power Setting on centre channel (dB)	± 0.50	N/A	
Duty Cycle	1:1	N/A	
Transmitting Tx Frequency Range (MHz)	2412-2462	2402-2883	

Table 1.3.1. Test device description for RDH71CW

The device supports GSM/GPRS/EDGE 900/1800~MHz bands and UMTS band I that are not operational in North America, therefore no data is presented in this report for those bands.

Device Model	RDP71UW					
FCC ID	L6ARDP70UW					
IC ID	2503A-RDP70UV	V				
	25FC37FC (Radia	ated Rev1), 26F8E9	944 (Radiated Rev2)	, 25FB01DF		
PIN	(Conducted Rev1)				
Hardware Version	Rev 1, Rev2					
Software Version	6.1.0.132/301/42	1				
Prototype or Production Unit	Production					
Mode(s) of Operation in North America	1-slot GSM 850 GSM 1900	2-slots EDGE/GPRS 850/1900	3-slots EDGE/GPRS 850/1900	4-slots EDGE/GPRS 850/1900		
Maximum nominal conducted	32.5	30.0	28.5	26.5		
RF Output Power (dBm)	29.0	26.0	24.5	23.5		
Tolerance in Power Setting on centre channel (dB)	± 0.50 ± 0.50 ± 0.50					
Duty Cycle	1:8	2:8	3:8	4:8		
Tx Frequency Range (MHz)	824.2 - 848.8 824.2 - 848.8 824.2 - 848.8 824.2 - 848.8 1850.2 - 1909.8 1850.2 - 1909.8 1850.2 - 1909.8 1850.2 - 1909.8					
Mode(s) of Operation in North America	WCDMA / WCDMA / UMTS FDD V UMTS FDD 802.11b 802.11g (850) II (1900)					
Maximum nominal conducted RF Output Power (dBm)	24.0 23.5 18.0 15.5					
Tolerance in Power Setting on centre channel (dB)	± 0.50 ± 0.50 ± 0.50					
Duty Cycle	1:1	1:1	1:1	1:1		
Tx Frequency Range (MHz)	824.6 – 846.6	1852.4 – 1907.6	2412-2462	2412-2462		

Testing Services™	SAR Compliance Test F Model RDH71CW/RDF	Page 6(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	2503A-RDH70CW		
			L6ARDP70UW	2503A-RDP70UW

Mode(s) of Operation in North America	802.11n	Bluetooth	
Maximum nominal conducted RF Output Power (dBm)	15.5	7.00	
Tolerance in Power Setting on centre channel (dB)	± 0.50	N/A	
Duty Cycle	1:1	N/A	
Tx Frequency Range (MHz)	2412-2462	2402-2883	

Table 1.3.2 Test device description for RDP71UW

Note 1: Device model: RDP71UW supports GSM/GPRS/EDGE 900/1800 MHz bands and UMTS band I that are not operational in North America, therefore no data is presented in this report for those bands.

Note 2: According to manufacturer's hardware similarity declaration document, the two models (RDH71CW and RDP71UW) have identical design. Please refer to the declaration for more detail. The difference is model: RDP71UW does not support CDMA 2000 bands, instead it supports UMTS band II and V.

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 7(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	2503A-RDH70CW		
			L6ARDP70UW	2503A-RDP70UW

1.4 Body worn accessories (holsters)

The device has been tested with the holsters listed below. The holster is designed with the intended device orientation being with the LCD facing the belt clip. Proper positioning is vital for protection of the LCD display, and to help maximize the battery life of the device. The device can also be placed in the holster with the backside facing the belt clip. Body SAR measurements were carried out with the worst-case configuration front LCD side and backside towards the belt clip.

Number	Holster Type	Part Number	Separation distance (mm)
1	Vertical Holster	HDW-38954-001	20
*2	Vertical Holster (alt.)	HDW-38955-001	20

^{*}Identical design, but made of a different type of material. Separation distance is identical

Table 1.4.1. Body worn holster

Please refer to Appendix E. **Figure 1.4.1. Body-worn holster**

1.5 Headset

The device was tested with and without the following headset model numbers.

- 1) HDW-14322-003
- 2) HDW-15766-005
- 3) HDW-24529-001

1.6 Battery

The device was tested with the following Lithium Ion Battery pack.

1) BAT-30615-006

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 8(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW L6ARDP70UW	2503A-RDH70CW 2503A-RDP70UW

1.7 Procedure used to establish test signal

The device was put into test mode for SAR measurements by placing a voice call from a Rohde & Schwarz CMU 200 Communications Test Instrument. The power control level was set to command the device to transmit at full power at the specified frequency. Other parameters include: Channel type = full rate, discontinuous transmission off, frequency hopping off.

1.8 Highlights of the FCC OET SAR Measurement Requirements

1.8.1 SAR Measurement Requirements for 3-6 GHz and Measurement Procedures for 802.11 a/b/g/n Transmitter

- Maintained dielectric parameter uncertainty as close to $\pm 5.0\%$ of the target value as possible.
- Liquid depth from SAM ERP or flat phantom was kept at 15 cm.
- Frequency Channel Configuration: 802.11 b/g modes are tested on "default test channels" 1, 6 and 11.
- For each frequency band, testing at higher rates and higher modulations is not required when the maximum average output power for each of these configurations is less than ¼ dB higher than those measured at the lowest data rate.
- SAR is not required for 802.11g/n channels when the maximum average output power is less than ¼ dB higher than that measured on the corresponding 802.11b channels.
- SAR test was conducted on each "default test channel" and each band with the worst case modulation and highest duty cycle.

Testing Services™	9(49)			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW L6ARDP70UW	2503A-RDH70CW 2503A-RDP70UW

• Conducted power measurements:

802.11	b @ 1Mbps	802.11g	@ 6Mbps	802.11n @	© 6.5 Mbps
Chan	Cond. Power (dBm)	Chan	Cond. Power (dBm)	Chan	Cond. Power (dBm)
1	17.91	1	15.44	1	15.30
6	18.10	6	15.61	6	15.41
11	18.45	11	15.96	11	15.80

Table 1.8.1. 802.11 b/g channel vs. conducted power

		802.11g			802.11b	
ta Rate (Mbps)	Mod.	Channel 6 Cond. Power (dBm)	Data Rate (Mbps)	Mod.	Channel 6 Cond. Power (dBm)	
6	BPSK	15.61	1	BPSK	18.10	
9	BPSK	15.22	2	DQPSK	17.84	
12	QPSK	13.62	5.5	CCK	17.20	
18	QPSK	12.95	11	CCK	16.70	
24	16-QAM	11.71	22	CCK	18.10	
36	16-QAM	10.75				
48	64-QAM	10.00				
54	64-QAM	10.00				
				802.11 n		
Data Rat	o (Mbps)	Mod		Channel 6		
Data Kat	e (MDps)	Mod.		Cond. Power (dBm)		
6.	5	MCS0		15.41		
1:	3	MCS1		13.51		
19	19.5			12.81		
20	26			11.67		
39	39			10.91		
52	52			10.41		
58	.5	MCS5 MCS6		10.31		
6:	5	MCS7		9.67		

Table 1.8.2. 802.11 a/b/g modulation type/data rate vs. conducted power

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 10(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

1.8.2 SAR Measurement Procedures for 3G Devices

WCDMA Handsets

Output Power Verification

- Maximum output power is verified on the High, Middle and Low channels using 12.2 kbps RMC, 12.2 kbps AMR with a 3.4 kbps SRB (signal radio bearer) with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or applying the required inner loop.
- For Release 5 HSDPA, output power is measured according to requirements for HS-DPCCH Sub-test 1-4

Head SAR Measurements

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than ¼ dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signalling radio bearer) using the exposure configuration that results in the highest SAR for that RF channel in 12.2 RMC.

Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits configured to all "1s". SAR for other spreading codes and multiple DPDCH_n, when supported by the DUT, are not required when the maximum average outputs of each RF channel, for each spreading code and DPDCH_n configuration, are less than ½ dB higher than those measured in 12.2 RMC. Otherwise, SAR is measured on the maximum output channel with an applicable RMC configuration for the corresponding spreading code or DPDCH_n using the exposure configuration that results in the highest SAR with 12.2 RMC.

Testing Services™	SAR Compliance Test I Model RDH71CW/RDF	Page 11(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

Handsets with HSPA

Body SAR is not required for handsets with HSPA capabilities, when the maximum average output of each RF channel with HSPA active is less than ¼ dB higher than that measured in 12.2 kbps RMC without HSPA Otherwise, SAR for HSPA is measured using FRC (fixed reference channel) in the body exposure configuration that results in the highest SAR for that RF channel in 12.2kbps RMC.

	Band	I	FDD V (850))]	FDD II (19	00)
	Channel	4132	4182	4233	9262	9400	9538
	Freq (MHz)	826.4	836.4	846.6	1852.4	1880.0	1907.6
Mode	Subtest	Max	burst avei	aged	Max bur	st average	d conducted
Mode	Subtest	conduc	cted power	r (dBm)		power (dB	(m)
Rel99	12.2 kbps RMC	24.30	24.28	24.10	23.33	23.57	23.24
Rel99	12.2 kbps AMR, SRB	24.20	24.35	24.00	23.39	23.67	23.37
	3.4 kbps						
Rel5 HSDPA	1	24.20	24.15	23.90	23.20	23.52	23.20
Rel5 HSDPA	2	24.23	24.10	23.95	23.31	23.55	23.24
Rel5 HSDPA	3	24.20	24.12	23.95	23.20	23.61	23.21
Rel5 HSDPA	4	24.29	24.13	23.90	23.30	23.70	23.30
Rel6 HSUPA	1	24.31	24.09	23.96	23.25	23.65	23.24
Rel6 HSUPA	2	24.25	24.10	23.97	23.40	23.60	23.30
Rel6 HSUPA	3	24.22	24.05	23.95	23.35	23.68	23.28
Rel6 HSUPA	4	24.25	24.12	23.92	23.34	23.62	23.35
Rel6 HSUPA	5	24.13	24.10	23.92	23.30	23.53	23.34

Table 1.8.3. WCDMA (Rel99) / HSPA conducted power measurements

1.8.3 SAR Measurements Procudure for CDMA/1xEv-DO

For handsets with Ev-Do capabilities, when the maximum average output of each channel in Rev. 0 is less than ¼ dB higher than that measured in RC3 (1x RTT), body SAR for Ev-Do is not required. Otherwise, SAR for Rev. 0 is measured on the maximum output channel at 153.6 kbps using the body exposure configuration that results in the highest SAR for that channel in RC3. SAR for Rev. A is not required when the maximum average output of each channel is less than that measured in Rev. 0 or less than ¼ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel for Rev. A using a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations. A Forward Traffic Channel data rate corresponding to the 2-slot version of 307.2 kbps with the ACK Channel transmitting in all slots should be configured in the downlink for both Rev. 0 and Rev. A.

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 12(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

Band	Channe I	1x EvDO (153.6kbps) Rel. 0 / Rel. A	CDMA2000 RC	SO2 Loopback	SO55 Loopback	TDSO SO32 Test Data Service
	1012	242/242	RC1	24.3	24.4	N/A
	1013	24.2 / 24.2	RC3	24.2	24.2	24.2
CDMA	204		RC1	24.2	24.3	N/A
800	384		RC3	24.1	24.1	24.1
			RC1	24.2	24.1	N/A
	777	23.5 / 23.4	RC3	24.0	24.0	24.2
Band	Channe I	1x EvDO (153.6kbps) Rel. 0 / Rel. A	CDMA2000 RC	SO2 Loopback	SO55 Loopback	TDSO SO32 Test Data Service
	25	23.8 / 23.9	RC1	23.7	23.5	N/A
			RC3	23.6	23.6	23.5
CDMA 1900	600	23.8 / 23.8	RC1	23.9	23.8	N/A
1900			RC3 RC1	23.7	23.7	23.7 N/A
	1175	23.8 / 23.8	RC3	23.5	23.6	23.6

Table 1.8.4. Conducted RF output power (dBm) measured for various settings

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 13(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW L6ARDP70UW	2503A-RDH70CW 2503A-RDP70UW

1.9 Highlights of the FCC OET SAR Evaluation Considerations for Handsets with Multiple Transmitters/ Antennas & GSM/GPRS/EDGE Procedure

Unlicensed Transmitters

When there is simultaneous transmission –

Stand-alone SAR not required when

- output $\leq 2 \cdot PRef$ and antenna is > 5.0 cm from other antennas
- output \leq PRef and antenna is > 2.5 cm from other antennas
- the other antenna(s), which are ≤ 2.5 cm away, has an output \leq PRef OR max 1g SAR ≤ 1.2 W/kg

Otherwise stand-alone SAR is required

- test SAR on highest output channel for each wireless mode and exposure condition
- \bullet if SAR for highest output channel is > 50% of SAR limit, evaluate all channels according to normal procedure

Simultaneous Transmission SAR not required:

Unlicensed only

- when stand-alone 1-g SAR is not required and antenna is > 5 cm from other antennas
- when the other antenna(s), which are < 2.5 cm away, has an output ≤ PRef OR max 1g SAR < 1.2 W/kg

Licensed & Unlicensed

- \bullet when the sum of the 1-g SAR is < 1.6 W/kg for each pair of simultaneous transmitting antennas. or
- when the ratio of SAR to peak SAR separation distance of simultaneous transmitting antenna pair is < 0.3

Simultaneous Transmission SAR required:

Licensed & Unlicensed

• antenna pairs with SAR to antenna separation ratio ≥ 0.3 ; test is only required for the configuration that results in the highest SAR in standalone configuration for each wireless mode and exposure condition.

	2.45	5.15 - 5.35	5.47 - 5.85	GHz	
\mathbf{P}_{Ref}	12	6	5	mW	
Device output power should be rounded to the nearest mW to compare with values specified in this table.					

Table 1.9.1. Output Power Thresholds for Unlicensed Transmitters

Testing Services™	SAR Compliance Test Report for the BlackBerry® Smartphone Model RDH71CW/RDP71UW			14(49)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW L6ARDP70UW	2503A-RDH70CW 2503A-RDP70UW

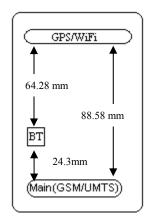


Figure 1.9.1. Back view of device showing closest distance between antenna pairs

Testing Services™	SAR Compliance Test Report for the BlackBerry® Smartphone Model RDH71CW/RDP71UW			Page 15(49)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

Mode	Configuration	Highest 1 g SAR (W/kg)
GSM/GPRS/EDGE/	Head-Right-Touch	1.12
CDMA/WCDMA	Body-Vertical Holster Back with HS	0.86
	Head-Right-Touch	0.19
802.11b/g/n	Body-Vertical Holster Back with HS	0.06

Table 1.9.2. Highest SAR values for the same setup

BT & WiFi: BT Stand-alone and Simultaneous Transmission SAR are not required, since WiFi antenna is > 5.0 cm away

BT & GSM/WCDMA: BT Stand-alone and Simultaneous Transmission SAR are not required, since other antennas are <2.5 cm

GSM & WiFi: Simultaneous Transmission SAR is not required for head/body configuration based on the sum of 1-g SAR values for each pair of simultaneous transmitting antennas being < 1.6W/kg.

WCDMA & WiFi: Simultaneous Transmission SAR is not required for head configuration based on ratio of SAR to peak SAR separation distance is < 0.3

- The device supports DTM, GPRS Category Class A, Multi-Slot Class 12 with maximum 5 s-lots (4-slots uplink and 1-slot downlink).
- For head SAR configuration, GSM 1-slot (CS) uplink and 2/3/4-slots DTM {GSM (SC) + EDGE (PD)} were evaluated.
- For body SAR configuration, 2/3/4-slots GPRS (PD) mode were tested.
- In EDGE/GPRS mode, GMSK Modulation was used using CS1-CS4 or MCSI-MCS4.
- 8-PSK modulation or MCS5-MCS9 code scheme were avoided since maximum burst avg power was measured lower on those modulation schemes.
- \bullet Each slot is set to maximum power, but there is software power reduction of $\sim 2/4/6$ dB in DTM/EDGE/GPRS 2/3/4-slots uplink modes.

Please refer to the conducted power measurements table below:

Testing Services™				Page 16(49)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A		2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

Mode	Freq. (MHz)	Max burst averaged conducted power (dBm) CS1	Max burst averaged conducted power (dBm) CS4	Max burst averaged conducted power (dBm) MCS1	Max burst averaged conducted power (dBm) MCS4	Max burst averaged conducted power (dBm) MCS5	Max burst averaged conducted power (dBm) MCS9
2-slots	824.2	30.2	30.0	N/A	N/A	N/A	N/A
GPRS	836.8	30.1	30.0	N/A	N/A	N/A	N/A
850 MHz	848.8	30.0	29.8	N/A	N/A	N/A	N/A
3-slots	824.2	28.5	28.4	N/A	N/A	N/A	N/A
GPRS	836.8	28.3	28.3	N/A	N/A	N/A	N/A
850 MHz	848.8	28.4	28.3	N/A	N/A	N/A	N/A
4-slots	824.2	26.9	26.8	N/A	N/A	N/A	N/A
GPRS	836.8	27.0	27.0	N/A	N/A	N/A	N/A
850 MHz	848.8	27.0	26.9	N/A	N/A	N/A	N/A
2-slots	824.2	30.0	29.9	30.0	29.9	N/A	N/A
EDGE/DTM	836.8	30.0	29.9	29.9	29.9	N/A	N/A
850 MHz	848.8	29.8	29.7	29.8	29.7	N/A	N/A
3-slots	824.2	28.5	28.4	28.5	28.4	N/A	N/A
EDGE/DTM	836.8	28.3	28.3	28.3	28.2	N/A	N/A
850 MHz							
4-slots	848.8 824.2	28.3	28.3	28.3	28.2	N/A	N/A
EDGE/DTM		26.8	26.7	26.7	26.7	N/A	N/A
850 MHz	836.8	26.9	26.9	26.9	26.8	N/A	N/A
	848.8	26.9	26.9	26.8	26.8	N/A	N/A
2-slots	1850.2	26.0	26.1	N/A	N/A	N/A	N/A
GPRS	1880.0	26.1	26.1	N/A	N/A	N/A	N/A
1900 MHz	1909.8	26.1	26.1	N/A	N/A	N/A	N/A
3-slots	1850.2	24.4	24.4	N/A	N/A	N/A	N/A
GPRS	1880.0	24.4	24.4	N/A	N/A	N/A	N/A
1900 MHz	1909.8	24.2	24.2	N/A	N/A	N/A	N/A
4-slots	1850.2	23.3	23.5	N/A	N/A	N/A	N/A
GPRS	1880.0	23.3	23.3	N/A	N/A	N/A	N/A
1900 MHz	1909.8	23.1	23.3	N/A	N/A	N/A	N/A
2-slots	1850.2	26.1	26.2	26.1	26.0	25.9	25.8
EDGE/DTM 1900MHz	1880.0	26.2	26.3	26.2	26.3	26.2	26.0
3-slots	1909.8 1850.2	26.2 24.5	26.2 24.3	26.1 24.5	26.2 24.3	26.1 24.4	26.0 24.2
5-siots EDGE/DTM	1880.0	24.5	24.3	24.5	24.3	24.4	24.2
1900MHz	1909.8	24.3	24.1	24.3	24.1	24.2	24.0
4-slots	1850.2	23.4	23.6	23.4	23.6	23.3	23.4
EDGE/DTM	1880.0	23.4	23.4	23.4	23.4	23.3	23.3
1900MHz	1909.8	23.2	23.4	23.2	23.4	23.1	23.3

Testing Services™	SAR Compliance Test Report for the BlackBerry® Smartphone Model RDH71CW/RDP71UW			Page 17(49)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A		2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

Mode	Freq. (MHz)	Max burst averaged conducted power (dBm)
1-slot	824.2	32.7
GSM (CS)	836.8	32.7
850 MHz	848.8	32.6
1-slot	1850.2	28.8
GSM (CS) 1900 MHz	1880.0	28.7
IVIITZ	1909.8	28.7

1.9.3. GSM/EDGE/GPRS channel vs. conducted power

Testing Services™				Page 18(49)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A		2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

2.0 DESCRIPTION OF THE TEST EQUIPMENT

2.1 SAR measurement system

SAR measurements were performed using a Dosimetric Assessment System (DASY4/52), an automated SAR measurement system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich, Switzerland.

The DASY 4/52 system for performing compliance tests consists of the following items:

- · A standard high precision 6-axis robot (Stäubli RX family) with controller and software.
- · An arm extension for accommodating the data acquisition electronics (DAE).
- · A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- · A DAE module that performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the Electro-optical coupler (EOC).
- · A unit to operate the optical surface detector that is connected to the EOC.
- \cdot The EOC performs the conversion from an optical signal into the digital electric signal of the DAE. The EOC is connected to the PC plug-in card.
- The functions of the PC plug-in card based on a DSP is to perform the time critical tasks such as signal filtering, surveillance of the robot operation fast movement interrupts.
- · A computer operating Windows 2000.
- · DASY 4 software version 4.7; or DASY52 software version 52.6(2).
- \cdot Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- · The SAM Twin Phantom enabling testing left-hand and right-hand usage.
- · The device holder for mobile phones.
- · Tissue simulating liquid mixed according to the given recipes (see section 6.1).
- · System validation dipoles allowing for the validation of proper functioning of the system.

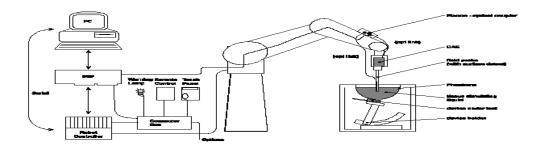


Figure 2.1.1. System Description

Testing Services™	SAR Compliance Test Report for the BlackBerry® Smartphone Model RDH71CW/RDP71UW			Page 19(49)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

2.1.1 Equipment List

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date (MM/DD/YY)
SCHMID & Partner Engineering AG	E-field probe	ET3DV6	1643	03/09/2011
SCHMID & Partner Engineering AG	E-field probe	ET3DV6	1644	11/16/2011
SCHMID & Partner Engineering AG	E-field probe	ES3DV3	3225	01/13/2012
SCHMID & Partner Engineering AG	Data Acquisition Electronics (DAE3)	DAE3 V1	472	05/17/2011
SCHMID & Partner Engineering AG	Data Acquisition Electronics (DAE3)	DAE3 V22	473	01/21/2012
SCHMID & Partner Engineering AG	Dipole Validation Kit	D835V2	446	01/21/2013
SCHMID & Partner Engineering AG	Dipole Validation Kit	D1900V2	545	01/13/2013
SCHMID & Partner Engineering AG	Dipole Validation Kit	D2450V2	747	11/11/2011
Agilent Technologies	Signal generator	8648C	4037U03155	09/24/2011
Agilent Technologies	Power meter	E4419B	GB40202821	09/15/2011
Agilent Technologies	Power sensor	8481A	MY41095417	09/23/2011
Agilent Technologies	Power sensor	N1921A	SG45240281	05/22/2011
Agilent Technologies	Power meter	N1911A	MY45100905	05/01/2011
Amplifier Research	Amplifier	5S1G4M3	300986	CNR
Agilent Technologies	Network analyzer	8753ES	US39174857	09/17/2011
Rohde & Schwarz	Base Station Simulator	CMU 200	109747	11/25/2011

Table 2.1.1. Equipment list

Testing Services™	SAR Compliance Test Report for the BlackBerry® Smartphone Model RDH71CW/RDP71UW			Page 20(49)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

2.2 Description of the test setup

Before SAR measurements are conducted, the device and the DASY equipment are setup as follows:

2.2.1 Device and base station simulator setup

- Power up the device.
- Turn on the base station simulator and set the radio channel and power to the appropriate values.
- Connect an antenna to the RF IN/OUT of the communication test set and place it close to the device.

2.2.2 DASY setup

- Turn the computer on and log on to Windows.
- Start the DASY software by clicking on the icon located on the Windows desktop.
- Mount the DAE unit and the probe. Turn on the DAE unit.
- Turn the Robot Controller on by turning the main power switch to the horizontal position
- Align the probe by clicking the 'Align probe in light beam' button.
- Open a file and configure the proper parameters probe, medium, communications system etc.
- Establish a connection between the Device and the communications test instrument. Place the Device on the stand and adjust it under the phantom.
- Start SAR measurements.

3.0 ELECTRIC FIELD PROBE CALIBRATION

3.1 Probe Specifications

SAR measurements were conducted using the dosimetric probe ET3DV3/ET3DV6, designed by Schmid & Partner Engineering AG for the measurement of SAR. The probe is constructed using the thin film technique, with printed resistive lines on ceramic substrates. It has a symmetrical design with triangular core, built-in optical fibre for the surface detection system and built-in shielding against static discharge. The probe is sensitive to E-fields and thus incorporates three small dipoles arranged so that the overall response is close to isotropic. The table below summarizes the technical data for the probe.

Property	Data
Frequency range	10 MHz to 4 GHz
Linearity	\pm 0.2 dB (30 MHz to 4 GHz)
Directivity (rotation around probe axis)	\pm 0.2 dB in HSL (rotation around probe axis)
Directivity (rotation normal to probe axis)	\pm 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	$5 \mu W/g \text{ to} > 100 \text{ mW/g}$; Linearity: $\pm 0.2 \text{ dB}$
Probe positioning repeatability	±0.2 mm
Spatial resolution	< 0.125 mm ³

Table 3.1.1. Probe specifications

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 21(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

3.2 Probe calibration and measurement uncertainty

The probe had been calibrated with an accuracy better than $\pm 12\%$. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe were tested. The probe calibration parameters are shown on Appendix D and below:

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Con	nvF Y Cor	nvF Z	Alpha	Depth Unc (k=2)
900	± 50 / ± 100	41.5 ± 5%	0.97 ± 5%	6.12	6.12	6.12	0.99	1.07 ± 11.0%
1810	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	5.14	5.14	5.14	0.46	1.60 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.96	4.96	4.96	0.47	1.57 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.53	4.53	4.53	0.41	1.89 ± 11.0%

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
900	± 50 / ± 100	55.0 ± 5%	1.05 ± 5%	5.97	5.97	5.97	0.98	1.12 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.90	4.90	4.90	0.35	2.07 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.83	4.83	4.83	0.32	2.45 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.32	4.32	4.32	0.74	1.27 ± 11.0%

C The validity of \pm 100 MHz only applies for DASY v4.4 and higher.

DASY v4.7/DASY 52 has been used for measurements, therefore \pm 100 MHz tolerance is valid.

Measured dielectric parameters are within \pm 5% of the probe calibration values and target values. Expanded probe calibration uncertainty (k=2) is < 15 %

4.0 SAR MEASUREMENT SYSTEM VERIFICATION

Prior to conducting SAR measurements, the system was validated using the dipole validation kit and the flat section of the SAM phantom. A power level of 1.0W was applied to the dipole antenna. The verification results are in the table below with a comparison to reference values. Printouts are shown in Appendix A. All the measured parameters are within the allowed tolerances.

At above 1.5 - 2 GHz, dipoles maintain good return loss of -15 dB to -20 dB, therefore SAR measurements are limited to approximately +/- 100 MHz of the probe/dipole calibration frequency.

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 22(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW L6ARDP70UW	2503A-RDH70CW 2503A-RDP70UW

4.1 System accuracy verification for head adjacent use

f	Limits / Measured	SAR (W/kg)	Dielectric	Parameters	Liquid
(MHz)	(MM/DD/YY)	1 g/ 10 g	$\epsilon_{\rm r}$	σ [S/m]	Temp (°C)
	Measured (01/27/2011)	9.18/6.02	42.1	0.90	21.8
835	Measured (04/20/2011)	9.10/5.17	40.1	0.88	22.1
†	Recommended Limits	9.50/6.27	41.5	0.90	N/A
	Measured (01/19/2011)	41.0/21.3	39.8	1.34	21.9
1900	Measured (01/25/2011)	38.4/20.4	38.6	1.34	22.1
1900	Measured (04/14/2011)	36.7/19.2	39.8	1.34	21.9
	Recommended Limits	39.5/20.8	40.0	1.40	N/A
	Measured (01/14/2011)	57.7/26.3	38.2	1.87	22.8
2450	Measured (04/26/2011)	56.0/25.9	39.0	1.89	22.3
	Recommended Limits	53.2/24.8	39.2	1.80	N/A

Table 4.1.1. System accuracy for RDH71CW (validation for head adjacent use)

f	Limits / Measured	SAR (W/kg)	Dielectric	Parameters	Liquid
(MHz)	(MM/DD/YY)	1 g/ 10 g	$\epsilon_{\rm r}$	σ [S/m]	Temp (°C)
	Measured (02/07/2011)	9.38/6.15	42.1	0.90	22.3
835	Measured (04/06/2011)	9.30/6.08	42.9	0.93	21.8
	Recommended Limits	9.50/6.27	41.5	0.90	N/A
1000	Measured (02/14/2011)	38.3/20.2	38.2	1.39	22.1
1900	Recommended Limits	39.5/20.8	40.0	1.40	N/A

 $Table\ 4.1.2.\ System\ accuracy\ for\ RDP71UW\ (validation\ for\ head\ adjacent\ use)$

Testing Services™	SAR Compliance Test I Model RDH71CW/RDF	Page 23(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW L6ARDP70UW	2503A-RDH70CW 2503A-RDP70UW

5.0 PHANTOM DESCRIPTION

The SAM Twin Phantom, manufactured by SPEAG, was used during the SAR measurements. The phantom is made of a fibreglass shell integrated with a wooden table.

The SAM Twin Phantom is a fibreglass shell phantom with 2 mm shell thickness. It has three measurement areas:

Left side head Right side head Flat phantom

The phantom table dimensions are: 100x50x85 cm (LxWxH). The table is intended for use with freestanding robots.

The bottom shelf contains three pair of bolts for locking the device holder in place. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is

necessary if two phantoms are used (e.g., for different solutions).

A white cover is provided to top the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible; however the optical surface detector does not work properly at the cover surface. Place a sheet of white paper on the cover when using optical surface detection.

Liquid depth of ≥ 15 cm is maintained in the phantom for all the measurements.

Figure 5.0.1. SAM Twin Phantom

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 24(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

6.0 TISSUE DIELECTRIC PROPERTIES

6.1 Composition of tissue simulant

The composition of the brain and muscle simulating liquids for 800-900 MHz and 1800-1900 MHz are shown in the table below.

INGREDIENT	MIXTURE 800–900MHz		MIXTURE 1800– 1900MHz		MIXTURE 2450 MHz	
INGREDIENT	Brain %	Muscle %	Brain %	Muscle %	Brain %	Muscle %
Water	40.29	65.45	55.24	69.91	55.0	68.75
Sugar	57.90	34.31	0	0	0	0
Salt	1.38	0.62	0.31	0.13	0	0
HEC	0.24	0	0	0	0	0
Bactericide	0.18	0.10	0	0	0	0
DGBE	0	0	44.45	29.96	40.0	31.25
Triton X-100	0	0	0	0	5.0	0

Table 6.1.1 Tissue simulant recipe

6.1.1 Equipment

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date (MM/DD/YY)
Pyrex, England	Graduated Cylinder	N/A	N/A	N/A
Pyrex, USA	Beaker	N/A	N/A	N/A
Acculab	Weight Scale	V1-1200	018WB2003	N/A
IKA Works Inc.	Hot Plate	RC Basic	3.107433	N/A
Agilent				
Technologies	Network Analyzer	8753ES	US39174857	09/17/2011
Agilent				
Technologies	Dielectric probe kit	HP 85070C	US9936135	CNR
Dell	PC using GPIB card	GX110	347	N/A
Control Company	Digital Thermometer	23609-234	21352860	09/14/2011

Table 6.1.2 Tissue simulant preparation equipment

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 25(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

6.1.2 Preparation procedure

800-900 MHz liquids

- Fill the container with water. Begin heating and stirring.
- Add the **Cellulose**, the **preservative substance** and the **salt**. After several hours, the liquid will become more transparent again. The container must be covered to prevent evaporation.
- Add **Sugar**. Stir it well until the sugar is sufficiently dissolved.
- Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation.
- Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

1800-2450 MHz liquid

- Fill the container with water and place it on hotplate. Begin heating and stirring.
- Add the salt, Glycol/Triton X-100. The container must be covered to prevent evaporation.
- Keep the liquid hot enough to dissolve sugar for at least an hour. The container must be covered
 to prevent evaporation.
- Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

6.2 Electrical parameters of the tissue simulating liquid

The tissue dielectric parameters shall be measured before a batch can be used for SAR measurements to ensure that the simulated tissue was properly made and will simulate the desired human characteristic. Limits and measured electrical parameters are shown in the table below.

Recommended limits are adopted from IEEE P1528-2003:

"Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", DASY manual and from FCC Tissue Dielectric Properties web page at http://www.fcc.gov/fcc-bin/dielec.sh

Testing Services™	SAR Compliance Test I Model RDH71CW/RDF	Page 26(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

e (MII-)	Tissue	Linita /Marana I	Dielectric	Parameters	Liquid Temp
f (MHz)	Type	Limits / Measured	$\epsilon_{\rm r}$	σ [S/m]	(°C)
		Measured (01/27/2011)	42.1	0.90	21.8
835	Head	Measured (04/20/2011)	40.1	0.88	22.1
		Recommended Limits	41.5	0.90	N/A
		Measured (01/27/2011)	52.5	0.96	22.0
	Muscle	Measured (04/20/2011)	53.6	0.98	22.1
		Recommended Limits	55.2	0.97	N/A
		Measured (01/19/2011)	39.8	1.34	21.9
	Head	Measured (01/25/2011)	38.6	1.34	22.1
		Measured (04/14/2011)	39.8	1.34	21.9
		Recommended Limits	40.0	1.40	N/A
1900	Muscle	Measured (01/19/2011)	51.6	1.49	21.8
		Measured (01/25/2011)	51.0	1.50	22.0
		Measured (04/14/2011)	51.0	1.50	21.9
		Recommended Limits	53.3	1.52	N/A
		Measured (01/14/2011)	38.2	1.87	22.8
	Head	Measured (04/26/2011)	39.0	1.89	22.3
2450		Recommended Limits	39.2	1.80	N/A
2450		Measured (01/14/2011)	50.1	2.05	22.9
	Muscle	Measured (04/26/2011)	50.2	2.02	22.4
		Recommended Limits	52.7	1.95	N/A

Table 6.2.1. Electrical parameters of tissue simulating liquid (RDH71CW)

e (MII-)	Tissue	Limita / Maganuad	Dielectric Parameters		Liquid Temp
f (MHz)	Type	Limits / Measured	$\epsilon_{\rm r}$	σ [S/m]	(°C)
		Measured (02/07/2011)	42.1	0.90	22.3
	Head	Measured (04/06/2011)	42.9	0.93	21.8
925		Recommended Limits	41.5	0.90	N/A
835	Muscle	Measured (02/07/2011)	52.8	0.96	22.0
		Measured (04/06/2011)	56.2	0.93	22.0
		Recommended Limits	55.2	0.97	N/A
	Head	Measured (02/14/2011)	38.2	1.39	22.1
4000	Head	Recommended Limits	40.0	1.40	N/A
1900	Muscle	Measured (02/14/2011)	50.6	1.56	22.3
	wiuscie	Recommended Limits	53.3	1.52	N/A

Table 6.2.2. Electrical parameters of tissue simulating liquid (RDP71UW)

Testing Services™	SAR Compliance Test I Model RDH71CW/RDF	Page 27(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

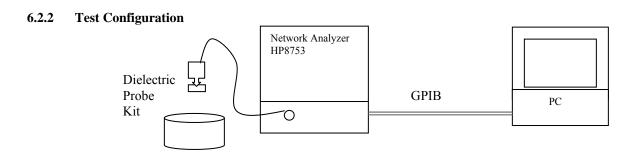


Figure 6.2.1 Test configuration

6.2.3 Procedure

- 1. Turn NWA on and allow at least 30 minutes for warm up.
- 2. Mount dielectric probe kit so that interconnecting cable to NWA will not be moved during measurements or calibration.
- 3. Pour de-ionized water and measure water temperature ($\pm 1^{\circ}$).
- 4. Set water temperature in HP-Software (Calibration Setup).
- 5. Perform calibration.
- 6. Relative permittivity $\varepsilon \mathbf{r} = \varepsilon'$ and conductivity can be calculated from ε'' $\sigma = \omega \varepsilon_0 \varepsilon''$
- 7. Measure liquid shortly after calibration.
- 8. Stir the liquid to be measured. Take a sample (~50ml) with a syringe from the center of the liquid container.
- 9. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
- 10. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
- 11. Perform measurements.
- 12. Adjust medium parameters in DASY software for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Head 835 MHz) and press 'Option'-button.
- 13. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 835 MHz).

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	28(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW L6ARDP70UW	2503A-RDH70CW 2503A-RDP70UW

7.0 SAR SAFETY LIMITS

Standards/Guideline	Localized SAR Limit (W/kg) General public (uncontrolled)	Localized SAR Limits (W/kg) Workers (controlled)
ICNIRP (1998) Standard	2.0 (10g)	10.0 (10g)
IEEE C95.1 (1999) Standard	1.6 (1g)	8.0 (1g)

Table 7.0.1. SAR safety limits for Controlled / Uncontrolled environment

Hamon Euroccuro	Localized SAR Limits (W/kg) 10g, ICNIRP (1998) Standard	Localized SAR Limits (W/kg) 1g, IEEE C95.1 (1999) Standard
Human Exposure	(1998) Standard	(1999) Standard
Spatial Average (averaged over the whole		
body)	0.08	0.08
Spatial Peak (averaged over any X g of		
tissue)	2.00	1.60
Spatial Peak (hands/wrists/feet/ankles		
averaged over 10 g)	4.00	4.00 (10g)

Table 7.0.2. SAR safety limits

Uncontrolled Environments are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

Testing Services™	SAR Compliance Test F Model RDH71CW/RDF	Page 29(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW L6ARDP70UW	2503A-RDH70CW 2503A-RDP70UW

8.0 DEVICE POSITIONING

8.1 Device holder for SAM Twin Phantom

The Device was positioned for all test configurations using the DASY holder. The device holder facilitates the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately and with repeatability positioned according to FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 8.1.1. Device Holder

- 1. Put the phone in the clamp mechanism (1) and hold it straight while tightening. (Curved phones or phones with asymmetrical ear pieces should be positioned so that the earpiece is in the symmetry plane of the clamp).
- 2. Adjust the sliding carriage (2) to 90°. Then adjust the phone holder angle (3) until the reference line of the phone is horizontal (parallel to the flat phantom bottom). The phone reference line is defined as the front tangential line between the earpiece and the center of the device bottom (or the center of the flip hinge). For devices with parallel front and backsides, the phone holder angle (3) is 0°.
- 3. Place the device holder at the desired phantom section and move it securely against the positioning pins (4). The screw in front of the turning plate can be applied for correct positioning (5). (Do not tighten it too strongly).
- 4. Shift the phone clamp (6) so that the earpiece is exactly below the ear marking of the phantom. The phone is now correctly positioned in the holder for all standard phantom measurements, even after changing the phantom or phantom section.
- 5. Adjust the device position angles to the desired measurement position.

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 30(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW L6ARDP70UW	2503A-RDH70CW 2503A-RDP70UW

6. After fixing the device angles, move the phone fixture up until the phone touches the ear marking. (The point of contact depends on the design of the device and the positioning angle).

8.2 Description of the test positioning

8.2.1 Test Positions of Device Relative to Head

The handset was tested in two test positions against the head phantom, the "cheek" position and the "tilted" position, on both left and right sides of the phantom.

The handset was tested in the above positions according to IEEE 1528- 2003 "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques".

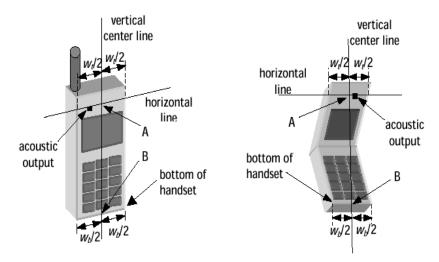


Figure 8.2.1a. Handset vertical and horizontal reference lines – fixed case

Figure 8.2.1b. Handset vertical and horizontal reference lines – "clam-shell"

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 31(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

8.2.1.1 Definition of the "cheek" position

- 1) Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover.
- 2) Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A on Figures 8.2.1a and 8.2.1b), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 8.2.1a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 8.2.1b), especially for clamshell handsets, handsets with flip pieces, and other irregularly shaped handsets.
- 3) Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 8.2.1), such that the plane defined by the vertical center line and the horizontal center line is in a plane approximately parallel to the sagittal plane of the phantom.
- **4)** Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear.
- 5) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is the plane normal to MB ("mouth-back") NF ("neck-front") including the line MB (reference plane).
- **6)** Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF.
- 7) While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the ear (cheek).

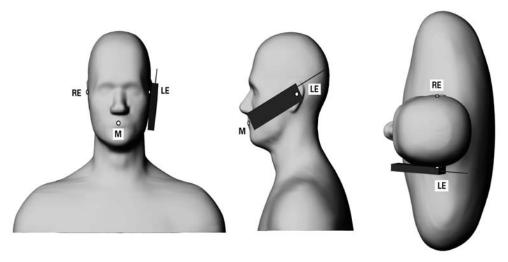


Figure 8.2.2. Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 32(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

8.2.1.2 Definition of the "Tilted" Position

- 1) Repeat steps 1 to 7 of 5.4.1 (in this report 8.2.1.1) to replace the device in the "cheek position."
- 2) While maintaining the device in the reference plane (described above) and pivoting against the ear, move the device outward away from the mouth by an angle of 15 degrees, or until the antenna touches the phantom.

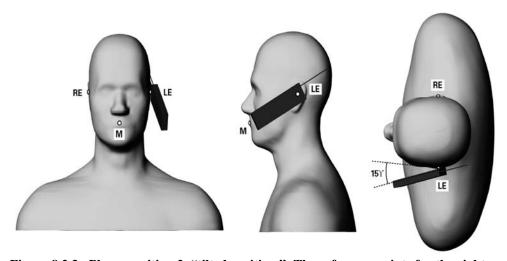


Figure 8.2.3. Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

8.2.2 Body Holster Configuration

Body worn holsters, as shown on Figure 1.4.1, have been test with the device for FCC RF exposure compliance. The EUT was positioned in each holster case and the belt clip was placed against the flat section of the phantom. A headset was then connected to the device to simulate hands-free operation in a body worn holster configuration.

Testing Services™	SAR Compliance Test I Model RDH71CW/RDF	Page 33(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A		2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

9.0 HIGH LEVEL EVALUATION

9.1 Maximum search

The maximum search is automatically performed after each coarse scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations.

9.2 Extrapolation

The extrapolation can be used in z-axis scans with automatic surface detection. The SAR values can be extrapolated to the inner phantom surface. The extrapolation distance is the sum of the probe sensor offset, the surface detection distance and the grid offset. The extrapolation is based on fourth order polynomial functions. The extrapolation is only available for SAR values.

9.3 Boundary correction

The correction of the probe boundary effect in the vicinity of the phantom surface is done in the standard (worst case) evaluation; the boundary effect is reduced by different weights for the lowest measured points in the extrapolation routine. The result is a slight overestimation of the extrapolated SAR values (2% to 8%) depending on the SAR distribution and gradient. The advanced evaluation makes a full compensation of the boundary effect before doing the extrapolation. This is only possible for probes with specifications on the boundary effect.

9.4 Peak search for 1g and 10g cube averaged SAR

The 1g and 10g peak evaluations are only available for the predefined cube 5x5x7 scan. The routines are verified and optimized for the grid dimensions used in these cube measurements.

The measured volume of 30x30x30mm with 7.5mm resolution in (x,y) and 5mm resolution in z axis amounts to 175 measurement points. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is then moved around until the highest averaged SAR is found. This last procedure is repeated for a 10 g cube. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

Testing Services™	SAR Compliance Test I Model RDH71CW/RDF	Page 34(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

10.0 MEASUREMENT UNCERTAINTY

DASY4 Uncertainty Budget According to IEEE P1528 [1]								
	Uncertainty	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}
Measurement System								
Probe Calibration	±4.8%	N	1	1	1	±4.8%	±4.8 %	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9 \%$	±3.9 %	∞
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout Electronics	±1.0%	N	1	1	1	±1.0%	±1.0%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Conditions	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2 %	∞
Probe Positioning	±2.9 %	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9 %	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6 %	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9 %	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3 %	∞
Liquid Conductivity (target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2 %	∞
Liquid Conductivity (meas.)	±2.5 %	N	1	0.64	0.43	±1.6%	±1.1 %	∞
Liquid Permittivity (target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2 %	∞
Combined Std. Uncertainty				<u> </u>	±10.3 %	±10.0%	330	
Expanded STD Uncertain					±20.6 %	±20.1 %		

Table 10.0.1. Worst-Case uncertainty budget for DASY4 assessed according to IEEE P1528. Source: Schmid & Partner Engineering AG.

Testing Services™	SAR Compliance Test I Model RDH71CW/RDF	Page 35(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

DASY5 Uncertainty Budget According to IEEE 1528/2010 and IEC 62209-1/2010 (0.3 - 3 GHz range) Uncert. Prob. Div. Std. Unc. Std. Unc. (c_i) (c_i) (v_i) Error Description value Dist. 10g (1g)(10g)1g v_{eff} Measurement System Probe Calibration $\pm 5.5\%$ ±5.5 % $\pm 5.5\%$ ∞ Axial Isotropy $\pm 4.7\%$ R $\sqrt{3}$ 0.70.7 $\pm 1.9\%$ $\pm 1.9\%$ ∞ ±9.6% $\sqrt{3}$ Hemispherical Isotropy R 0.7 0.7 ±3.9 % $\pm 3.9 \%$ ∞ Boundary Effects $\pm 1.0 \%$ R $\sqrt{3}$ $\pm 0.6\%$ $\pm 0.6\%$ 1 1 ∞ $\sqrt{3}$ Linearity $\pm 4.7\%$ R 1 1 $\pm 2.7 \%$ $\pm 2.7\%$ ∞ System Detection Limits ±1.0% R $\sqrt{3}$ 1 1 $\pm 0.6\%$ $\pm 0.6\%$ ∞ $\sqrt{3}$ Modulation Response ±2.4% R 1 ±1.4% ±1.4% 1 ∞ Readout Electronics $\pm 0.3\%$ N 1 1 1 $\pm 0.3\%$ $\pm 0.3\%$ ∞ Response Time $\pm 0.8\%$ $\sqrt{3}$ R 1 1 $\pm 0.5\%$ $\pm 0.5\%$ ∞ Integration Time ±2.6% R ±1.5% ±1.5% $\sqrt{3}$ 1 1 ∞ $\sqrt{3}$ RF Ambient Noise ±3.0 % R 1 1 ±1.7% ±1.7% ∞ RF Ambient Reflections $\pm 3.0 \%$ $\sqrt{3}$ 1 $\pm 1.7\%$ $\pm 1.7\%$ R 1 ∞ $\sqrt{3}$ Probe Positioner $\pm 0.4\%$ R 1 1 $\pm 0.2 \%$ $\pm 0.2\%$ ∞ Probe Positioning $\pm 2.9\%$ \mathbf{R} $\sqrt{3}$ 1 1 $\pm 1.7 \%$ $\pm 1.7\%$ ∞ $\sqrt{3}$ Max. SAR Eval. ±1.0% R ±0.6% $\pm 0.6\%$ 1 1 ∞ Test Sample Related Device Positioning $\pm 2.9\%$ 1 1 1 $\pm 2.9 \%$ $\pm 2.9 \%$ 145 Device Holder ±3.6 % Ν $\pm 3.6 \%$ 1 ±3.6 % 5 Power Drift ±5.0% ±2.9 % $\pm 2.9\%$ R $\sqrt{3}$ 1 ∞ Power Scaling $\pm 0 \%$ \mathbf{R} $\sqrt{3}$ 1 $\pm 0.0\%$ $\pm 0.0\%$ ∞ Phantom and Setup Phantom Uncertainty $\pm 4.0 \%$ $\sqrt{3}$ $\pm 2.3\%$ $\pm 2.3\%$ R 1 1 ∞ SAR correction ±1.9% R $\sqrt{3}$ 1 0.84 ±1.1% $\pm 0.9\%$ ∞ $\pm 2.5 \%$ 0.78 ±2.0% ±1.8% Liquid Conductivity (meas.) Ν 0.71 1 ∞ Liquid Permittivity (meas.) $\pm 2.5 \%$ 0.260.26 N $\pm 0.6\%$ $\pm 0.7\%$ 1 ∞ Temp. unc. - Conductivity $\pm 1.7\%$ \mathbf{R} $\sqrt{3}$ 0.780.71 $\pm 0.8\%$ $\pm 0.7\%$ ∞ ±0.3% 0.23 Temp. unc. - Permittivity R $\sqrt{3}$ 0.26±0.0% ±0.0% ∞ Combined Std. Uncertainty ±10.6% $\pm 10.5\%$ 361 Expanded STD Uncertainty $\pm 21.2 \%$ $\pm 21.1 \%$

Table 10.0.2. Worst-Case uncertainty budget for DASY52 assessed according to IEEE P1528. Source: Schmid & Partner Engineering AG.

[1] The budget is valid for the frequency range 300MHz - 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

Testing Services™	SAR Compliance Test I Model RDH71CW/RDF	Page 36(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

11.0 TEST RESULTS

11.1 SAR Measurement results at highest power measured against the head

			Cond.		easured against the head SAR, averaged over 1 g			
Test		f	Output Power	Liquid Temp.	Measured	Power Drift	*Extrapolated	
Position	Mode	(MHz)	(dBm)	(°C)	(W/kg)	(dB)	(W/kg)	
Right	4-slots	824.2						
Head	GSM/EDGE	836.8	26.9	21.6	0.79	-0.21	0.83	
Cheek	850 MHz	848.8						
Right	3-slots	824.2					. = .	
Head	GSM/EDGE	836.8	28.3	21.6	0.74	-0.05	0.74	
Cheek	850 MHz	848.8						
Right	2-slots	824.2	30.0	21.5	0.72	-0.12	0.72	
Head	GSM/EDGE	836.8	30.0	21.7	0.83	-0.20	0.87	
Cheek	850 MHz	848.8	29.8	21.5	0.84	-0.04	0.84	
Right	2-slots	824.2						
Head	GSM/EDGE	836.8	30.0	21.6	0.43	-0.09	0.43	
15° Tilt	850 MHz	848.8						
Right	1-slot	824.2						
Head	GSM	836.8	32.7	21.6	0.74	-0.41	0.81	
Cheek	850 MHz	848.8						
Left	4-slots	824.2						
Head	GSM/EDGE	836.8	26.9	21.4	0.68	0.05	0.68	
Cheek	850 MHz	848.8						
Left	3-slots	824.2						
Head		836.8	28.3	21.4	0.74	-0.54	0.84	
Cheek	850 MHz	848.8						
Left	2-slots	824.2						
Head	l l	836.8	30.0	21.4	0.75	-0.12	0.75	
Cheek	850 MHz	848.8	20.0		0.76	0.12	0.76	
Left		824.2						
Head GSM/EDGE	836.8	30.0	21.5	0.40	0.08	0.40		
15° Tilt	850 MHz	848.8	20.0	21.0	0	0.00	J	
Left	1-slot	824.2						
Head	GSM	836.8	32.7	21.4	0.68	-0.31	0.73	
Cheek	850 MHz	848.8					31,2	

Table 11.1.1. SAR results for GSM/EDGE 850 head configuration

^{*} Note: If the power drift is \leq - 0.200 dB, the extrapolated SAR is calculated using the formula: Extrapolated SAR = (Measured SAR) * $10^{(1)}$ (Power Drift (dB)) / $10^{(2)}$

^{*}Only Middle channel was tested when 1g Average SAR < 0.8 W/Kg or 3dB lower than the limit.

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	•	rry® Smartphone	Page 37(49)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011 RTS-2605-1102-05A L6ARDH70CW			2503A-RDH70CW
		2503A-RDP70UW		

					SAI	R, averaged	l over 1 g
Test Position	Mode	f (MHz)	Cond. Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Right	CDMA	824.70					
Head	CDMA 800 MHz	836.52	24.1	22.1	0.68	-0.40	0.75
Cheek	800 WIIIZ	848.52					
Right	CDMA	824.70					
Head	CDMA 800 MHz	836.52	24.1	22.0	0.37	0.08	0.37
15° Tilt	800 WIIIZ	848.52					
Left	CDMA	824.70					
Head	800 MHz	836.52	24.1	22.0	0.62	-0.18	0.62
Cheek	800 WIIIZ	848.52					
Left	CDMA	824.70					
Head	800 MHz	836.52	24.1	22.0	0.34	-0.02	0.34
15° Tilt	OOO WIIIZ	848.52					
Right	CDMA	1851.25	23.9	22.1	0.90	-0.15	0.90
Head	1900 MHz	1880.00	23.8	22.3	0.82	-0.18	0.82
Cheek	1700 WITE	1908.50	23.8	22.0	0.88	-0.12	0.88
Right	CDMA	1851.25					
Head	1900 MHz	1880.00	23.8	22.1	0.28	-0.02	0.28
15° Tilt	1900 141112	1908.50					
Left	CDMA	1851.25					
Head	1900 MHz	1880.00	23.8	21.9	0.36	-0.17	0.36
Cheek	1,000 1,1112	1908.50					
Left	CDMA	1851.25					
Head	1900 MHz	1880.00	23.8	21.8	0.27	0.15	0.27
15° Tilt	2,000 1.1112	1908.50					

Table 11.1.2. SAR results for CDMA 800/1900 for head configuration

Testing Services™	_	SAR Compliance Test Report for the BlackBerry® Smartphone Model RDH71CW/RDP71UW				
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID		
Hang Wang			L6ARDH70CW L6ARDP70UW	2503A-RDH70CW		
		2503A-RDP70UW				

					SAI	R, averaged	l over 1 g
Test Position	Mode	f (MHz)	Cond. Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Right	4-slots	1850.2	23.4	21.9	0.75	0.21	0.75
Head	GSM/EDGE	1880.0					
Cheek	1900 MHz	1909.8					
Right	3-slots	1850.2	24.5	22.1	0.71	-0.15	0.71
Head	GSM/EDGE	1880.0					
Cheek	1900 MHz	1909.8					
Right	2-slots	1850.2	26.1	21.9	0.72	0.25	0.72
Head	GSM/EDGE	1880.0	26.2	22.0	0.65	-0.06	0.65
Cheek	1900 MHz	1909.8	26.2	22.0	0.65	-0.16	0.65
Right	2-slots	1850.2	26.1	21.9	0.16	0.06	0.16
Head	GSM/EDGE	1880.0					
15° Tilt	1900 MHz	1909.8					
Right	1-slot	1850.2	28.8	21.8	0.64	-0.13	0.64
Head	GSM	1880.0					
Cheek	1900 MHz	1909.8					
Left	4-slots	1850.2					
Head	GSM/EDGE	1880.0					
Cheek	1900 MHz	1909.8	23.2	21.6	0.30	-0.05	0.30
Left	3-slots	1850.2					
Head	GSM/EDGE	1880.0					
Cheek	1900 MHz	1909.8	24.3	21.7	0.29	-0.10	0.29
Left	2-slots	1850.2	26.1	22.1	0.28	-0.18	0.28
Head	GSM/EDGE	1880.0	26.2	22.2	0.26	0.22	0.26
Cheek	1900 MHz	1909.8	26.2	22.2	0.29	-0.50	0.33
Left	Left 2-slots	1850.2					
Head	GSM/EDGE	1880.0	26.2	21.7	0.15	0.13	0.15
15° Tilt	1900 MHz	1909.8					
Left	1-slot	1850.2					
Head	GSM	1880.0					
Cheek	1900 MHz	1909.8	28.7	21.9	0.25	0.17	0.25

Table 11.1.3. SAR results for GSM/EDGE 1900 head configuration

Testing Services™	SAR Compliance Test I Model RDH71CW/RDF	1	rry® Smartphone	Page 39(49)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011 RTS-2605-1102-05A L6ARDH70CW			2503A-RDH70CW
		2503A-RDP70UW		

			G 1		SAl	R, averaged	over 1 g
Test Position	Mode	f (MHz)	Cond. Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Right	802.11 b	2412					
Head	2450	2437					
Cheek	MHz	2462	18.4	22.4	0.19	0.89	0.19
Right	802.11 b	2412					
Head	2450	2437					
15° Tilt	MHz	2462	18.4	22.2	0.24	-0.21	0.25
Left	802.11 b	2412					
Head	2450	2437					
Cheek	MHz	2462	18.4	22.5	0.29	-0.09	0.29
Left	Left 802.11 b	2412					
Head	2450	2437					
15° Tilt	MHz	2462	18.4	22.4	0.39	-0.12	0.39

Table 11.1.4. Head SAR results for WiFi/WLAN/802.11b

*Note: Tested only highest output power channel

Testing Services™	SAR Compliance Test R Model RDH71CW/RDP	Page 40(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011 RTS-2605-1102-05A L6ARDH70CW			2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

Head SAR Measurement Results for RDP71UW

			C 1		SAR, averaged over 1 g		over 1 g
Test Position	Mode	f (MHz)	Cond. Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Right	WCDMA	826.4					
Head	FDD V	836.4	24.3	21.8	0.57	-0.08	0.57
Cheek	850 MHz	846.6					
Right	Right WCDMA	826.4					
Head	FDD V	836.4	24.3	21.9	0.29	0.03	0.29
15° Tilt	850 MHz	846.6					
Left	WCDMA	826.4					
Head	FDD V	836.4	24.3	22.2	0.46	0.37	0.66
Cheek	850 MHz	846.6	_				
Left WCDMA Head FDD V 15° Tilt 850 MHz	WCDMA	826.4					
	The state of the s	836.4	24.3	22.0	0.27	0.17	0.27
	850 MHz	846.6					

Table 11.1.5. RDP71UW Rev 1 SAR results for WCDMA band V head configuration

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 41(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	2503A-RDH70CW		
			L6ARDP70UW	2503A-RDP70UW

			Cand		SAR, averaged over 1 g		
Test Position	Mode	f (MHz)	Cond. Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Right	WCDMA	826.4	24.3	21.8	0.75	0.04	0.75
Head	FDD V	836.4	24.3	21.8	0.84	0.16	0.84
Cheek	850 MHz	846.6	24.1	21.9	0.84	0.23	0.84
Left	Left WCDMA	826.4	24.3	22.0	0.69	0.02	0.69
Head FDD V Cheek 850 MHz	836.4	24.3	21.9	0.82	-0.13	0.82	
	846.6	24.1	22.0	0.80	-0.03	0.80	

Table 11.1.6. RDP71UW Rev 2 SAR results for WCDMA band V head configuration

			~ -		SAR, averaged over 1 g		
Test Position	Mode	f (MHz)	Cond. Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Right	WCDMA	1852.4	23.3	22.0	0.99	0.08	0.99
Head	FDD II	1880	23.6	21.8	1.07	0.16	1.07
Cheek	1900 MHz	1907.6	23.2	22.0	1.12	-0.06	1.12
Right	WCDMA	1852.4					
Head	FDD II	1880	23.6	21.9	0.38	0.02	0.38
15° Tilt	1900 MHz	1907.6					
Left	WCDMA	1852.4					
Head	FDD II	1880	23.6	22.1	0.44	-0.15	0.44
Cheek	1900 MHz	1907.6					
Left	Head FDD II	1852.4					
		1880	23.6	22.1	0.36	0.15	0.36
15° Tilt	1900 MHz	1907.6					

Table 11.1.7. RDP71UW Rev 1 SAR results for WCDMA band II head configuration

Testing Services™	-	SAR Compliance Test Report for the BlackBerry® Smartphone Model RDH71CW/RDP71UW				
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID		
Hang Wang	Jan 14 – June 09, 2011	2503A-RDH70CW				
		2503A-RDP70UW				

			C 1		SAR, averaged over 1 g			
Test Position	Mode	f (MHz)	Cond. Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)	
Right	WCDMA	1852.4						
Head	FDD II	1880						
Cheek	1900 MHz	1907.6	23.2	22.1	0.74	-0.13	0.74	
Left	Head FDD II	1852.4						
Head		1880						
Cheek		1907.6	23.2	22.1	0.37	-0.04	0.37	

Table 11.1.8. RDP71UW Rev 2 SAR results for WCDMA band II head configuration

Testing Services™	_	SAR Compliance Test Report for the BlackBerry® Smartphone Model RDH71CW/RDP71UW					
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID			
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW			
			L6ARDP70UW	2503A-RDP70UW			

11.2 SAR measurement results at highest power measured against the body using accessories

					SA	AR, average	d over 1 g
Mode	Freq. (MHz)	Cond. Power (dBm)	Holster type / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
	836.8	30.1	Vertical Holster, back side facing phantom	22.6	0.59	-0.36	0.64
2-slots GPRS	836.8	30.1	Vertical Holster, front side facing phantom	22.2	0.41	-0.10	0.41
850 MHz	836.8	30.1	25mm Spacer, back side facing phantom	22.1	0.34	-0.40	0.37
	836.8	30.1	Vertical Holster, HS, back side facing phantom	22.4	0.44	-0.23	0.46
3-slots GPRS 850 MHz	836.8	28.3	Vertical Holster, back side facing phantom	22.1	0.51	0.08	0.51
4-slots GPRS 850 MHz	836.8	27.0	Vertical Holster, back side facing phantom	22.0	0.49	0.11	0.49

Table 11.2.1. SAR results for GPRS850 body-worn configurations

^{*} Note: If the power drift is \leq – 0.200 dB, the extrapolated SAR is calculated using the formula: Extrapolated SAR = (Measured SAR) * $10^{(1)}$ (Power Drift (dB)) / $10^{(2)}$

^{*}Only Middle channel was tested when 1g Average SAR < 0.8 W/Kg or 3dB lower than the limit.

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP		rry® Smartphone	Page 44(49)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

					SAI	R, averaged	l over 1 g
Mode	Freq. (MHz)	Cond. Power (dBm)	Holster type / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
	836.5	24.1	Vertical Holster, back side facing phantom	22.1	0.62	0.16	0.62
CDMA 800	836.5	24.1	Vertical Holster, front side facing phantom	22.5	0.50	0.06	0.50
MHz	836.5	24.1	Vertical Holster, headset, back side facing phantom	22.4	0.46	0.06	0.46
	836.5	24.1	25mm Spacer, back side facing phantom	22.3	0.41	0.18	0.41
	1880.0	23.8	Vertical Holster, back side facing phantom	21.8	0.63	0.17	0.63
CDMA 1900	1880.0	23.8	Vertical Holster, front side facing phantom	22.7	0.22	-0.05	0.22
MHz	1880.0	23.8	Vertical Holster, headset, back side facing phantom	22.5	0.66	-0.08	0.66
	1880.0	23.8	25mm Spacer, back side facing phantom	22.5	0.30	-0.05	0.30

Table 11.2.2. SAR results for CDMA 800/1900 body-worn configurations

					SAI	R, average	d over 1 g
Mode	Freq. (MHz)	Cond. Power (dBm)	Holster type / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
	1880.0	26.1	Vertical Holster, back side facing phantom	22.5	0.35	-0.08	0.35
2-Slots GPRS	1880.0	26.1	Vertical Holster, front side facing phantom	22.2	0.11	0.08	0.11
1900 MHz	1880.0	26.1	Vertical Holster, headset, back side facing phantom	22.3	0.35	0.09	0.35
	1880.0	26.1	25mm Spacer, back side facing phantom	22.4	0.17	0.21	0.17
3-Slots GPRS 1900 MHz	1880.0	24.4	Vertical Holster, back side facing phantom	22.2	0.17	-0.05	0.17
4-Slots GPRS 1900 MHz	1880.0	23.3	Vertical Holster, back side facing phantom	22.0	0.17	-0.12	0.17

Table 11.2.3. SAR results for GPRS 1900 body-worn configurations

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	-	rry® Smartphone	Page 45(49)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

				Liqui	SAR, averaged over 1 g		ed over 1 g
Mode	Freq. (MHz)	Cond. Power (dBm)	Holster type / device configuration	d Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
	2462	18.4	Vertical Holster, back side facing phantom	22.6	0.02	-0.28	0.02
802.11b/ WLAN	2462	18.4	Vertical Holster, front side facing phantom	22.6	0.01	0.25	0.01
2450 MHz	2462	18.4	25mm Spacer, back side facing phantom	22.2	0.08	-0.51	0.09
	2462	18.4	25mm Spacer, HS, back side facing phantom	22.2	0.06	2.04	0.06

Table 11.2.4: SAR results for WiFi/WLAN/802.11b body-worn configurations

*Note: Tested only highest output power channel

Testing Services™	SAR Compliance Test I Model RDH71CW/RDF		rry® Smartphone	Page 46(49)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011 RTS-2605-1102-05A		L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

Body SAR Measurement Results for RDP71UW

		Cond.			SAR	, averaged o	over 1 g
Mode	f (MHz)	Output Power (dBm)	Holster / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
WCDMA FDD V	836.4	24.3	Vertical Holster, back side facing	22.0	0.47	-0.04	0.47
850 MHz	836.4	24.3	Vertical Holster, HS#1, back side facing	21.9	0.42	0.05	0.42

Table 11.2.5. RDP71UW Rev 1 SAR results for WCDMA band V body-worn configurations

		Cond.			SAR, averaged over 1 g			
Mode	f (MHz)	Output Power (dBm)	Holster / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)	
	836.4	24.3	Vertical Holster, back side facing	22.1	0.69	-0.04	0.69	
WCDMA FDD V	836.4	24.3	Vertical Holster, front side facing	22.4	0.61	0.29	0.61	
850 MHz	836.4	24.3	25mm Spacer, back side facing phantom	22.5	0.48	0.19	0.48	
	836.4	24.3	Vertical Holster, headset, back side facing	22.5	0.49	-0.03	0.49	

Table 11.2.6. RDP71UW Rev 2 SAR results for WCDMA band V body-worn configurations

Testing Services™	SAR Compliance Test I Model RDH71CW/RDF	Page 47(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

	f (MHz)	Cond. Output Power (dBm)	Holster / device configuration	Liquid Temp. (°C)	SAR, averaged over 1 g		
Mode					Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
WCDMA FDD II 1900MHz	1852.4	23.3	Vertical Holster, back side facing phantom	22.4	0.66	-0.05	0.66
	1880.0	23.6	Vertical Holster, back side facing phantom	22.4	0.82	0.01	0.82
	1907.6	23.2	Vertical Holster, back side facing phantom	22.2	0.55	0.08	0.55
	1880.0	23.6	Vertical Holster, front side facing phantom	22.3	0.24	0.10	0.24
	1880.0	23.6	Vertical Holster, headset, back side facing phantom	22.4	0.86	-0.10	0.86
	1880.0	23.6	25mm Spacer, back side facing phantom	22.0	0.32	0.10	0.32

Table 11.2.7. RDP71UW Rev 2 SAR results for WCDMA band II body-worn configurations

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 48(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A		2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

12.0 REFERENCES

- [1] IEEE 1528-2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [2] EN 50360: 2001, Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)
- [3] ICNIRP, International Commission on Non-Ionizing Radiation Protection (2009), Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz).
- [4] Council Recommendation 1999/519/EC of July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)
- [5] IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave.
- [6] IEEE C95.1-2005, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.
- [7] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.
- [8] FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation.
- [9] DASY 4 DOSIMETRIC ASSESSMENT SYSTEM SOFTWARE MANUAL V4.7 Schmid & Partner Engineering AG, June 2006 which follows draft IEC 62209 Part 2.
- [10] Health Canada, Safety Code 6, 2009: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency range from 3 kHz to 300 GHz.
- [11] RSS-102, issue 4-2010: Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields.
- [12] IEC 62209-1, First Edition-2005: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- [13] FCC OET SAR Measurement Requirements for 3 6 GHz, October, 2006.
- [14] FCC OET SAR Measurement Procedures for 802.11 a/b/g Transmitters, May, 2007.
- [15] FCC OET SAR Evaluation Considerations for Handsets with Multiple Transmitters & Antennas, September, 2008.

Testing Services™	SAR Compliance Test F Model RDH71CW/RDP	Page 49(49)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Hang Wang	Jan 14 – June 09, 2011	RTS-2605-1102-05A	L6ARDH70CW	2503A-RDH70CW
			L6ARDP70UW	2503A-RDP70UW

[16] FCC OET SAR Test Reduction Procedure for GSM/GPRS/EDGE, December, 2008.

[17] FCC OET SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz – 3 GHz, January, 2007.

[18] FCC OET RF Exposure Procedures for Mobile and Portable Devices, and Equipment Authorization Policies, November, 2009.

[19] FCC OET SAR Measurements Procedures for 3G Devices, October, 2007.

[20] Dipole Requirements for SAR System Validation and Verification, Novmeber, 2009.

[21] IEC 62209-2, Edition 1.0-2010: Human exposure to radio frequency fields from hand-held and bodymount wireless communication devices – Human Models, instrumentation, and procedures - part 2 - procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).