
Testing Services				Page 1(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Indrew Becker Feb 7 - May 25, July 18, RTS-3933-1105-11A L6ARDU70CW			2503A-RDU70CW
	2011 RTS-2580-1106-03 Rev1 L6ARDE70UW			2503A-RDE70UW

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

С Servizio svizzero di taratura s Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

RTS (RIM Testing Services)

Accreditation No.: SCS 108

Certificate No: ET3-1643_Mar10 CALIBRATION CERTIFICATE ET3DV6 - SN:1643 Object QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes The same of March 9, 2010 Calibration date This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41495277 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41498087 1-Apr-09 (No. 217-01030) Apr-10 Reference 3 dB Attenuator SN: S5054 (3c) 31-Mar-09 (No. 217-01026) Mar-10 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-09 (No. 217-01028) Mar-10 Reference 30 dB Attenuator SN: S5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 Reference Probe ES3DV2 SN: 3013 30-Dec-09 (No. ES3-3013_Dec09) Dec-10 DAE4 SN: 660 29-Sep-09 (No. DAE4-660_Sep09) Sep-10 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name Function Calibrated by: Laboratory Technician Approved by: Technical Manager Issued: March 10, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1643_Mar10

Page 1 of 11

Testing Services				Page 3(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18, RTS-3933-1105-11A L6ARDU'		L6ARDU70CW	2503A-RDU70CW
	2011 RTS-2580-1106-03 Rev1 L6ARDE70UW 2			2503A-RDE70UW

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1643_Mar10 Page 2 of 11

Testing Services				Page 4(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	2503A-RDU70CW		
	2011 RTS-2580-1106-03 Rev1 L6ARDE70UW			2503A-RDE70UW

Probe ET3DV6

SN:1643

Manufactured: November 7, 2001 Last calibrated: March 10, 2009 Recalibrated: March 9, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1643_Mar10

Page 3 of 11

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1		Page 5(74)	
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,		2503A-RDU70CW	
	2011 RTS-2580-1106-03 Rev1 L6ARDE70UW			2503A-RDE70UW

DASY - Parameters of Probe: ET3DV6 SN:1643

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.75	2.01	1.79	± 10.1%
DCP (mV) ^B	93.2	91.0	90.9	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	×	0.00	0.00	1.00	300.0	± 1.5%
			Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1		Page 6(74)	
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18, RTS-3933-1105-11A L6ARDU70CW		2503A-RDU70CW	
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

DASY - Parameters of Probe: ET3DV6 SN:1643

Calibration Parameter Determined in Head Tissue Simulating Media

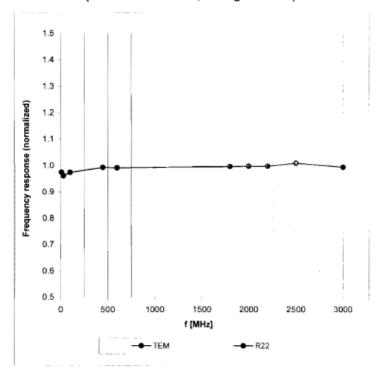
f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Cor	nvFY Con	vF Z	Alpha	Depth Unc (k=2)
900	±50/±100	41.5 ± 5%	$0.97 \pm 5\%$	6.01	6.01	6.01	0.42	2.35 ± 11.0%
1810	± 50 / ± 100	$40.0 \pm 5\%$	$1.40 \pm 5\%$	4.99	4.99	4.99	0.62	2.35 ± 11.0%
1950	±50/±100	40.0 ± 5%	$1.40 \pm 5\%$	4.74	4.74	4.74	0.79	2.10 ± 11.0%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			Page 7(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	2503A-RDU70CW		
	2011 RTS-2580-1106-03 Rev1 L6ARDE70UW			2503A-RDE70UW

DASY - Parameters of Probe: ET3DV6 SN:1643

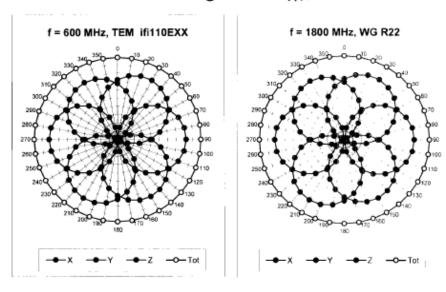
Calibration Parameter Determined in Body Tissue Simulating Media

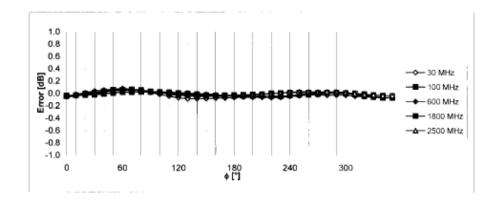

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)	_
900	±50/±100	55.0 ± 5%	1.05 ± 5%	5.93	5.93	5.93	0.33	2.77 ± 11.0%	
1810	±50/±100	53.3 ± 5%	1.52 ± 5%	4.58	4.58	4.58	0.75	2.63 ± 11.0%	
1950	±50/±100	53.3 ± 5%	1.52 ± 5%	4.54	4.54	4.54	0.99	2.20 ± 11.0%	

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18, RTS-3933-1105-11A L6ARDU70CW			2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Frequency Response of E-Field

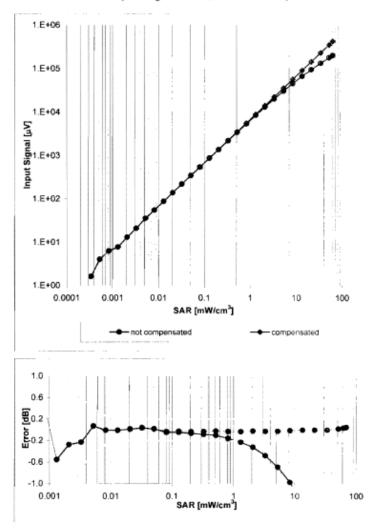

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			Page 9 (74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18, RTS-3933-1105-11A L6ARDU70CW			2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

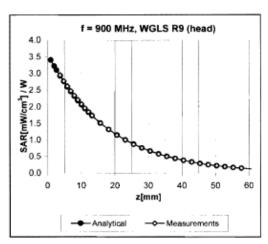
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

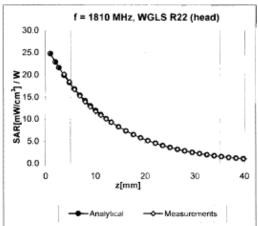


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Testing Services		Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW	
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW	

Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Testing Services		ppendix D for the BlackBerry® Smartphone Model DU71CW/RDE71UW SAR Report Rev1			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW	
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW	

Conversion Factor Assessment

Deviation from Isotropy in HSL

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Testing Services		Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW	
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW	

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Testing Services		Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kelibrierdienst S Service suisse d'étalonnage

С Servizio svizzero di taratura Swits Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS). The Swiss Accreditation Service is one of the signaturies to the EA Multilateral Agreement for the recognition of calibration certificates

RTS (RIM Testing Services) Certificate No: ET3-1644_Nov10

CALIBRATION CERTIFICATE Oteset ET3DV6 - SN:1644 QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-flaid probes Cálbrátion date November 16, 2010 This calibration conflictle documents the instability to national standards, which realize the physical units of measurements (SI) The measurements and the uncortainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the classed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE ciriscal for calibration). Primary Standards lib# Cal Date (Certificate No.) Scheduted Calibration Pawer meter 644198. G641293874 1-Apr-10 (No. 217-01136) Apr-11 Power season E44128 M941495277 1-Apr-10 (No. 217-01138) Apr.41 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01136) Apr-11 Reference 3 dB Attenuetor SN: \$5054 (3¢) 30:Mar-10 (No. 217-01159) Mar-11 Reference 20 d 8 Attenue tor SN: 35086 (20b) 38-Mar-10 (No. 217-01161) Mar-11 Reference 30 dB Attenuator SN: \$5129 (30b) 38-Mar-10 (No. 217-01160) Mar-11 Reference Probe ES30V2 SN: 3013 30-Dec-09 (No. ES3-3013 Dec09) Dec-10 DAE4 SN: 660 20-Apr-10 (No. DAE4-660_Apr-10) Apr-11 Secondary Standards ID ¢ Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Rug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-10) In House check: Doi:11 Function Calibrated by: Approved by: Kaja Pokovic issued: November 17, 2010 This calibration careficate that not be reproduced except in full without written approval of the laboratory

Certificate No: ET3-1644_Nov10

Page 1 of 11

Testing Services	Appendix D for the BlackB RDU71CW/RDE71UW SA			Page 14(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18, RTS-3933-1105-11A L6ARDU70CW 2		2503A-RDU70CW	
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrapps 42, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suises d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 3 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 3 = 0 is normal to probe axis.

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-hald devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConeF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power aweep with CW signal (no uncertainty required). DCP does not departd on frequency nor media.
- Ax,y,z; 8x,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y.z.* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip
 (on probe axis). No tolerance required.

Certificate No: ET3-1644_Nov10	Page 2 of 11	

Testing Services		Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	Feb 7 – May 25, July 18, RTS-3933-1105-11A L6ARDU70CW			2503A-RDU70CW	
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW	

Probe ET3DV6

SN:1644

Manufactured: November 7, 2001 Last calibrated: November 11, 2009 Recalibrated: November 16, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Testing Services		Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW	
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW	

DASY/EASY - Parameters of Probe: ET3DV6 SN:1644

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.83	1.95	2.01	± 10.1%
DCP (mV) ⁸	97.9	97.9	96.6	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBa¥	С	VR mV	Unc [€] (k=2)
10000	cw	0.00	х	0.00	0.00	1.00	143.5	±3.4 %
			Y	0.00	0.00	1.00	146.8	
			Z	0.00	0.00	1.00	148.4	l

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1844 Nov10

¹ The uncertainties of NormX Y.2 do not affect the E-hald uncertainty reside TSL (see Pages 5 and 6)

² Numerical -meanization paremeter, uncertainty not required.

Ellinocrtainty is determined using the meximum deviation from linear response applying recatangular distribution and is expressed for the aquare of the held value.

Testing Services		Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW	
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW	

DASY/EASY - Parameters of Probe: ET3DV6 \$N:1644

Calibration Parameter Determined in Head Tissue Simulating Media

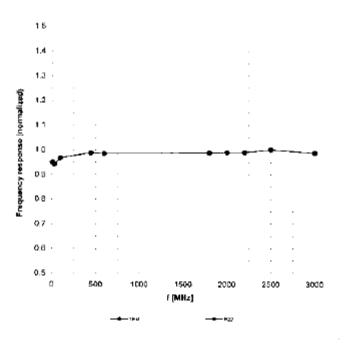
1 [MHz]	Validity [MHz] ⁶	Parmittivity	Conductivity	ConvEX Co	myFY Co	nyF Z	Alpha	Dopth Unc (k=2)
750	\pm 50 / \pm 100	41.9 ± 5%	$0.89 \pm 5\%$	6.54	6.54	6.54	0.31	3.05 ± 11.0%
900	± 50 / ± 100	$41.5 \pm 5\%$	$0.97 \pm 5\%$	6.00	6.00	6.00	0.27	3.46 ± 11.0%
1810	\pm 50 / \pm 100	$40.0 \pm 5\%$	1 40 ± 5%	5.09	5.09	5.09	0.40	2.50 ± 11.0%
2450	$\pm 50 t \pm 100$	39.2 ± 5%	1.80 ± 5%	4.42	4.42	4,42	0.99	1.27 ± 11.0%

The validity of a 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration traquercy, and the uncertainty for the inocated frequency band.

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	Page 18(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

DASY/EASY - Parameters of Probe: ET3DV6 SN:1644

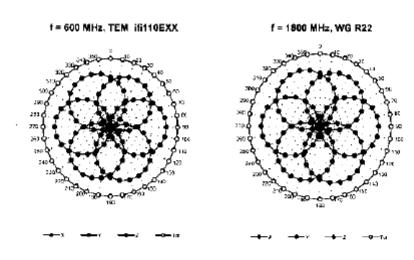
Calibration Parameter Determined in Body Tissue Simulating Media

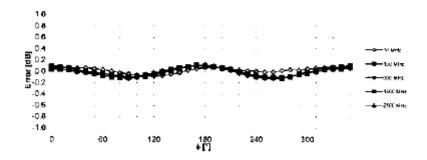

t (MHz)	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X Con	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
750	±50/±100	55 5 ± 5%	$0.96 \pm 5\%$	5.14	6.14	6.14	0.31	3.06 ±11.0%
900	± 50 / ± 100	55 0 ± 5%	$1.05\pm5\%$	5.93	5.93	5 93	0.36	2.71 ±11.0%
1810	± 50 / ± 100	53 3 ± 5%	$1.52 \pm 5\%$	4.59	4.59	4 59	0.32	2.60 ±11.0%
2450	± 50 / ± 100	$52.7 \pm 5\%$	$1.95\pm5\%$	4.05	4.05	4 05	0.99	1.23 ±11.0%

This validity of ± 100 MHz only appear for DASY v4.4 and higher (see Page 2). This uncertainty is the RSS of the Comiff uncertainty at calibration frequency and the uncertainty to the indicated frequency band.

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			Page 19(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Frequency Response of E-Field

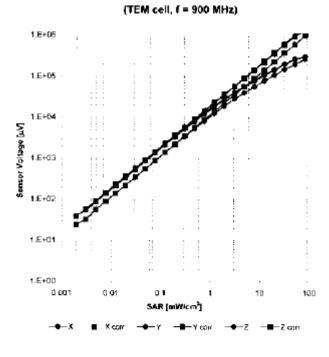

(TEM-Cell:ffi110 EXX, Waveguide: R22)

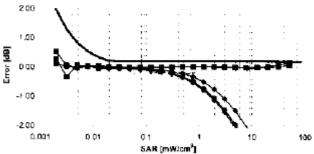


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	Page 20 (74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

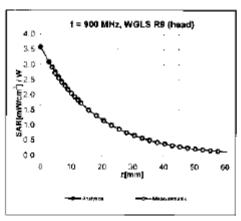

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2).

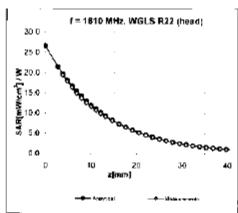

Certificate No: ET3-1644 Nov10

Page 8 of 11

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	Page 21(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

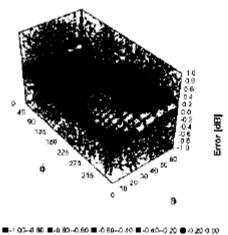
Dynamic Range f(SAR_{head})


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1644_Nov10

Page 9 or 1

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			Page 22(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	7 – May 25, July 18, RTS-3933-1105-11A		2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

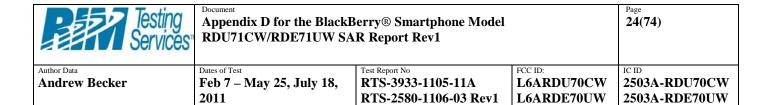

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (\$, 8), f = 900 MHz

■-1.00-4.0 80 ■-0.80-0.60 ■-0.80-0.40 ■-0.40-4, 20 ● 4.20 9 00 ■0.00-0.20 ■0.20-0.40 ■0.40-0.00 ■0.50-0.80 ■0.80-1.00

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)


Certificate No ET3-1644 Nov10

Page 10 of 11

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	Page 23(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	3.7 mm

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RTS (RIM Testing Services)

Certificate No: ES3-3225 Jan11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE ES3DV3 - SN:3225 Object QA CAL-01.v7, QA CAL-23.v4 and QA CAL-25.v3 Calibration procedure(s) Calibration procedure for dosimetric E-field probes January 13, 2011 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-10 (No. 217-01136) Apr-11 MY41495277 Power sensor E4412A 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01136) Apr-11 Reference 3 dB Attenuator SN: S5054 (3c) 30-Mar-10 (No. 217-01159) Mar-11 Reference 20 dB Attenuator SN: S5086 (20b) 30-Mar-10 (No. 217-01161) Mar-11 Reference 30 dB Attenuator SN: S5129 (30b) 30-Mar-10 (No. 217-01160) Mar-11 Reference Probe ES3DV2 SN: 3013 29-Dec-10 (No. ES3-3013_Dec10) Dec-11 DAE4 SN: 660 20-Apr-10 (No. DAE4-660_Apr10) Apr-11 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Function Calibrated by: Laboratory Technician Approved by: Issued: January 15, 2011

Certificate No: ES3-3225_Jan11

Page 1 of 11

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			Page 25 (74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3225 Jan11 Page 2 of 11

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	Page 26(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Probe ES3DV3

SN:3225

Manufactured: September 1, 2009
Last calibrated: December 11, 2009
Recalibrated: January 13, 2011

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			Page 27 (74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

DASY/EASY - Parameters of Probe: ES3DV3 SN:3225

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.26	1.21	1.31	± 10.1%
DCP (mV) ⁸	102.1	100.8	99.1	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	×	0.00	0.00	1.00	149.8	± 2.6 %
			Υ	0.00	0.00	1.00	148.1	
			Z	0.00	0.00	1.00	110.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 $^{^{\}rm A}$ The uncertainties of NormX,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter, uncertainty not required.

Conceptainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

Testing Services	Appendix D for the BlackB RDU71CW/RDE71UW SA	Page 28(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

ES3DV3 SN:3225

January 13, 2011

DASY/EASY - Parameters of Probe: ES3DV3 SN:3225

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Cor	ıvF Z	Alpha	Depth Unc (k=2)
750	±50/±100	$41.9 \pm 5\%$	$0.89 \pm 5\%$	6.47	6.47	6.47	0.89	1.08 ± 11.0%
900	±50/±100	$41.5 \pm 5\%$	$0.97 \pm 5\%$	6.11	6.11	6.11	0.81	1.10 ± 11.0%
1810	±50/±100	40.0 ± 5%	$1.40 \pm 5\%$	5.26	5.26	5.26	0.37	1.68 ± 11.0%
1950	±50/±100	$40.0\pm5\%$	$1.40 \pm 5\%$	4.98	4.98	4.98	0.48	1.51 ± 11.0%
2450	±50/±100	39.2 ± 5%	1.80 ± 5%	4.60	4.60	4.60	0.52	1.54 ± 11.0%
2600	±50/±100	$39.0\pm5\%$	1.96 ± 5%	4.52	4.52	4.52	0.53	1.58 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

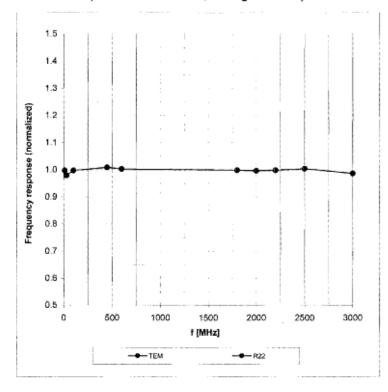
Testing Services	Appendix D for the BlackI RDU71CW/RDE71UW SA	Page 29(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

ES3DV3 SN:3225

January 13, 2011

DASY/EASY - Parameters of Probe: ES3DV3 SN:3225

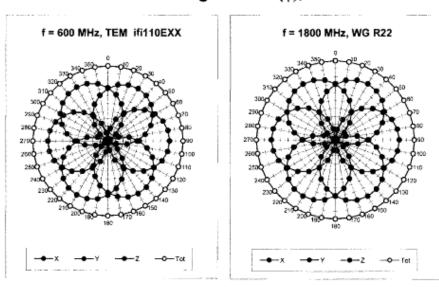
Calibration Parameter Determined in Body Tissue Simulating Media

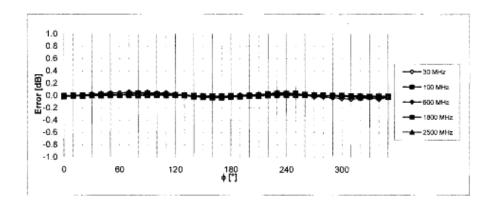

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
750	±50/±100	$55.5 \pm 5\%$	$0.96 \pm 5\%$	6.30	6.30	6.30	0.76	1.17 ± 11.0%
900	±50/±100	$55.0\pm5\%$	1.05 ± 5%	6.12	6.12	6.12	0.72	1.20 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.88	4.88	4.88	0.26	2.70 ± 11.0%
1950	±50/±100	$53.3 \pm 5\%$	1.52 ± 5%	4.89	4.89	4.89	0.33	2.28 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	$1.95 \pm 5\%$	4.43	4.43	4.43	0.99	1.04 ± 11.0%
2600	±50/±100	52.5 ± 5%	2.16 ± 5%	4.29	4.29	4.29	0.99	1.05 ± 11.0%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Testing Services		Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW	
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW	

Frequency Response of E-Field

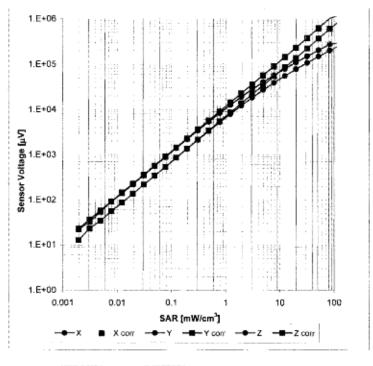

(TEM-Cell:ifi110 EXX, Waveguide: R22)

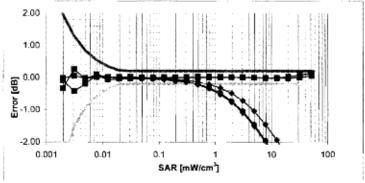


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Testing Services		Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW	
	2011	RTS-2580-1106-03 Rev1	L6ARDE70HW	2503A-RDE70HW	

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

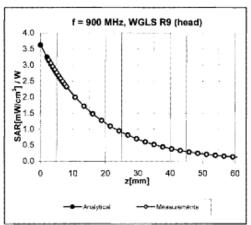


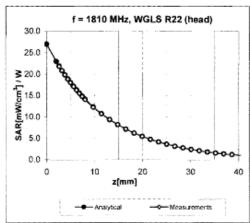

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	Page 32(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Dynamic Range f(SAR_{head})

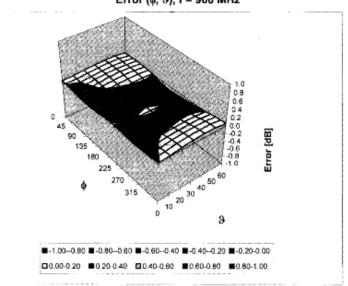
(TEM cell, f = 900 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	Page 33(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

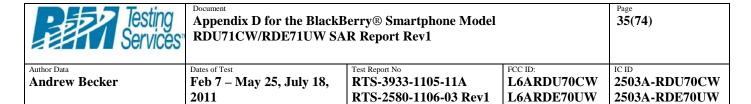

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3225_Jan11


Testing Services	Appendix D for the BlackB RDU71CW/RDE71UW SA	Page 34(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

ES3DV3 SN:3225

January 13, 2011

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RTS (RIM Testing Services)

Accreditation No.: SCS 108

Certificate No: EX3-3548_Jan11

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3548

Calibration procedure(s) QA CAL-01.v7, QA CAL-14.v3, QA CAL-23.v4 and QA CAL-25.v3

Calibration procedure for dosimetric E-field probes

Calibration date: January 20, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41495277	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41498087	1-Apr-10 (No. 217-01136)	Apr-11
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 660	20-Apr-10 (No. DAE4-660_Apr10)	Apr-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	2018
	9-10-10-14-1 . • M		1/1/
Approved by:	Niels Kuster	Quality Menager	1 / /65

Issued: January 20, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3548_Jan11

Page 1 of 11

Testing Services	Appendix D for the BlackB RDU71CW/RDE71UW SA	2		Page 36(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3548 Jan11	Page 2 of 11	

Testing Services	* *	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID	
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW	
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW	

Probe EX3DV4

SN:3548

Manufactured: November 16, 2004 Last calibrated: January 21, 2010 Recalibrated: January 20, 2011

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	Page 38(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

January 20, 2011

DASY/EASY - Parameters of Probe: EX3DV4 SN:3548

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.35	0.44	0.45	± 10.1%
DCP (mV) ⁸	101.4	100.4	99.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	x	0.00	0.00	1.00	128.8	± 2.9 %
			Y	0.00	0.00	1.00	139.9	
			z	0.00	0.00	1.00	142.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3548_Jan11

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	Page 39(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

January 20, 2011

DASY/EASY - Parameters of Probe: EX3DV4 SN:3548

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Cor	vFY Con	vF Z	Alpha	Depth Unc (k=2)
2600	± 50 / ± 100	$39.0 \pm 5\%$	$1.96 \pm 5\%$	7.08	7.08	7.08	0.23	1.34 ± 11.0%
5200	±50/±100	$36.0 \pm 5\%$	$4.66 \pm 5\%$	5.01	5.01	5.01	0.40	1.80 ± 13.1%
5500	± 50 / ± 100	$35.6 \pm 5\%$	$4.96 \pm 5\%$	4.63	4.63	4.63	0.50	1.80 ± 13.1%
5800	± 50 / ± 100	$35.3 \pm 5\%$	5.27 ± 5%	4.42	4.42	4.42	0.50	1.80 ± 13.1%

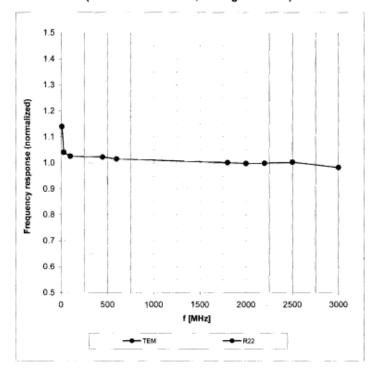
^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	Page 40(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

January 20, 2011

DASY/EASY - Parameters of Probe: EX3DV4 SN:3548

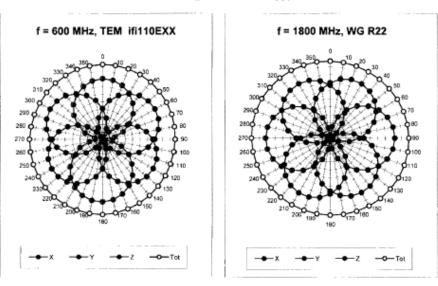
Calibration Parameter Determined in Body Tissue Simulating Media

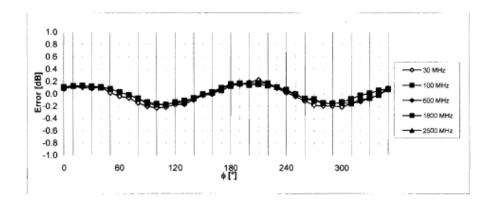

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X Co	nvFY Conv	FZ	Alpha	Depth Unc (k=2)
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	7.12	7.12	7.12	0.67	0.71 ±11.0%
5200	±50/±100	49.0 ± 5%	$5.30 \pm 5\%$	4.79	4.79	4.79	0.45	1.90 ± 13.1%
5500	±50/±100	48.6 ± 5%	$5.65\pm5\%$	4.29	4.29	4.29	0.50	1.90 ± 13.1%
5800	± 50 / ± 100	48.2 ± 5%	$6.00 \pm 5\%$	4.08	4.08	4.08	0.60	1.90 ± 13.1%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	Page 41(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Frequency Response of E-Field

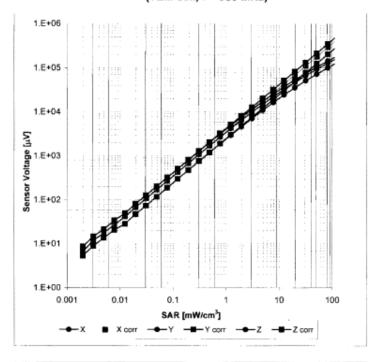

(TEM-Cell:ifi110 EXX, Waveguide: R22)

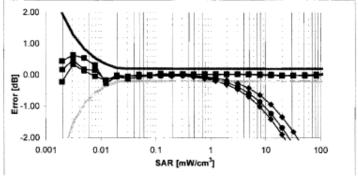


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	Page 42(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Receiving Pattern (ϕ), ϑ = 0°

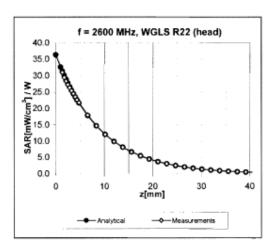


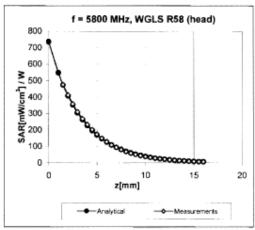

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			Page 43(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Dynamic Range f(SAR_{head})

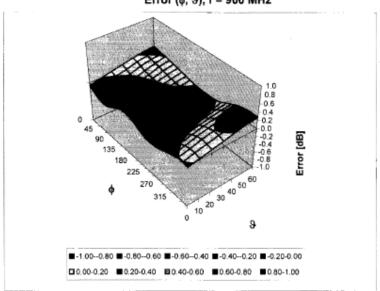
(TEM cell, f = 900 MHz)





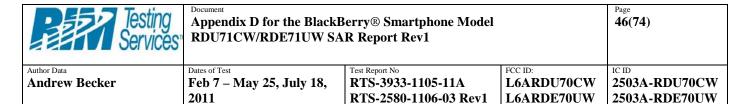
Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	Page 44(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (♦, ३), f = 900 MHz


Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Testing Services			Page 45(74)	
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

January 20, 2011

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

client RTS (RIM Testing Services) Certificate No: D835V2-446_Jan11

CALIBRATION CERTIFICATE D835V2 - SN: 446 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: January 21, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: 5086 (20a) 30-Mar-10 (No. 217-01158) Mar-11 Type-N mismatch combination SN; 5047.2 / 06327 30-Mar-10 (No. 217-01162) Mar-11 Reference Probe ES3DV3 SN: 3205 30-Apr-10 (No. ES3-3205_Apr10) Apr-11 DAE4 SN: 601 10-Jun-10 (No. DAE4-601_Jun10) Jun-11 Secondary Standards ID# Check Date (in house) Scheduled Check MY41092317 Power sensor HP 8481A 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Function Calibrated by: Approved by: Issued: January 21, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-446_Jan11

Page 1 of 6

Testing Services	Appendix D for the BlackB RDU71CW/RDE71UW SA	2 2		Page 47(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst s Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- . Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-446_Jan11	Page 2 of 6	

Testing Services	Appendix D for the BlackI RDU71CW/RDE71UW SA	Berry® Smartphone Model AR Report Rev1		Page 48 (74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY5	V52.6
Advanced Extrapolation	
Modular Flat Phantom V4.9	
15 mm	with Spacer
dx, dy, dz = 5 mm	
835 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom V4.9 15 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.3 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(21.8 ± 0.2) °C		****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 mW / g
SAR normalized	normalized to 1W	9.56 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.63 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.56 mW / g
SAR normalized	normalized to 1W	6.24 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.27 mW /g ± 16.5 % (k=2)

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	2 2		Page 49 (74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6 Ω - 7.7 jΩ
Return Loss	- 22.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.386 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 24, 2001

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			Page 50(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	2503A-RDU70CW		
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

DASY5 Validation Report for Head TSL

Date/Time: 21.01.2011 10:18:05

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:446

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010

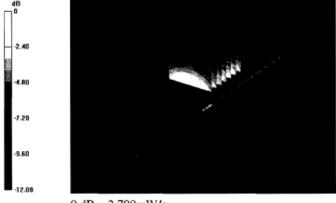
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.6.1 Build (408)

Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

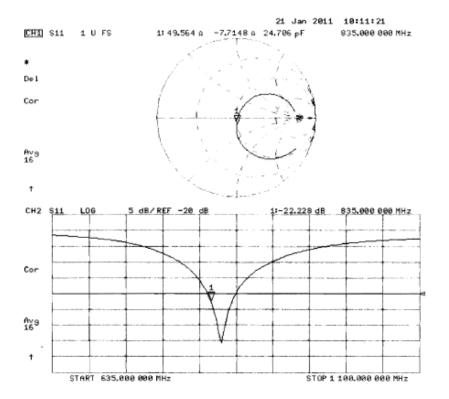

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.426 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 3.600 W/kg

SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.56 mW/gMaximum value of SAR (measured) = 2.790 mW/g


0 dB = 2.790 mW/g

Certificate No: D835V2-446_Jan11

Page 5 of 6

Testing Services				Page 51(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Impedance Measurement Plot for Head TSL

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			Page 52(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	2503A-RDU70CW		
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Accreditation No.: SCS 108

Multilateral Agreement for the recognition of calibration certificates

RTS (RIM Testing Services) Certificate No: D1900V2-545_Jan11

CALIBRATION CERTIFICATE D1900V2 - SN: 545 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits January 13, 2011 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 30-Mar-10 (No. 217-01158) Reference 20 dB Attenuator SN: 5086 (20g) Mar-11 Type-N mismatch combination SN: 5047.2 / 06327 30-Mar-10 (No. 217-01162) Mar-11 Reference Probe ES3DV3 SN: 3205 30-Apr-10 (No. ES3-3205_Apr10) Apr-11 DAE4 SN: 601 10-Jun-10 (No. DAE4-601_Jun10) Jun-11 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Function Calibrated by: Laboratory Technician ALTERNATION OF THE PARTY OF THE Approved by: Issued: January 14, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-545_Jan11

Page 1 of 6

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			Page 53(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	2503A-RDU70CW		
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Calibration Laboratory of

Schmid & Partner Engineering AG

Schweizerischer Kalibrierdienst s Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-545_Jan11	Page 2 of 6		

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			Page 54(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	2503A-RDU70CW		
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	1.43 mho/m ± 6 %
Head TSL temperature during test	(21.2 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR normalized	normalized to 1W	40.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.0 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.26 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.8 mW /g ± 16.5 % (k=2)

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	Page 55(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	2503A-RDU70CW		
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8 Ω + 1.8 jΩ
Return Loss	- 34.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 15, 2001

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1		Page 56(74)	
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

DASY5 Validation Report for Head TSL

Date/Time: 13.01.2011 14:52:49

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:545

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.43 \text{ mho/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010

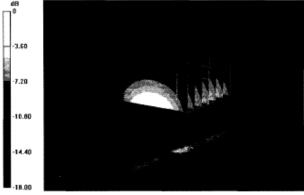
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.6.1 Build (408)

Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

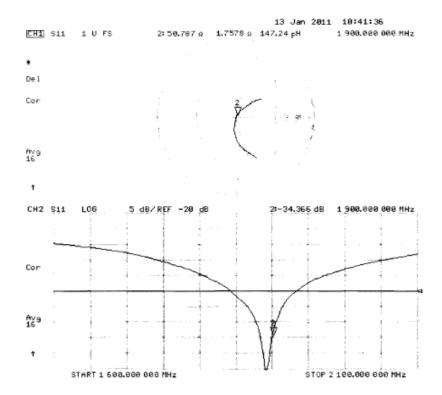

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.053 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 18.648 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.26 mW/gMaximum value of SAR (measured) = 12.743 mW/g



0 dB = 12.740 mW/g

Certificate No: D1900V2-545_Jan11

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	2		Page 57(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Impedance Measurement Plot for Head TSL

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1		Page 58(74)	
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18, RTS-3933-1105-11A L6ARDU70CW			2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Calibration Laboratory of

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client RTS (RIM Testing Services)

Certificate No: D2450V2-747_Nov09

Object	D2450V2 - SN: 7	47,	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	November 11, 20	109	
		onal standards, which realize the physical un robability are given on the following pages an	
All calibrations have been condu	cted in the closed laborato	ry facility: environment temperature (22 ± 3)°0	C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
	ID# GB37480704	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10
Power meter EPM-442A			
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	GB37480704 US37292783 SN: 5086 (20g)	06-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	Oct-10 Oct-10 Mar-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Oct-10 Oct-10 Mar-10 Mar-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	06-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Oct-10 Oct-10 Mar-10 Mar-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	06-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Mar-10 Scheduled Check In house check: Oct-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Mar-10 Scheduled Check In house check: Oct-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Retwork Analyzer HP 8753E	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390685 S4206	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10

Certificate No: D2450V2-747_Nov09

Page 1 of 6

Testing Services			Page 59(74)	
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-747_Nov09 Page 2 of 6

Testing Services	Appendix D for the Blackl RDU71CW/RDE71UW SA	Berry® Smartphone Model AR Report Rev1		Page 60 (74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mha/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.78 mho/m ± 6 %
Head TSL temperature during test	(21.3 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 mW / g
SAR normalized	normalized to 1W	53.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	-
SAR measured	250 mW input power	6.23 mW / g
SAR normalized	normalized to 1W	24.9 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.9 mW /g ± 16.5 % (k=2)

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	2 2		Page 61(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.9 Ω + 0.9 jΩ
Return Loss	- 33.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.161 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 2003

Certificate No: D2450V2-747_Nov09 Page 4 of 6

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	2 2		Page 62(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

DASY5 Validation Report for Head TSL

Date/Time: 11.11.2009 15:04:10

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:747

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.79 \text{ mho/m}$; $\varepsilon_r = 39.2$; $\rho = 1000 \text{ kg/m}^3$

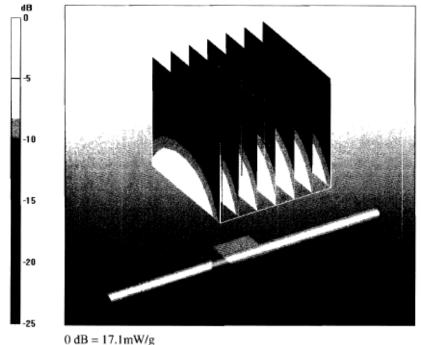
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Head/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

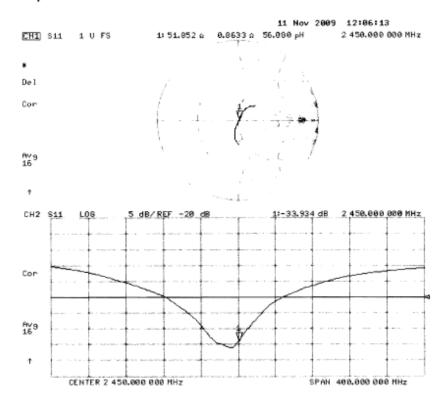

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.3 V/m; Power Drift = 0.067 dB

Peak SAR (extrapolated) = 27 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.23 mW/g

Maximum value of SAR (measured) = 17.1 mW/g



Certificate No: D2450V2-747_Nov09

Page 5 of 6

Testing Services	Appendix D for the BlackB RDU71CW/RDE71UW SA	2		63(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Impedance Measurement Plot for Head TSL

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA			Page 64(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RTS (RIM Testing Services)

Certificate No: D5GHzV2-1033_Nov09

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN: 1033

Calibration procedure(s) QA CAL-22.v1

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date: November 13, 2009

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	U\$37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe EX3DV4	SN: 3503	11-Mar-09 (No. EX3-3503_Mar09)	Mar-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10

Name Function Signature
Calibrated by: Jeton Kastrati Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: November 16, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1033_Nov09 Page 1 of 11

Testing Services	Appendix D for the BlackB RDU71CW/RDE71UW SA	2		Page 65(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC Std 62209 Part 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", Draft Version 0.9, December 2004
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1033 Nov09 Page 2 of 11

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	2 2		Page 66(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 10 mm	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 2.5 mm	
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.54 mho/m ± 6 %
Head TSL temperature during test	(22.5 ± 0.2) °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	7.75 mW / g
SAR normalized	normalized to 1W	77.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	77.2 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.19 mW / g
SAR normalized	normalized to 1W	21.9 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.8 mW / g ± 19.5 % (k=2)

Testing Services			Page 67(74)	
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature during test	(22.5 ± 0.2) °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.29 mW / g
SAR normalized	normalized to 1W	82.9 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	82.9 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 mW / g
SAR normalized	normalized to 1W	23.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.2 mW / g ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature during test	(22.5 ± 0.2) °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	7.62 mW / g
SAR normalized	normalized to 1W	76.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	75.6 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.15 mW / g
SAR normalized	normalized to 1W	21.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.3 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1033_Nov09

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1		Page 68 (74)	
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	5.86 mho/m ± 6 %
Body TSL temperature during test	(22.5 ± 0.2) °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	8.22 mW / g
SAR normalized	normalized to 1W	82.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	81.9 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.28 mW / g
SAR normalized	normalized to 1W	22.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.7 mW / g ± 19.5 % (k=2)

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			Page 69(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.1 Ω - 9.2 jΩ
Return Loss	-20.7 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	51.2 Ω - 4.2 jΩ
Return Loss	-27.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	56.0 Ω - 2.6 jΩ
Return Loss	-24.2 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	51.1 Ω - 3.0 jΩ
Return Loss	-29.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 09, 2004

Certificate No: D5GHzV2-1033_Nov09

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			Page 70 (74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18, RTS-3933-1105-11A L6ARDU70CW			2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

DASY5 Validation Report for Head TSL

Date/Time: 12.11.2009 13:12:49

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1033

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz; Duty

Cycle: 1:1

Medium: HSL 3-6 GHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.53$ mho/m; $\varepsilon_r = 35.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.81$ mho/m; $\varepsilon_r = 34.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800

MHz; $\sigma = 5.08 \text{ mho/m}$; $\varepsilon_r = 34.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.36, 5.36, 5.36), ConvF(4.85, 4.85, 4.85), ConvF(4.74, 4.74, 4.74); Calibrated: 11.03.2009
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Configuration D5GHzV2 Dipole (Head)/d=10mm, Pin=250mW, f=5200 MHz/Area Scan

(91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 15.4 mW/g

Configuration D5GHzV2 Dipole/d=10mm, Pin=250mW, f=5200 MHz/Zoom Scan

(4x4x2.5mm), dist=2mm (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 64.7 V/m; Power Drift = 0.035 dB

Peak SAR (extrapolated) = 30 W/kg

SAR(1 g) = 7.75 mW/g; SAR(10 g) = 2.19 mW/gMaximum value of SAR (measured) = 15.3 mW/g

Configuration D5GHzV2 Dipole/d=10mm, Pin=250mW, f=5500 MHz/Zoom Scan

(4x4x2.5mm), dist=2mm (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 65.4 V/m; Power Drift = 0.057 dB

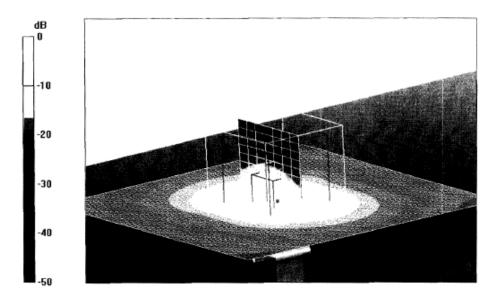
Peak SAR (extrapolated) = 33.8 W/kg

SAR(1 g) = 8.29 mW/g; SAR(10 g) = 2.32 mW/gMaximum value of SAR (measured) = 16.5 mW/g

Configuration D5GHzV2 Dipole/d=10mm, Pin=250mW, f=5800 MHz/Zoom Scan

(4x4x2.5mm), dist=2mm (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

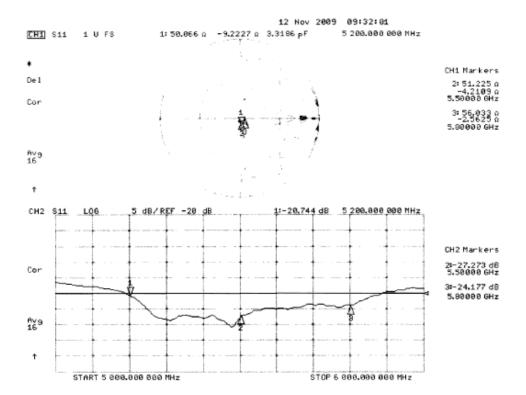
Reference Value = 61.7 V/m; Power Drift = 0.067 dB


Peak SAR (extrapolated) = 32.4 W/kg

SAR(1 g) = 7.62 mW/g; SAR(10 g) = 2.15 mW/g

Certificate No: D5GHzV2-1033_Nov09

Page 7 of 11


Testing Services				Page 71 (74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18, RTS-3933-1105-11A L6ARDU70CW			2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

0 dB = 15.3 mW/g

Testing Services				Page 72(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,			2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Impedance Measurement Plot for Head TSL

Testing Services	Appendix D for the BlackBerry® Smartphone Model RDU71CW/RDE71UW SAR Report Rev1			Page 73(74)
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

DASY5 Validation Report for Body TSL

Date/Time: 13.11.2009 12:28:18

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1033

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz

Medium parameters used: f = 5500 MHz; $\sigma = 5.83 \text{ mho/m}$; $\varepsilon_r = 47.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3503; ConvF(4.37, 4.37, 4.37); Calibrated: 11.03.2009

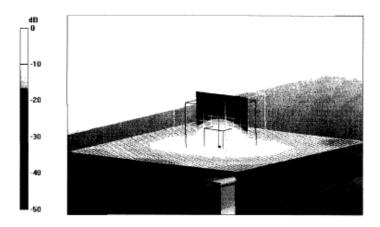
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

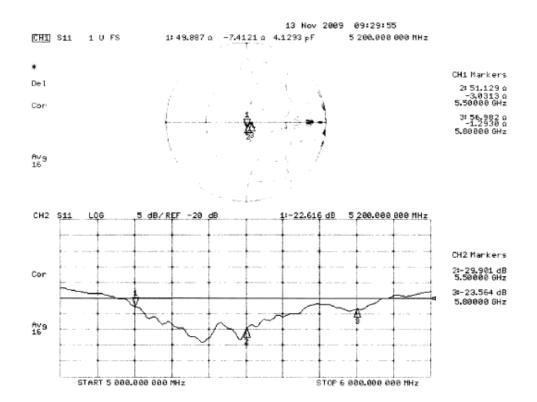
Configuration D5GHzV2 Dipole/d=10mm, Pin=250mW, f=5500 MHz/Area Scan


(91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.2 mW/g

Configuration D5GHzV2 Dipole/d=10mm, Pin=250mW, f=5500 MHz/Zoom Scan (4x4x2.5mm), dist=2mm (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 59.5 V/m; Power Drift = -0.044 dB

Peak SAR (extrapolated) = 33.3 W/kg


SAR(1 g) = 8.22 mW/g; SAR(10 g) = 2.28 mW/gMaximum value of SAR (measured) = 16.4 mW/g

0 dB = 16.4 mW/g

Testing Services	Appendix D for the BlackE RDU71CW/RDE71UW SA	Page 74(74)		
Author Data	Dates of Test	Test Report No	FCC ID:	IC ID
Andrew Becker	Feb 7 – May 25, July 18,	RTS-3933-1105-11A	L6ARDU70CW	2503A-RDU70CW
	2011	RTS-2580-1106-03 Rev1	L6ARDE70UW	2503A-RDE70UW

Impedance Measurement Plot for Body TSL

