

TEST REPORT

Test Report No.: 1-3851/11-01-12

Testing Laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 – 10 66117 Saarbrücken/Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.cetecom.com e-mail: ict@cetecom.com

Accredited Test Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

Research In Motion Limited

295 Phillip Street

Waterloo, ON N2L 3W8/CANADA

Phone: +1 51 98 88 74 65

Contact: Masud Attayi e-mail: mattayi@rim.com Phone: +1 51 98 88 74 65 Fax: +1 51 98 88 69 06

Manufacturer

Research In Motion Limited

305 Phillip Street

Waterloo, ON N2L 3W8/CANADA

Test Standard/s

Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR)in the Human Head from Wireless Communications Devices: Measurement Techniques

OET Bulletin 65 Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency

Supplement C Electromagnetic Fields

RSS-102 Issue 4 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency

Bands)

For further applied test standards please refer to section 3 of this test report.

Test Item

Device description: BlackBerry Smartphone

Device type: portable device Model name: RDD71UW

S/N serial number: N/A

FCC-ID: L6ARDD70UW IC: 2503A-RDD70UW IMEI-Number: 004401138391566

Hardware status: Rev 4

Software status: b102 (7.1.0.46)
Frequency: see technical details
Antenna: integrated antenna

Battery option: Li-ion battery 3.7V / 1000mAh

Accessories: ---

Test sample status: identical prototype

Exposure category: general population / uncontrolled environment

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test Report authorised:

Test performed:

Thomas Vogler

Oleksandr Hnatovskiy

1	Tabl	le of contents	
1	Table o	of contents	2
2	Genera	al information	2
	2.2 2.3	Notes and disclaimer Application details Statement of compliance Technical details	2
3	Standa	ards/ procedures references	6
		RF exposure limits	
4		ary of Measurement Results	
5	Test Er	nvironment	8
6	Test Se	et-up	
		Measurement system	
	6.1		
	6.1	I.2 Test environment	
	6.1	· · · · · · · · · · · · · · · · · · ·	
	6.1		
	6.1	· · · · · · · · · · · · · · · · · · ·	
	6.1		
	6.1 6.1	- Province of the control of the con	
	6.1	5	
		1.10 Tissue simulating liquids: dielectric properties	
		I.11 Measurement uncertainty evaluation for SAR test	17
		I.12 Measurement uncertainty evaluation for system validation	
		I.13 System validation	
	6.1	I.14 Validation procedure	
7	Detaile	ed Test Results	21
	7.1	Conducted power measurements	21
	7.1	I.1 Conducted power measurements GSM 850 MHz	21
	7.1		
	7.1		
	7.1	·	
	7.1	•	
	7.1 7.1		
	7.1 7.1	· · · · · · · · · · · · · · · · · · ·	
	7.1		
		SAR test results	
	7.2		
	7.2		
8	Test ed	quipment and ancillaries used for tests	31
9	Observ	vations	31
Anı	nex A:	System performance verification	32
Anı	nex B:	DASY4 measurement results	39
	Annex	B.1: GSM 850MHz body	39

Annex	B.2: GSM 1900MHz body	48
Annex	B.3: UMTS WCDMA FDD IV 1750MHz body	55
Annex	B.4: WLAN 2450MHz body	60
Annex	B.5: Bluetooth 2450MHz body B.6: Z-axis scan	65
Annex	B.6: Z-axis scan	69
Annex	B.7: Liquid depth	71
Annex C:	Photo documentation	73
Annex D:	RF Technical Brief Cover Sheet acc. to RSS-102 Annex A	73
Annex	D.8: Declaration of RF Exposure Compliance	73
Annex E:	Calibration parameters	74
Annex F:	Document History	74
Annex G:	Further Information	74

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

2.2 Application details

Date of receipt of order: 2011-09-02
Date of receipt of test item: 2011-09-22
Start of test: 2011-09-23
End of test: 2011-10-04

Person(s) present during the test:

2.3 Statement of compliance

The SAR values found for the RDD71UW BlackBerry Smartphone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1 g tissue according to the FCC rule §2.1093, the ANSI/IEEE C 95.1:1999, the NCRP Report Number 86 for uncontrolled environment, according to the Health Canada's Safety Code 6 and the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure.

According to October 2010 TCB Workshop for body worn operation in WLAN hot spot mode this device has been tested with 10 mm distance to the phantom.

Note:

This test report contains extended SAR evaluation for wireless hotspot mode to the following RTS test report: RTS-2579-1106-34

2.4 Technical details

Band tested for this test report	Technology	Frequency band	Lowest transmit frequency/MHz	Highest transmit frequency/MHz	Lowest receive Frequency/MHz	Highest receive Frequency/MHz	Kind of modulation	Power Class	Tested power control level	GPRS/EGPRS mobile station class	GPRS/EGPRS multislot class	(E)GPRS voice mode or DTM	Test channel low	Test channel middle	Test channel high	Maximum output power/dBm)*
	GSM	GSM	880.2	914.8	925.2	959.8	GMSK 8-PSK	4 E2	5	В	10	no	975	37	124	
	GSM	DCS	1710.2	1784.8	1805.2	1879.8	GMSK 8-PSK	1 E2	0	В	10	no	512	698	885	
\boxtimes	GSM	cellular	824.2	848.8	869.2	893.8	GMSK 8-PSK	4 E2	5	В	10	no	128	190	251	33.7
\boxtimes	GSM	PCS	1850.2	1909.8	1930.2	1989.8	GMSK 8-PSK	1 E2	0	В	10	no	512	661	810	29.3
	UMTS	FDD I	1922.4	1977.6	2112.4	2167.6	QPSK	3	max				9612	9750	9888	
	UMTS	FDD IV	1712.4	1752.6	1807.4	1877.6	QPSK	3	max	ł	-	-	1312	1412	1513	23.6
	UMTS	FDD VIII	882.4	912.6	927.4	957.6	QPSK	3	max				2712	2787	2863	
	WLAN	ISM	2412	2472	2412	2472	CCK OFDM		max	-		-	1	7	13	
	WLAN US	ISM	2412	2462	2412	2462	CCK OFDM	-	max	1	-	1	1	6	11	16.5
\boxtimes	ВТ	ISM	2412	2462	2412	2462	GFSK	3	max				0	39	78	8.5

^{)*:} slotted peak power for GSM, averaged max. RMS power for UMTS, WLAN and BT.

3 Standards/ procedures references

Test Standard	Version	Test Standard Description
IEEE 1528-2003	2003-04	Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
OET Bulletin 65 Supplement C	1997-01 2001-01	Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields
RSS-102 Issue 4	2010-03	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
Canada's Safety Code No. 6	99-EHD-237	Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
IEEE Std. C95-3	2002	Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave
IEEE Std. C95-1	2005	Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

FCC KDBs:

FCC OET SAR Measurement Procedures for 802.11 a/b/g Transmitters, May, 2007.

FCC OET SAR Evaluation Considerations for Handsets with Multiple Transmitters & Antennas, September, 2008.

FCC OET SAR Test Reduction Procedure for GSM/GPRS/EDGE, December, 2008.

FCC OET SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz, January, 2007.

FCC OET RF Exposure Procedures for Mobile and Portable Devices, and Equipment Authorization Policies, November, 2009.

FCC OET SAR Measurements Procedures for 3G Devices, October, 2007.

Dipole Requirements for SAR System Validation and Verification, November, 2009.

3.1 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain and Trunk)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Table 1: RF exposure limits

The limit applied in this test report is shown in bold letters

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
- ** The Spatial Average value of the SAR averaged over the whole body.
- The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

4 Summary of Measurement Results

\boxtimes	No deviations from the technical specifications ascertained						
	Deviations from the technical specifications ascertained						
Maximum	SAR value measured	1.340 W/kg					

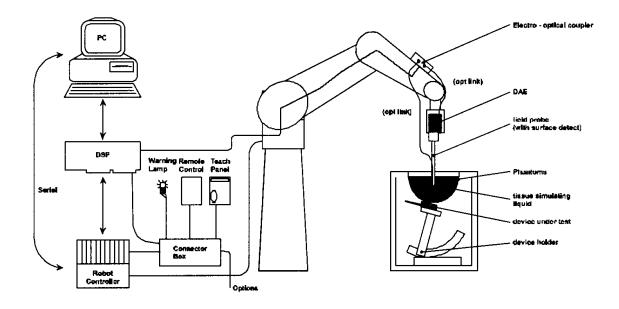
5 Test Environment

Ambient temperature: $20 - 24 \, ^{\circ}\text{C}$ Tissue Simulating liquid: $20 - 24 \, ^{\circ}\text{C}$

Relative humidity content: 40 - 50 %

Air pressure: not relevant for this kind of testing

Power supply: 230 V / 50 Hz


Exact temperature values for each test are shown in the table(s) under 2.5. and/or on the measurement plots.

6 Test Set-up

6.1 Measurement system

6.1.1 System Description

- The DASY4 system for performing compliance tests consists of the following items:
- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The <u>E</u>lectro-<u>O</u>ptical <u>C</u>oupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2000
- DASY4 software and SEMCAD data evaluation software.
- · Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- · The generic twin phantom enabling the testing of left-hand and right-hand usage.
- · The device holder for BlackBerry Smartphone.
- · Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

6.1.2 Test environment

The DASY4 measurement system is placed at the head end of a room with dimensions:

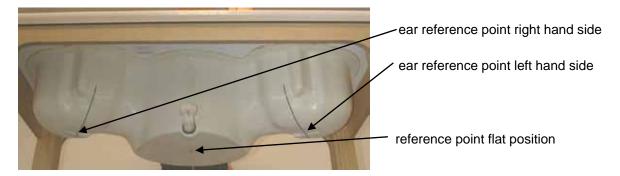
 $5 \times 2.5 \times 3 \text{ m}^3$, the SAM phantom is placed in a distance of 75 cm from the side walls and 1.1m from the rear wall. Above the test system a 1.5 x 1.5 m² array of pyramid absorbers is installed to reduce reflections from the ceiling.

Picture 1 of the photo documentation shows a complete view of the test environment.

The system allows the measurement of SAR values larger than 0.005 mW/g.

6.1.3 Probe description

Isotropic E-Field Probe ET3DV6 for Dosimetric Measurements


Technical data according to manufacturer information						
Construction	Symmetrical design with triangular core					
	Built-in optical fiber for surface detection system					
	Built-in shielding against static charges					
	PEEK enclosure material (resistant to organic solvents,					
	e.g., glycolether)					
Calibration	In air from 10 MHz to 2.5 GHz					
	In head tissue simulating liquid (HSL) at 900 (800-1000)					
	MHz and 1.8 GHz (1700-1910 MHz) (accuracy ± 9.5%;					
	k=2) Calibration for other liquids and frequencies upon					
	request					
Frequency	10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz					
	to 3 GHz)					
Directivity	± 0.2 dB in HSL (rotation around probe axis)					
	± 0.4 dB in HSL (rotation normal to probe axis)					
Dynamic range	$5 \mu W/g$ to > 100 mW/g; Linearity: \pm 0.2 dB					
Optical Surface Detection	± 0.2 mm repeatability in air and clear liquids over diffuse					
	reflecting surfaces (ET3DV6 only)					
Dimensions	Overall length: 330 mm					
	Tip length: 16 mm					
	Body diameter: 12 mm					
	Tip diameter: 6.8 mm					
	Distance from probe tip to dipole centers: 2.7 mm					
Application	General dosimetry up to 3 GHz					
	Compliance tests of BlackBerry Smartphone					
	Fast automatic scanning in arbitrary phantoms (ET3DV6)					

6.1.4 Phantom description

The used SAM Phantom meets the requirements specified in Edition 01-01 of Supplement C to OET Bulletin 65 for Specific Absorption Rate (SAR) measurements.

The phantom consists of a fibreglass shell integrated in a wooden table. It allows left-hand and right-hand head as well as body-worn measurements with a maximum liquid depth of 18 cm in head position and 22 cm in planar position (body measurements). The thickness of the Phantom shell is 2 mm +/- 0.1 mm.

6.1.5 Device holder description

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Therefore those devices are normally only tested at the flat part of the SAM.

6.1.6 Scanning procedure

- The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.
- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strenth is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension. If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex 2.
- A "7x7x7 zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. This is a fine 7x7 grid where the robot additionally moves the probe in 7 steps along the z-axis away from the bottom of the Phantom. Grid spacing for the cube measurement is 5 mm in x and y-direction and 5 mm in z-direction. DASY4 is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex 2. Test results relevant for the specified standard (see section 3) are shown in table form in section 7.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2mm steps. This measurement shows the continuity of the liquid and can depending in the field strength – also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in annex 2.

6.1.7 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of 7 x 7 x 7 points. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY4 uses the advanced extrapolation option which is able to compansate boundary effects on E-field probes.

6.1.8 Data Storage and Evaluation

Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

- Conversion factor ConvF_i
- Diode compression point Dcpi
- Frequency f

Device parameters: - Frequency - Crest factor cf

Media parameters: - Conductivity s - Density r

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf/dcp_i$$

= compensated signal of channel i with (i = x, y, z)= input signal of channel i (i = x, y, z)

= crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

 $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$ E-field probes:

 $H_i = (V_i)^{1/2} (a_{i0} + a_{i1}f + a_{i2}f^2)/f$ H-field probes:

(i = x, y, z)(i = x, y, z)= compensated signal of channel i with

= sensor sensitivity of channel i Norm_i [mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

= sensor sensitivity factors for H-field probes a_{ij}

= carrier frequency [GHz]

= electric field strength of channel i in V/m E_{i} = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot s) / (r \cdot 1000)$$

= local specific absorption rate in mW/g with SAR

> = total field strength in V/m $\mathsf{E}_{\mathsf{tot}}$

= conductivity in [mho/m] or [Siemens/m] = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 / 37.7$

P_{pwe} = equivalent power density of a plane wave in mW/cm² with

= total electric field strength in V/m = total magnetic field strength in A/m

6.1.9 Tissue simulating liquids: dielectric properties

The following materials are used for producing the tissue-equivalent materials.

(Liquids used for tests described in section 7. are marked with \boxtimes):

Ingredients (% of weight)	Frequency (MHz)										
frequency band	<u></u> 450	⊠ 835	□ 900	⊠ 1800	⊠ 1900	⊠ 2450					
Tissue Type	Body	Body	Body	Body	Body	Body					
Water	51.16	52.4	56.0	69.91	69.91	73.2					
Salt (NaCl)	1.49	1.40	0.76	0.13	0.13	0.04					
Sugar	46.78	45.0	41.76	0.0	0.0	0.0					
HEC	0.52	1.0	1.21	0.0	0.0	0.0					
Bactericide	0.05	0.1	0.27	0.0	0.0	0.0					
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0					
DGBE	0.0	0.0	0.0	29.96	29.96	26.7					

Table 2: Body tissue dielectric properties

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose

Water: De-ionized, 16MW+ resistivity

HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

Note: Due to their availability body tissue simulating liquids as defined by FCC OET Bulletin 65 Supplement C are generally used for body worn SAR testing according to European standards.

6.1.10 Tissue simulating liquids: parameters

Liquid	Frequency	Targe	t body tissue	Measuren	nent body tissue	Measurement
Liquid	(MHz)	Permittivity	Conductivity[S/m]	Permittivity	Conductivity[S/m]	date
M 850/900	824	55.2	0.97	54.8	0.97	2011-10-01
	837	55.2	0.97	54.7	0.98	2011-10-01
	849	55.2	0.97	54.6	1.00	2011-10-01
	900	55.0	1.05	54.1	1.05	2011-10-01
M 1800	1712	53.3	1.52	53.1	1.44	2011-09-23
	1732	53.3	1.52	53.0	1.46	2011-09-23
	1752	53.3	1.52	53.0	1.49	2011-09-23
	1800	53.3	1.52	52.8	1.54	2011-09-23
M 1900	1850	53.3	1.52	52.8	1.47	2011-09-29
	1880	53.3	1.52	52.7	1.50	2011-09-29
	1900	53.3	1.52	52.6	1.51	2011-09-29
	1910	53.3	1.52	52.6	1.53	2011-09-29
M 2450	2412	52.7	1.95	51.8	1.94	2011-09-29
	2437	52.7	1.95	51.8	1.97	2011-09-29
	2441	52.7	1.95	51.8	1.98	2011-09-29
	2450	52.7	1.95	51.7	1.99	2011-09-29
	2462	52.7	1.95	51.7	2.00	2011-09-29

Table 3: Parameter of the body tissue simulating liquid

Note: The dielectric properties have been measured using the contact probe method at 22°C.

6.1.11 Measurement uncertainty evaluation for SAR test

The overall combined measurement uncertainty of the measurement system is \pm 11.5% (K=1).

The expanded uncertainty (k=2) is assessed to be $\pm 23.0\%$

This measurement uncertainty budget is suggested by IEEE 1528-2003 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncertainty Value	Probability Distribution	Divi- sor	c _i 1g	c _i 10g	Standard Uncertainty 1g	Standard Uncertainty 10g	v _i ² or v _{eff}
Measurement System								
Probe calibration	± 6.0%	Normal	1	1	1	± 6.0%	± 6.0%	∞
Axial isotropy	± 4.7%	Rectangular	√3	0.7	0.7	± 1.9%	± 1.9%	∞
Hemispherical isotropy	± 9.6%	Rectangular	√3	0.7	0.7	± 3.9%	± 3.9%	∞
Spatial resolution	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	∞
Boundary effects	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Probe linearity	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	8
System detection limits	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Readout electronics	± 1.0%	Normal	1	1	1	± 1.0%	± 1.0%	8
Response time	± 0.8%	Rectangular	√3	1	1	± 0.5%	± 0.5%	8
Integration time	± 2.6%	Rectangular	√3	1	1	± 1.5%	± 1.5%	8
RF ambient conditions	± 3.0%	Rectangular	√3	1	1	± 1.7%	± 1.7%	∞
Probe positioner	± 0.4%	Rectangular	√3	1	1	± 0.2%	± 0.2%	∞
Probe positioning	± 2.9%	Rectangular	√3	1	1	± 1.7%	± 1.7%	∞
Max. SAR evaluation	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Test Sample Related								
Device positioning	± 2.9%	Normal	1	1	1	± 2.9%	± 2.9%	145
Device holder uncertainty	± 3.6%	Normal	1	1	1	± 3.6%	± 3.6%	5
Power drift	± 5.0%	Rectangular	√3	1	1	± 2.9%	± 2.9%	∞
Phantom and Set-up								
Phantom uncertainty	± 4.0%	Rectangular	√3	1	1	± 2.3%	± 2.3%	∞
Liquid conductivity (target)	± 5.0%	Rectangular	√3	0.64	0.43	± 1.8%	± 1.2%	∞
Liquid conductivity	± 2.5%	Normal	1	0.64	0.43	± 1.6%	± 1.1%	∞
(meas.)								
Liquid permittivity (target)	± 5.0%	Rectangular	√3	0.6	0.49	± 1.7%	± 1.4%	∞
Liquid permittivity (meas.)	± 2.5%	Normal	1	0.6	0.49	± 1.5%	± 1.2%	∞
Combined Uncertainty						± 11.5%	± 11.2%	330
Expanded Std. Uncertainty						± 23.0%	± 22.5%	

Table 4: Measurement uncertainties

Note: Worst case probe calibration uncertainty has been applied for all probes used during the measurements.

6.1.12 Measurement uncertainty evaluation for system validation

The overall combined measurement uncertainty of the measurement system is \pm 9.6% (K=1).

The expanded uncertainty (k=2) is assessed to be \pm 19.2%

This measurement uncertainty budget is suggested by IEEE 1528-2003 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncertainty Value	Probability Distribution	Divi- sor	c _i 1g	c _i 10g	Standard Uncertainty 1g	Standard Uncertainty 10g	v _i ² or v _{eff}
Measurement System								
Probe calibration	± 6.0%	Normal	1	1	1	± 6.0%	± 6.0%	∞
Axial isotropy	± 4.7%	Rectangular	√3	0.7	0.7	± 1.9%	± 1.9%	∞
Hemispherical isotropy	± 0.0%	Rectangular	√3	0.7	0.7	± 0.0%	± 3.9%	∞
Boundary effects	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Probe linearity	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	∞
System detection limits	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Readout electronics	± 1.0%	Normal	1	1	1	± 1.0%	± 1.0%	∞
Response time	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	∞
Integration time	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	∞
RF ambient conditions	± 3.0%	Rectangular	√3	1	1	± 1.7%	± 1.7%	∞
Probe positioner	± 0.4%	Rectangular	√3	1	1	± 0.2%	± 0.2%	∞
Probe positioning	± 2.9%	Rectangular	√3	1	1	± 1.7%	± 1.7%	∞
Max. SAR evaluation	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Test Sample Related								
Dipole axis to liquid distance	± 2.0%	Normal	1	1	1	± 1.2%	± 1.2%	8
Power drift	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	8
Phantom and Set-up								
Phantom uncertainty	± 4.0%	Rectangular	√3	1	1	± 2.3%	± 2.3%	8
Liquid conductivity (target)	± 5.0%	Rectangular	√3	0.64	0.43	± 1.8%	± 1.2%	8
Liquid conductivity (meas.)	± 2.5%	Normal	1	0.64	0.43	± 1.6%	± 1.1%	8
Liquid permittivity (target)	± 5.0%	Rectangular	√3	0.6	0.49	± 1.7%	± 1.4%	8
Liquid permittivity (meas.)	± 2.5%	Normal	1	0.6	0.49	± 1.5%	± 1.2%	8
Combined Uncertainty						± 9.6%	± 9.3%	
Expanded Std. Uncertainty						± 19.2%	± 18.6%	

Table 5: Measurement uncertainties

Note: Worst case probe calibration uncertainty has been applied for all probes used during the measurements.

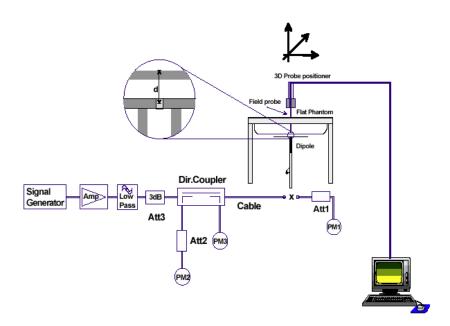
6.1.13 System validation

The system validation is performed for verifying the accuracy of the complete measurement system and performance of the software. The system validation is performed with tissue equivalent material according to IEEE 1528. The following table shows validation results for all frequency bands and tissue liquids used during the tests (plot(s) see annex A).

Validation Kit	Frequency	Target Peak SAR (1000 mW) (+/- 10%)	Target SAR _{1g} (1000 mW) (+/- 10%)	Measured Peak SAR (1000 mW)	Measured SAR _{1g} (1000 mW)	Measured date
D900V2 S/N: 102	900 MHz body	17.3 mW/g	11.2 mW/g	15.8 mW/g	11.0 mW/g	2011-10-01
D900V2 S/N: 102	900 MHz body	17.3 mW/g	11.2 mW/g	15.7 mW/g	10.8 mW/g	2011-10-02
D900V2 S/N: 102	900 MHz body	17.3 mW/g	11.2 mW/g	16.0 mW/g	11.1 mW/g	2011-10-04
D1800V2 S/N: 287	1800 MHz body	67.8 mW/g	38.7 mW/g	62.1 mW/g	38.5 mW/g	2011-09-23
D1900V2 S/N: 5d009	1900 MHz body	73.8 mW/g	40.9 mW/g	72.1 mW/g	41.5 mW/g	2011-09-29
D1900V2 S/N: 5d009	1900 MHz body	73.8 mW/g	40.9 mW/g	70.1 mW/g	41.2 mW/g	2011-09-30
D2450V2 S/N: 710	2450 MHz body	108.0 mW/g	51.7 mW/g	99.2 mW/g	47.4 mW/g	2011-09-29

Table 6: Results system validation

Note: 900 MHz probe/dipole calibration is valid +/-100 MHz and fully covers the 850 MHz band.



6.1.14 Validation procedure

The validation is performed by using a validation dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 1000 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the validation to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

Validation results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

7 Detailed Test Results

7.1 Conducted power measurements

For the measurements a Rohde & Schwarz Radio Communication Tester CMU 200 was used. The output power was measured using an integrated RF connector and attached RF cable. The conducted output power was also checked before and after each SAR measurement. The resulting power values were within a 0.2 dB tolerance of the values shown below.

Note: CMU200 measures GSM peak and average output power for active timeslots.

For SAR the timebased average power is relevant. The difference inbetween depends on the duty cycle of the TDMA signal:

No. of timeslots	1	2	3	4
Duty Cycle	1:8	1: 4	1 : 2.66	1:2
timebased avg. power compared to slotted avg. power	- 9 dB	- 6 dB	- 4.25 dB	- 3 dB

The signalling modes differ as follows:

mode	coding scheme	modulation
GPRS	CS1 to CS4	GMSK
EGPRS (EDGE)	MCS1 to MCS4	GMSK
EGPRS (EDGE)	MCS5 to MCS9	8PSK

Apart from modulation change (GMSK/8PSK) coding schemes differ in code rate without influence on the RF signal. Therefore one coding scheme per mode was selected for conducted power measurements.

7.1.1 Conducted power measurements GSM 850 MHz

Channel / frequency	modulation	timeslots	slotted avg. power	time based avg. power (calculated)
128 / 824.2 MHz	GMSK	1	33.5 dBm	24.5 dBm
190 / 836.6 MHz	GMSK	1	33.6 dBm	24.6 dBm
251 / 848.0 MHz	GMSK	1	33.7 dBm	24.7 dBm
128 / 824.2 MHz	GMSK	2	30.5 dBm	24.5 dBm
190 / 836.6 MHz	GMSK	2	30.6 dBm	24.6 dBm
251 / 848.0 MHz	GMSK	2	30.7 dBm	24.7 dBm
128 / 824.2 MHz	8PSK	2	27.1 dBm	21.1 dBm
190 / 836.6 MHz	8PSK	2	27.2 dBm	21.2 dBm
251 / 848.0 MHz	8PSK	2	27.3 dBm	21.3 dBm

Table 7: Test results conducted power measurement GSM 850 MHz

7.1.2 Conducted power measurements GSM 1900 MHz

Channel / frequency	modulation	timeslots	slotted avg. power	time based avg. power (calculated)
512 / 1850.2 MHz	GMSK	1	28.7 dBm	19.7 dBm
661 / 1880.0 MHz	GMSK	1	29.0 dBm	20.0 dBm
810 / 1909.8 MHz	GMSK	1	29.3 dBm	20.3 dBm
512 / 1850.2 MHz	GMSK	2	27.7 dBm	21.7 dBm
661 / 1880.0 MHz	GMSK	2	27.9 dBm	21.9 dBm
810 / 1909.8 MHz	GMSK	2	28.1 dBm	22.1 dBm
512 / 1850.2 MHz	8PSK	2	25.3 dBm	19.3 dBm
661 / 1880.0 MHz	8PSK	2	25.5 dBm	19.5 dBm
810 / 1909.8 MHz	8PSK	2	25.6 dBm	19.6 dBm

Table 8: Test results conducted power measurement GSM 1900 MHz

7.1.3 Justification of SAR measurements in GSM mode

SAR measurements were performed in GPRS mode with 2 active timeslots because highest time based averaged output power was calculated for that configuration. In EDGE mode no delta measurement was performed.

7.1.4 Conducted power measurements WCDMA FDD IV (1700 MHz)

Max. RMS output power 1700 MHz (FDD IV) / dBm					
Channel / frequency					
mode	1312 / 1712.4 MHz				
RMC 12.2 kbit/s	23.5	23.6	23.5		
HSDPA Sub test 1	23.5	23.5	23.4		
HSUPA Sub test 5	22.9	22.7	22.7		

Table 9: Test results conducted power measurement WCDMA 1700

Remark: None of the HSDPA/HSUPA settings leads to conducted power values exceeding the conducted power in RMC mode by more than 0.25 dB.

Therefore no additional SAR measurements were performed in HSDPA/HSUPA mode.

In Mobile Hotspot UI Mode, there is software power back-off in some bands to comply with RF exposure requirements with 10 mm distance.

7.1.5 Test-set-up information for WCDMA / HSPDA / HSUPA

a) RMC

In RMC (reference measurement channel) mode the conducted power at 4 different bit rates was measured. They correspond with the used spreading factors as follows:

Bit rate	12.2 kbit/s	64 kbit/s	144 kbit/s	384 kbit/s
Spreading factor (SF)	64	16	8	4

In RMC mode only DPCCH and DPDCH are active. As bit rate changes do not influence the relative power of any code channel the measured RMS output power remains on the same level which is set to maximum by TPC (Transmit power control) pattern type 'All 1'.

b) HSDPA

HSDPA adds the HS-DPCCH in uplink as a control channel for high speed data transfer in downlink. In HSDPA mode 4 sub-tests are defined by 3GPP 34.121 according to the following table:

Sub-test	b _c	b _d	b _d (SF)	b _c /b _d	b _{hs} ⁽¹⁾	CM(dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: D_{ACK} , D_{NACK} , $D_{CQI} = 8 \ \ddot{U} \ \dot{P} \ A_{hs} = b_{hs}/b_c = 30/15 \ \ddot{U} \ \dot{P} \ b_{hs} = 30/15 \ ^*b_c$

Note 2 : CM = 1 for $b_c/b_d = 12/15$, $b_{hs}/b_c = 24/15$

Note 3 : For subtest 2 the b_c/b_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $b_c = 11/15$ and $b_d = 15/15$

Table 10: Sub-tests for UMTS Release 5 HSDPA

The b_c and b_d gain factors for DPCCH and DPDCH were set according to the values in the above table, b_{hs} for HS-DPCCH is set automatically to the correct value when D_{ACK} , D_{NACK} , D_{CQI} = 8. The variation of the b_c/b_d ratio causes a power reduction at sub-tests 2 - 4.

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI's
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 11: settings of required H-Set 1 QPSK acc. to 3GPP 34.121

c) HSUPA

In HSUPA mode additional code channels (E-DPCCH, E-DPDCHn) are added for data transfer in uplink at higher bit rates.

5 sub-tests are defined by 3GPP 34.121 according to the following table :

Sub- test	b _c	b₀	b _d (SF)	b _c /b _d	b _{hs} ⁽¹⁾	b _{ec}	b _{ed}	b _{ec}	b _{ed}	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	b _{ed1} :47/15 b _{ed2:} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: D_{ACK} , D_{NACK} , $D_{CQI} = 8 \ddot{U} \Rightarrow A_{hs} = b_{hs}/b_c = 30/15 \ddot{U} \Rightarrow b_{hs} = 30/15 * b_c$

Note 2 : CM = 1 for b_c/b_d = 12/15, b_{hs}/b_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference

Note 3: For subtest 1 the b_c/b_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $b_c = 10/15$ and $b_d = 15/15$

Note 4 : For subtest 5 the b_c/b_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $b_c = 14/15$ and $b_d = 15/15$

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g Note 6: bed can not be set directly; it is set by Absolute Grant Value

Table 12: Subtests for UMTS Release 6 HSUPA

To achieve the settings above some additional procedures were defined by 3GPP 34.121. Those have been included in an application note for the CMU200 and were exactly followed:

- Test mode connection (BS signal tab) :

RMC 12.2 kbit/s + HSPA 34.108 with loop mode 1

- HS-DSCH settings (BS signal tab):
- FRC with H-set 1 QPSK
- ACK-NACK repetition factor = 3
- CQI feedback cycle = 4ms
- CQI repetition factor = 2
- HSUPA-specific signalling settings (UE signal tab) :
- E-TFCI table index = 0
- E-DCH minimum set E-TFCI = 9
- Puncturing limit non-max = 0.84
- max. number of channelisation codes = 2x SF4
- Initial Serving Grant Value = Off
- HSDPA and HSUPA Gain factors (UE signal tab)

Sub-test	b _c	b _d	D_{ACK} , D_{NACK} , D_{CQI}	DE- DPCCH)*
1	10	15	8	6
2	6	15	8	8
3	15	9	8	8
4	2	15	8	5
5	14	15	8	7

-)* : b_{ec} and b_{ed} ratios (relative to b_c and b_d) are set by DE- DPCCH
- HSUPA Reference E-TFCIs (UE signal tab > HSUPA gain factors) :

Sub-test	1, 2, 4, 5					
Number of E-TFCIs			5			
Reference E-TFCI	11	67	71	75	81	
Reference E-TFCI power offset	4	18	23	26	27	

Sub-test	3			
Number of E-TFCIs	2			
Reference E-TFCI	11 92			
Reference E-TFCI	1	18		
power offset	4	10		

- HSUPA-specific generator parameters (BS Signal tab > HSUPA > E-AGCH > AG Pattern)

Sub-test	Absolute Grant Value (AG Index)
1	20
2	12
3	15
4	17
5	21

- Power Level settings (BS Signal tab > Node B-settings):
- Level reference : Output Channel Power (lor)
- Output Channel Power (lor): -86 dBm
- Downlink Physical Channel Settings (BS signal tab)
- P-CPICH: -10 dB
- S-CPICH: Off
- P-SCH: -15 dB
- S-SCH: -15 dB
- P-CCPCH: -12 dB
- S-CCPCH: -12 dB
- PICH: -15 dB
- AICH: -12 dB
- DPDCH: -10 dB
- HS-SCCH: -8 dB
- HS-PDSCH: -3 dB
- E-AGCH: -20 dB
- E-RGCH/E-HICH 20 dB
- E-RGCH Active : Off

The settings above were stored once for each sub-test and recalled before the measurement.

HSUPA test procedure:

To reach maximum output power in HSUPA mode the following procedures were followed:

3 different TPC patterns were defined:

Set 1 : Closed loop with target power 10 dBm

Set 2: Single Pattern+Alternating with binary pattern '11111' for 1 dB steps 'up'

Set 3 : Single Pattern+Alternating with binary pattern '00000' for 1 dB steps 'down'

After recalling a certain HSUPA sub-test the HSUPA E-AGCH graph with E-TFCI event counter is displayed. After starting with the closed loop command the power is increased in 1 dB steps by activating pattern set 2 until the UE decreases the transmitted E-TFCI.

At this point set 3 is activated once to reduce the output power to the value at which the original E-TFCI, which is required for the sub-test, appears again.

For conducted power measurements the same steps are repeated in the power menu to read out the corresponding maximum RMS output power with the target E-TFCI.

For SAR measurements it is useful to switch to Code Domain Power vs. Time display.

Here the CMU200 shows relative power values (max. and min.) of each code channel which should roughly correspond to the numerators of the gain factors e.g.:

Sub-test	b _c	b _d	b _{hs}	b _{ec}	b _{ed}
5	15	15	30	24	134

By this way a surveillance of signalling conditions is possible to make sure that HSUPA code channels are active during the complete SAR measurement.

7.1.6 Conducted power measurements WLAN 2.4 GHz

Channel / frequency	modulation	bit rate	timebased avg. power
1 / 2412 MHz	CCK	1 MBit/s	16.5 dBm
6 / 2437 MHz	CCK	1 MBit/s	16.1 dBm
11 / 2462 MHz	CCK	1 MBit/s	15.8dBm
1 / 2412 MHz	OFDM	6 MBit/s	11.4dBm
6 / 2437 MHz	OFDM	6 MBit/s	13.4dBm
11 / 2462 MHz	OFDM	6 MBit/s	10.7dBm
1 / 2412 MHz	OFDM	6.5 MBit/s	11.3dBm
6 / 2437 MHz	OFDM	6.5 MBit/s	13.3dBm
11 / 2462 MHz	OFDM	6.5 MBit/s	10.8dBm

Table 13: Test results conducted power measurement WLAN 2.4 GHz

7.1.7 Conducted power measurements Bluetooth

Channel / frequency	mode	timebased avg. power
00 / 2402 MHz	DH5	7.83dBm
39 / 2441 MHz	DH5	8.50 dBm
78 / 2480 MHz	DH5	8.00dBm

Table 14: Test results conducted power measurement Bluetooth

7.1.8 Multiple Transmitter Information

The following tables list information which is relevant for the decision if a simultaneous transmit evaluation is necessary according to KDB 648474.

Tx No.	Communcation system and frequency band	P _{avg} (mW)	single SAR (W/kg) (see ch. 7.2)	remarks
1a	GSM 850 MHz	500	1.340	routine evaluation
1b	GSM 1900 MHz	250	0.730	routine evaluation
1c	FDD IV 1750 MHz	250	0.778	routine evaluation
2a	WLAN 2450 MHz	50	0.308	routine evaluation
2b	Bluetooth 2450 MHz	7	0.007	$P_2 < P_{ref}$
Sum of all 1g-SAR values			n/a	

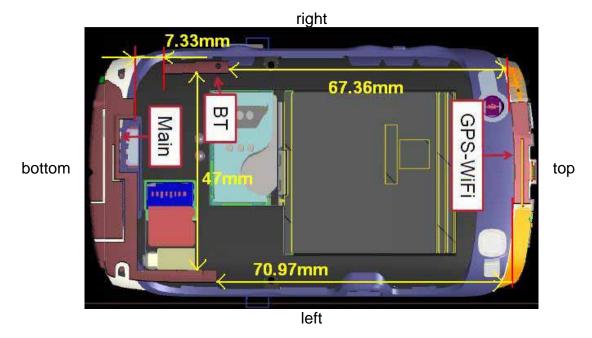
Table 15: Communication systems and SAR values in body position

antenna pair (x,y)	peak-locations spacing L _{xy} (cm)	Σ 1g-SAR (W/kg)	SPLSR _{xy}	sim Tx SAR	remarks
(1a,2a)	6.69	1.637	0.24	N	Σ SAR > 1.6 W/kg but SPLSR _{xy} < 0.3
(1b,2a)	9.99	1.027	0.10	N	SPLSR _{xv} < 0.3 and Σ SAR < 1.6 W/kg
(1c,2a)	8.27	1.075	0.13	N	SPLSR _{xv} < 0.3 and Σ SAR < 1.6 W/kg

Table 16: Antenna distances and SPLSR evaluation in body position

SPLSRxy = SAR-to-(peak-locations spacing) ratio = (SARx+SARy)/Lxy

P_{ref} : 12 mW at 2.4 GHz


Minimum antenna separation distance between main antenna and WLAN - 70.97 mm

 Σ 1g-SAR: sum of the highest SAR of Tx No. 1 and the SAR of Tx No. 2 at the same DUT position or orientation as the highest value of Tx No. 1 i.e. not necessarily the sum of the highest SAR values of both transmitters.

7.1.9 Mobile hotspot SAR measurement positions

Mobile hotspot SAR measurement positions							
mode	front	rear	left edge	right edge	top edge	bottom edge	
GSM 850	yes	yes	yes	yes	no	yes	
GSM 1900	yes	yes	yes	yes	no	yes	
WCDMA FDD IV 1750	yes	yes	yes	yes	no	yes	
WLAN 2450	yes	yes	yes	yes	yes	no	
Bluetooth 2450	yes	yes	no	yes	no	yes	

The edges with less than 2.5 cm distance to the TX antennas need to be tested for hotspot SAR.

7.2 SAR test results

7.2.1 Results overview

Body SAR GSM 850 MHz (averaged over 1g tissue volume)								
Channel / frequency	Position	Distance	test condition	Body worn test result	Limit	Liquid temperature		
128 / 824.2 MHz	front	10 mm	2 time slots	0.631 W/kg	1.6 W/kg			
190 / 836.6 MHz	front	10 mm	2 time slots	0.850 W/kg	1.6 W/kg	22.5 °C		
251 / 848.8 MHz	front	10 mm	2 time slots	1.040 W/kg	1.6 W/kg	22.5 °C		
128 / 824.2 MHz	rear	10 mm	2 time slots	0.997 W/kg	1.6 W/kg	22.5 °C		
190 / 836.6 MHz	rear	10 mm	2 time slots	1.220 W/kg	1.6 W/kg	22.5 °C		
251 / 848.8 MHz	rear	10 mm	2 time slots	1.340 W/kg	1.6 W/kg	22.5 °C		
190 / 836.6 MHz	left	10 mm	2 time slots	0.631 W/kg	1.6 W/kg	22.5 °C		
190 / 836.6 MHz	right	10 mm	2 time slots	0.501 W/kg	1.6 W/kg	22.5 °C		
190 / 836.6 MHz	bottom	10 mm	2 time slots	0.192 W/kg	1.6 W/kg	22.5 °C		

Table 17: Test results body SAR GSM 850 MHz

Top edge position is not required since the distance from the main antenna to the edge is greater than 2.5 cm.

Pody SAP GSM 1000 MHz (overgood over 1g tiesus volume)									
	Body SAR GSM 1900 MHz (averaged over 1g tissue volume)								
Channel / frequency	Position	Distance	test condition	Body worn test result	Limit	Liquid temperature			
661 / 1880.0 MHz	front	10 mm	2 time slots	0.581 W/kg	1.6 W/kg	21.7 °C			
661 / 1880.0 MHz	rear	10 mm	2 time slots	0.730 W/kg	1.6 W/kg	21.7 °C			
661 / 1880.0 MHz	left	10 mm	2 time slots	0.287 W/kg	1.6 W/kg	21.7 °C			
661 / 1880.0 MHz	right	10 mm	2 time slots	0.135 W/kg	1.6 W/kg	21.7 °C			
512 / 1850.2 MHz	bottom	10 mm	2 time slots	0.843 W/kg	1.6 W/kg	21.7 °C			
661 / 1880.0 MHz	bottom	10 mm	2 time slots	0.846 W/kg	1.6 W/kg	21.7 °C			
810 / 1909.8 MHz	bottom	10 mm	2 time slots	0.788 W/kg	1.6 W/kg	21.7 °C			

Table 18: Test results body SAR GSM 1900 MHz

Top edge position is not required since the distance from the main antenna to the edge is greater than 2.5 cm.

Body SAR UMTS FDD IV 1750 MHz (averaged over 1g tissue volume)								
Channel / frequency	Position	Distance	test condition	Body worn test result	Limit	Liquid temperature		
1412 / 1732.4 MHz	front	10 mm	12.2kbit/s	0.702 W/kg	1.6 W/kg	21.1 °C		
1412 / 1732.4 MHz	rear	10 mm	12.2kbit/s	0.778 W/kg	1.6 W/kg	21.1 °C		
1412 / 1732.4 MHz	left	10 mm	12.2kbit/s	0.221 W/kg	1.6 W/kg	21.1 °C		
1412 / 1732.4 MHz	right	10 mm	12.2kbit/s	0.190 W/kg	1.6 W/kg	21.1 °C		
1412 / 1732.4 MHz	bottom	10 mm	12.2kbit/s	0.536 W/kg	1.6 W/kg	21.1 °C		

Table 19: Test results body SAR UMTS FDD IV 1750 MHz

Top edge position is not required since the distance from the main antenna to the edge is greater than 2.5 cm.

Body SAR WLAN 2450 MHz (averaged over 1g tissue volume)								
Channel / frequency	Position	Distance	test condition	Body worn test result	Limit	Liquid temperature		
6 / 2437 MHz	front	10 mm	CCK 1 Mbit/s	0.159 W/kg	1.6 W/kg	23.3 °C		
6 / 2437 MHz	rear	10 mm	CCK 1 Mbit/s	0.297 W/kg	1.6 W/kg	23.3 °C		
6 / 2437 MHz	left	10 mm	CCK 1 Mbit/s	0.074 W/kg	1.6 W/kg	23.3 °C		
6 / 2437 MHz	right	10 mm	CCK 1 Mbit/s	0.062 W/kg	1.6 W/kg	23.3 °C		
6 / 2437 MHz	top edge	10 mm	CCK 1 Mbit/s	0.308 W/kg	1.6 W/kg	23.3 °C		

Table 20: Test results body SAR WLAN 2450 MHz

Bottom edge position is not required since the distance from the WLAN antenna to the edge is greater than 2.5cm.

Body SAR Bluetooth 2450 MHz (averaged over 1g tissue volume)									
Channel / frequency	Position	Distance	test condition	Body worn test result	Limit	Liquid temperature			
39 / 2441 MHz	front	10 mm	DH5	0.00519 W/kg	1.6 W/kg	23.3 °C			
39 / 2441 MHz	rear	10 mm	DH5	0.00707 W/kg	1.6 W/kg	23.3 °C			
39 / 2441 MHz	right	10 mm	DH5	0.00567 W/kg	1.6 W/kg	23.3 °C			
39 / 2441 MHz	bottom	10 mm	DH5	0.00146 W/kg	1.6 W/kg	23.3 °C			

Table 21: Test results body SAR Bluetooth 2450 MHz

Top and left edge positions are not required since the distance from the Bluetooth antenna to the edge is greater than 2.5cm.

Note:

The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

Per Oct 2010 TCB FCC Workshop, the edges with antennas within 2.5 cm are required to be evaluated for SAR to cover WLAN hot spot function.

Tests in body position were performed with 10 mm air gap between DUT and SAM.

7.2.2 General description of test procedures

The DUT is tested using a CMU 200 communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.

Test positions as described in the tables above are in accordance with the specified test standard.

Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results). UMTS was tested in RMC mode with 12.2 kbit/s and TPC bits set to 'all 1'. WLAN was tested in 802.11b mode with 1 MBit/s.

8 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

No	used	Equipment	Туре	Manufacturer	Serial No.	Last Calibration	Frequency (months)
1	\boxtimes	Dosimetric E-Field Probe		Schmid & Partner Engineering AG	1558	August 23, 2011	12
2	\boxtimes	Dosimetric E-Field Probe		Schmid & Partner Engineering AG	1559	, ,	12
3	\boxtimes	900 MHz System Validation Dipole		Schmid & Partner Engineering AG	102	August 15, 2011	12
4	\boxtimes	1800 MHz System Validation Dipole		Engineering AG	287	August 17, 2011	12
5	\boxtimes	1900 MHz System Validation Dipole		Engineering AG	531	August 17, 2011	12
6	\boxtimes	2450 MHz System Validation Dipole		Schmid & Partner Engineering AG	710	August 19, 2011	12
7	\boxtimes	Data acquisition electronics		Schmid & Partner Engineering AG	413	January 13, 2011	
8	\boxtimes	Data acquisition electronics		Schmid & Partner Engineering AG	477	May 04, 2011	12
9	\boxtimes	Software	V4.5	Schmid & Partner Engineering AG		N/A	
10	\boxtimes	Phantom		Schmid & Partner Engineering AG		N/A	
11	\boxtimes	Universal Radio Communication Tester	CMU 200	Rohde & Schwarz	106826	January 12, 2011	12
12	\boxtimes	Network Analyser 300 kHz to 6 GHz	8753ES	Hewlett Packard)*	US39174436	July 6, 2010	12
13	\boxtimes	Dielectric Probe Kit	85070C	Hewlett Packard	US99360146	N/A	12
14	\boxtimes	Signal Generator	8665A	Hewlett Packard	2833A00112	January 6, 2011	12
15		Amplifier	(25 Watt)	Amplifier Reasearch	20452	N/A	
16	\boxtimes	Power Meter	NRP	Rohde & Schwarz	101367	January 6, 2011	12
17	\boxtimes	Power Meter Sensor	NRP Z22	Rohde & Schwarz	100227	January 6, 2011	12
18	\boxtimes	Power Meter Sensor	NRP Z22	Rohde & Schwarz	100234	January 6, 2011	12
19	\boxtimes	Directional Coupler	778D	Hewlett Packard	19171	January 8, 2011	12

^{)*:} Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

9 Observations

No observations exceeding those reported with the single test cases have been made.

Annex A: System performance verification

Date/Time: 01.10.2011 19:53:35Date/Time: 01.10.2011 19:57:16

SystemPerformanceCheck-D900 body 2011-10-01

DUT: Dipole 900 MHz; Type: D900V2; Serial: 102

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

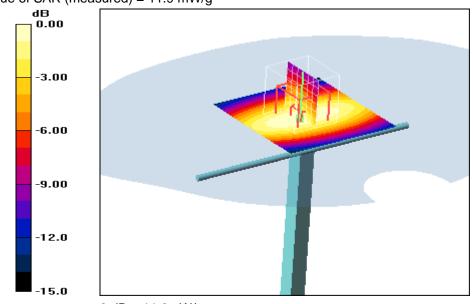
Medium: M900 Medium parameters used: f = 900 MHz; $\sigma = 1.05$ mho/m; $\varepsilon_r = 54.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(5.77, 5.77, 5.77); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=15mm, Pin=1000mW/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.7 mW/g


d=15mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 111.6 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 15.8 W/kg

SAR(1 g) = 11 mW/g; SAR(10 g) = 7.13 mW/g Maximum value of SAR (measured) = 11.9 mW/g

0 dB = 11.9 mW/g

Additional information:

ambient temperature: 23.3°C; liquid temperature: 22.6°C

Date/Time: 02.10.2011 13:31:29Date/Time: 02.10.2011 13:35:11

SystemPerformanceCheck-D900 body 2011-10-02

DUT: Dipole 900 MHz; Type: D900V2; Serial: 102

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

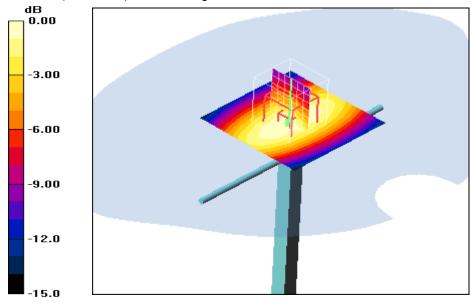
Medium: M900 Medium parameters used: f = 900 MHz; $\sigma = 1.05$ mho/m; $\varepsilon_r = 54.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(5.77, 5.77, 5.77); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=15mm, Pin=1000mW/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.6 mW/g


d=15mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 111.0 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 15.7 W/kg

SAR(1 g) = 10.8 mW/g; SAR(10 g) = 7.04 mW/g Maximum value of SAR (measured) = 11.8 mW/g

0 dB = 11.8 mW/g

Additional information:

ambient temperature: 23.3°C; liquid temperature: 22.9°C

Date/Time: 04.10.2011 09:55:20Date/Time: 04.10.2011 09:59:03

SystemPerformanceCheck-D900 body 2011-10-04

DUT: Dipole 900 MHz; Type: D900V2; Serial: 102

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

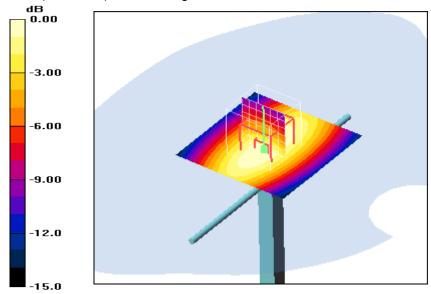
Medium: M900 Medium parameters used: f = 900 MHz; $\sigma = 1.05$ mho/m; $\varepsilon_r = 54.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(5.77, 5.77, 5.77); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=15mm, Pin=1000mW/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.9 mW/g


d=15mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 112.4 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 16.0 W/kg

SAR(1 g) = 11.1 mW/g; SAR(10 g) = 7.2 mW/g Maximum value of SAR (measured) = 12.1 mW/g

0 dB = 12.1 mW/g

Additional information:

ambient temperature: 22.7°C; liquid temperature: 22.6°C

Date/Time: 23.09.2011 10:32:42Date/Time: 23.09.2011 10:36:18

SystemPerformanceCheck-D1800 body 2011-09-23

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: 287

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

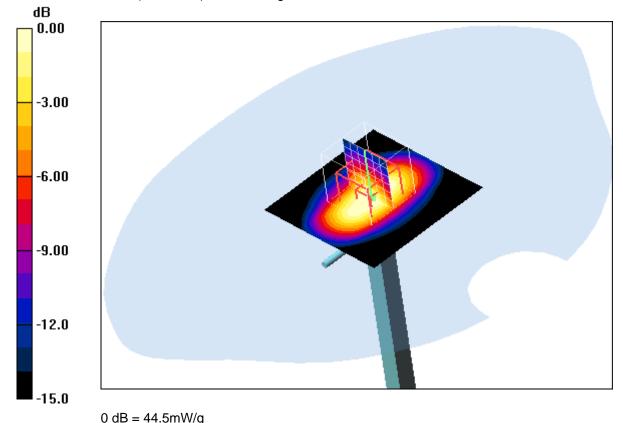
Medium: M1800 Medium parameters used: f = 1800 MHz; $\sigma = 1.54 \text{ mho/m}$; $\varepsilon_r = 52.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1559; ConvF(4.68, 4.68, 4.68); Calibrated: 19.01.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 04.05.2011
- Phantom: SAM left; Type: SAM; Serial: 1041
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 56.3 mW/g


d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 184.8 V/m; Power Drift = -0.109 dB

Peak SAR (extrapolated) = 62.1 W/kg

SAR(1 g) = 38.5 mW/g; SAR(10 g) = 21.1 mW/g Maximum value of SAR (measured) = 44.5 mW/g

0 42 111011111

Additional information:

ambient temperature: 21.1°C; liquid temperature: 21.1°C

Date/Time: 29.09.2011 08:31:20Date/Time: 29.09.2011 08:34:59

SystemPerformanceCheck-D1900 body 2011-09-29

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

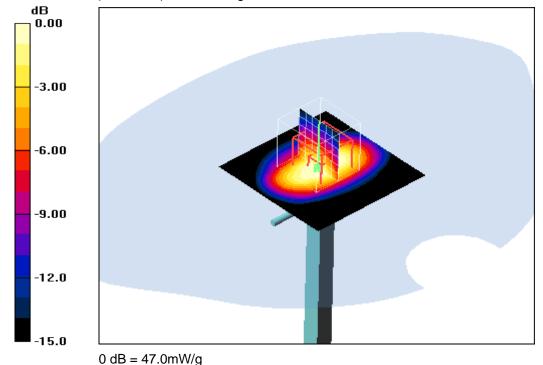
Medium: M1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 52.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.3, 4.3, 4.3); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 56.8 mW/g


d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 183.1 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 72.1 W/kg

SAR(1 g) = 41.5 mW/g; SAR(10 g) = 22 mW/g Maximum value of SAR (measured) = 47.0 mW/g

Additional information:

ambient temperature: 21.1°C; liquid temperature: 21.1°C

Date/Time: 30.09.2011 08:15:19Date/Time: 30.09.2011 08:18:54

SystemPerformanceCheck-D1900 body 2011-09-30

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

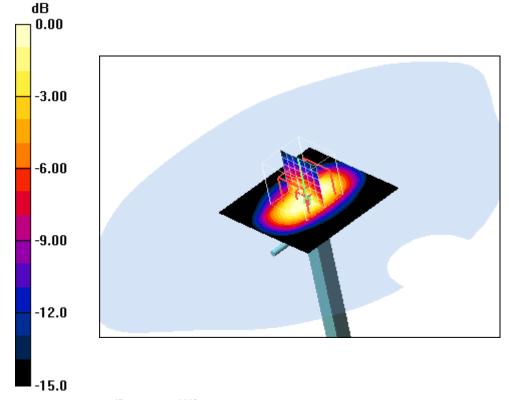
Medium: M1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 52.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.3, 4.3, 4.3); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 57.7 mW/g


d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 187.5 V/m; Power Drift = -0.056 dB

Peak SAR (extrapolated) = 70.1 W/kg

SAR(1 g) = 41.2 mW/g; SAR(10 g) = 22 mW/g Maximum value of SAR (measured) = 46.6 mW/g

0 dB = 46.6 mW/g

Additional information:

Date/Time: 29.09.2011 09:21:48Date/Time: 29.09.2011 09:25:34

SystemPerformanceCheck-D2450 body 2011-09-29

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 710

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

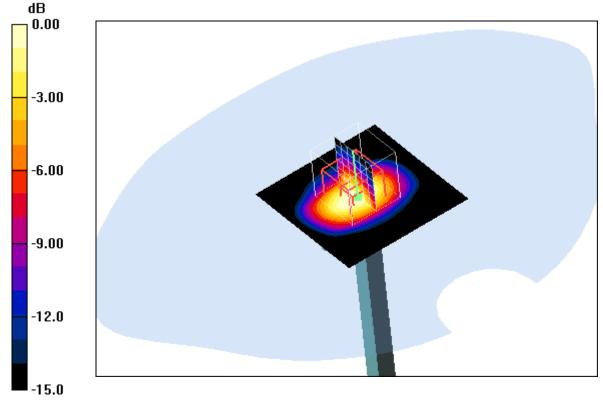
Medium: M2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.99 \text{ mho/m}$; $\varepsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1559; ConvF(3.91, 3.91, 3.91); Calibrated: 19.01.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 04.05.2011
- Phantom: SAM right; Type: SAM; Serial: 1042
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=100mW/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 7.05 mW/g


d=10mm, Pin=100mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.7 V/m; Power Drift = -0.105 dB

Peak SAR (extrapolated) = 9.92 W/kg

SAR(1 g) = 4.74 mW/g; SAR(10 g) = 2.36 mW/g Maximum value of SAR (measured) = 5.49 mW/g

0 dB = 5.49 mW/g

Additional information:

Annex B: DASY4 measurement results

Annex B.1: GSM 850MHz body

Date/Time: 01.10.2011 18:53:10Date/Time: 01.10.2011 19:00:16

OET65-Body-GSM850 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 850 GPRS 2TS; Frequency: 824.2 MHz; Duty Cycle: 1:4

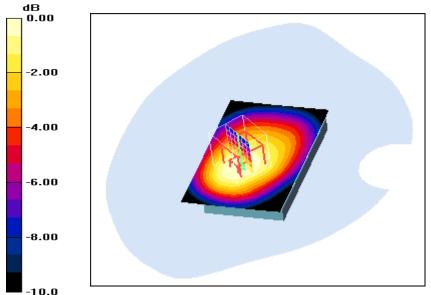
Medium: M850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(5.85, 5.85, 5.85); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.688 mW/g


Front position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.6 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 0.845 W/kg

SAR(1 g) = 0.631 mW/g; SAR(10 g) = 0.452 mW/g Maximum value of SAR (measured) = 0.673 mW/g

0 dB = 0.673 mW/g

Additional information:

position or distance of DUT to SAM: 10 mm

Date/Time: 01.10.2011 18:26:52Date/Time: 01.10.2011 18:34:35

OET65-Body-GSM850 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 850 GPRS 2TS; Frequency: 836.6 MHz; Duty Cycle: 1:4

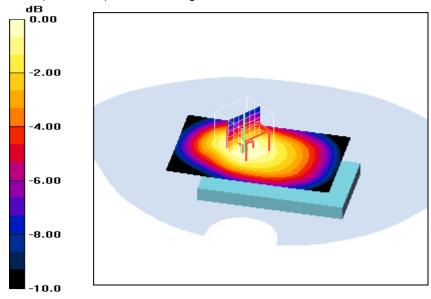
Medium: M850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(5.85, 5.85, 5.85); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.919 mW/g


Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.8 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.850 mW/g; SAR(10 g) = 0.609 mW/g Maximum value of SAR (measured) = 0.909 mW/g

0 dB = 0.909 mW/g

Additional information:

position or distance of DUT to SAM: 10 mm

Date/Time: 01.10.2011 19:13:56Date/Time: 01.10.2011 19:20:26

OET65-Body-GSM850 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 850 GPRS 2TS; Frequency: 848.8 MHz; Duty Cycle: 1:4

Medium: M850 Medium parameters used: f = 848.8 MHz; $\sigma = 1 \text{ mho/m}$; $\epsilon_r = 54.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(5.85, 5.85, 5.85); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.14 mW/g


Front position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 35.0 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.741 mW/g Maximum value of SAR (measured) = 1.11 mW/g

0 dB = 1.11 mW/g

Additional information:

position or distance of DUT to SAM: 10 mm

Date/Time: 04.10.2011 12:54:22Date/Time: 04.10.2011 13:01:17

OET65-Body-GSM850 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 850 GPRS 2TS; Frequency: 824.2 MHz; Duty Cycle: 1:4

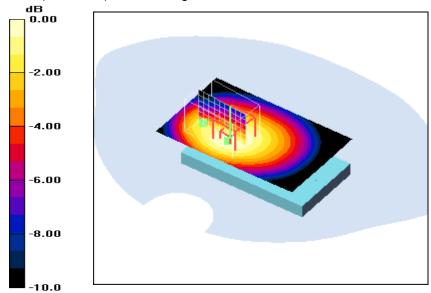
Medium: M850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(5.85, 5.85, 5.85); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.08 mW/g


Rear position - Low/Zoom Scan (7x7x7) (7x10x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 34.3 V/m; Power Drift = -0.088 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.997 mW/g; SAR(10 g) = 0.708 mW/g Maximum value of SAR (measured) = 1.06 mW/g

0 dB = 1.06 mW/g

Additional information:

position or distance of DUT to SAM: 10 mm

Date/Time: 04.10.2011 12:18:37Date/Time: 04.10.2011 12:27:43

OET65-Body-GSM850 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 850 GPRS 2TS; Frequency: 836.6 MHz; Duty Cycle: 1:4

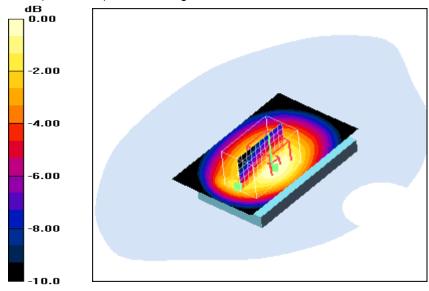
Medium: M850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(5.85, 5.85, 5.85); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.33 mW/g


Rear position - Middle/Zoom Scan (7x7x7) (7x11x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 37.3 V/m; Power Drift = -0.050 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.876 mW/g Maximum value of SAR (measured) = 1.31 mW/g

0 dB = 1.31 mW/g

Additional information:

position or distance of DUT to SAM: 10 mm

Date/Time: 04.10.2011 13:26:11Date/Time: 04.10.2011 13:36:09

OET65-Body-GSM850 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 850 GPRS 2TS; Frequency: 848.8 MHz; Duty Cycle: 1:4

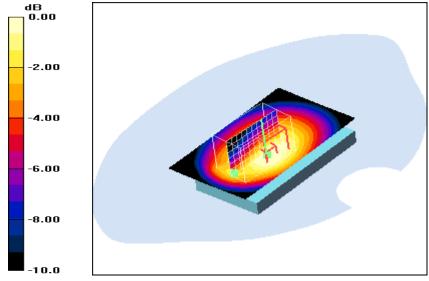
Medium: M850 Medium parameters used: f = 848.8 MHz; $\sigma = 1 \text{ mho/m}$; $\epsilon_r = 54.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(5.85, 5.85, 5.85); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.51 mW/g


Rear position - High/Zoom Scan (7x7x7) (7x11x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.0 V/m; Power Drift = -0.093 dB

Peak SAR (extrapolated) = 1.81 W/kg

SAR(1 g) = 1.34 mW/g; SAR(10 g) = 0.952 mW/g Maximum value of SAR (measured) = 1.42 mW/g

0 dB = 1.42 mW/g

Additional information:

position or distance of DUT to SAM: 10 mm

Date/Time: 02.10.2011 16:30:33Date/Time: 02.10.2011 16:38:13

OET65-Body-GSM850 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 850 GPRS 2TS; Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium: M850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

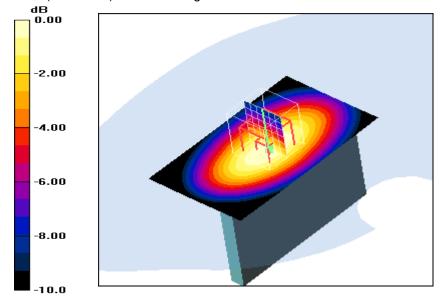
DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(5.85, 5.85, 5.85); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge left position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.689 mW/g


Edge left position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.8 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 0.884 W/kg

SAR(1 g) = 0.631 mW/g; SAR(10 g) = 0.426 mW/g Maximum value of SAR (measured) = 0.680 mW/g

0 dB = 0.680 mW/g

Additional information:

position or distance of DUT to SAM: 10 mm

Date/Time: 02.10.2011 16:53:09Date/Time: 02.10.2011 17:01:03

OET65-Body-GSM850 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 850 GPRS 2TS; Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium: M850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

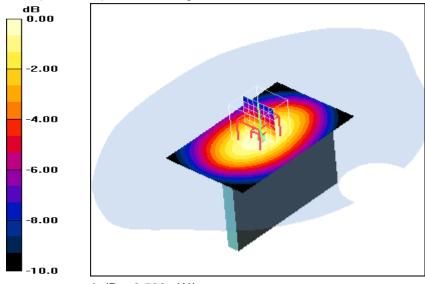
DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(5.85, 5.85, 5.85); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge right position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.530 mW/g


Edge right position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.5 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 0.686 W/kg

SAR(1 g) = 0.501 mW/g; SAR(10 g) = 0.352 mW/g Maximum value of SAR (measured) = 0.533 mW/g

0 dB = 0.533 mW/g

Additional information:

position or distance of DUT to SAM: 10 mm

Date/Time: 02.10.2011 17:15:28Date/Time: 02.10.2011 17:21:58

OET65-Body-GSM850 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 850 GPRS 2TS; Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium: M850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

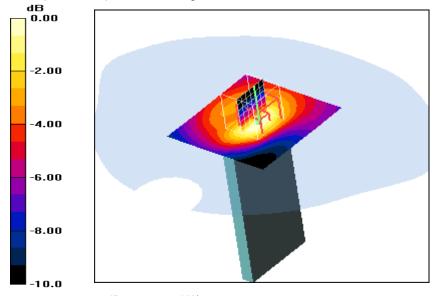
DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(5.85, 5.85, 5.85); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge bottom position - Middle/Area Scan (61x61x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.198 mW/g


Edge bottom position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.7 V/m; Power Drift = -0.060 dB

Peak SAR (extrapolated) = 0.431 W/kg

SAR(1 g) = 0.192 mW/g; SAR(10 g) = 0.107 mW/g Maximum value of SAR (measured) = 0.203 mW/g

0 dB = 0.203 mW/g

Additional information:

position or distance of DUT to SAM: 10 mm

Annex B.2: GSM 1900MHz body

Date/Time: 30.09.2011 14:48:11Date/Time: 30.09.2011 14:58:07

OET65-Body-GSM1900 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 1900 GPRS 2TS; Frequency: 1880 MHz; Duty Cycle: 1:4

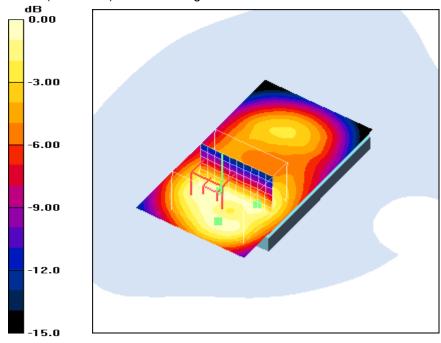
Medium: M1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.3, 4.3, 4.3); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.607 mW/g


Front position - Middle/Zoom Scan (7x7x7) (10x11x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.1 V/m; Power Drift = -0.079 dB

Peak SAR (extrapolated) = 0.972 W/kg

SAR(1 g) = 0.581 mW/g; SAR(10 g) = 0.345 mW/g Maximum value of SAR (measured) = 0.631 mW/g

0 dB = 0.631 mW/g

Additional information:

position or distance of DUT to SAM: 10mm

Date/Time: 29.09.2011 17:57:26Date/Time: 29.09.2011 18:04:15

OET65-Body-GSM1900 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 1900 GPRS 2TS; Frequency: 1880 MHz; Duty Cycle: 1:4

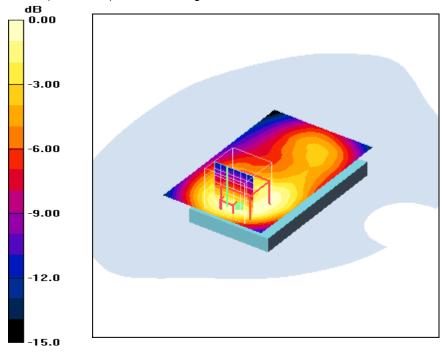
Medium: M1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.3, 4.3, 4.3); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.861 mW/g


Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.8 V/m; Power Drift = -0.029 dB

Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.730 mW/g; SAR(10 g) = 0.430 mW/g Maximum value of SAR (measured) = 0.814 mW/g

0 dB = 0.814 mW/g

Additional information:

position or distance of DUT to SAM: 10mm

Date/Time: 29.09.2011 19:08:08Date/Time: 29.09.2011 19:14:44Date/Time: 29.09.2011 19:26:12

OET65-Body-GSM1900 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 1900 GPRS 2TS; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 52.7; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.3, 4.3, 4.3); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge left position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.316 mW/g

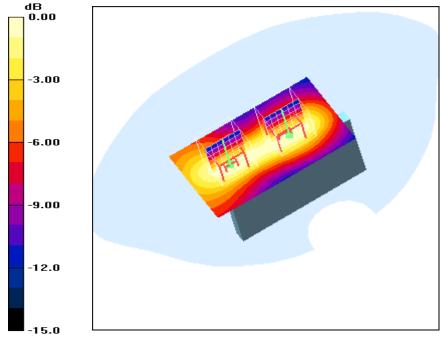
Edge left position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.5 V/m; Power Drift = -0.102 dB

Peak SAR (extrapolated) = 0.488 W/kg

SAR(1 g) = 0.287 mW/g; SAR(10 g) = 0.165 mW/g Maximum value of SAR (measured) = 0.320 mW/g


Edge left position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.5 V/m; Power Drift = -0.102 dB

Peak SAR (extrapolated) = 0.527 W/kg

SAR(1 g) = 0.272 mW/g; SAR(10 g) = 0.166 mW/g Maximum value of SAR (measured) = 0.281 mW/g

0 dB = 0.281 mW/q

Additional information:

position or distance of DUT to SAM: 10mm

Date/Time: 30.09.2011 12:47:01Date/Time: 30.09.2011 13:00:50

OET65-Body-GSM1900 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 1900 GPRS 2TS; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

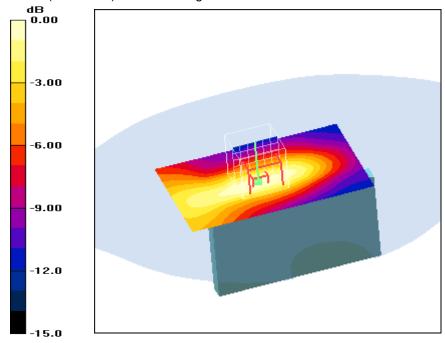
DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.3, 4.3, 4.3); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge right position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.156 mW/g


Edge right position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.92 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 0.225 W/kg

SAR(1 g) = 0.135 mW/g; SAR(10 g) = 0.082 mW/g Maximum value of SAR (measured) = 0.148 mW/g

0 dB = 0.148 mW/g

Additional information:

position or distance of DUT to SAM: 10mm

Date/Time: 30.09.2011 12:02:42Date/Time: 30.09.2011 12:08:01

OET65-Body-GSM1900 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 1900 GPRS 2TS; Frequency: 1850.2 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 52.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

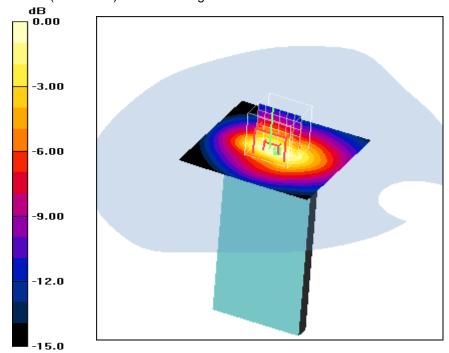
DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.3, 4.3, 4.3); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge bottom position - Low/Area Scan (61x61x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.955 mW/g


Edge bottom position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.1 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 0.843 mW/g; SAR(10 g) = 0.470 mW/g Maximum value of SAR (measured) = 0.940 mW/g

0 dB = 0.940 mW/g

Additional information:

position or distance of DUT to SAM: 10mm

Date/Time: 30.09.2011 11:41:34Date/Time: 30.09.2011 11:47:56

OET65-Body-GSM1900 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 1900 GPRS 2TS; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

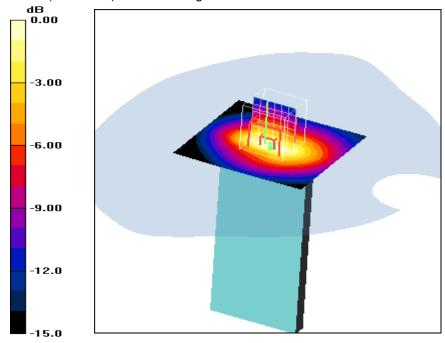
DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.3, 4.3, 4.3); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge bottom position - Middle/Area Scan (61x61x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.951 mW/g


Edge bottom position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.8 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.846 mW/g; SAR(10 g) = 0.471 mW/g Maximum value of SAR (measured) = 0.940 mW/g

0 dB = 0.940 mW/g

Additional information:

position or distance of DUT to SAM: 10mm

Date/Time: 30.09.2011 12:22:08Date/Time: 30.09.2011 12:32:36

OET65-Body-GSM1900 GPRS 2TS

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: GSM 1900 GPRS 2TS; Frequency: 1909.8 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

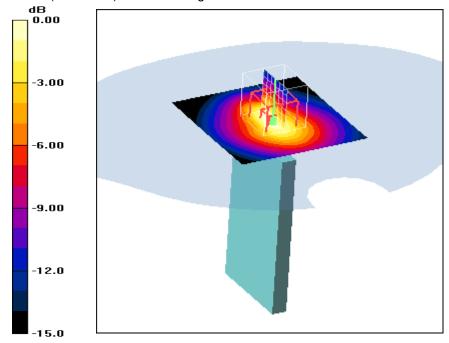
DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.3, 4.3, 4.3); Calibrated: 23.08.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 13.01.2011
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge bottom position - High/Area Scan (61x61x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.867 mW/g


Edge bottom position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.5 V/m; Power Drift = 0.025 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 0.788 mW/g; SAR(10 g) = 0.434 mW/g Maximum value of SAR (measured) = 0.884 mW/g

0 dB = 0.884 mW/g

Additional information:

position or distance of DUT to SAM: 10mm

Annex B.3: UMTS WCDMA FDD IV 1750MHz body

Date/Time: 23.09.2011 12:55:19Date/Time: 23.09.2011 13:04:38

OET65-Body-WCDMA FDD IV

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: WCDMA FDD IV; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: M1800 Medium parameters used (interpolated): f = 1732.4 MHz; σ = 1.46 mho/m; ϵ_r = 53; ρ = 1000

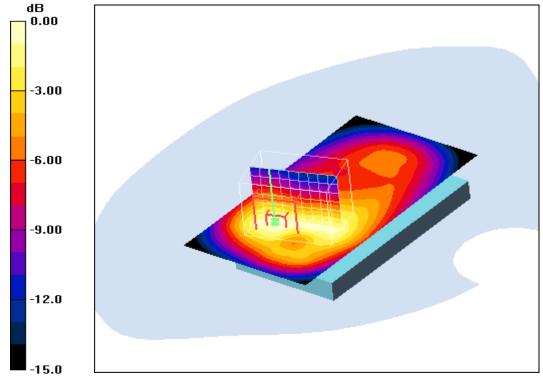
kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1559; ConvF(4.68, 4.68, 4.68); Calibrated: 19.01.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 04.05.2011
- Phantom: SAM left; Type: SAM; Serial: 1041
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.759 mW/g


Front position - Middle/Zoom Scan (7x7x7) (10x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.6 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 0.989 W/kg

SAR(1 g) = 0.702 mW/g; SAR(10 g) = 0.433 mW/g Maximum value of SAR (measured) = 0.773 mW/g

0 dB = 0.773 mW/g

Additional information:

position or distance of DUT to SAM: 10mm

Date/Time: 23.09.2011 12:20:57Date/Time: 23.09.2011 12:27:23

OET65-Body-WCDMA FDD IV

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: WCDMA FDD IV; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: M1800 Medium parameters used (interpolated): f = 1732.4 MHz; σ = 1.46 mho/m; ϵ_r = 53; ρ = 1000

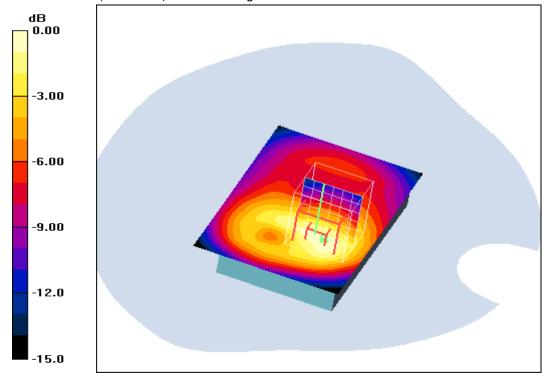
kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1559; ConvF(4.68, 4.68, 4.68); Calibrated: 19.01.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 04.05.2011
- Phantom: SAM left; Type: SAM; Serial: 1041
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.844 mW/g


Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.6 V/m; Power Drift = -0.091 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.778 mW/g; SAR(10 g) = 0.486 mW/g Maximum value of SAR (measured) = 0.853 mW/g

0 dB = 0.853 mW/g

Additional information:

position or distance of DUT to SAM: 10mm

Date/Time: 23.09.2011 13:24:57Date/Time: 23.09.2011 13:36:06

OET65-Body-WCDMA FDD IV

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: WCDMA FDD IV; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: M1800 Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 53$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

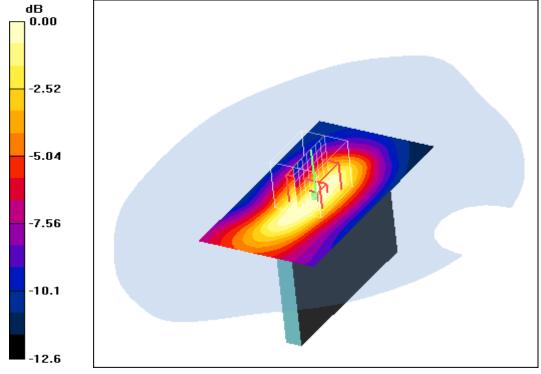
DASY4 Configuration:

- Probe: ET3DV6 SN1559; ConvF(4.68, 4.68, 4.68); Calibrated: 19.01.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 04.05.2011
- Phantom: SAM left; Type: SAM; Serial: 1041
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge left position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm,

dv=15mm

Maximum value of SAR (interpolated) = 0.262 mW/g


Edge left position - Middle/Zoom Scan (7x7x7) (7x8x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.6 V/m; Power Drift = 0.083 dB

Peak SAR (extrapolated) = 0.301 W/kg

SAR(1 g) = 0.221 mW/g; SAR(10 g) = 0.141 mW/g Maximum value of SAR (measured) = 0.242 mW/g

0 dB = 0.242 mW/g

Additional information:

position or distance of DUT to SAM: 10mm

Date/Time: 23.09.2011 13:53:19Date/Time: 23.09.2011 14:00:42

OET65-Body-WCDMA FDD IV

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: WCDMA FDD IV; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: M1800 Medium parameters used (interpolated): f = 1732.4 MHz; σ = 1.46 mho/m; ϵ_r = 53; ρ = 1000

kg/m³

Phantom section: Flat Section

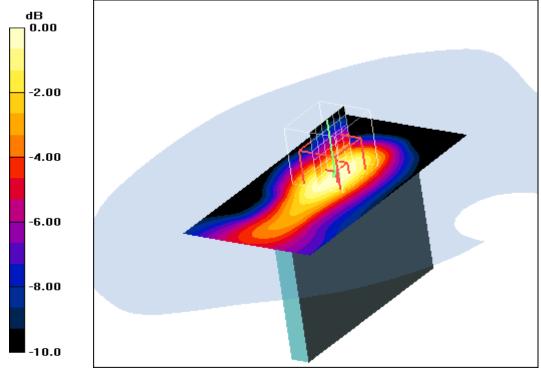
DASY4 Configuration:

- Probe: ET3DV6 SN1559; ConvF(4.68, 4.68, 4.68); Calibrated: 19.01.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 04.05.2011
- Phantom: SAM left; Type: SAM; Serial: 1041
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge right position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm,

dv=15mm

Maximum value of SAR (interpolated) = 0.218 mW/g


Edge right position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.1 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 0.259 W/kg

SAR(1 g) = 0.190 mW/g; SAR(10 g) = 0.121 mW/g Maximum value of SAR (measured) = 0.208 mW/g

0 dB = 0.208 mW/g

Additional information:

position or distance of DUT to SAM: 10mm

Date/Time: 23.09.2011 14:22:49Date/Time: 23.09.2011 14:29:05

OET65-Body-WCDMA FDD IV

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: WCDMA FDD IV; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium: M1800 Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 53$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

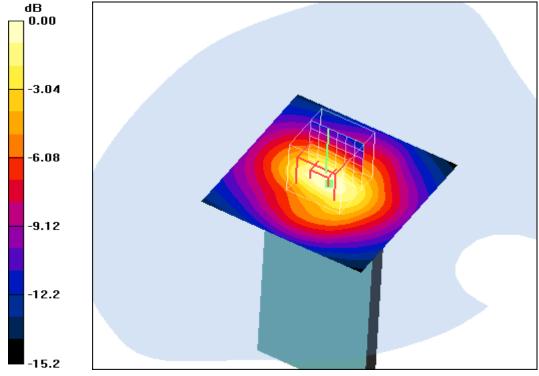
DASY4 Configuration:

- Probe: ET3DV6 SN1559; ConvF(4.68, 4.68, 4.68); Calibrated: 19.01.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 04.05.2011
- Phantom: SAM left; Type: SAM; Serial: 1041
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge bottom position - Middle/Area Scan (61x61x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.560 mW/g


Edge bottom position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.2 V/m; Power Drift = -0.088 dB

Peak SAR (extrapolated) = 0.796 W/kg

SAR(1 g) = 0.536 mW/g; SAR(10 g) = 0.300 mW/g Maximum value of SAR (measured) = 0.599 mW/g

0 dB = 0.599 mW/g

Additional information:

position or distance of DUT to SAM: 10mm

Annex B.4: WLAN 2450MHz body

Date/Time: 29.09.2011 17:59:17Date/Time: 29.09.2011 18:13:46

EN62209-2_OET65-Body-WLAN

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$

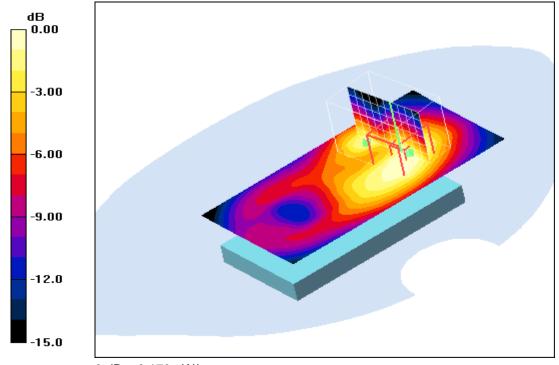
kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1559; ConvF(3.91, 3.91, 3.91); Calibrated: 19.01.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 04.05.2011
- Phantom: SAM right; Type: SAM; Serial: 1042
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.170 mW/g


Front position - Middle/Zoom Scan (7x7x7) (11x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.1 V/m; Power Drift = 0.100 dB

Peak SAR (extrapolated) = 0.249 W/kg

SAR(1 g) = 0.159 mW/g; SAR(10 g) = 0.094 mW/g Maximum value of SAR (measured) = 0.173 mW/g

0 dB = 0.173 mW/g

Additional information:

position or distance of DUT to SAM: 10 mm

Date/Time: 29.09.2011 18:37:54Date/Time: 29.09.2011 18:45:22

EN62209-2 OET65-Body-WLAN

DUT: RIM: Type: RDD71UW: Serial: 004401138391566

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r = 51.8$; $\rho = 1000$

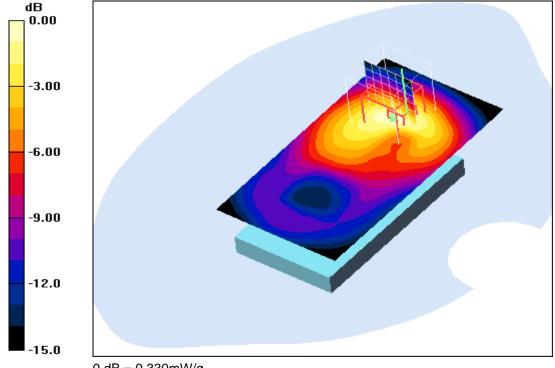
kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1559; ConvF(3.91, 3.91, 3.91); Calibrated: 19.01.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 04.05.2011
- Phantom: SAM right; Type: SAM; Serial: 1042
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.340 mW/g


Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.0 V/m; Power Drift = -0.175 dB

Peak SAR (extrapolated) = 0.487 W/kg

SAR(1 g) = 0.297 mW/g; SAR(10 g) = 0.162 mW/gMaximum value of SAR (measured) = 0.330 mW/g

0 dB = 0.330 mW/g

Additional information:

position or distance of DUT to SAM: 10 mm

Date/Time: 29.09.2011 20:14:36Date/Time: 29.09.2011 20:26:46

EN62209-2_OET65-Body-WLAN

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

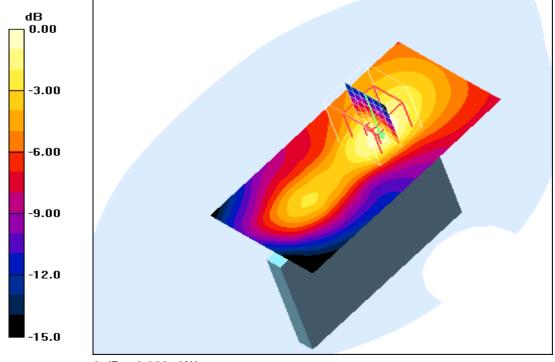
DASY4 Configuration:

- Probe: ET3DV6 SN1559; ConvF(3.91, 3.91, 3.91); Calibrated: 19.01.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 04.05.2011
- Phantom: SAM right; Type: SAM; Serial: 1042
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge left position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.078 mW/g


Edge left position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.43 V/m; Power Drift = -0.196 dB

Peak SAR (extrapolated) = 0.114 W/kg

SAR(1 g) = 0.074 mW/g; SAR(10 g) = 0.041 mW/g Maximum value of SAR (measured) = 0.082 mW/g

0 dB = 0.082 mW/g

Additional information:

position or distance of DUT to SAM: 10 mm

Date/Time: 29.09.2011 19:01:49Date/Time: 29.09.2011 19:09:32Date/Time: 29.09.2011 19:21:14

EN62209-2_OET65-Body-WLAN

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.97 mho/m; ϵ_r = 51.8; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1559; ConvF(3.91, 3.91, 3.91); Calibrated: 19.01.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 04.05.2011
- Phantom: SAM right; Type: SAM; Serial: 1042
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge right position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.068 mW/g

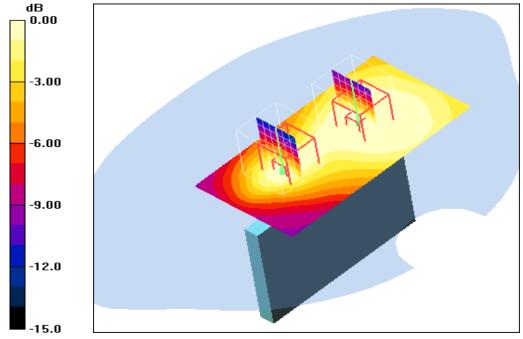
Edge right position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.27 V/m; Power Drift = -0.102 dB

Peak SAR (extrapolated) = 0.088 W/kg

SAR(1 g) = 0.062 mW/g; SAR(10 g) = 0.040 mW/g Maximum value of SAR (measured) = 0.067 mW/g


Edge right position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.27 V/m; Power Drift = -0.102 dB

Peak SAR (extrapolated) = 0.065 W/kg

SAR(1 g) = 0.044 mW/g; SAR(10 g) = 0.027 mW/g Maximum value of SAR (measured) = 0.049 mW/g

0 dB = 0.049 mW/q

Additional information:

position or distance of DUT to SAM: 10 mm

Date/Time: 29.09.2011 20:43:12Date/Time: 29.09.2011 20:53:42

EN62209-2_OET65-Body-WLAN

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.97 mho/m; ϵ_r = 51.8; ρ = 1000

kg/m³

Phantom section: Flat Section

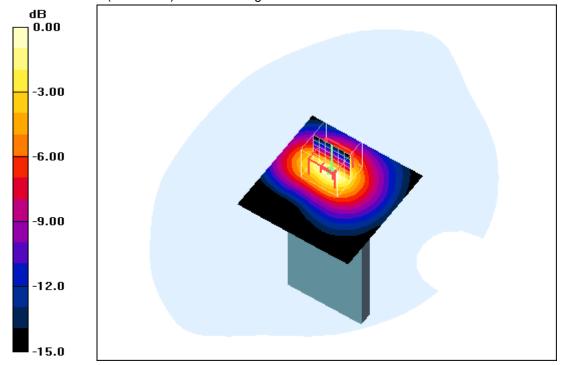
DASY4 Configuration:

- Probe: ET3DV6 SN1559; ConvF(3.91, 3.91, 3.91); Calibrated: 19.01.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 04.05.2011
- Phantom: SAM right; Type: SAM; Serial: 1042
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge top position - Middle/Area Scan (61x61x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.343 mW/g


Edge top position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.9 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 0.512 W/kg

SAR(1 g) = 0.308 mW/g; SAR(10 g) = 0.162 mW/g Maximum value of SAR (measured) = 0.353 mW/g

0 dB = 0.353 mW/a

Additional information:

position or distance of DUT to SAM: 10 mm

Annex B.5: Bluetooth 2450MHz body

Date/Time: 29.09.2011 10:17:55Date/Time: 29.09.2011 10:25:27

OET65-Body-BT

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1559; ConvF(3.91, 3.91, 3.91); Calibrated: 19.01.2011

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

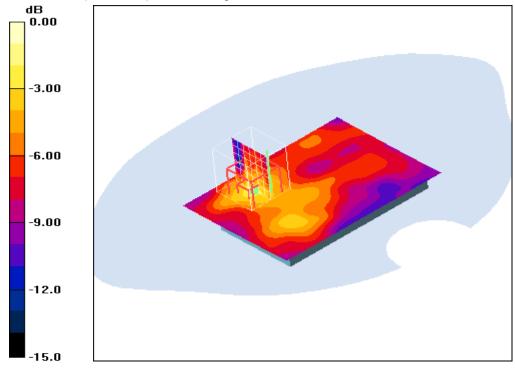
- Electronics: DAE3 Sn477; Calibrated: 04.05.2011

- Phantom: SAM right; Type: SAM; Serial: 1042

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Middle/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.01 mW/g

Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.46 V/m; Power Drift = -0.166 dB

Peak SAR (extrapolated) = 0.015 W/kg

SAR(1 g) = 0.00519 mW/g; SAR(10 g) = 0.00351 mW/g

Maximum value of SAR (measured) = 0.01 mW/g

0 dB = 0.010 mW/g

Additional information:

position or distance of DUT to SAM: 10 mm

Date/Time: 29.09.2011 10:41:07Date/Time: 29.09.2011 10:49:26Date/Time: 29.09.2011 11:01:18

OET65-Body-BT

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1559; ConvF(3.91, 3.91, 3.91); Calibrated: 19.01.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 04.05.2011
- Phantom: SAM right; Type: SAM; Serial: 1042
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.01 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

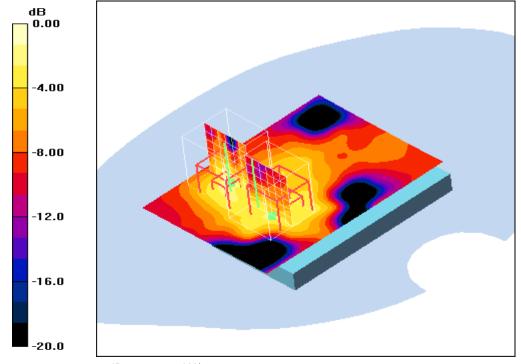
dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.92 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 0.013 W/kg

SAR(1 g) = 0.00707 mW/g; SAR(10 g) = 0.00399 mW/g

Maximum value of SAR (measured) = 0.01 mW/g


Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid:

dx=5mm, dv=5mm, dz=5mm

Reference Value = 1.92 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 0.01 W/kg

SAR(1 g) = 0.00458 mW/g; SAR(10 g) = 0.00315 mW/g

0 dB = 0.010 mW/g

Additional information:

position or distance of DUT to SAM: 10 mm

Date/Time: 29.09.2011 11:24:01Date/Time: 29.09.2011 11:31:18

OET65-Body-BT

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

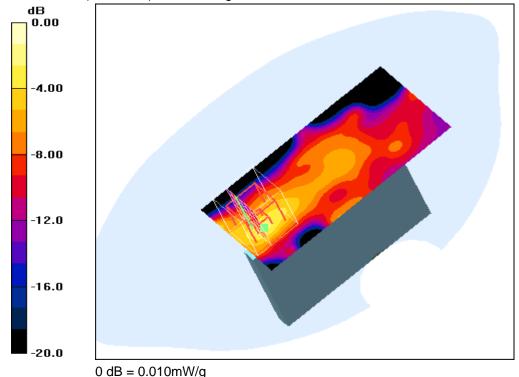
- Probe: ET3DV6 SN1559; ConvF(3.91, 3.91, 3.91); Calibrated: 19.01.2011
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 04.05.2011
- Phantom: SAM right; Type: SAM; Serial: 1042
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge right position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.01 mW/g

Edge right position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.94 V/m; Power Drift = -0.104 dB

Peak SAR (extrapolated) = 0.01 W/kg

SAR(1 g) = 0.00567 mW/g; SAR(10 g) = 0.00287 mW/g

Maximum value of SAR (measured) = 0.01 mW/g

Additional information:

position or distance of DUT to SAM: 10 mm

Date/Time: 29.09.2011 11:50:46Date/Time: 29.09.2011 12:00:08

OET65-Body-BT

DUT: RIM; Type: RDD71UW; Serial: 004401138391566

Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1559; ConvF(3.91, 3.91, 3.91); Calibrated: 19.01.2011

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn477; Calibrated: 04.05.2011

- Phantom: SAM right; Type: SAM; Serial: 1042

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 146

Edge bottom position - Middle/Area Scan (71x61x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.00 mW/g

Edge bottom position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

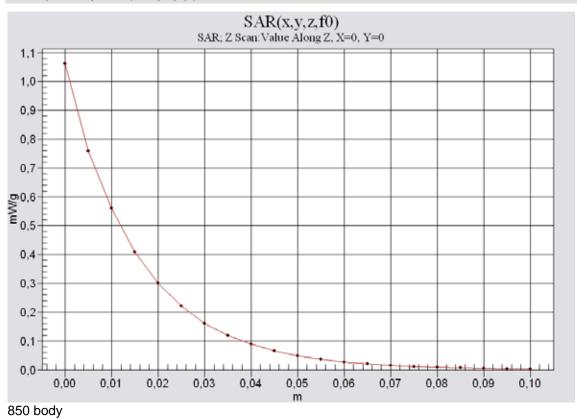
Measurement grid: dx=5mm, dy=5mm, dz=5mm

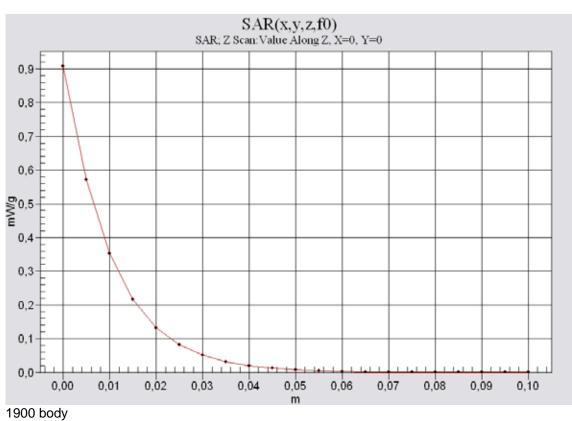
Reference Value = 1.03 V/m; Power Drift = 0.139 dB

Peak SAR (extrapolated) = 0.00 W/kg

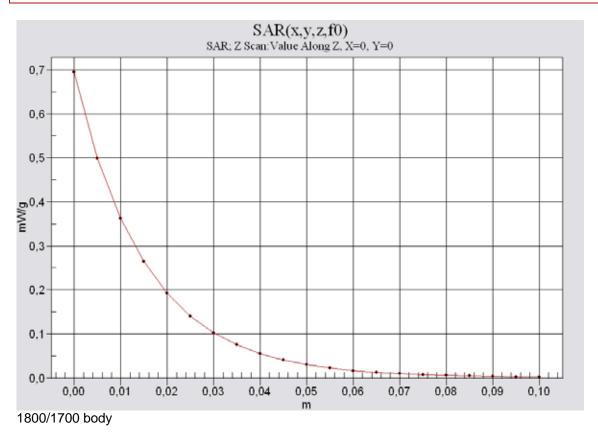
SAR(1 g) = 0.00146 mW/g; SAR(10 g) = 0.00077 mW/g

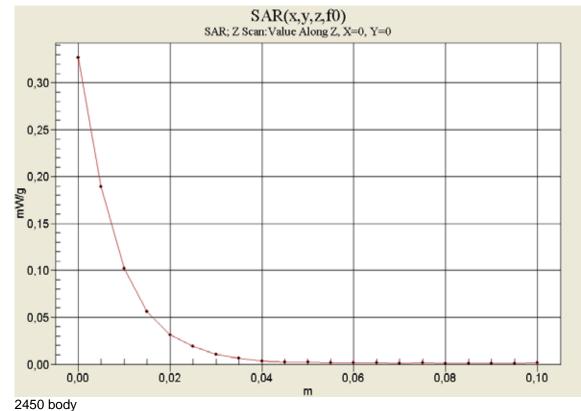
Maximum value of SAR (measured) = 0.00 mW/g




Additional information:

position or distance of DUT to SAM: 10 mm




Annex B.6: Z-axis scan

Annex B.7: Liquid depth

Photo 2: Liquid depth 1900 MHz body simulating liquid

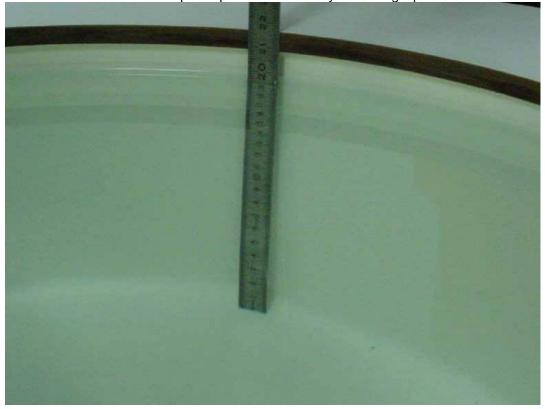


Photo 3: Liquid depth 1800 MHz body simulating liquid

Photo 4: Liquid depth 2450 MHz body simulating liquid

Annex C: Photo documentation

Photo documentation is described in the additional document:

Appendix to test report no. 1-3851/11-01-12 Photo documentation

Annex D:	RF	Technical	Brief	Cover	Sheet	acc. t	0	RSS-1	02	Annex	Α
----------	----	-----------	-------	-------	-------	--------	---	-------	----	-------	---

1. COMPANY NUMBER: 2503A						
2. MODEL NUMBER: RDD70UW						
3. MANUFACTURER: Research In Motion Limited						
4. TYPE OF EVALUATION:						
SAR Evaluation: Body-worn Device ■ Multiple transmitters: Yes ⊠ No □						
 Evaluated against exposure limits: G Duty cycle used in evaluation: 25 % Standard used for evaluation: RSS-1 	General Public Use ⊠ Controlled Use □ 02 Issue 4 (2010-03)					
• SAR value: 1.340 W/kg .	Measured ⊠ Computed □ Calculated □					

Annex D.8: Declaration of RF Exposure Compliance

ATTESTATION: I attest that the information provided in Annex D: is correct; that a Technical Brief was prepared and the information it contains is correct; that the device evaluation was performed or supervised by me; that applicable measurement methods and evaluation methodologies have been followed and that the device meets the SAR and/or RF exposure limits of RSS-102.

Signature:

NAME: Thomas Vogler

TITLE: Dipl.-Ing. (FH)

COMPANY: CETECOM ICT Services GmbH

Annex E: Calibration parameters

Calibration parameters are described in the additional document :

Appendix to test report no. 1-3851/11-01-12 Calibration data, Phantom certificate and detail information of the DASY4 System

Annex F: Document History

Version	Applied Changes	Date of Release		
	Initial Release	2011-10-24		

Annex G: Further Information

Glossary

DUT - Device under Test EUT - Equipment under Test

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware
IC - Industry Canada
Inv. No. - Inventory number
N/A - not applicable

SAR - Specific Absorption Rate

S/N - Serial Number SW - Software