| Testing<br>Services™ | Appendix D for the Blac<br>SAR Report | kBerry® Smartphone | e Model RCZ31CV | N Page 1(47) |
|----------------------|---------------------------------------|--------------------|-----------------|--------------|
| Author Data          | Dates of Test                         | Test Report No     | FCC ID:         | IC ID:       |
| Andrew Becker        | Mar 12 – Mar 30, 2010                 | 2503A-RCZ30CW      |                 |              |

### APPENDIX D: PROBE & DIPOLE CALIBRATION DATA



2(47)

Author Data **Andrew Becker**  Dates of Test

Mar 12 - Mar 30, 2010

Test Report No RTS-2068-1004-37 FCC ID:

IC ID:

2503A-RCZ30CW L6ARCZ30CW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





С Servizio svizzero di taratura Swiss Calibration Service

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

s

#### RTS (RIM Testing Services) Certificate No: ES3-3225\_Dec09 CALIBRATION CERTIFICATE ES3DV3 - SN:3225 Object QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes auditeleget getig getig in ander. A how the second national desired and the second second December 11, 2009 Calibration date This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration GB41293874 Power meter E4419B 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41495277 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41498087 1-Apr-09 (No. 217-01030) Apr-10 Reference 3 dB Attenuator SN: S5054 (3c) 31-Mar-09 (No. 217-01026) Mar-10 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-09 (No. 217-01028) Mar-10 Reference 30 dB Attenuator SN: S5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 Reference Probe ES3DV2 SN: 3013 2-Jan-09 (No. ES3-3013\_Jan09) Jan-10 DAE4 SN: 660 29-Sep-09 (No. DAE4-660\_Sep09) Sep-10 Scheduled Check Secondary Standards ID# Check Date (in house) RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name Function Laboratory Technician Calibrated by: Claudio Leubier Approved by: Technical Manager Issued: December 11, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ES3-3225\_Dec09

Page 1 of 11



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

3(47)

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No RTS-2068-1004-37 FCC ID: L6ARCZ30CW

IC ID:

2503A-RCZ30CW

### Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ orotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
   NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
  power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
  maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

\_\_\_\_\_

Certificate No: ES3-3225\_Dec09

Page 2 of 11

| Testing<br>Services™ | Appendix D for the Blac SAR Report | kBerry® Smartphono | e Model RCZ31CV | N   Page 4(47) |
|----------------------|------------------------------------|--------------------|-----------------|----------------|
| Author Data          | Dates of Test                      | Test Report No     | FCC ID:         | IC ID:         |
| Andrew Becker        | Mar 12 – Mar 30, 2010              | RTS-2068-1004-37   | L6ARCZ30CW      | 2503A-RCZ30CW  |

# Probe ES3DV3

SN:3225

Manufactured: September 1, 2009 Calibrated: December 11, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3225\_Dec09 Page 3 of 11



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

Fage **5(47)** 

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

IC ID: **2503A-RCZ30CW** 

ES3DV3 SN:3225

December 11, 2009

### DASY - Parameters of Probe: ES3DV3 SN:3225

### **Basic Calibration Parameters**

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (µV/(V/m) <sup>2</sup> ) <sup>A</sup> | 1.26     | 1.22     | 1.32     | ± 10.1%   |
| DCP (mV) <sup>II</sup>                     | 92.3     | 94.8     | 92.7     |           |

### **Modulation Calibration Parameters**

| UID   | Communication System Name | PAR  |   | A<br>dB | B<br>dBuV | С    | VR<br>mV | Unc <sup>t</sup><br>(k=2) |
|-------|---------------------------|------|---|---------|-----------|------|----------|---------------------------|
| 10000 | cw                        | 0.00 | х | 0.00    | 0.00      | 1.00 | 300.0    | ± 1.5%                    |
|       |                           |      | Y | 0.00    | 0.00      | 1.00 | 300.0    |                           |
|       |                           |      | Z | 0.00    | 0.00      | 1.00 | 300.0    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3225\_Dec09

<sup>&</sup>lt;sup>a</sup> The uncertainties of NormX,Y.Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

<sup>&</sup>lt;sup>5</sup> Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

| Testing<br>Services™ | N 6(47)               |                  |            |               |
|----------------------|-----------------------|------------------|------------|---------------|
| Author Data          | Dates of Test         | Test Report No   | FCC ID:    | IC ID:        |
| Andrew Becker        | Mar 12 – Mar 30, 2010 | RTS-2068-1004-37 | L6ARCZ30CW | 2503A-RCZ30CW |

### DASY - Parameters of Probe: ES3DV3 SN:3225

### Calibration Parameter Determined in Head Tissue Simulating Media

| f [MHz] | Validity [MHz] <sup>C</sup> | Permittivity   | Conductivity   | ConvFX Co | nvFY Cor | ıvF Z | Alpha | Depth Unc (k=2) |
|---------|-----------------------------|----------------|----------------|-----------|----------|-------|-------|-----------------|
| 900     | ± 50 / ± 100                | $41.5 \pm 5\%$ | $0.97 \pm 5\%$ | 6.12      | 6.12     | 6.12  | 0.99  | 1.07 ± 11.0%    |
| 1810    | ± 50 / ± 100                | 40.0 ± 5%      | 1.40 ± 5%      | 5.14      | 5.14     | 5.14  | 0.46  | 1.60 ± 11.0%    |
| 1950    | ± 50 / ± 100                | $40.0 \pm 5\%$ | 1.40 ± 5%      | 4.96      | 4.96     | 4.96  | 0.47  | 1.57 ± 11.0%    |
| 2450    | ± 50 / ± 100                | 39.2 ± 5%      | 1.80 ± 5%      | 4.53      | 4.53     | 4.53  | 0.41  | 1.89 ± 11.0%    |

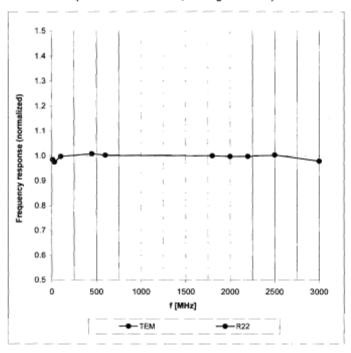
The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

| Testing<br>Services™ | Appendix D for the Blac<br>SAR Report | kBerry® Smartphono | e Model RCZ31CV | W Page 7(47)  |
|----------------------|---------------------------------------|--------------------|-----------------|---------------|
| Author Data          | Dates of Test                         | Test Report No     | FCC ID:         | IC ID:        |
| Andrew Becker        | Mar 12 – Mar 30, 2010                 | RTS-2068-1004-37   | L6ARCZ30CW      | 2503A-RCZ30CW |

### DASY - Parameters of Probe: ES3DV3 SN:3225

### Calibration Parameter Determined in Body Tissue Simulating Media

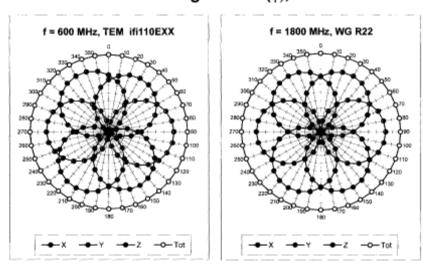
| f [MHz] | Validity [MHz] <sup>C</sup> | Permittivity   | Conductivity   | ConvFX Co | nvFY Conv | F Z  | Alpha | Depth Unc (k=2) |
|---------|-----------------------------|----------------|----------------|-----------|-----------|------|-------|-----------------|
| 900     | ± 50 / ± 100                | 55.0 ± 5%      | $1.05 \pm 5\%$ | 5.97      | 5.97      | 5.97 | 0.98  | 1.12 ± 11.0%    |
| 1810    | ±50/±100                    | $53.3 \pm 5\%$ | 1.52 ± 5%      | 4.90      | 4.90      | 4.90 | 0.35  | 2.07 ± 11.0%    |
| 1950    | ±50/±100                    | 53.3 ± 5%      | 1.52 ± 5%      | 4.83      | 4.83      | 4.83 | 0.32  | 2.45 ± 11.0%    |
| 2450    | ±50/±100                    | 52.7 ± 5%      | 1.95 ± 5%      | 4.32      | 4.32      | 4.32 | 0.74  | 1.27 ± 11.0%    |

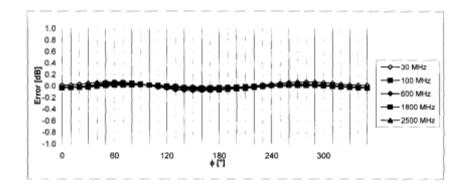

<sup>&</sup>lt;sup>c</sup> The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3225\_Dec09

|               | Appendix D for the Black SAR Report | kBerry® Smartphone | e Model RCZ31CV | W 8(47) |
|---------------|-------------------------------------|--------------------|-----------------|---------|
| Author Data   | Dates of Test                       | Test Report No     | FCC ID:         | IC ID:  |
| Andrew Becker | Mar 12 – Mar 30, 2010               | 2503A-RCZ30CW      |                 |         |

# Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

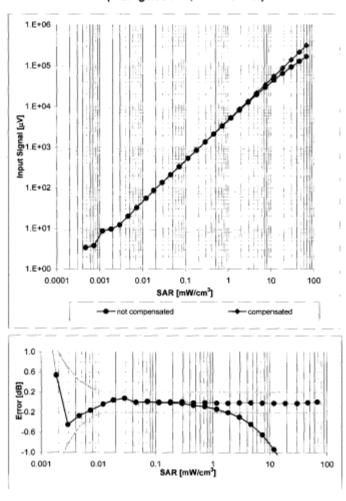



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

| Testing<br>Services™ | Appendix D for the Blac<br>SAR Report | kBerry® Smartphono | e Model RCZ31CV | W 9(47) |
|----------------------|---------------------------------------|--------------------|-----------------|---------|
| Author Data          | Dates of Test                         | Test Report No     | FCC ID:         | IC ID:  |
| Andrew Becker        | Mar 12 – Mar 30, 2010                 | 2503A-RCZ30CW      |                 |         |

# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$






Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

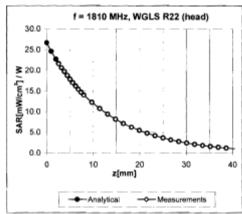
| Testing<br>Services™ | Appendix D for the Black SAR Report | kBerry® Smartphone | e Model RCZ31CV | W 10(47)      |
|----------------------|-------------------------------------|--------------------|-----------------|---------------|
| Author Data          | Dates of Test                       | Test Report No     | FCC ID:         | IC ID:        |
| Andrew Becker        | Mar 12 – Mar 30, 2010               | RTS-2068-1004-37   | L6ARCZ30CW      | 2503A-RCZ30CW |

# Dynamic Range f(SAR<sub>head</sub>)

(Waveguide R22, f = 1800 MHz)

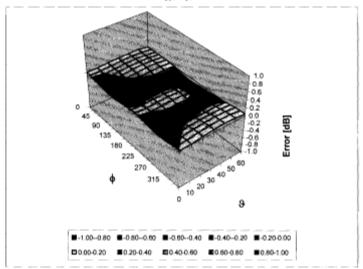



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ES3-3225\_Dec09

Page 9 of 11

| Testing<br>Services™ | Appendix D for the Blac<br>SAR Report | kBerry® Smartphono | e Model RCZ31CV | N Page 11(47) |
|----------------------|---------------------------------------|--------------------|-----------------|---------------|
| Author Data          | Dates of Test                         | Test Report No     | FCC ID:         | IC ID:        |
| Andrew Becker        | Mar 12 – Mar 30, 2010                 | RTS-2068-1004-37   | L6ARCZ30CW      | 2503A-RCZ30CW |


### **Conversion Factor Assessment**





# Deviation from Isotropy in HSL

Error (¢, 9), f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3225\_Dec09 Page 10 of 11



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

12(47)

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

IC ID: **2503A-RCZ30CW** 

ES3DV3 SN:3225

December 11, 2009

### Other Probe Parameters

| Sensor Arrangement                            | Triangular     |
|-----------------------------------------------|----------------|
| Connector Angle (°)                           | Not applicable |
| Mechanical Surface Detection Mode             | enabled        |
| Optical Surface Detection Mode                | disabled       |
| Probe Overall Length                          | 337 mm         |
| Probe Body Diameter                           | 10 mm          |
| Tip Length                                    | 10 mm          |
| Tip Diameter                                  | 4.0 mm         |
| Probe Tip to Sensor X Calibration Point       | 2 mm           |
| Probe Tip to Sensor Y Calibration Point       | 2 mm           |
| Probe Tip to Sensor Z Calibration Point       | 2 mm           |
| Recommended Measurement Distance from Surface | 3 mm           |
|                                               |                |



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

13(47)

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

IC ID:

2503A-RCZ30CW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RTS (RIM Testing Services)

Accreditation No.: SCS 108

Certificate No: ET3-1644\_Nov09

#### CALIBRATION CERTIFICATE ET3DV6 - SN:1644 Object QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes November 11, 2009 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Apr-10 Power meter E4419B GB41293874 1-Apr-09 (No. 217-01030) MY41495277 Pawer sensor E4412A 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41498087 1-Apr-09 (No. 217-01030) Apr-10 Reference 3 dB Attenuator SN: S5054 (3c) 31-Mar-09 (No. 217-01026) Mar-10 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-09 (No. 217-01028) Mar-10 Reference 30 dB Attenuator SN: S5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 Reference Probe ES3DV2 SN: 3013 2-Jan-09 (No. ES3-3013\_Jan09) Jan-10 DAE4 SN: 660 29-Sep-09 (No. DAE4-660\_Sep09) Sep-10 Secondary Standards Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name Function Calibrated by: Laboratory Technician Approved by: Katja Pokovic Issued: November 14, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ET3-1644 Nov09

Page 1 of 11



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

14(47)

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No

RTS-2068-1004-37

FCC ID: L6ARCZ30CW

IC ID:

**2503A-RCZ30CW** 

### Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

### Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
   NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
  power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
  maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

| Certificate No: ET3-1644 Nov09 | Page 2 of 11 |  |
|--------------------------------|--------------|--|

| Testing<br>Services™ | Appendix D for the Blac<br>SAR Report | kBerry® Smartphone                                           | e Model RCZ31CV | W Page 15(47) |  |  |  |
|----------------------|---------------------------------------|--------------------------------------------------------------|-----------------|---------------|--|--|--|
| Author Data          | Dates of Test                         | Test Report No                                               | FCC ID:         | IC ID:        |  |  |  |
| Andrew Becker        | Mar 12 – Mar 30, 2010                 | Aar 12 – Mar 30, 2010   RTS-2068-1004-37   L6ARCZ30CW   2503 |                 |               |  |  |  |

# Probe ET3DV6

SN:1644

Manufactured: November 7, 2001 Last calibrated: November 10, 2008 Recalibrated: November 11, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1644\_Nov09



Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

16(47)

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

IC ID: **2503A-RCZ30CW** 

ET3DV6 SN:1644

November 11, 2009

### DASY - Parameters of Probe: ET3DV6 SN:1644

### **Basic Calibration Parameters**

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (µV/(V/m) <sup>2</sup> ) <sup>A</sup> | 1.85     | 1.95     | 1.93     | ± 10.1%   |
| DCP (mV) <sup>8</sup>                      | 93.6     | 93.0     | 91.9     |           |

### **Modulation Calibration Parameters**

| UID   | Communication System Name | PAR  |   | A<br>dB | B<br>dBuV | С    | VR<br>mV | Unc<br>(k=2) |
|-------|---------------------------|------|---|---------|-----------|------|----------|--------------|
| 10000 | cw                        | 0.00 | × | 0.00    | 0.00      | 1.00 | 300      | ± 1.5%       |
|       |                           |      | Y | 0.00    | 0.00      | 1.00 | 300      |              |
|       |                           |      | z | 0.00    | 0.00      | 1.00 | 300      |              |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1644\_Nov09

<sup>4</sup> The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

| Testing<br>Services™ | Appendix D for the Blac SAR Report | kBerry® Smartphono                                           | e Model RCZ31CV | N 17(47) |  |  |  |
|----------------------|------------------------------------|--------------------------------------------------------------|-----------------|----------|--|--|--|
| Author Data          | Dates of Test                      | Test Report No                                               | FCC ID:         | IC ID:   |  |  |  |
| Andrew Becker        | Mar 12 – Mar 30, 2010              | Mar 12 – Mar 30, 2010   RTS-2068-1004-37   L6ARCZ30CW   2503 |                 |          |  |  |  |

## DASY - Parameters of Probe: ET3DV6 SN:1644

### Calibration Parameter Determined in Head Tissue Simulating Media

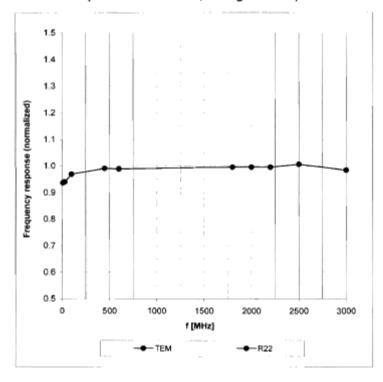
| f [MHz] | Validity [MHz] <sup>C</sup> | Permittivity | Conductivity | ConvF X Co | nvFY Co | nvF Z | Alpha | Depth Unc (k=2) |
|---------|-----------------------------|--------------|--------------|------------|---------|-------|-------|-----------------|
| 900     | ±50/±100                    | 41.5 ± 5%    | 0.97 ± 5%    | 6.08       | 6.08    | 6.08  | 0.42  | 2.29 ± 11.0%    |
| 1810    | ± 50 / ± 100                | 40.0 ± 5%    | 1.40 ± 5%    | 5.17       | 5.17    | 5.17  | 0.61  | 2.31 ± 11.0%    |
| 2450    | ± 50 / ± 100                | 39.2 ± 5%    | 1.80 ± 5%    | 4.50       | 4.50    | 4.50  | 0.99  | 1.61 ± 11.0%    |

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

| Testing<br>Services™ | Appendix D for the Blac<br>SAR Report | kBerry® Smartphone                                            | e Model RCZ31CV | N   Page   18(47) |  |  |  |
|----------------------|---------------------------------------|---------------------------------------------------------------|-----------------|-------------------|--|--|--|
| Author Data          | Dates of Test                         | Test Report No                                                | FCC ID:         | IC ID:            |  |  |  |
| Andrew Becker        | Mar 12 – Mar 30, 2010                 | Mar 12 – Mar 30, 2010   RTS-2068-1004-37   L6ARCZ30CW   2503A |                 |                   |  |  |  |

# DASY - Parameters of Probe: ET3DV6 SN:1644

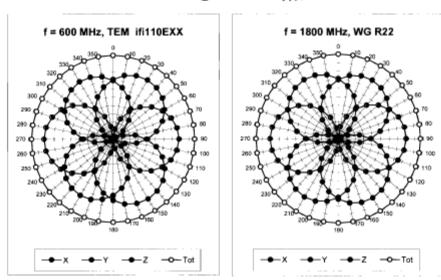
### Calibration Parameter Determined in Body Tissue Simulating Media

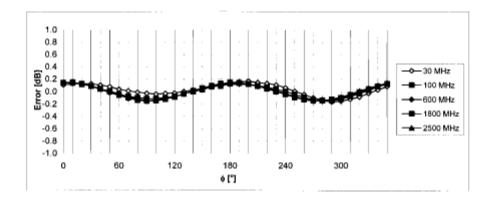

| f [MHz] | Validity [MHz] <sup>C</sup> | Permittivity   | Conductivity | ConvFX Cor | nvFY Co | nvF Z | Alpha | Depth Unc (k=2) | _ |
|---------|-----------------------------|----------------|--------------|------------|---------|-------|-------|-----------------|---|
| 900     | ±50/±100                    | $55.0 \pm 5\%$ | 1.05 ± 5%    | 5.87       | 5.87    | 5.87  | 0.41  | 2.55 ± 11.0%    |   |
| 1810    | ±50/±100                    | 53.3 ± 5%      | 1.52 ± 5%    | 4.69       | 4.69    | 4.69  | 0.79  | 2.57 ± 11.0%    |   |
| 2450    | ±50/±100                    | 52.7 ± 5%      | 1.95 ± 5%    | 4.11       | 4.11    | 4.11  | 0.99  | 1.41 ± 11.0%    |   |

<sup>&</sup>lt;sup>c</sup> The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

| Testing<br>Services™ | Appendix D for the Blac<br>SAR Report | kBerry® Smartphone                                          | e Model RCZ31CV | W Page 19(47) |  |  |  |
|----------------------|---------------------------------------|-------------------------------------------------------------|-----------------|---------------|--|--|--|
| Author Data          | Dates of Test                         | Test Report No                                              | FCC ID:         | IC ID:        |  |  |  |
| Andrew Becker        | Mar 12 – Mar 30, 2010                 | Iar 12 – Mar 30, 2010   RTS-2068-1004-37   L6ARCZ30CW   250 |                 |               |  |  |  |

# Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

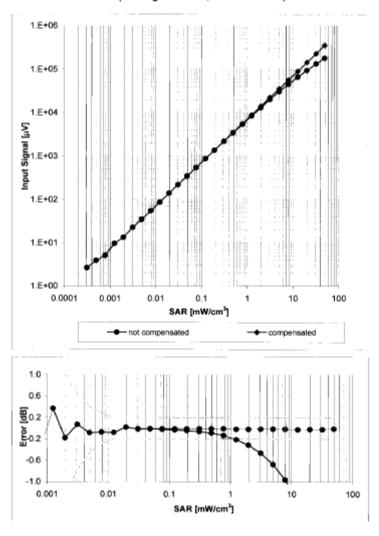



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

| Testing<br>Services™ | Appendix D for the Blac<br>SAR Report | kBerry® Smartphone                                                    | e Model RCZ31CV | W Page 20(47) |  |  |  |
|----------------------|---------------------------------------|-----------------------------------------------------------------------|-----------------|---------------|--|--|--|
| Author Data          | Dates of Test                         | Test Report No                                                        | FCC ID:         | IC ID:        |  |  |  |
| Andrew Becker        | Mar 12 – Mar 30, 2010                 | Mar 12 – Mar 30, 2010   RTS-2068-1004-37   L6ARCZ30CW   2503A-RCZ30CW |                 |               |  |  |  |

# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

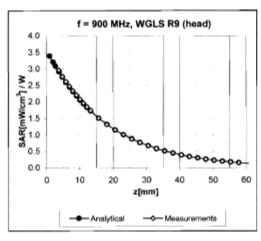


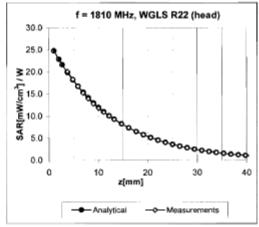



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

| Testing<br>Services™ | Appendix D for the Blac<br>SAR Report | kBerry® Smartphone                                                    | e Model RCZ31CV | W Page 21(47) |  |  |  |
|----------------------|---------------------------------------|-----------------------------------------------------------------------|-----------------|---------------|--|--|--|
| Author Data          | Dates of Test                         | Test Report No                                                        | FCC ID:         | IC ID:        |  |  |  |
| Andrew Becker        | Mar 12 – Mar 30, 2010                 | Mar 12 – Mar 30, 2010   RTS-2068-1004-37   L6ARCZ30CW   2503A-RCZ30CW |                 |               |  |  |  |

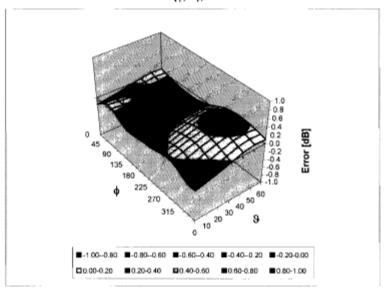
# Dynamic Range f(SAR<sub>head</sub>)


(Waveguide R22, f = 1800 MHz)



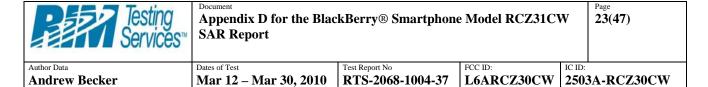

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

| Testing<br>Services™ | Appendix D for the Blac<br>SAR Report | kBerry® Smartphono | e Model RCZ31CV | N Page 22(47) |
|----------------------|---------------------------------------|--------------------|-----------------|---------------|
| Author Data          | Dates of Test                         | Test Report No     | FCC ID:         | IC ID:        |
| Andrew Becker        | Mar 12 – Mar 30, 2010                 | RTS-2068-1004-37   | L6ARCZ30CW      | 2503A-RCZ30CW |


### Conversion Factor Assessment






## Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1644\_Nov09



## **Other Probe Parameters**

| Sensor Arrangement                            | Triangular     |
|-----------------------------------------------|----------------|
| Connector Angle (°)                           | Not applicable |
| Mechanical Surface Detection Mode             | enabled        |
| Optical Surface Detection Mode                | enabled        |
| Probe Overall Length                          | 337 mm         |
| Probe Body Diameter                           | 10 mm          |
| Tip Length                                    | 10 mm          |
| Tip Diameter                                  | 6.8 mm         |
| Probe Tip to Sensor X Calibration Point       | 2.7 mm         |
| Probe Tip to Sensor Y Calibration Point       | 2.7 mm         |
| Probe Tip to Sensor Z Calibration Point       | 2.7 mm         |
| Recommended Measurement Distance from Surface | 4 mm           |



24(47)

Author Data **Andrew Becker**  Dates of Test

Mar 12 - Mar 30, 2010

Test Report No RTS-2068-1004-37 FCC ID:

S

C

L6ARCZ30CW

IC ID: 2503A-RCZ30CW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

RTS (RIM Testing Services)

Certificate No: D835V2-446 Jan09

Accreditation No.: SCS 108

|                                                                                                                                                                                               | ting Services)                                                                                                          |                                                                                                                                                                                                                                                   |                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| CALIBRATION C                                                                                                                                                                                 | CERTIFICATE                                                                                                             |                                                                                                                                                                                                                                                   |                                                                                                           |
| Object                                                                                                                                                                                        | D835V2 - SN: 44                                                                                                         | 6                                                                                                                                                                                                                                                 |                                                                                                           |
| Calibration procedure(s)                                                                                                                                                                      | QA CAL-05.v7<br>Calibration proce                                                                                       | dure for dipole validation kits                                                                                                                                                                                                                   |                                                                                                           |
| Calibration date:                                                                                                                                                                             | January 05, 2009                                                                                                        |                                                                                                                                                                                                                                                   |                                                                                                           |
| Condition of the calibrated item                                                                                                                                                              | In Tolerance                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                           |
| Calibration Equipment used (M&)                                                                                                                                                               |                                                                                                                         | y facility: environment temperature (22 ± 3                                                                                                                                                                                                       | y a mad thatmany - 1979-                                                                                  |
| Primary Standards                                                                                                                                                                             | ID#                                                                                                                     | Cal Date (Certificate No.)                                                                                                                                                                                                                        | Scheduled Calibration                                                                                     |
| ower meter EPM-442A                                                                                                                                                                           | GB37480704                                                                                                              | 08-Oct-08 (No. 217-00898)                                                                                                                                                                                                                         | Oct-09                                                                                                    |
| ower sensor HP 8481A                                                                                                                                                                          | US37292783                                                                                                              | 08-Oct-08 (No. 217-00898)                                                                                                                                                                                                                         | Oct-09                                                                                                    |
| 리트(METALON AND AND AND AND AND AND AND AND AND AN                                                                                                                                             |                                                                                                                         | [                                                                                                                                                                                                                                                 | 000000                                                                                                    |
|                                                                                                                                                                                               | SN: 5086 (20g)                                                                                                          | 01-Jul-08 (No. 217-00864)                                                                                                                                                                                                                         | Jul-09                                                                                                    |
| ype-N mismatch combination                                                                                                                                                                    | SN: 5047.2 / 06327                                                                                                      | 01-Jul-08 (No. 217-00867)                                                                                                                                                                                                                         | Jul-09                                                                                                    |
| ype-N mismatch combination<br>Reference Probe ES3DV2                                                                                                                                          | SN: 5047.2 / 06327<br>SN: 3025                                                                                          | 01-Jul-08 (No. 217-00867)<br>28-Apr-08 (No. ES3-3025_Apr08)                                                                                                                                                                                       |                                                                                                           |
| Type-N mismatch combination<br>Reference Probe ES3DV2<br>DAE4                                                                                                                                 | SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601                                                                               | 01-Jul-08 (No. 217-00867)<br>28-Apr-08 (No. ES3-3025_Apr08)<br>14-Mar-08 (No. DAE4-601_Mar08)                                                                                                                                                     | Jul-09<br>Apr-09<br>Mar-09                                                                                |
| Type-N mismatch combination<br>Reference Probe ES3DV2<br>DAE4<br>Secondary Standards                                                                                                          | SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601                                                                               | 01-Jul-08 (No. 217-00867)<br>28-Apr-08 (No. ES3-3025_Apr08)<br>14-Mar-08 (No. DAE4-601_Mar08)<br>Check Date (in house)                                                                                                                            | Jul-09<br>Apr-09<br>Mar-09<br>Scheduled Check                                                             |
| Type-N mismatch combination<br>Reference Probe ES3DV2<br>DAE4<br>Secondary Standards<br>Power sensor HP 8481A                                                                                 | SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601<br>ID #<br>MY41092317                                                         | 01-Jul-08 (No. 217-00867)<br>28-Apr-08 (No. ES3-3025_Apr08)<br>14-Mar-08 (No. DAE4-601_Mar08)<br>Check Date (in house)<br>18-Oct-02 (in house check Oct-07)                                                                                       | Jul-09<br>Apr-09<br>Mar-09<br>Scheduled Check<br>In house check: Oct-09                                   |
| ype-N mismatch combination<br>Reference Probe ES3DVZ<br>JAE4<br>Secondary Standards<br>Sower sensor HP 8481A<br>RF generator R&S SMT-06                                                       | SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601                                                                               | 01-Jul-08 (No. 217-00867)<br>28-Apr-08 (No. ES3-3025_Apr08)<br>14-Mar-08 (No. DAE4-601_Mar08)<br>Check Date (in house)                                                                                                                            | Jul-09<br>Apr-09<br>Mar-09<br>Scheduled Check                                                             |
| Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06                                                                     | SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601<br>ID #<br>MY41092317<br>100005<br>US37390585 S4206                           | 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-09 (in house check Oct-07) 18-Oct-01 (in house check Oct-07)                                | Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09                        |
| Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Wetwork Analyzer HP 8753E                                           | SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601<br>ID #<br>MY41092317<br>100005<br>US37390585 S4206<br>Name                   | 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08)  Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)  Function                     | Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09                        |
| Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Wetwork Analyzer HP 8753E                                           | SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601<br>ID #<br>MY41092317<br>100005<br>US37390585 S4206                           | 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-09 (in house check Oct-07) 18-Oct-01 (in house check Oct-07)                                | Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09                        |
| Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RP generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: | SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601<br>ID #<br>MY41092317<br>100005<br>US37390585 S4206<br>Name                   | 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08)  Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)  Function                     | Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09 |
| Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:                            | SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601<br>ID #<br>MY41092317<br>100005<br>US37390585 S4206<br>Name<br>Jeton Kastrati | 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08) Function Laboratory Technician | Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09                        |

Certificate No: D835V2-446\_Jan09

Page 1 of 6



25(47)

Author Data Andrew Becker Dates of Test Mar 12 – Mar 30, 2010 Test Report No RTS-2068-1004-37 FCC ID: L6ARCZ30CW

IC ID: 2503A-RCZ30CW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

tissue simulating liquid TSL

sensitivity in TSL / NORM x,y,z ConvF not applicable or not measured N/A

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

| Certificate No: D835V2-446_Jan09 | Page 2 of 6 |  |
|----------------------------------|-------------|--|



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

26(47)

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

IC ID: **2503A-RCZ30CW** 

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                     | V5.0        |
|------------------------------|---------------------------|-------------|
| Extrapolation                | Advanced Extrapolation    |             |
| Phantom                      | Modular Flat Phantom V4.9 |             |
| Distance Dipole Center - TSL | 15 mm                     | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         |             |
| Frequency                    | 835 MHz ± 1 MHz           |             |

### Head TSL parameters

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 41.3 ± 6 %   | 0.91 mho/m ± 6 % |
| Head TSL temperature during test | (21.5 ± 0.2) °C | ****         |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.40 mW/g                |
| SAR normalized                                        | normalized to 1W   | 9.60 mW / g              |
| SAR for nominal Head TSL parameters 1                 | normalized to 1W   | 9.50 mW/g ± 17.0 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Head TSL | condition          |                           |
|---------------------------------------------|--------------------|---------------------------|
| SAR measured                                | 250 mW input power | 1.58 mW/g                 |
| SAR normalized                              | normalized to 1W   | 6.32 mW / g               |
| SAR for nominal Head TSL parameters 1       | normalized to 1W   | 6.27 mW /g ± 16.5 % (k=2) |

Certificate No: D835V2-446\_Jan09

<sup>1</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"



Author Data

**Andrew Becker** 

# Appendix D for the BlackBerry® Smartphone Model RCZ31CW

27(47)

**SAR Report** 

Dates of Test Mar 12 – Mar 30, 2010 Test Report No RTS-2068-1004-37 FCC ID: L6ARCZ30CW IC ID: 2503A-RCZ30CW

## Appendix

### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 49.8 Ω - 6.9 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 23.3 dB       |  |

### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.385 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

| Manufactured by | SPEAG            |
|-----------------|------------------|
| Manufactured on | October 24, 2001 |

Certificate No: D835V2-446\_Jan09

Page 4 of 6



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

Page

28(47)

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

IC ID: **2503A-RCZ30CW** 

### **DASY5 Validation Report for Head TSL**

Date/Time: 05.01.2009 10:38:06

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:446

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 0.91$  mho/m;  $\varepsilon_r = 41.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

### DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008

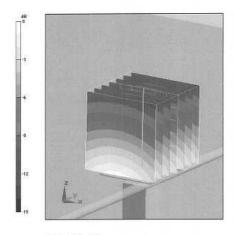
Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin=250mW; dip=15mm; dist=3.4mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 55.7 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.4 mW/g; SAR(10 g) = 1.58 mW/g

Maximum value of SAR (measured) = 2.7 mW/g



 $0~\mathrm{dB} = 2.7 \mathrm{mW/g}$ 

Certificate No: D835V2-446\_Jan09

Page 5 of 6

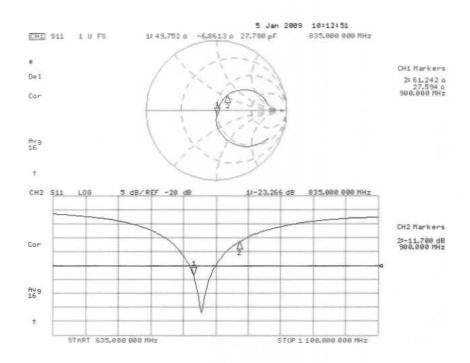


Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

Page **29(47)** 

Author Data
Andrew Becker

Dates of Test


Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

IC ID: **2503A-RCZ30CW** 

### Impedance Measurement Plot for Head TSL



Certificate No: D835V2-446\_Jan09

Page 6 of 6



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

30(47)

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

IC ID: **2503A-RCZ30CW** 

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client RTS (RIM Test Services)

Certificate No: D1800V2-2d020 Jan09

|                                                                                                                                                                                                                           | CERTIFICATE                                                                                                                  |                                                                                                                                                                                                                                                                         |                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Object                                                                                                                                                                                                                    | D1800V2 - SN: 2                                                                                                              | 2d020                                                                                                                                                                                                                                                                   |                                                                                                                         |
| Calibration procedure(s)                                                                                                                                                                                                  | QA CAL-05.v7<br>Calibration proce                                                                                            | dure for dipole validation kits                                                                                                                                                                                                                                         |                                                                                                                         |
| Calibration date:                                                                                                                                                                                                         | January 06, 2009                                                                                                             |                                                                                                                                                                                                                                                                         |                                                                                                                         |
| Condition of the calibrated item                                                                                                                                                                                          | In Tolerance                                                                                                                 |                                                                                                                                                                                                                                                                         |                                                                                                                         |
| The measurements and the unce                                                                                                                                                                                             | rtainties with confidence p                                                                                                  | onal standards, which realize the physical units<br>robability are given on the following pages and a<br>ry facility: environment temperature (22 ± 3)°C a                                                                                                              | are part of the certificate.                                                                                            |
| Calibration Equipment used (M&T                                                                                                                                                                                           | TE critical for calibration)                                                                                                 |                                                                                                                                                                                                                                                                         |                                                                                                                         |
| Primary Standards                                                                                                                                                                                                         | ID#                                                                                                                          | Call Date (Calibrated by, Certificate No.)                                                                                                                                                                                                                              | Scheduled Calibration                                                                                                   |
|                                                                                                                                                                                                                           | GB37480704                                                                                                                   | 08-Oct-08 (No. 217-00898)                                                                                                                                                                                                                                               | Oct-09                                                                                                                  |
|                                                                                                                                                                                                                           | 3537400704                                                                                                                   | 00-001-00 (NO. 211-00000)                                                                                                                                                                                                                                               | Oct-Ut                                                                                                                  |
| Power sensor HP 8481A                                                                                                                                                                                                     | US37292783                                                                                                                   | 08-Oct-08 (No. 217-00898)                                                                                                                                                                                                                                               | Oct-09                                                                                                                  |
| Power sensor HP 8481A<br>Reference 20 dB Attenuator                                                                                                                                                                       |                                                                                                                              |                                                                                                                                                                                                                                                                         |                                                                                                                         |
| Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination                                                                                                                                        | US37292783                                                                                                                   | 08-Oct-08 (No. 217-00898)                                                                                                                                                                                                                                               | Oct-09                                                                                                                  |
| Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV2                                                                                                              | US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025                                                               | 08-Oct-08 (No. 217-00898)<br>01-Jul-08 (No. 217-00864)<br>01-Jul-08 (No. 217-00867)<br>28-Apr-08 (No. ES3-3025_Apr08)                                                                                                                                                   | Oct-09<br>Jul-09<br>Jul-09<br>Apr-09                                                                                    |
| Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV2                                                                                                              | US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327                                                                           | 08-Oct-08 (No. 217-00898)<br>01-Jul-08 (No. 217-00864)<br>01-Jul-08 (No. 217-00867)                                                                                                                                                                                     | Oct-09<br>Jul-09<br>Jul-09                                                                                              |
| Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV2<br>DAE4                                                                                                      | US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025                                                               | 08-Oct-08 (No. 217-00898)<br>01-Jul-08 (No. 217-00864)<br>01-Jul-08 (No. 217-00867)<br>28-Apr-08 (No. ES3-3025_Apr08)                                                                                                                                                   | Oct-09<br>Jul-09<br>Jul-09<br>Apr-09                                                                                    |
| Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A                                                                        | US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601                                                    | 08-Oct-08 (No. 217-00898)<br>01-Jul-08 (No. 217-00864)<br>01-Jul-08 (No. 217-00867)<br>28-Apr-08 (No. ES3-3025_Apr08)<br>14-Mar-08 (No. DAE4-601_Mar08)                                                                                                                 | Oct-09<br>Jul-09<br>Jul-09<br>Apr-09<br>Mar-09                                                                          |
| Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06                                                | US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601<br>ID#<br>MY41092317<br>100005                     | 08-Oct-08 (No. 217-00898)<br>01-Jul-08 (No. 217-00864)<br>01-Jul-08 (No. 217-00867)<br>28-Apr-08 (No. ES3-3025_Apr08)<br>14-Mar-08 (No. DAE4-601_Mar08)<br>Check Date (in house)<br>18-Oct-02 (in house check Oct-07)<br>4-Aug-99 (in house check Oct-07)               | Oct-09<br>Jul-09<br>Jul-09<br>Apr-09<br>Mar-09<br>Scheduled Check                                                       |
| Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06                                                | US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601<br>ID:#<br>MY41092317                              | 08-Oct-08 (No. 217-00898)<br>01-Jul-08 (No. 217-00864)<br>01-Jul-08 (No. 217-00867)<br>28-Apr-08 (No. ES3-3025_Apr08)<br>14-Mar-08 (No. DAE4-601_Mar08)<br>Check Date (in house)                                                                                        | Oct-09 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09                                               |
| Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601<br>ID#<br>MY41092317<br>100005                     | 08-Oct-08 (No. 217-00898)<br>01-Jul-08 (No. 217-00864)<br>01-Jul-08 (No. 217-00867)<br>28-Apr-08 (No. ES3-3025_Apr08)<br>14-Mar-08 (No. DAE4-601_Mar08)<br>Check Date (in house)<br>18-Oct-02 (in house check Oct-07)<br>4-Aug-99 (in house check Oct-07)               | Oct-09 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09                        |
| Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06                                                | US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601<br>ID#<br>MY41092317<br>100005<br>US37390585 S4206 | 08-Oct-08 (No. 217-00898) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr68) 14-Mar-08 (No. DAE4-601_Mar08)  Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08) | Oct-09 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09 |
| Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E                      | US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601<br>ID#<br>MY41092317<br>100005<br>US37390585 S4206 | 08-Oct-08 (No. 217-00898) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08)  Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08) | Oct-09 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09 |

Certificate No: D1800V2-2d020 Jan09

Page 1 of 6



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

31(47)

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No RTS-2068-1004-37 FCC ID:

L6ARCZ30CW

IC ID: **2503A-RCZ30CW** 

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d etalorinage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

### Glossary:

N/A

TSL ConvF

tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005.
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

d) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1800V2-2d020 Jan09 Page 2 of 6



32(47)

Author Data **Andrew Becker**  Dates of Test Mar 12 – Mar 30, 2010 Test Report No RTS-2068-1004-37 FCC ID: L6ARCZ30CW

IC ID: 2503A-RCZ30CW

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1

| DASY Version                 | DASY5                     | V5.0        |
|------------------------------|---------------------------|-------------|
| Extrapolation                | Advanced Extrapolation    |             |
| Phantom                      | Modular Flat Phantom V5.0 |             |
| Distance Dipole Center - TSL | 10 mm                     | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         |             |
| Frequency                    | 1800 MHz ± 1 MHz          |             |

### Head TSL parameters

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 39.5 ± 6 %   | 1.40 mho/m ± 6 % |
| Head TSL temperature during test | (21.6 ± 0.2) °C | ****         | -                |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 250 mW input power | 9.57 mW /g                 |
| SAR normalized                                        | normalized to 1W   | 38.3 mW /g                 |
| SAR for nominal Head TSL parameters <sup>1</sup>      | normalized to 1W   | 38.2 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Head TSL | condition          |                            |
|---------------------------------------------|--------------------|----------------------------|
| SAR measured                                | 250 mW input power | 5.04 mW /g                 |
| SAR normalized                              | normalized to 1W   | 20.2 mW /g                 |
| SAR for nominal Head TSL parameters 1       | normalized to 1W   | 20.1 mW / g ± 16.5 % (k=2) |

Certificate No: D1800V2-2d020\_Jan09

<sup>1</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"



33(47)

Author Data **Andrew Becker**  Dates of Test Mar 12 – Mar 30, 2010 Test Report No RTS-2068-1004-37 FCC ID: L6ARCZ30CW IC ID: 2503A-RCZ30CW

### Appendix

### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 45.3 Ω - 7.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 20.6 dB       |

### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.215 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

| Manufactured by | SPEAG              |
|-----------------|--------------------|
| Manufactured on | September 07, 2001 |

Certificate No: D1800V2-2d020\_Jan09

Page 4 of 6



34(47)

Author Data **Andrew Becker**  Dates of Test Mar 12 - Mar 30, 2010 Test Report No RTS-2068-1004-37 FCC ID: L6ARCZ30CW IC ID: 2503A-RCZ30CW

### DASY5 Validation Report for Head TSL

Date/Time: 06.01.2009 11:22:58

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: SN:2d020

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB

Medium parameters used: f - 1800 MHz;  $\sigma$  = 1.4 mho/m;  $\epsilon_r$  = 39.6;  $\rho$  - 1000 kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

### DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.96, 4.96, 4.96); Calibrated: 28.04.2008

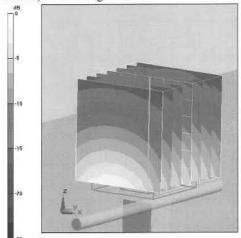
Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW; DASY5, V5.0 Build 120; SEMCAD X Version 3.4 Build 45

### Pin = 250 mW; dip = 10 mm, scan at 3.4mm 2/Zoom Scan (dist=3.4mm, probe 0deg)


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.8 V/m; Power Drift = 0.036 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.57 mW/g; SAR(10 g) = 5.04 mW/g

Maximum value of SAR (measured) = 11.2 mW/g



0 dB = 11.2 mW/g

Certificate No: D1800V2-2d020\_Jan09

Page 5 of 6



Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

Page 35(47)

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No RTS-2068-1004-37 FCC ID:
L6ARCZ30CW

IC ID: **2503A-RCZ30CW** 

### Impedance Measurement Plot for Head TSL



Certificate No: D1800V2-2d020 Jan09

Page 6 of 6



36(47)

Author Data **Andrew Becker**  Dates of Test Mar 12 - Mar 30, 2010

Test Report No RTS-2068-1004-37

L6ARCZ30CW

FCC ID:

IC ID: 2503A-RCZ30CW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

RTS (RIM Testing Services)

Accreditation No.: SCS 108

C

Certificate No: D1900V2-545-Jan09 CALIBRATION CERTIFICATE D1900V2 - SN: 545 Object QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: January 06, 2009 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Primary Standards Power meter EPM-442A GB37480704 08-Oct-08 (No. 217-00898) Oct-09 08-Oct-08 (No. 217-00898) Oct-09 Power sensor HP 8481A US37292783 Reference 20 dB Attenuator SN: 5085 (20g) 01-Jul-08 (No. 217-00864) Jul-09 Type-N mismatch combination SN: 5047.2 / 06327 01-Jul-08 (No. 217-00867) Jur-09 Reference Probe ES3DV2 SN: 3025 28-Apr-08 (No. ES3-3025 Apr08) Apr-09 DAE4 SN: 601 14-Mar-08 (No. DAE4-601\_Mar08) Mar-09 ID# Secondary Standards Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-07) In house check: Oct-09 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-08) in house check: Oct-09 Laboratory Technician Calibrated by: Approved by: Ketja Pokovic Technical Manager issued: January 7, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-545\_Jan09

Page 1 of 6



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

37(47)

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

IC ID: **2503A-RCZ30CW** 

Calibration Laboratory of Schmid & Partner Engineering AG Zeoghavsstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Katibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

### Additional Documentation:

d) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-545 Jan09



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

38(47)

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

IC ID: **2503A-RCZ30CW** 

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                     | V5.0        |
|------------------------------|---------------------------|-------------|
| Extrapolation                | Advanced Extrapolation    |             |
| Phantom                      | Modular Flat Phantom V5.0 |             |
| Distance Dipole Center - TSL | 10 mm                     | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         |             |
| Frequency                    | 1900 MHz ± 1 MHz          |             |
|                              |                           |             |

### Head TSL parameters

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 39.2 ± 6 %   | 1.47 mho/m ± 6 % |
| Head TSL temperature during test | (21.0 ± 0.2) °C | _            | ****             |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 10.2 mW / g              |
| SAR normalized                                        | normalized to 1W   | 40.8 mW / g              |
| SAR for nominal Head TSL parameters 1                 | normalized to 1W   | 39.5 mW/g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>1</sup> (10 g) of Head TSL | Condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 5.29 mW / g                |
| SAR normalized                                          | normalized to 1W   | 21.2 mW / g                |
| SAR for nominal Head TSL parameters 1                   | normalized to 1W   | 20.8 mW / g ± 16.5 % (k=2) |

Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

Page **39(47)** 

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

IC ID: **2503A-RCZ30CW** 

Appendix

### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 49.9 Ω + 1.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 34.4 dB       |

### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.197 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

| Manufactured by | SPEAG             |  |  |
|-----------------|-------------------|--|--|
| Manufactured on | November 15, 2001 |  |  |



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

Page **40(47)** 

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

IC ID: **2503A-RCZ30CW** 

### **DASY5 Validation Report for Head TSL**

Date/Time: 06.01.2009 13:17:58

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:545

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB

Medium parameters used: f = 1900 MHz;  $\sigma = 1.47$  mho/m;  $\epsilon_r = 39.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

#### DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.9, 4.9, 4.9); Calibrated: 28.04.2008.

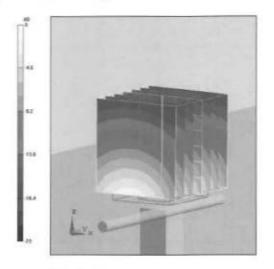
Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

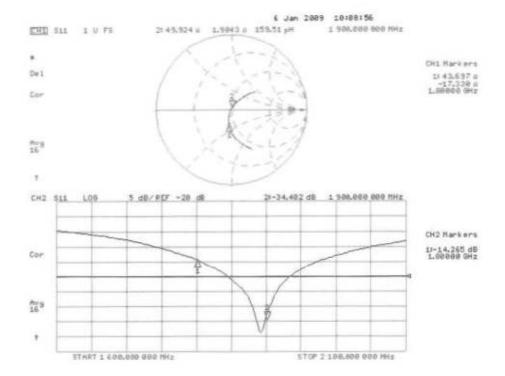
### Pin = 250 mW; dip = 10 mm, scan at 3.4mm/Zoom Scan (dist=3.4mm, probe 0deg)


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.5 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 19 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.29 mW/g


Maximum value of SAR (measured) = 12 mW/g



0 dB = 12mW/g

| Testing<br>Services™ | Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report |                  |            | N Page 41(47) |
|----------------------|--------------------------------------------------------------------|------------------|------------|---------------|
| Author Data          | Dates of Test                                                      | Test Report No   | FCC ID:    | IC ID:        |
| Andrew Becker        | Mar 12 – Mar 30, 2010                                              | RTS-2068-1004-37 | L6ARCZ30CW | 2503A-RCZ30CW |

### Impedance Measurement Plot for Head TSL





Author Data

Andrew Becker

Appendix D for the BlackBerry® Smartphone Model RCZ31CW **SAR Report** 

42(47)

Dates of Test

Mar 12 - Mar 30, 2010

Test Report No RTS-2068-1004-37 FCC ID: L6ARCZ30CW IC ID: 2503A-RCZ30CW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura s Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RTS (RIM Testing Services)

Certificate No: D2450V2-747\_Nov09

Accreditation No.: SCS 108

#### CALIBRATION CERTIFICA D2450V2 - SN: 747 Object Calibration procedure(s) QA CAL-05.V7 Calibration procedure for dipole validation kits Calibration date: November 11, 2009 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards Cal Date (Certificate No.) Power meter EPM-442A GB37480704 06-Oct-09 (No. 217-01086) Oct-10 Power sensor HP 8481A US37292783 06-Oct-09 (No. 217-01086) Oct-10 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 Reference Probe ES3DV3 SN: 3205 26-Jun-09 (No. ES3-3205\_Jun09) Jun-10 DAE4 SN: 601 07-Mar-09 (No. DAE4-601\_Mar09) Mar-10 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Name Function Calibrated by: Approved by: Issued: November 16, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

43(47)

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

IC ID:

2503A-RCZ30CW

### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

### Additional Documentation:

d) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

\_\_\_\_\_\_

Certificate No: D2450V2-747\_Nov09 Page 2 of 6



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

Page **44(47)** 

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

1C ID: **2503A-RCZ30CW** 

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                     | V5.2        |
|------------------------------|---------------------------|-------------|
| Extrapolation                | Advanced Extrapolation    |             |
| Phantom                      | Modular Flat Phantom V4.9 |             |
| Distance Dipole Center - TSL | 10 mm                     | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         |             |
| Frequency                    | 2450 MHz ± 1 MHz          |             |

### **Head TSL parameters**

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 39.2         | 1.80 mha/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 39.1 ± 6 %   | 1.78 mho/m ± 6 % |
| Head TSL temperature during test | (21.3 ± 0.2) °C |              |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm3 (1 g) of Head TSL | Condition          |                           |
|-------------------------------------------|--------------------|---------------------------|
| SAR measured                              | 250 mW input power | 13.3 mW / g               |
| SAR normalized                            | normalized to 1W   | 53.2 mW / g               |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 53.4 mW /g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 6.23 mW / g               |
| SAR normalized                                          | normalized to 1W   | 24.9 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.9 mW /g ± 16.5 % (k=2) |



# Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

Page **45(47)** 

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

IC ID: **2503A-RCZ30CW** 

### Appendix

### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 51.9 Ω + 0.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 33.9 dB       |

### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.161 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### **Additional EUT Data**

| Manufactured by | SPEAG             |  |
|-----------------|-------------------|--|
| Manufactured on | December 01, 2003 |  |



Appendix D for the BlackBerry® Smartphone Model RCZ31CW SAR Report

Page

46(47)

Author Data
Andrew Becker

Dates of Test

Mar 12 – Mar 30, 2010

Test Report No **RTS-2068-1004-37** 

FCC ID: L6ARCZ30CW

IC ID: **2503A-RCZ30CW** 

### **DASY5 Validation Report for Head TSL**

Date/Time: 11.11.2009 15:04:10

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:747

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2450 MHz;  $\sigma = 1.79 \text{ mho/m}$ ;  $\varepsilon_r = 39.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009

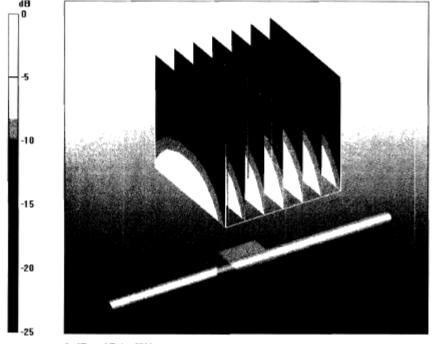
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

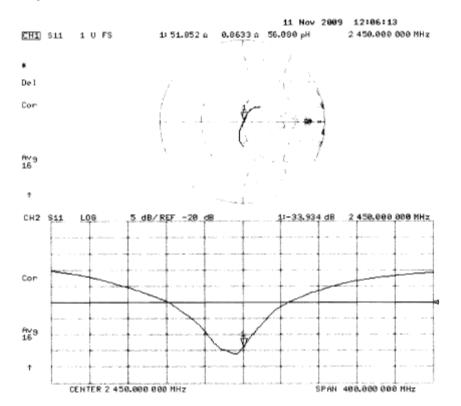
### Head/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.3 V/m; Power Drift = 0.067 dB

Peak SAR (extrapolated) = 27 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.23 mW/g


Maximum value of SAR (measured) = 17.1 mW/g



0 dB = 17.1 mW/g

| Testing<br>Services™ | Appendix D for the Blac<br>SAR Report | kBerry® Smartphono | e Model RCZ31CV | W 47(47)      |
|----------------------|---------------------------------------|--------------------|-----------------|---------------|
| Author Data          | Dates of Test                         | Test Report No     | FCC ID:         | IC ID:        |
| Andrew Becker        | Mar 12 – Mar 30, 2010                 | RTS-2068-1004-37   | L6ARCZ30CW      | 2503A-RCZ30CW |

### Impedance Measurement Plot for Head TSL

