

Accredited testing-laboratory

DAR registration number: DAT-P-176/94-D1

Federal Motor Transport Authority (KBA) DAR registration number: KBA-P 00070-97

Recognized by the Federal Communications Commission Anechoic chamber registration no.: 90462 (FCC) Anechoic chamber registration no.: 3462C-1 (IC) Certification ID: DE 0001 Accreditation ID: DE 0002

> Accredited Bluetooth[®] Test Facility (BQTF) The Bluetooth word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Cetecom ICT is under license

Test report no. :	1-1505-01-02B/09
Type identification :	RCN71UW
Applicant :	Research In Motion Limited
FCC ID :	L6ARCN70UW
IC Certification No :	2503A-RCN70UW
Test standards :	47 CFR Part 22
	47 CFR Part 24
	47 CFR Part 27
	RSS - 132 Issue 2
	RSS - 133 Issue 5
	RSS - 139 Issue 2

Table of contents

1	Gener	al information	
	1.1 No	tes	3
		sting laboratory	
		tails of applicant	
	1.4 Ap	plication details	4
2	Test si	tandard/s	5
3	Techn	ical tests	
	3.1 De	tails of manufacturer	6
	3.1.1	Test item	
		st Setup	
4		nent of Compliance	
		mmary of Measurement Results	
	4.1.1	Labeling requirements	
	4.1.2	PCS 1900	9
	4.1.3	GSM 850	
	4.1.4	UMTS Band VI	
	4.1.5	Receiver	10
5	Measu	rements and results	
		beling	
		RT PCS 1900	
	5.2.1	RF Power Output	
	5.2.2	Frequency Stability	
	5.2.3 5.2.4	Radiated Emissions Conducted Spurious Emissions	
	5.2.4	Block Edge Compliance	
	5.2.6	Occupied Bandwidth	
		RT GSM 850	
	5.3.1	RF Power Output	
	5.3.2	Frequency Stability	
	5.3.3	Radiated Emissions	
	5.3.4	Conducted Spurious Emissions	
	5.3.5	Block Edge Compliance	
	5.3.6	Occupied Bandwidth	
	5.4 PA 5.4.1	RT UMTS Band IV	
	5.4.1 5.4.2	RF Power Output	
	5.4.2 5.4.3	Frequency Stability Radiated Emissions	
	5.4.3 5.4.4	Conducted Spurious Emissions	
	5.4.5	Block Edge Compliance	
	5.4.6	Occupied Bandwidth	
		ceiver	
	5.5.1	Receiver Radiated Emissions	
6	Test e	quipment and ancillaries used for tests	

General information 1

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 3.1.1. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

Test laboratory manager:

2009-09-16 Date

Andreas Keller Name

ndreas heller

Technical responsibility for area of testing:

2009-09-16 Stefan Bös Date

Name

efa Signature

1.2 Testing laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 - 10 66117 Saarbrücken Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 e-mail: info@ICT.cetecom.de Internet: http://www.cetecom-ict.de

State of accreditation:	The test laboratory (area of testing) is accredited according DIN EN ISO/IEC 17025 DAR registration number: DAT-P-176/94-D1	
Accredited by:	Federal Motor Transport Authority (KBA) DAR registration number: KBA-P 00070-97	

Testing location, if different from CETECOM ICT Services GmbH:

Name:Street:Town:Country:Phone:Fax:

1.3 Details of applicant

Name:	Research In Motion Limited	
Street:	305 Phillip Street	
Town:	Waterloo, ON N2L 3W8	
Country:	Canada	
Telephone:	+1-519-888-7465	
Fax:	+1-519-888-6906	
Contact:	Masud Attayi	
E-mail:	mattayi@rim.com	
Telephone:	+1-519-888-7465	

1.4 Application details

Date of receipt of order:	2009-07-23
Date of receipt of test item:	2009-07-20
Date of start test:	2009-07-22
Date of end test	2009-08-13
Persons(s) who have been	
present during the test:	-/-

2 Test standard/s

47 CFR Part 22	2008-10	Title 47 of the Code of Federal Regulations; Chapter I- Federal Communications Commission subchapter B - common carrier services, Part 22-Public mobile services
47 CFR Part 24	2008-10	Title 47 of the Code of Federal Regulations; Chapter I- Federal Communications Commission subchapter B - common carrier services, Part 24-Personal communications services
47 CFR Part 27	2008-10	Title 47 of the Code of Federal Regulations; Chapter I- Federal Communications Commission Miscellaneous Wireless Communications Service
RSS - 132 Issue 2	2005-09	Spectrum Management and Telecommunications Policy - Radio Standards Specifications Cellular Telephones Employing New Technologies Operating in the Bands 824-849 MHz and 869-894 MHz
RSS - 133 Issue 5	2009-02	Spectrum Management and Telecommunications Policy - Radio Standards Specifications 2 GHz Personal Communication Services
RSS – 139 Issue 2	2009-02	Advanced Wireless Services Equipement Operating in the Bands 1710-1755 MHz and 2110-2155 MHz

3 Technical tests

3.1 Details of manufacturer

Name:	Research In Motion Limited
Street:	305 Phillip Street
Town:	Waterloo, ON N2L 3W8
Country:	Canada

3.1.1 Test item

Kind of test item	:	GSM Phone
Type identification	:	RCN71UW
Serial Number	:	Rad. Transient RTS-1689-2.0 Sample19
		ONYX RCN71UW CER-25287-001 Rev2
Frequency	:	824.2 – 848.8 MHz (GSM850)
		1850.2 – 1909.8 MHz (PCS1900)
		1712.4 – 1752.6 MHz (UMTS FDD4)
Type of modulation	:	GMSK; 8-PSK
		QPSK; 16QAM
Number of channels	:	125 (PCS850), 300 (PCS1900), 201 (FDD IV)
Antenna Type	:	Integrated antenna
Power supply (normal)	:	Li-Polymere Battery
Output power GSM 850 / GMSK	:	ERP: 31.7dBm
Output power GSM 1900 / GMSK	:	EIRP: 33.0dBm
Output power GSM 850 / 8-PSK	:	ERP: 29.5dBm
Output power GSM 1900 / 8-PSK	:	EIRP: 28.9dBm
Output power UMTS FDD IV	:	ERP: 24.8dBm
Transmitter Spurious (worst case)	:	-31.9 dBm
FCC ID	:	L6ARCN70UW
Certification No. IC	:	2503A-RCN70UW
Open Area Test Site IC No.	:	IC 3462C-1
IC Standards	:	RSS132, Issue 2, RSS133, Issue 5

ATTESTATION:

DECLARATION OF COMPLIANCE:

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Laboratory Manager:

2009-09-16 Date

Andreas Keller Name

Andreas Heller Signature

3.2 Test Setup

Hardware :	CER-25287-001 Rev2
Software :	5.1.0.23_5.0.0.153/b5.0.0.196

Mobile; (cond. measurements)	:	-/-
Mobile; (rad. measurements)	:	Transient RTS-1689-2.0 Sample19 ONYX RCN71UW CER-25287-001 Rev2

Measurements performed according to customers test plan.

4 Statement of Compliance

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

4.1 Summary of Measurement Results

No deviations from the technical specifications were ascertained

There were deviations from the technical specifications ascertained

4.1.1 Labeling requirements

Section in this Report	Test Name	Verdict
5.1	Labeling	not performed

4.1.2 PCS 1900

Section in this Report	Test Name	Verdict
5.2.1	RF Power Output	pass
5.2.2	Frequency Stability	not performed
5.2.3	Radiated Emissions	pass
5.2.4	Conducted Spurious Emissions	not performed
5.2.5	Block Edge Compliance	not performed
5.2.6	Occupied Bandwidth	not performed

4.1.3 GSM 850

Section in this Report	Test Name	Verdict
5.3.1	RF Power Output	pass
5.3.2	Frequency Stability	not performed
5.3.3	Radiated Emissions	pass
5.3.4	Conducted Spurious Emissions	not performed
5.3.5	Block Edge Compliance	not performed
5.3.6	Occupied Bandwidth	not performed

4.1.4 UMTS Band VI

Section in	Test Name	Verdict
this Report		
5.4.1	RF Power Output	pass
5.4.2	Frequency Stability	not performed
5.4.3	Radiated Emissions	pass
5.4.4	Conducted Spurious Emissions	not performed
5.4.5	Block Edge Compliance	not performed
5.4.6	Occupied Bandwidth	not performed

4.1.5 Receiver

Section in this Report	Test Name	Verdict
5.5.1	Receiver Radiated emissions	pass

5 Measurements and results

5.1 Labeling

Each equipment covered in an application for equipment authorization shall bear a nameplate or label listing the following:

(1) FCC Identifier consisting of the two elements in the exact order specified in § 2.926. The FCC Identifier shall be preceded by the term *FCC ID* in capital letters on a single line, and shall be of a type size large enough to be legible without the aid of magnification.

Example: FCC ID XXX123. XXX—Grantee Code 123—Equipment Product Code

Verification:

The labeling of the EUT is shown in the photo documentation in the annex.

Result:

5.2 **PART PCS 1900**

For Part 24/22 we use the substitution method (TIA/EIA 603).

All measurements in this report are done in GSM mode. The device is able to transmit data in GPRS mode also. But because the current measurements are performed in PEAK mode no other results from GPRS mode are possible. The only different is the modulation average power, which is 3 dB higher (by using 2 timeslots in the Up-link). All relevant tests have been repeated in 8-PSK Modulation if EDGE Mode is supported.

5.2.1 RF Power Output

Reference

FCC:	CFR Part 24.232, 2.1046
IC:	RSS 133, Issue 5, Section 4.1

Summary:

This paragraph contains both average/peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

These measurements were done at 3 frequencies, 1850.2 MHz, 1880.0 MHz and 1909.8 MHz (bottom, middle and top of operational frequency range).

Not performed!

Limits:

Nominal Peak Output Power (dBm)
+33

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Test Results: Output Power (conducted) GMSK Mode

Frequency (MHz)	Average Output Power (dBm)	Peak-to-Average Ratio (dB)
1850.2		
1880.0		
1909.8		
Measurement uncertainty	±0.5 dB	

Test Results: Output Power (conducted) 8-PSK Mode

Frequency (MHz)	Average Output Power (dBm)	Peak-to-Average Ratio (dB)
1850.2		
1880.0		
1909.8		
Measurement uncertainty	±0.5 dB	

EIRP Measurements

Description:

This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) The measurements were performed with full $\boldsymbol{r}\boldsymbol{f}$ output power and modulation.

(b) Test was performed at listed 3m test site (listed with FCC, IC).

(c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)

(d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.

(e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

(g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.

(h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.

(i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.

(j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.

(k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded. (1) Repeat for all different test signal frequencies

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency	: equal to the signal source	
Resolution BW	: 10 kHz	
Video BW	: same	
Detector Mode	: positive	
Average	: off	
Span	: 3 x the signal bandwidth	
(b) Load an appropriate c	orrection factors file in EMI Receiver for correcting the field strength reading level	
Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor		
E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)		

(c) Select the frequency and E-field levels for ERP/EIRP measurements.

(d) Substitute the EUT by a signal generator and one of the following transmitting antennas (substitution antenna): DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.

(e) Mount the transmitting antenna at 1.5 meter high from the ground plane.

(f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.

(g) If the DIPOLE antenna is used, tune its elements to the frequency as specified in the calibration manual.

(h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.

(i) Tune the EMI Receivers to the test frequency.

(j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(k) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.

(l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.

(n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1

EIRP = P + G1 = P3 + L2 - L1 + A + G1

ERP = EIRP - 2.15 dB

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)

(p) Repeat step (d) to (o) for different test frequency

(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.

(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Limits:

Nominal Peak Output Power (dBm)
+33

Test Results: Output Power (radiated) GMSK Mode

Frequency (MHz)	Average EIRP (dBm)
1850.2	31.3
1880.0	32.2
1909.8	32.8
Measurement uncertainty	±0.5 dB

Test Results: Output Power (radiated) 8-PSK Mode

Frequency (MHz)	Average EIRP (dBm)
1850.2	27.6
1880.0	28.1
1909.8	28.9
Measurement uncertainty	±0.5 dB

Sample Calculation:

SA	SG	Ant.	Dipol	Cable	EIRP			
Reading	Setting	gain	gain	loss	Result			
dBµV	dBm	dBi	dBd	dB	dBm			
132.3	24.6	8.4	0.0	3.3	29.7			
	Reading dBµV	ReadingSettingdBµVdBm	ReadingSettinggaindBµVdBmdBi	ReadingSettinggaingaindBµVdBmdBidBd	ReadingSettinggaingainlossdBµVdBmdBidBddB	ReadingSettinggaingainlossResultdBµVdBmdBidBddBdBm	ReadingSettinggaingainlossResultdBµVdBmdBidBddBdBm	ReadingSettinggaingainlossResultdBµVdBmdBidBddBdBm

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

5.2.2 Frequency Stability

Not performed!

5.2.3 Radiated Emissions

Reference

FCC:	CFR Part 24.238, 2.1053
IC:	RSS 133, Issue 5, Section 4.2

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load.

c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded.

e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log$ (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results: Radiated Emissions

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (1850.2 MHz, 1880.0 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next table.

All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked, too. The found values are stated in the table below.

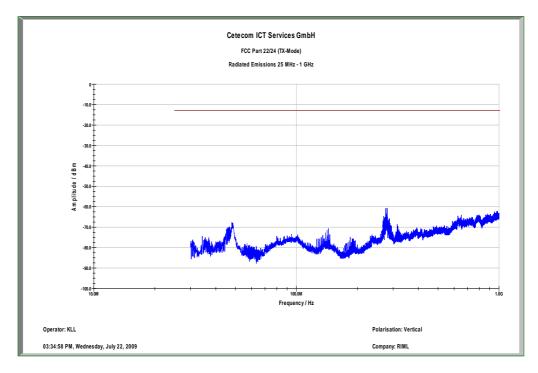
As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch512 Freq. (MHz)	Level (dBm)	Tx ch661 Freq. (MHz)	Level (dBm)	Tx ch810 Freq. (MHz)	Level (dBm)
2	3700.4	-37.2	3760	-40.6	3819.6	-41.7
3	5550.6	-	5640	-	5729.4	-
4	7400.8	-	7520	-	7639.2	-
5	9251.0	-	9400	-	9549.0	-
6	11101.2	-	11280	-	11458.8	-
7	12951.4	-	13160	-	13368.6	-
8	14801.6	-	15040	-	15278.4	-
9	16651.8	-	16920	-	17188.2	-
10	18502.0	-	18800	-	19098.0	-

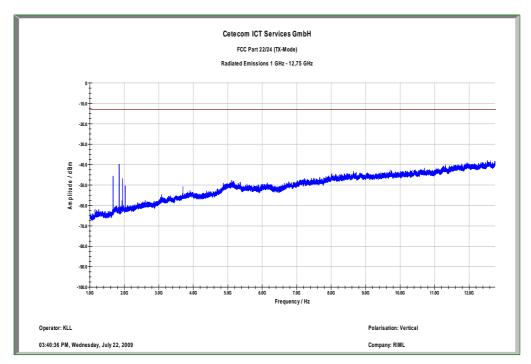
No peaks found > 20 dB below limit.

Sample calculation:

Freq	SA D	SG	Ant.	Dipol	Cable	EIRP	 	
	Reading	Setting	gain	gaın	loss	Result		
MHz	dBµV	dBm	dBi	dBd	dB	dBm		
1909.8	132.3	24.6	8.4	0.0	3.3	29.7		

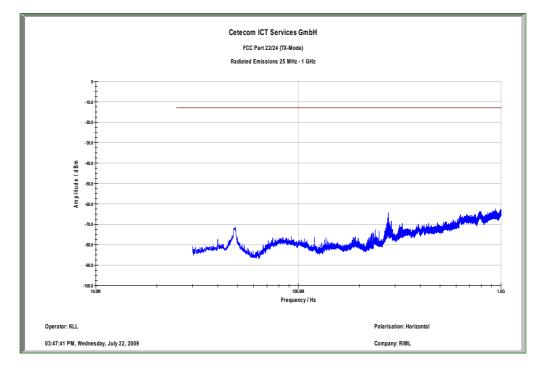

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

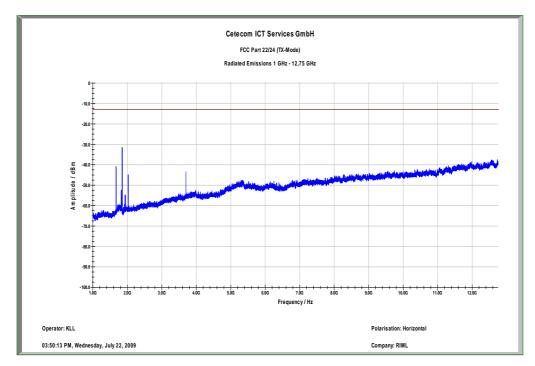
CETECOM ICT Services GmbH Test report no.: 1-1505-01-02B/09



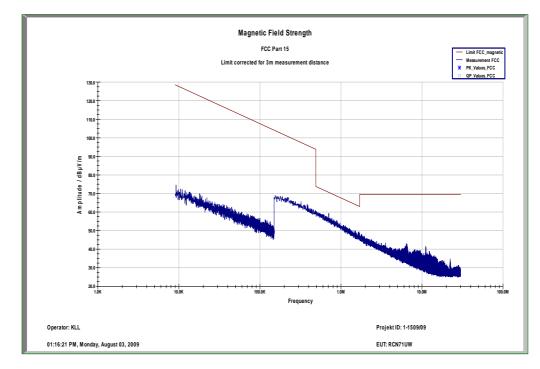
Channel 512

Plot 1: 30 MHz - 1 GHz DUTv ANTv

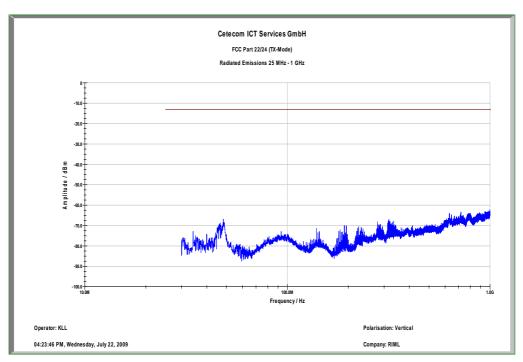

Plot 2: 1 GHz – 13 GHz DUTv ANTv


Measured with 1.9GHz band notch

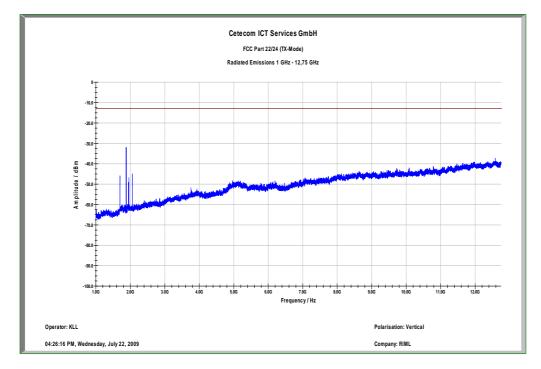
Plot 3: 30 MHz - 1 GHz DUTv ANTh

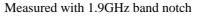

Plot 4: 1 GHz – 13 GHz DUTv ANTh

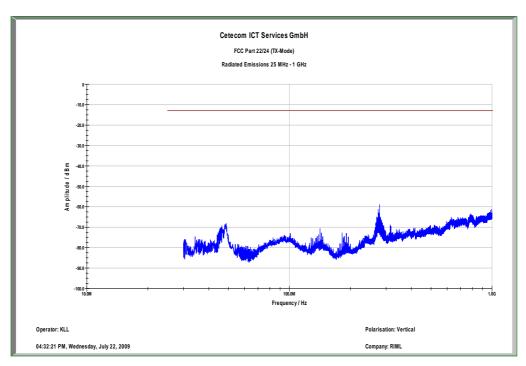
Measured with 1.9GHz band notch



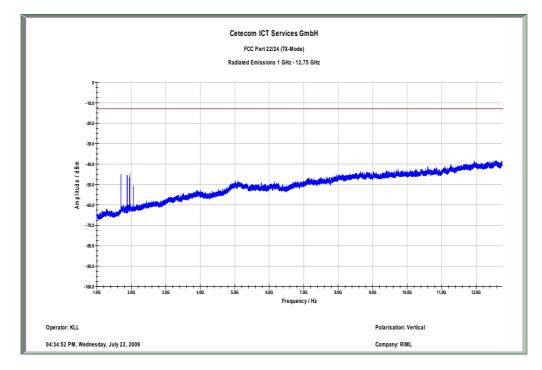
Channel 661


Plot 1: Traffic mode up to 30 MHz/worst position valid for all 3 channels

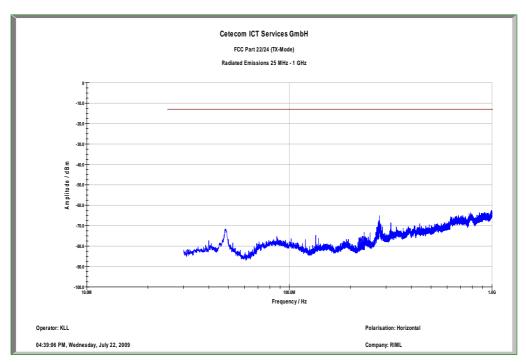

Plot 2: 30 MHz - 1 GHz DUTh ANTv



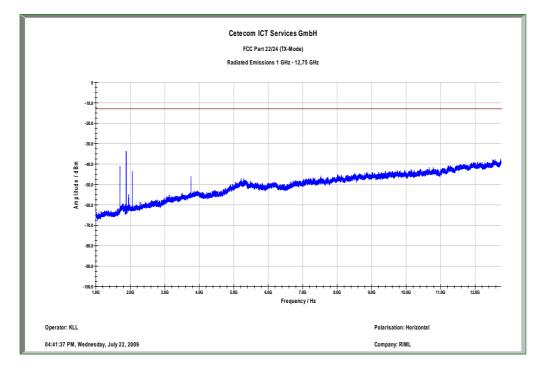
Plot 3: 1 GHz – 13 GHz DUTh ANTv



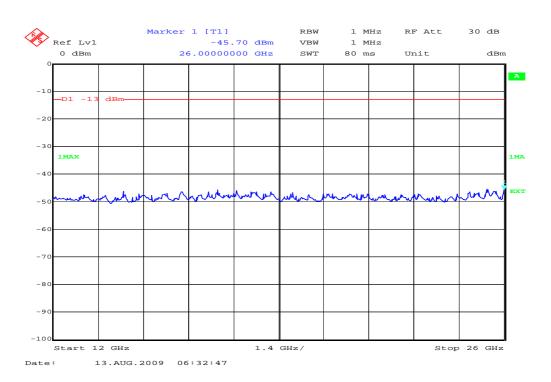
Plot 4: 30 MHz - 1 GHz DUTv ANTv



Plot 5: 1 GHz – 13 GHz DUTv ANTv


Measured with 1.9GHz band notch

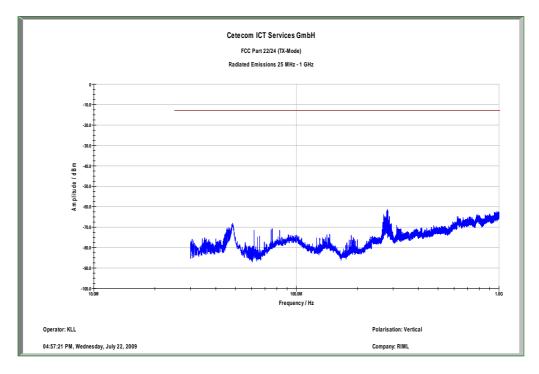
Plot 6: 30 MHz - 1 GHz DUTv ANTh



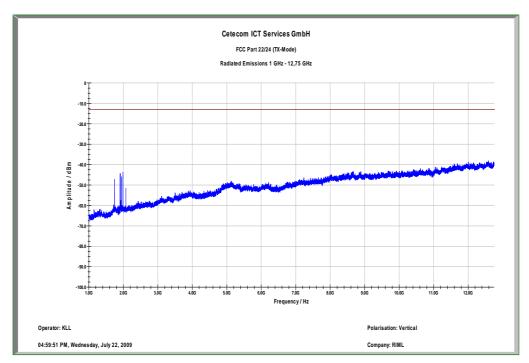
Plot 7: 1 GHz – 13 GHz DUTv ANTh

Measured with 1.9GHz band notch

Plot 8: 12 GHz - 26 GHz valid for all 3 channels (H/V max hold)

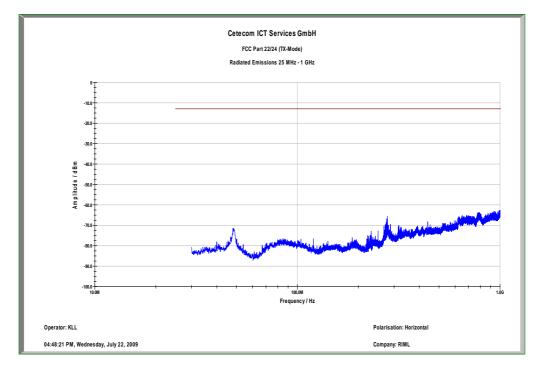


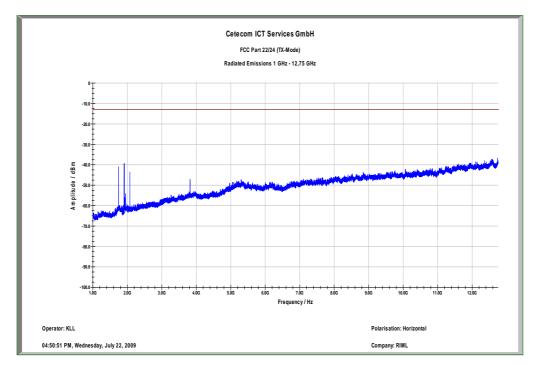
CETECOM ICT Services GmbH Test report no.: 1-1505-01-02B/09



Channel 810

Plot 1: 30 MHz - 1 GHz DUTv ANTv


Plot 2: 1 GHz – 13 GHz DUTv ANTv


Measured with 1.9GHz band notch

Plot 3: 30 MHz - 1 GHz DUTv ANTh

Plot 4: 1 GHz – 13 GHz DUTv ANTh

Measured with 1.9GHz band notch

5.2.4 Conducted Spurious Emissions

Not performed!

5.2.5 Block Edge Compliance

Not performed!

5.2.6 Occupied Bandwidth

Not performed!

5.3 **PART GSM 850**

5.3.1 RF Power Output

Reference

FCC:	CFR Part 22.9.1.3, 2.1046
IC:	RSS 132, Issue 2, Section 4.4 and 6.4

Summary:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

These measurements were done at 3 frequencies, 824.2 MHz, 836.4 MHz and 848.8 MHz (bottom, middle and top of operational frequency range).

Not performed!

Limits:

Nominal Peak Output Power (dBm)
+38.45

Test Results: Output Power (conducted) GMSK Mode

Frequency (MHz)	Average Output Power (dBm)	Peak-to-Average Ratio (dB)
824.2		
836.4		
848.8		
Measurement uncertainty	±0.5 dB	

Test Results: Output Power (conducted) 8-PSK Mode

Frequency (MHz)	Average Output Power (dBm)	Peak-to-Average Ratio (dB)
824.2		
836.4		
848.8		
Measurement uncertainty	±0.5 dB	

Test report no.: 1-1505-01-02B/09

ERP Measurements

Description: This is the test for the maximum radiated power from the phone. Rule Part 22.913 specifies that "Mobile/portable stations are limited to 7 watts ERP.

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) The measurements were performed with full rf output power and modulation.

(b) Test was performed at listed 3m test site (listed with FCC, IC).

(c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)

(d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.

(e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

(g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.

(h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.

(i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.

(j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.

(k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded. (l) Repeat for all different test signal frequencies

Measuring the ERP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring ERP) as follows:

	(101 measuring 2 1 read) and receiver #2 (101 measuring 21cl) as reno (101
	: equal to the signal source
Resolution BW	: 10 kHz
Video BW	: same
Detector Mode	: positive
Average	: off
Span	: 3 x the signal bandwidth
(b) Load an appropriate c	correction factors file in EMI Receiver for correcting the field strength reading level
Total Correction Factor r	ecorded in the EMI Receiver = Cable Loss + Antenna Factor
E (dBuV/m) = Reading (d)	dBuV) + Total Correction Factor (dB/m)
(c) Select the frequency a	and E-field levels for ERP/EIRP measurements.
(d) Substitute the EUT	by a signal generator and one of the following transmitting antennas (substitution antenna):
.DIPOLE antenna for free	quency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.
(e) Mount the transmittin	ng antenna at 1.5 meter high from the ground plane.
(f) Use one of the follow	ving antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or
.HORN antenna for frequ	ency above 1 GHz }.
(g) If the DIPOLE antenr	na is used, tune its elements to the frequency as specified in the calibration manual.
(h) Adjust both transmitti	ing and receiving antenna in a VERTICAL polarization.
(i) Tune the EMI Receive	ers to the test frequency.
(j) Lower or raise the test	antenna from 1 to 4 meters until the maximum signal level was detected.
(k) The transmitter was re-	otated through 360 o about a vertical axis until a higher maximum signal was received.
(1) Lower or raise the test	antenna from 1 to 4 meters until the maximum signal level was detected.
(m) Adjust input signal	to the substitution antenna until an equal or a known related level to that detected from the
transmitter was obtained	in the test receiver.
(n) Record the power lev	el read from the Average Power Meter and calculate the ERP/EIRP as follows:
P = P1 - L1 = (P2 + L2) -	-L1 = P3 + A + L2 - L1
EIRP = P + G1 = P3 + L2	2 - L1 + A + G1
ERP = EIRP - 2.15 dB	

Test report no.: 1-1505-01-02B/09

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)

(p) Repeat step (d) to (o) for different test frequency

(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.

(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Limits:

Nominal Peak Output Power (dBm) +38.45

Test Results: Output Power (radiated) GMSK Mode

Frequency (MHz)	Average (dBm)				
824.2	31.9				
836.4	30.8				
848.8	31.9				
Measurement uncertainty	±0.5 dB				

Test Results: Output Power (radiated) 8-PSK Mode

Frequency (MHz)	Average (dBm)
824.2	28.5
836.4	28.0
848.8	29.5
Measurement uncertainty	±0.5 dB

Sample calculation:

Freg	SA	SG	Ant.	Dipol	Cable	ERP	Substitution Antenna	
	Reading	Setting	gain	gain	loss			
MHz	dBµV	dBm	dBi	dBd	dB	dBm		
848.8	137.8	26.6	8.4	0.0	3.3	31.7	UHAP Schwarzbeck S/N 460	
EDD CC	$\mathbf{E}\mathbf{D}\mathbf{D} = \mathbf{G}\mathbf{C}\left((1\mathbf{D}_{111}) - \mathbf{C}_{111}1 + \mathbf{L}_{111}\mathbf{C}_{111}1\right) + \mathbf{A}_{111}\mathbf{L}_{111}\mathbf{C}_{111}\mathbf{C}_{111}1$							

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

*ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP - 2.1 dBi

5.3.2 Frequency Stability

Not performed!

5.3.3 Radiated Emissions

Reference

FCC:	CFR Part 22.917, 2.1053
IC:	RSS 132, Issue 2, Section 4.5 and 6.5

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest

frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load.

c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters using the equation shown below:

e)Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 22.917 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log$ (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (824.2 MHz, 836.4 MHz and 848.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

All measurements were done in horizontal and vertical polarization; the plots shows the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked, too. The found values are stated in the table below.

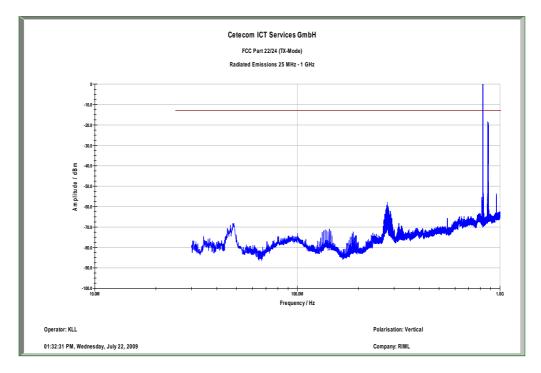
As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch128 Freq. (MHz)	Level (dBm)	Tx ch189LevelFreq. (MHz)(dBm)		Tx ch251 Freq. (MHz)	Level (dBm)
2	1648.4	-33.7	1672.8	-32.7	1697.6	-31.9
3	2472.6	-	2509.2	-	2546.4	-
4	3296.8	-	3345.6	-	3395.2	-
5	4121.0	-	4182.0	-	4244.0	-
6	4945.2	-	5018.4	-	5092.8	-
7	5769.4	-	5854.8	-	5941.6	-
8	6593.6	-	6691.2	-	6790.4	-
9	7417.8	-	7527.6	-	7639.2	-
10	8242.0	-	8364.0	-	8488.0	-

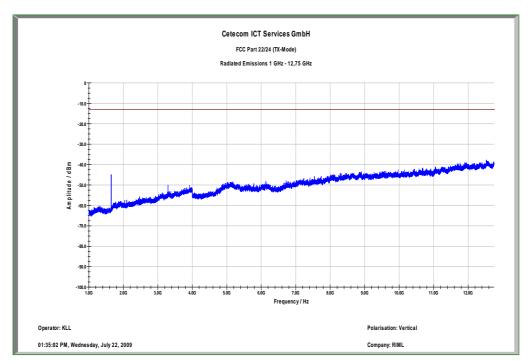
Sample calculation:

Freg	SA Reading	SG Setting	Ant. gain	Dipol gain	Cable loss	ERP	Substitution Antenna
MHz	dBµV	dBm	dBi	dBd	dB	dBm	
848.8	137.8	26.6	8.4	0.0	3.3	31.7	UHAP Schwarzbeck S/N 460

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

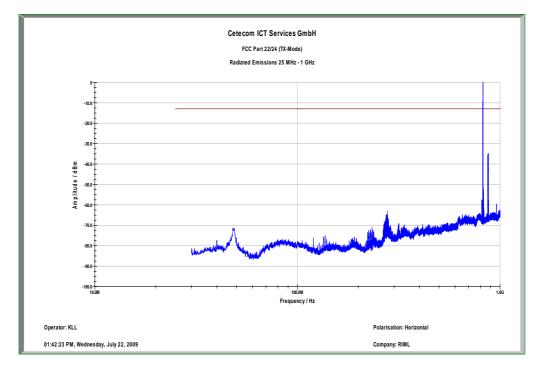

*ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi

CETECOM ICT Services GmbH Test report no.: 1-1505-01-02B/09

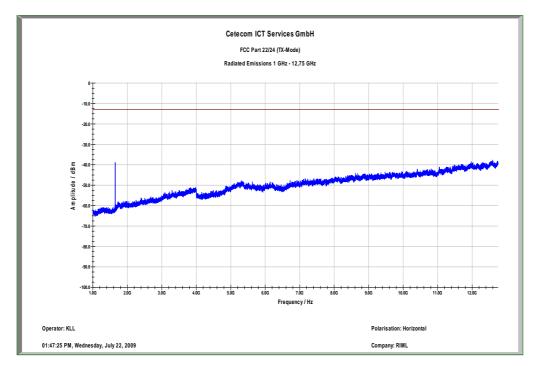


Channel 128

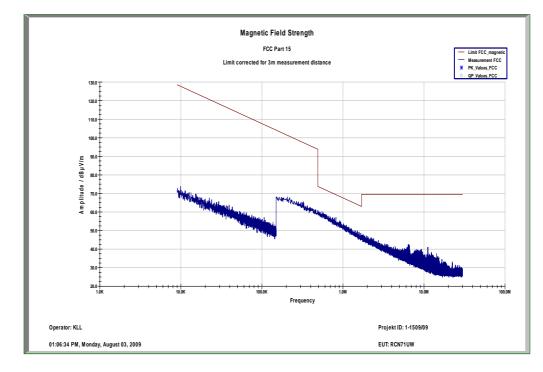
Plot 1: 30 MHz - 1 GHz DUTv ANTv



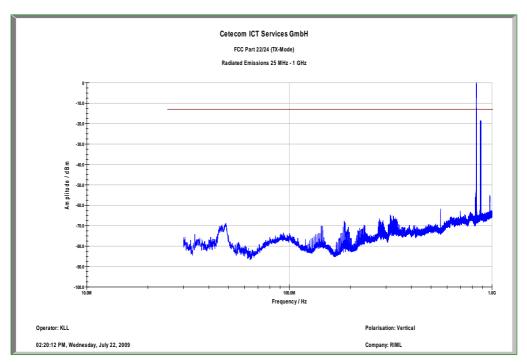
Plot 2: 1 GHz – 13 GHz DUTv ANTv



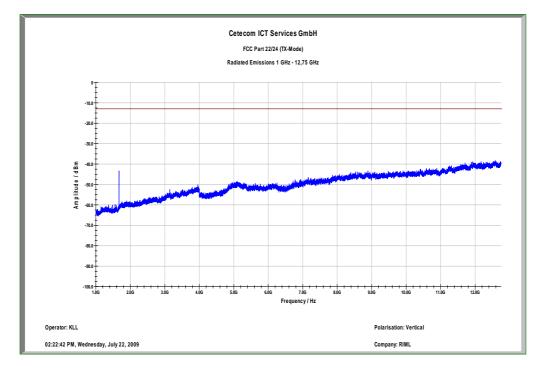
Plot 3: 30 MHz - 1 GHz DUTv ANTh


Plot 4: 1 GHz – 13 GHz DUTv ANTh

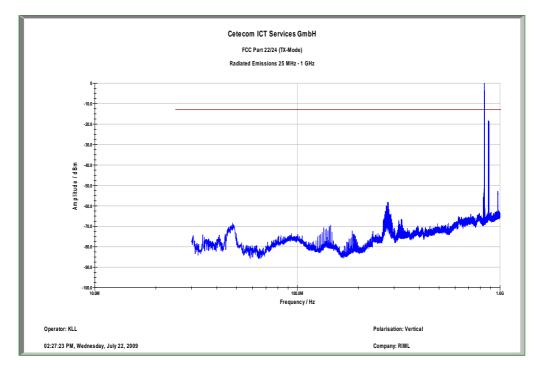
CETECOM ICT Services GmbH Test report no.: 1-1505-01-02B/09



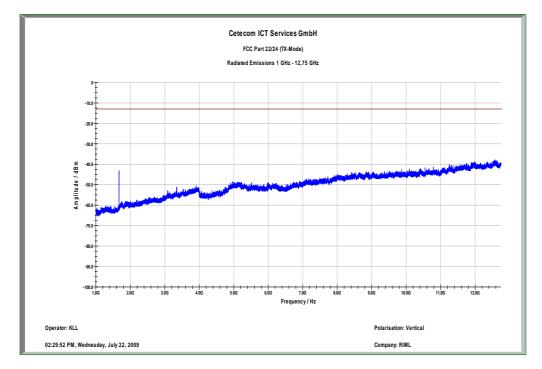
Channel 189


Plot 1: Traffic mode up to 30 MHz/worst position valid for all 3 channels

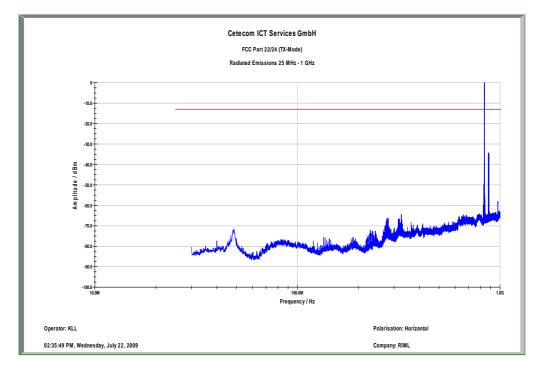
Plot 2: 30 MHz - 1 GHz DUTh ANTv



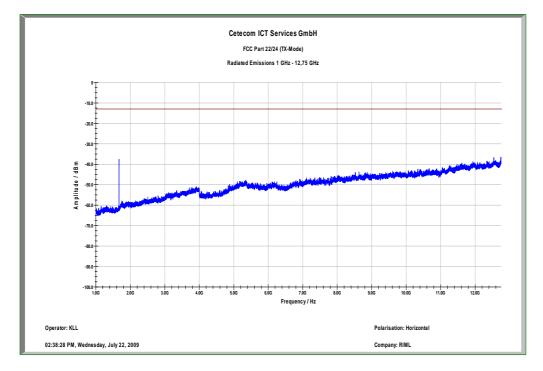
Plot 3: 1 GHz – 13 GHz DUTh ANTv



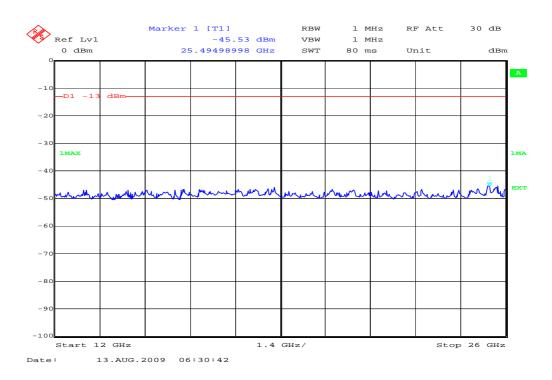
Plot 4: 30 MHz - 1 GHz DUTv ANTv



Plot 5: 1 GHz – 13 GHz DUTv ANTv

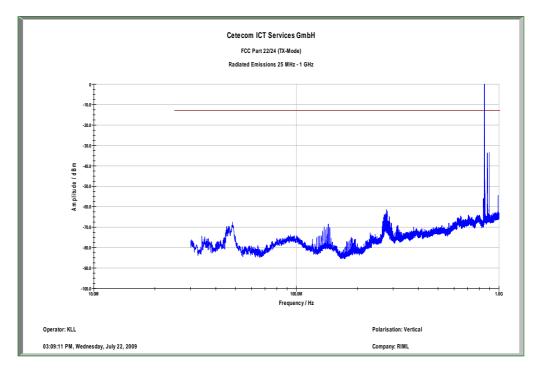


Plot 6: 30 MHz - 1 GHz DUTv ANTh

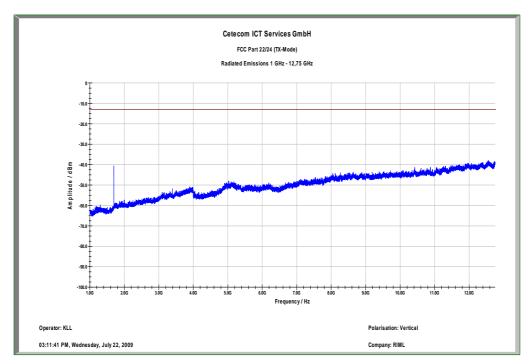


Plot 7: 1 GHz – 13 GHz DUTv ANTh

Plot 8: 12 GHz - 25 GHz valid for all 3 channels (H/V max hold)

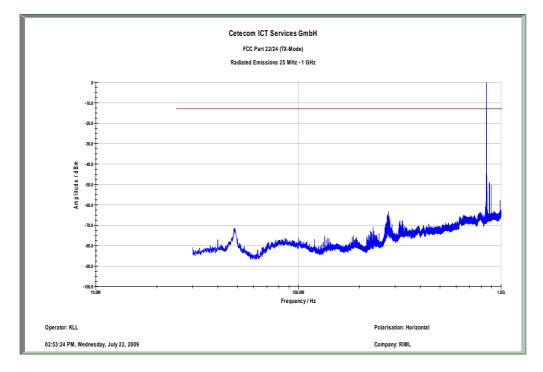


CETECOM ICT Services GmbH Test report no.: 1-1505-01-02B/09

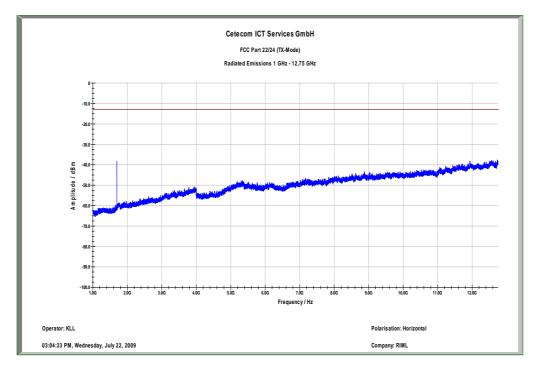


Channel 251

Plot 1: 30 MHz - 1 GHz DUTv ANTv



Plot 2: 1 GHz – 13 GHz DUTv ANTv



Plot 3: 30 MHz - 1 GHz DUTv ANTh

Plot 4: 1 GHz – 13 GHz DUTv ANTh

5.3.4 Conducted Spurious Emissions

Not performed!

5.3.5 Block Edge Compliance

Not performed!

5.3.6 Occupied Bandwidth

Not performed!

5.4 **PART UMTS Band IV**

5.4.1 **RF** Power Output

Reference

FCC:	CFR Part 27.50, 2.1046
IC:	RSS – 139 Issue 2, Section 6.4

Summary:

This paragraph contains both average/peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation. The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average) These measurements were done at 3 frequencies, bottom, middle and top of operational frequency range.

Settings for maximum output power were used.

Not performed!

Limits:

Nominal Peak Output Power (dBm) +33

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Test Results: Output Power (conducted) UMTS Mode

Frequency (MHz)	Average Output Power	Peak-to-Average Ratio
()	(dBm)	(dB)
1712.4		
1732.4		
1752.6		
Measurement uncertainty	±0.5 dB	

Sub-test	β _c	β_d	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	$CM(dB)^{(2)}$
1	2/15	15/15	64	2/15	4/15	0.0
2	$12/15^{(3)}$	$15/15^{(3)}$	64	$12/15^{(3)}$	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

The following HSDPA sub-tests are defined by 3GPP 34.121 (table C.10.1.4)

Note 1: Δ_{ACK} , Δ_{NACK} , $\Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs}/\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$

Note 2 : CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$

Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$ Table 1: Subtests for UMTS Release 5 HSDPA

It was checked that the EUT supports the HSDPA-Mode and fulfils the requirements of the table above. The exact power-values are part of the SAR-report.

The following HSUPA sub-tests are defined by 3GPP 34.121 (table C.11.1.3)

Sub- test	βc	β_d	β _d (SF)	β_c/β_d	$\beta_{hs}{}^{(1)}$	β_{ec}	β_{ed}	β _{ec}	β _{ed}	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	$11/15^{(3)}$	$15/15^{(3)}$	64	$11/15^{(3)}$	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} :47/15 β _{ed2:} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} , $\Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs}/\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$

Note 2 : CM = 1 for β_c/β_d = 12/15, β_{hs}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference

Note 3 : For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$

Note 4 : For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$

Note 5 : Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g

Note 6 : $\beta_{ed}\,can$ not be set directly; it is set by Absolute Grant Value

Table 2: Subtests for UMTS Release 6 HSUPA

It was checked that the EUT supports the HSUPA-Mode and fulfils the requirements of the table above. The exact power-values are part of the SAR-report.

EIRP Measurements

Description:

This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) The measurements were performed with full rf output power and modulation.

(b) Test was performed at listed 3m test site (listed with FCC, IC).

(c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
(d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
(e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

(g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.

(h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.

(i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.

(j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.

(k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded. (l) Repeat for all different test signal frequencies

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

	(101 measuring E-Field) and Receiver #2 (101 measuring EIRF) as follows.
Center Frequency	: equal to the signal source
Resolution BW	: 10 kHz
Video BW	: same
Detector Mode	: positive
Average	: off
Span	: 3 x the signal bandwidth
	correction factors file in EMI Receiver for correcting the field strength reading level
	recorded in the EMI Receiver = Cable Loss + Antenna Factor
	(dBuV) + Total Correction Factor (dB/m)
	and E-field levels for ERP/EIRP measurements.
	y a signal generator and one of the following transmitting antennas (substitution antenna):
	quency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.
	ng antenna at 1.5 meter high from the ground plane.
	ing antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or
.HORN antenna for frequ	
	na is used, tune its elements to the frequency as specified in the calibration manual.
	ing and receiving antenna in a VERTICAL polarization.
(i) Tune the EMI Receive	
	t antenna from 1 to 4 meters until the maximum signal level was detected.
	otated through 360 o about a vertical axis until a higher maximum signal was received.
	t antenna from 1 to 4 meters until the maximum signal level was detected.
	o the substitution antenna until an equal or a known related level to that detected from the
transmitter was obtained	
	rel read from the Average Power Meter and calculate the ERP/EIRP as follows:
P = P1 - L1 = (P2 + L2)	
EIRP = P + G1 = P3 + L2	2 - L1 + A + G1
ERP = EIRP - 2.15 dB	
	n EMI Receiver # $2 = L2 - L1 + G1$
	wer fed into the substitution antenna port after corrected.
P1: Power output from the	
P2: Power measured at a	
P3: Power reading on the	
EIRP: EIRP after correct	
ERP: ERP after correction	
	ing and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)
	for different test frequency
) with the substitution antenna oriented in horizontal polarization.
	T's antenna is the difference of the measured EIRP and measured RF power at the RF port.
Correct the antenna gain	if necessary.

Limits:

Nominal Peak Output Power (dBm)
+33

Test Results: Output Power (radiated) UMTS Mode

Frequency (MHz)	Average EIRP (dBm)
1712.4	24.6
1732.4	23.5
1752.6	24.8
Measurement uncertainty	±0.5 dB

Sample Calculation:

Freq	SA	SG	Ant.	Dipol	Cable	EIRP		
_	Reading	Setting	gain	gain	loss	Result		
MHz	dBµV	dBm	dBi	dBd	dB	dBm		
1852.4	125.8	22.6	8.4	0.0	3.3	27.7		

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

5.4.2 Frequency Stability

Not performed!

5.4.3 Radiated Emissions

Reference

FCC:	CFR Part 27.53, 2.1053
IC:	RSS 139, Issue 2, Section 6.5

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load.

c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee' s frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results: Radiated Emissions

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the UMTS band (1852.4 MHz, 1880.0 MHz and 1907.6 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the UMTS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next table.

All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked, too. The found values are stated in the table below.

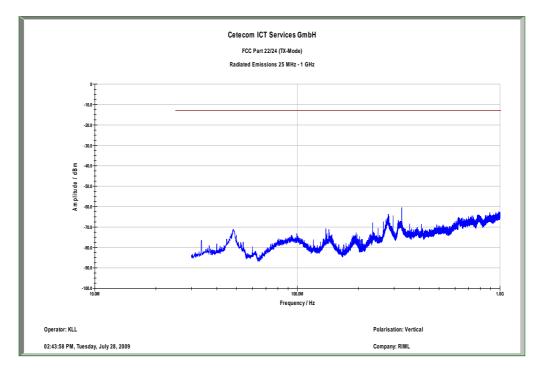
As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch1312 Freq. (MHz)	Level (dBm)	Tx ch1412 Freq. (MHz)	Level (dBm)	Tx ch1513 Freq. (MHz)	Level (dBm)
2	3424,8	-	3464,8	-	3505,2	-
3	5137,2	-	5197,2	-	5257,8	-
4	6849,6	-	6929,6	-	7010,4	-
5	8562	-	8662	-	8763	-
6	10274,4	-	10394,4	-	10515,6	-
7	11986,8	-	12126,8	-	12268,2	-
8	13699,2	-	13859,2	-	14020,8	-
9	15411,6	-	15591,6	-	15773,4	-
10	17124	_	17324	-	17526	_

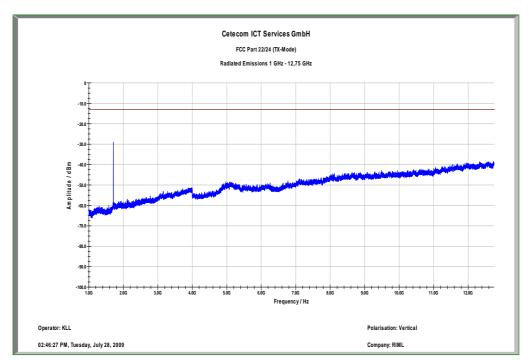
No peaks found < 20 dB below limit.

Sample calculation:

Freq	SA	SG	Ant.	Dipol	Cable	EIRP		
	Reading	Setting	gain	gain	loss	Result		
MHz	dBµV	dBm	dBi	dBd	dB	dBm		
1852.4	125.8	22.6	8.4	0.0	3.3	27.7		

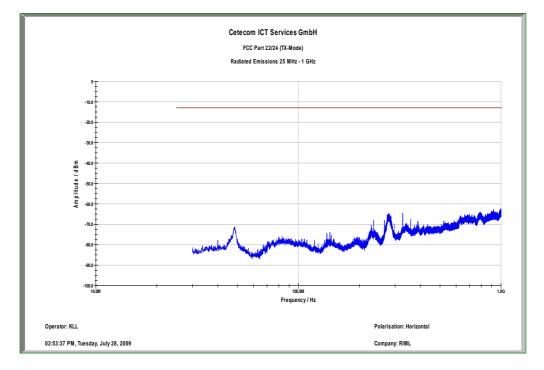

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

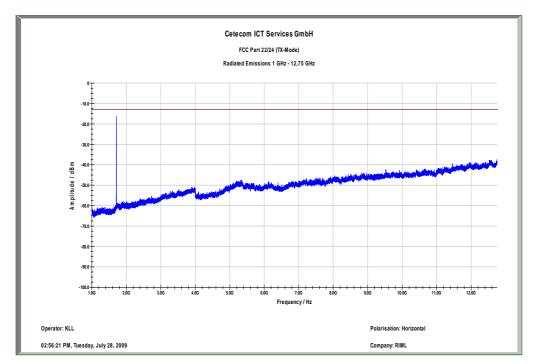
CETECOM ICT Services GmbH Test report no.: 1-1505-01-02B/09



Channel 1312

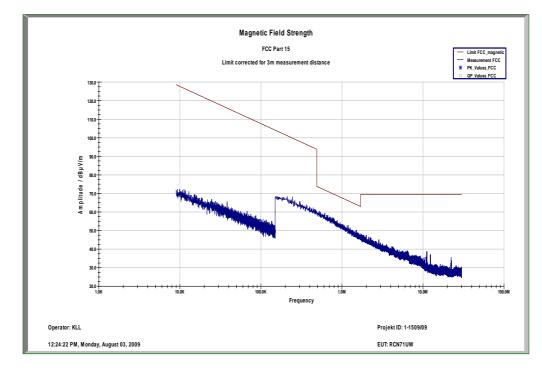
Plot 1: 30 MHz - 1 GHz DUTv ANTv


Plot 2: 1 GHz - 13 GHz DUTv ANTv


Carrier suppressed with a rejection filter

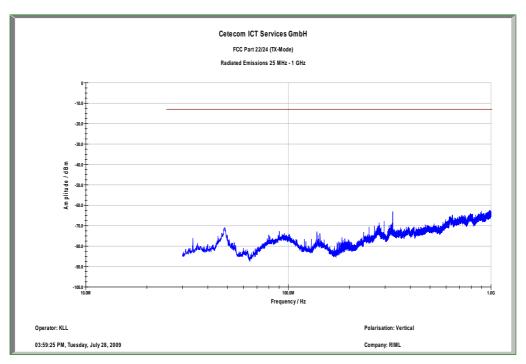
Plot 3: 30 MHz - 1 GHz DUTv ANTh

Plot 4: 1 GHz - 13 GHz DUTv ANTh

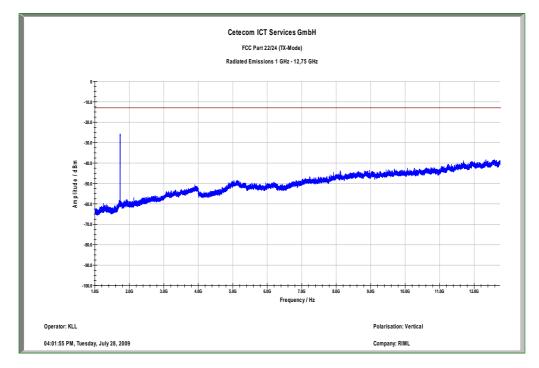


Carrier suppressed with a rejection filter

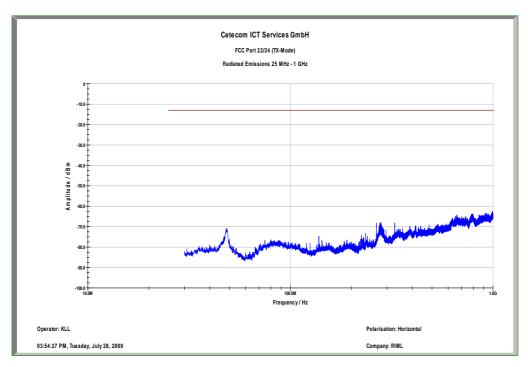
CETECOM ICT Services GmbH Test report no.: 1-1505-01-02B/09



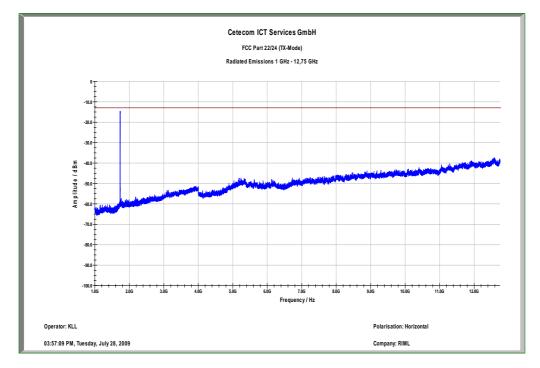
Channel 1412


Plot 1: Traffic mode up to 30 MHz/worst position valid for all 3 channels

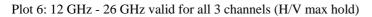
Plot 2: 30 MHz - 1 GHz DUTv ANTv



Plot 3: 1 GHz – 13 GHz DUTv ANTv

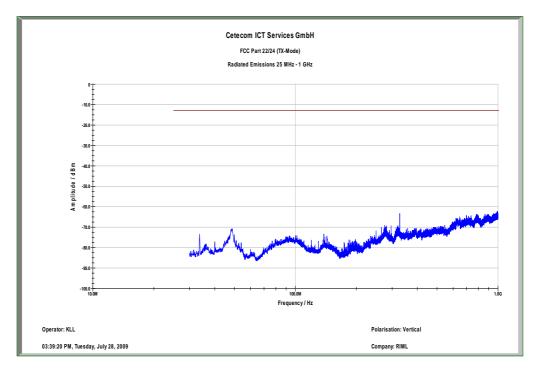

Carrier suppressed with a rejection filter

Plot 4: 30 MHz - 1 GHz DUTv ANTh

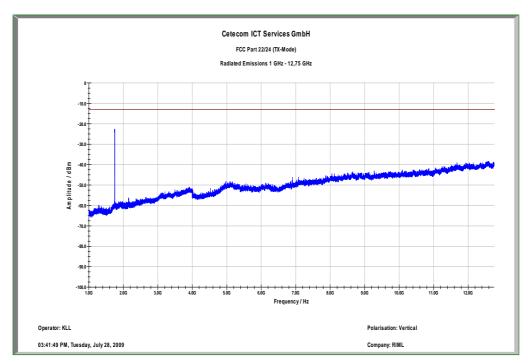


Plot 5: 1 GHz – 13 GHz DUTv ANTh

Carrier suppressed with a rejection filter

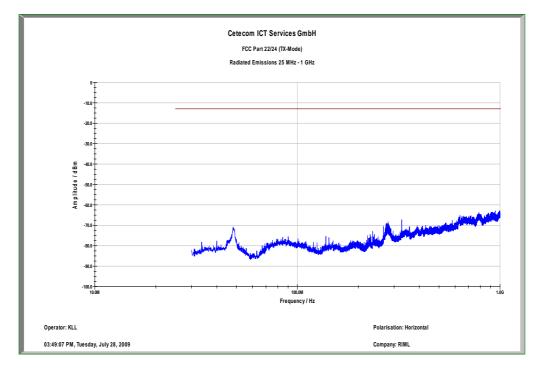


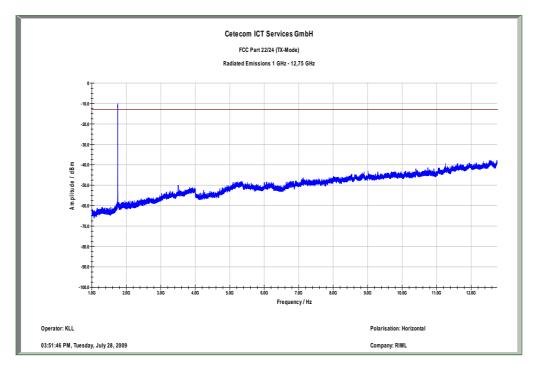
CETECOM ICT Services GmbH Test report no.: 1-1505-01-02B/09



Channel 1513

Plot 1: 30 MHz - 1 GHz DUTv ANTv


Plot 2: 1 GHz - 13 GHz DUTv ANTv


Carrier suppressed with a rejection filter

Plot 3: 30 MHz - 1 GHz DUTv ANTh

Plot 4: 1 GHz - 13 GHz DUTv ANTh

Carrier suppressed with a rejection filter

5.4.4 Conducted Spurious Emissions

Not performed!

5.4.5 Block Edge Compliance

Not performed!

5.4.6 Occupied Bandwidth

Not performed!

5.5 Receiver

5.5.1 Receiver Radiated Emissions

Reference

FCC:	CFR Part 15.109, 2.1053
IC:	RSS 133, Issue 5, Section 6.6

Method of measurement

The measurement was performed in worst case. The EUT was not connected to the CMU 200. So the EUT perform a network search. In this case all oscillators are active.

Measurement Results

	SPURIOUS EMISSIONS LEVEL [dBµV/m]										
	Idle mode			-/-			-/-				
Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]			
Measu	rement unce	rtainty			±3 0	dB	<u>.</u>				

f < 1 GHz : RBW/VBW: 100 kHz

 $f \ge 1GHz$: RBW/VBW: 1 MHz

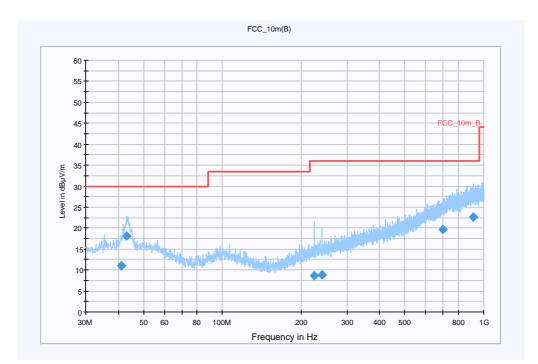
H = Horizontal; V= Vertical

Measurement distance see table

Limits:

§ 15.109

Frequency [MHz]	Field strength [dBµV/m]	Measurement distance [m]
30 - 88	30.0	10
88 - 216	33.5	10
216 - 960	36.0	10
above 960	54.0	3

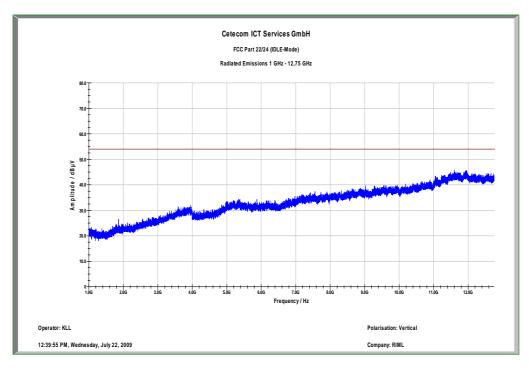

Plot 1: Idle-Mode (30 MHz - 1 GHz)

EUT:	RTS-1689-2.0 + HDW-15766-005 + HDW-17955-001 + HDW-24476-001
Serial Number:	-/-
Test Description:	FCC Part 15 B @ 10 m
Operating Conditions:	idle + charging
Operator Name:	COA
Comment:	AC 115V / 60 HZ

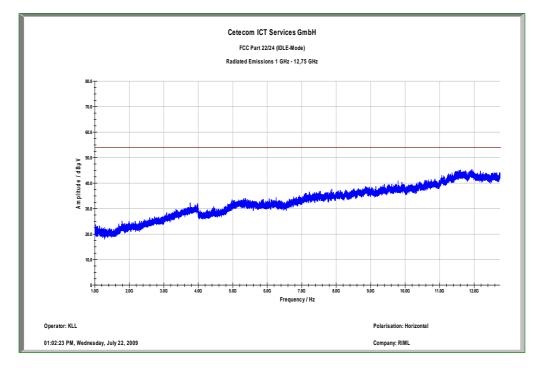
Scan Setup: STAN_Fin [EMI radiated]#

Hardware Setup:	Electric Field (NOS)
Level Unit:	dBµV/m
	•

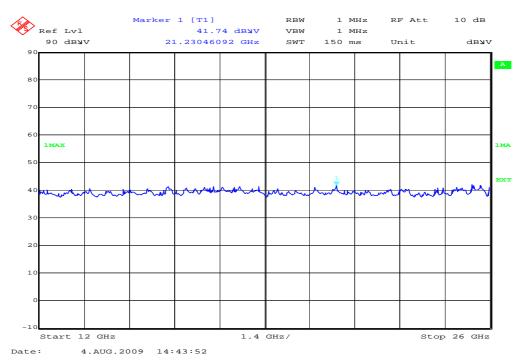
Subrange	Detectors	IF Bandwidth	Meas. Time	Receiver
30 MHz - 1 GHz	QuasiPeak	120 kHz	15 s	Receiver


Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
41.215850	11.0	15000.00	120.000	114.0	V	102.0	13.5	19.0	30.0
43.120850	18.0	15000.00	120.000	167.0	V	258.0	13.5	12.0	30.0
224.11980	8.6	15000.00	120.000	100.0	V	338.0	12.8	27.4	36.0
241.49185	8.9	15000.00	120.000	200.0	V	321.0	13.4	27.1	36.0
698.12330	19.6	15000.00	120.000	200.0	V	313.0	23.0	16.4	36.0
909.69680	22.6	15000.00	120.000	400.0	V	190.0	25.7	13.4	36.0

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]


Subrange 1	
Frequency Range:	30 MHz - 2 GHz
Receiver:	Receiver [ESCI 3]
	@ GPIB0 (ADR 20), SN 100083/0033, FW 4.32
Signal Path:	without Notch
	FW 1.0
Antenna:	VULB 9163
	SN 9163-295, FW
	Correction Table (vertical): VULP6113
	Correction Table (horizontal): VULP6113
	Correction Table: Cable_EN_1GHz (0109)
Antenna Tower:	Tower [EMCO 2090 Antenna Tower]
	@ GPIB0 (ADR 8), FW REV 3.12
Turntable:	Turntable [EMCO Turntable]
	@ GPIB0 (ADR 9), FW REV 3.12
EMC 32 Version 8.10.00	

Plot 2: Idle-Mode (1 GHz – 13GHz) DUTv ANTv



Plot 3: Idle-Mode (1GHz - 13GHz) DUTv ANTh

Plot 4: Idle-Mode 12 GHz - 26GHz (H/V max hold)

6 Test equipment and ancillaries used for tests

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

All reported calibration intervals are calibrations according to the EN/ISO/IEC 17025 standard. These calibrations were performed from an accredited external calibration laboratory.

Additional to these calibrations the laboratory performed comparison measurements with other calibrated systems and performed a weekly chamber inspection.

All used devices are connected with a 10 MHz external reference.

According to the manufacturers' instruction is it possible to establish a calibration interval for the FSP unit of 24 month, if the device has an external 10 MHz reference.

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration	
1	Anechoic chamber	MWB	87400/02	300000996	Monthly verifica		Culloration	
2	System-Rack 85900	HP I.V.	*	300000222	n.a.			
3	Measurement System 1							
	PSA-Spektrumanalysator 3 Hz - 26.5 GHz (E4440A)	Agilent	MY48250080	300003812	05.08.2008	24	05.08.2010	
	EMI Preselector 9 kHz - 1 GHz (N9039A)	Agilent	MY48260003	300003825	19.08.2008	24	19.08.2010	
	Microwave Analog Signal Generator (N5183A)	Agilent	MY47420220	300003813	06.08.2008	24	06.08.2010	
7	PC	F+W			n.a.			
8	TILE	TILE			n.a.			
9	TRILOG Super Broadband Antenna (VULB9163)	Schwarzbeck	371	300003854	Monthly verifica	Monthly verification (System cal.)		
10	Double Ridged Antenna 3115	EMCO	3088	300001032	Monthly verification (System cal.)			
11	Active Loop Antenna 6502	EMCO	2210	300001015	Monthly verifica	Monthly verification (System cal.)		
12	Switch / Control Unit 3488A	HP	2719A15013	300001156	n.a.			
13	Power Supply 6032A	HP	2818A03450	300001040	08.01.2009	36	08.01.2012	
14	Busisolator	Kontron		300001056	n.a.			
15	Leitungsteiler 11850C	HP		300000997	Monthly verifica	ation (System cal.))	
16	Power attenuator 8325	Byrd	1530	300001595	Monthly verifica	ation (System cal.))	
17	Band reject filter WRCG1855/1910	Wainwright	7	300003350	Monthly verifica	ation (System cal.))	
	Band reject filter WRCG2400/2483	Wainwright	11	300003351	Monthly verifica	ation (System cal.))	
	Hochpassfilter WHK1.1/15G- 10SS	Wainwright	3	300003255	Monthly verifica	ation (System cal.))	
20	12SS	Wainwright	1	300003492	Monthly verifica	ation (System cal.)		
21	Hochpassfilter WHKX7.0/18G- 8SS	Wainwright	18	300003789	Monthly verifica	ation (System cal.))	
22	Switch / Control Unit 3488A	HP	2605e08770	300001443	n.a.			
23	Trenntrafo RT5A	Grundig	9242	300001263	n.a.			
24	Relais Matrix PSU	R&S	890167/024	300001168	n.a.			
25	Netznachbildung ESH3-Z5	R&S	828576/020	300001210	n.a.			

Anechoic chamber C:

System Rack Room 005:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last	Frequency	Next
					Calibration	(months)	Calibration
1	FSP 30	R&S	100886	300003575	25.08.2008	24	25.08.2010
2	CBT	R&S	100313	300003516	03.09.2008	24	03.09.2010
3	Switch Matrix	HP		300000929	n.a.		
4	Power Supply 6625A	HP	3041A00544	300002270	13.05.2007	36	13.05.2010
5	Signal Generator SMIQ03B	R&S	836206/0092	300002680	30.05.2007	36	30.05.2010

Signalling Units:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	CBT	R&S	100313	300003516	03.09.2008	24	03.09.2010
2	CBT	R&S	100185	300003416	27.08.2008	24	27.08.2010
4	CMU-200	R&S	106240	300003321	27.08.2008	24	27.08.2010
5	CMU-200	R&S	832221/0055	300002862	20.03.2008	24	20.03.2010

SRD Laboratory Room 002:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	System Controller PSM 12	R&S	835259/007	300002681-00xx	n.a.		
2	Memory Extension PSM-K10	R&S	To 1	300002681	n.a.		
3	Operating Software PSM-B2	R&S	To 1	300002681	n.a.		
4	19" Monitor		22759020-ED	300002681	n.a.		
5	Mouse		LZE 0095/6639	300002681	n.a.		
6	Keyboard		G00013834L461	300002681	n.a.		
7	Spectrum Analyser FSIQ 26	R&S	835540/018	300002681-0005	10.01.2008	24	10.01.2010
8	Tracking Generator FSIQ-B10	R&S	835107/015	300002681	s.No.7		
10	RF-Generator SMIQ03 (B1 Signal)	R&S	835541/056	300002681-0002	26.08.2008	36	26.08.2011
11	Modulation Coder SMIQ-B20	R&S	To 10	300002681	s.No.10		
12	Data Generator SMIQ-B11	R&S	To 10	300002681	s.No.10		
13	RF Rear Connection SMIQ- B19	R&S	To 10	300002681	s.No.10		
14	Broadband horn antenna (1-18 GHz)	EMCO	9107-3696	300001604	16.04.2008	24	16.04.2010
15	Broadband horn antenna (1-18 GHz)	EMCO	9107-3697	300001605	21.08.2008	24	21.08.2010
16	Std gain horn antenna (18- 26.5 GHz)	Narda	Model no. 638	300000486	n.a.		
17	Std gain horn antenna (18- 26.5 GHz)	Narda	Model no. 638	300000487	n.a.		
18	Sleeve dipole antenna Model 3126-880	ETS- Lindgren	00040887	3000000	n.a.		
19	Fast CPU SM-B50	R&S	To 10	300002681	s.No.10		
20	FM Modulator SM-B5	R&S	835676/033	300002681	s.No.10		
21	RF-Generator SMIQ03 (B2 Signal)	R&S	835541/055	300002681-0001	25.08.2008	36	25.08.2011
22	Modulation Coder SMIQ-B20	R&S	To 21	300002681	s.No.21		
23	Data Generator SMIQ-B11	R&S	To 21	300002681	s.No.21		
24	RF Rear Connection SMIQ- B19	R&S	To 21	300002681	s.No.21		
25	Fast CPU SM-B50	R&S	To 21	300002681	s.No.21		
26	FM Modulator SM-B5	R&S	836061/022	300002681	s.No.21		
27	RF-Generator SMP03 (B3 Signal)	R&S	835133/011	300002681-0003	26.08.2008	36	26.08.2011
28	Attenuator SMP-B15	R&S	835136/014	300002681	S.No.27		
29	RF Rear Connection SMP-B19	R&S	834745/007	300002681	S.No.27		
30	Power Meter NRVD	R&S	835430/044	300002681-0004	26.08.2008	24	26.08.2010
31	Power Sensor NRVD-Z1	R&S	833894/012	300002681-0013	26.08.2008	24	26.08.2010
32	Power Sensor NRVD-Z1	R&S	833894/011	300002681-0010	26.08.2008	24	26.08.2010
33	Rubidium Standard RUB	R&S		300002681-0009	27.08.2008	24	27.08.2010
34	Switching and Signal Conditioning Unit SSCU	R&S	338864/003	300002681-0006	Verified with pa	th compensation	
35	Laser Printer HP Deskjet 2100	HP	N/A	300002681-0011	n.a.	1	
36	19'' Rack	R&S	11138363000004	300002681	n.a.		
37	RF-cable set	R&S	N/A	300002681	n.a.		

CETECOM ICT Services GmbH

Test report no.: 1-1505-01-02B/09

20	IEEE 11	DAG	NT/A	200002691		İ	
39	IEEE-cables	R&S	N/A	300002681	n.a.		
40	Sampling System FSIQ-B70	R&S	835355/009	300002681	s.No.7		
41	RSP programmable attenuator	R&S	834500/010	300002681-0007	26.08.2008	24	26.08.2010
42	Signalling Unit	R&S	838312/011	300002681	n.a.		
43	NGPE programmable Power Supply for EUT	R&S	192.033.41	300002681			
44	Power Splitter 6005-3	Inmet Corp.	none	300002841	n.a.		
45	SMA Cables SPS-1151-985- SPS	Insulated Wire	different	different	n.a.		
46	CBT32 with EDR Signaling Unit	R&S					
47	Coupling unit	Narda	N/A		n.a.		
48	2xSwitch Matrix PSU	R&S	872584/021	300001329	n.a.		
49	RF-cable set	R&S	N/A	different	n.a.		
50	IEEE-cables	R&S	N/A		n.a.		

Note: 3000002681-00xx inventoried as a system

SRD Laboratory Room 005:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	Spektrum Analyzer 8566B	HP	2747A05275	300000219	18.01.2008	24	18.01.2010
2	Spektrum Analyzer Display 85662A	HP	2816A16497	300001690	23.01.2008	24	23.01.2010
3	Quasi-Peak-Adapter 85650A	HP	2811A01135	300000216	23.01.2008	24	23.01.2010
4	Power Supply	Heiden	003202	300001187	12.05.2007	36	12.05.2010
5	Power Supply	Heiden	1701	300001392	12.05.2007	36	12.05.2010

SRD Laboratory Room 011:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	NRP Power Meter	R&S	100212	300003780	27.02.2008	24	27.02.2010

Anechoic chamber F:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	Control Computer	F+W	FW0502032	300003303	-/-	-/-	-/-
2	Trilog Antenna VULB 9163	Schwarzbeck	295	300003787	01.04.2008	24	01.04.2010
3	Amplifier - 0518C-138	Veritech Micro- wave Inc.	-/-	-/-	-/-	-/-	-/-
4	Switch - 3488A	HP		300000368	-/-	-/-	-/-
5	EMI Test receiver - ESCI	R&S	100083	300003312	31.01.2009	24	31.01.2011
6	Turntable Controller - 1061 3M	EMCO	1218	300000661	-/-	-/-	-/-
7	Tower Controller 1051 Controller	EMCO	1262	300000625	-/-	-/-	-/-
8	Tower - 1051	EMCO	1262	300000625	-/-	-/-	-/-
10	Ultra Notch-Filter Rejected band Ch. 62	WRCD	9	-/-	-/-	-/-	-/-