Testing Services	Document SAR Compliance Test Report for t Smartphone Model RCL21CW	Page 1(38)	
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

SAR Compliance Test Report

Testing Lab:	440 Phill	ting Services lip Street o, Ontario N2L 5R9	Applicant:	Research 295 Philli Waterloo Canada N	, Ontario
	Phone: Fax:	519-888-7465 519-746-0189		Fax:	519-888-7465 519-888-6906 www.rim.com

- Statement of
Compliance:RIM Testing Services declares under its sole responsibility that the product
to which this declaration relates, is in conformity with the appropriate RF exposure
standards, recommendations and guidelines. It also declares that the product was
tested in accordance with the appropriate measurement standards, guidelines and
recommended practices.
- **Device Category:** This BlackBerry[®] Smartphone is a portable device, designed to be used in direct contact with the user's head, hand and to be carried in approved accessories when carried on the user's body.

RF exposureThis device has been shown to be in compliance for localized specific absorptionenvironment:This device has been shown to be in compliance for localized specific absorptionrate (SAR) for uncontrolled environment/general population exposure limitsspecified in OET Bulletin 65 Supplement C (Edition 01-01), FCC 96-326, IEEE Std.C95.1-1999, Health Canada's Safety Code 6, as reproduced in RSS-102 issue 3-2009and has been tested in accordance with the measurement procedures specified in FCCOET Procedures, OET Bulletin 65 Supplement C (Edition 01-01), ANSI/IEEE Std.C95.3-1991, IEEE 1528-2003, IEC 62209-1-2005, DASY4 manual which followsdraft IEC 62209 – Part 2 and Health Canada's Safety Code 6.

Tested and documented by:	Signatures	Date
Andrew Becker Compliance Specialist	Andre Bacher	16-Sep-2009
Tested and reviewed by: Daoud Attayi Senior Compliance Specialist	Daond Attagi	05-Oct-2009
Approved by: Masud S. Attayi	Mand fiting	14-Oct-2009

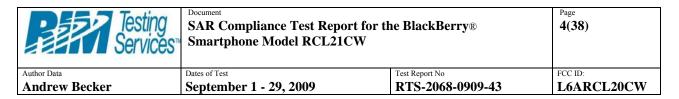
Mgr, Regulatory Compliance

Testing Services	Document SAR Compliance Test Report for th Smartphone Model RCL21CW	Page 2(38)	
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

CONTENTS

SAR	COM	IPLIANCE TEST REPORT	1
0/ 11 (001	CONTENTS	
1.0		OPERATING CONFIGURATIONS AND TEST CONDITIONS	
1.0	1.1	PICTURE OF DEVICE.	
	1.2	ANTENNA DESCRIPTION	
	1.3	DEVICE DESCRIPTION	
	1.4	BODY WORN ACCESSORIES (HOLSTERS)	
	1.5	HEADSET	
	1.6	BATTERY	
	1.7	PROCEDURE USED TO ESTABLISH TEST SIGNAL	
	1.8	HIGHLIGHTS OF THE FCC OET SAR MEASUREMENT REQUIREMENTS	
	1.0	1.8.1 SAR MEASUREMENT REQUIREMENTS FOR 3-6 GHZ AND MEASUREMENT PROCEDURES FO	ט קר
		802.11 A/B/G TRANSMITTER	
	1 8 2	FCC SAR MEASUREMENT PROCEDURES FOR 3G DEVICES CDMA 2000 1X	
		1.8.2.1 OUTPUT POWER VERIFICATION	
		1.8.2.2 3GPP2 C.S0011/ TIA-98-E, SECTION 4.4.5.2 METHOD OF MEASUREMENT	/
		1.8.2.3 HEAD SAR MEASUREMENTS	
		1.8.2.4 BODY SAR MEASUREMENTS	
		1.8.2.5 1X EV-DO	
	1.9	HIGHLIGHTS OF THE FCC OET SAR EVALUATION CONSIDERATIONS FOR HANDSETS WITH MULT	
	1.9	TRANSMITTERS/ANTENNAS	
2.0		DESCRIPTION OF THE TEST QUIPMENT.	
2.0	~ 4		
	2.1	SAR MEASUREMENT SYSTEM	
	2.2	DESCRIPTION OF THE TEST SETUP	15
0.0		2.2.2 DASY SETUP	15
3.0	~ .	ELECTRIC FIELD PROBE CALIBRATION	15
	3.1		15
	3.2	PROBE CALIBRATION AND MEASUREMENT UNCERTAINTY	
4.0		SAR MEASUREMENT SYSTEM VERIFICATION	
	4.1	SYSTEM ACCURACY VERIFICATION FOR HEAD ADJACENT USE	
5.0		PHANTOM DESCRIPTION	
6.0	~ .	TISSUE DIELECTRIC PROPERTIES	
	6.1	COMPOSITION OF TISSUE SIMULANT	
		6.1.1 EQUIPMENT	
		6.1.2 PREPARATION PROCEDURE	
	6.2	ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID	
		6.2.1 EQUIPMENT	
		6.2.2 TEST CONFIGURATION	
		6.2.3 PROCEDURE	
7.0		SAR SAFETY LIMITS	
8.0			
	8.1	DEVICE HOLDER FOR SAM TWIN PHANTOM	
	8.2	DESCRIPTION OF THE TEST POSITIONING	
		8.2.1 TEST POSITIONS OF DEVICE RELATIVE TO HEAD	
		8.2.1.1 DEFINITION OF THE "CHEEK" POSITION	
		8.2.1.2 DEFINITION OF THE "TILTED" POSITION	
		8.2.2 BODY HOLSTER CONFIGURATION	-
9.0		HIGH LEVEL EVALUATION	-
	9.1	MAXIMUM SEARCH	-
	9.2	EXTRAPOLATION	-
	9.3	BOUNDARY CORRECTION	-
	9.4	PEAK SEARCH FOR 1G AND 10G CUBE AVERAGED SAR	
10.0		MEASUREMENT UNCERTAINTY	
11.0		TEST RESULTS	
	11.1	SAR MEASUREMENT RESULTS AT HIGHEST POWER MEASURED AGAINST THE HEAD	31
	11.2		
		ACCESSORIES	
12.0		REFERENCES	37

Testing Services	Document SAR Compliance Test Report for th Smartphone Model RCL21CW	Page 3(38)	
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW


APPENDIX A: SAR DISTRIBUTION COMPARISON FOR ACCURACY VERIFICATION

APPENDIX B: SAR DISTRIBUTION PLOTS - HEAD CONFIGURATION

APPENDIX C: SAR DISTRIBUTION PLOTS - BODY-WORN CONFIGURATION

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

APPENDIX E: PHOTOGRAPHS

1.0 OPERATING CONFIGURATIONS AND TEST CONDITIONS

1.1 Picture of Device

Please refer to Appendix E. Figure 1.1.1 BlackBerry Smartphone

1.2 Antenna description

Туре	Internal fixed antenna		
Location	Back bottom centre (main licensed		
Location	transmitters)		
Configuration	Internal fixed antenna		

Table 1.2.1. Antenna description

1.3 Device description

Device Model	RCL21CW				
FCC ID	L6ARCL20CW				
PIN	Rev1: 30D9EC96, 30	D9ECA9 (WiFi), 30E	9F068 (condu	cted), Rev 3: 3	0EC2ACE
Prototype or Production Unit	Production				
Mode(s) of Operation	CDMA2000/ CDMA2000/ 1xEvDO 1xEvDO 802.11b 802.11g Bluetooth 800 1900 100 100 100 100				
Maximum nominal conducted RF Output Power (dBm)	24.0	23.5	18.0	16.0	8.0
Tolerance in Power Setting on centre channel (dB)	± 0.50	± 0.50	± 0.50	± 0.50	N/A
Duty Cycle	1:1 1:1 1:1 1:1 N/A				
Tx Frequency Range (MHz)	824.70 - 848.52	1851.25 - 1908.50	2412-2462	2412-2462	2402-2483

 Table 1.3.1. Test device description

Testing Services	Document SAR Compliance Test Report for th Smartphone Model RCL21CW	Page 5(38)	
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

1.4 Body worn accessories (holsters)

The device has been tested with the two holsters listed below, which contain belt-clip/metal components. The separation distance between the device and the user's body is listed in the table below. The holsters are designed with the intended device orientation being with the LCD facing the belt clip. Proper positioning is vital for protection of the LCD display, and to help maximize the battery life of the device. The device can also be placed in the holster with the backside facing the belt clip. Body SAR measurements were carried out with the worst-case configuration front LCD side and backside towards the belt clip.

Number	Holster Type	Part Number	Separation distance (mm)
1	Vertical Swivel Holster	HDW-24208-001	22
2	Horizontal Swivel Holster	HDW-18965-002	21

Table 1.4.1. Body worn holster

Please refer to Appendix E. Figure 1.4.1. Body-worn holster

1.5 Headset

The device was tested with and without the following headset model numbers.

- 1) HDW-14322-003
- 2) HDW-15766-005
- 3) HDW-15765-001

1.6 Battery

The device was tested with the following Lithium Ion Battery pack.

1) BAT-06860-004

1.7 Procedure used to establish test signal

The device was put into test mode for SAR measurements by placing a voice call from a Rohde & Schwarz CMU 200 Communications Test Instrument. The power control level was set to command the device to transmit at full power at the specified frequency. Other parameters include: Channel type = full rate, discontinuous transmission off, frequency hopping off. A Rohde & Schwarz CBT Bluetooth Tester was used to establish a connection with the EUT's Bluetooth radio. Worst case SAR was evaluated with Bluetooth on.

1.8 Highlights of the FCC OET SAR Measurement Requirements

Testing Services	Document SAR Compliance Test Report for th Smartphone Model RCL21CW	Page 6(38)	
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

1.8.1 Measurement Procedure for 802.11 b/g Transmitter

• Maintained dielectric parameter uncertainty as close to $\pm 5.0\%$ of the target value as possible.

• Liquid depth from SAM ERP or flat phantom was kept at 15 cm.

• Frequency Channel Configuration: 802.11 b/g modes are tested on "default test channels" 1, 6 and 11.

• For each frequency band, testing at higher rates and higher modulations is not required when the maximum average output power for each of these configurations is less than $\frac{1}{4}$ dB higher than those measured at the lowest data rate.

• SAR is not required for 802.11g channels when the maximum average output power is less than $\frac{1}{4}$ dB higher than that measured on the corresponding 802.11b channels.

• SAR test was conducted on each "default test channel" and each band with the worst case modulation that resulted in maximum duty cycle of 99.5 %.

• Conducted power measurements:

802.11b @ 1Mbps		802.11g @ 6Mbps	
Chan	Cond. Power (dBm)	Chan	Cond. Power (dBm)
1	17.60	1	13.30
6	18.00	6	16.80
11	18.05	11	13.80

 Table 1.8.1.
 802.11 b/g channel vs. conducted power

Testing Services	Document SAR Compliance Test Report for the BlackBerry® Smartphone Model RCL21CW		Page 7(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

		802.11g			802.11b
		Channel 6	Data		Channel 6
Data Rate	Mod.	Cond.	Rate	Mod.	Cond.
(Mbps)	WIGU.	Power	(Mbps)	mou.	Power
		(dBm)	(intops)		(dBm)
6	BPSK	16.80	1	BPSK	18.00
9	BPSK	16.80	2	DQPSK	18.00
12	QPSK	14.80	5.5	CCK	17.95
18	QPSK	14.65	11	CCK	17.98
24	16-QAM	13.30			
36	16-QAM	12.90			
48	64-QAM	11.10			
54	64-QAM	11.05			

Table 1.8.2. 802.11 b/g modulation type/data rate vs. conducted power

1.8.2 FCC SAR Measurement Procedures for 3G Devices CDMA1x 2000

The followings are the **FCC SAR Measurement Procedures for 3G Devices issued in Oct. 2006**, applicable to handsets operating under CDMA 2000, Release 0, with MS Protocol Revision 6 (**P_REV 6**). The default test configuration is to measure SAR in RC3 with an established radio link between the DUT and a communication test set. SAR in RC1 is selectively confirmed according to output power and exposure conditions.

1.8.2.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. Results for at least steps 3, 4 and 10 of the power measurement procedures should be tabulated in the SAR report as shown on Table 1.9.2. Steps 3 and 4 should be measured using SO55 with power control bits in "<u>All Up</u>" condition. TDSO / SO32 may be used instead of SO55 for step 4. Step 10 should be measured using TDSO / SO32 with power control bits in the "<u>Bits Hold</u>" condition (i.e. alternative Up/Down Bits).

Testing Services	Smartphone Model RCL21CW		Page 8(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

1.8.2.2 3GPP2 C.S0011/ TIA-98-E, section 4.4.5.2 Method of Measurement

3. If the mobile station supports Reverse Traffic Channel Radio Configuration 1 and 7 Forward Traffic Channel Radio Configuration 1, set up a call using Fundamental 8 Channel Test Mode 1 with 9600 bps data rate only and perform steps 6 through 8.

4. If the mobile station supports the Radio Configuration 3 Reverse Fundamental 11 Channel and demodulation of Radio Configuration 3, 4, or 5, set up a call using 12 Fundamental Channel Test Mode 3 with 9600 bps data rate only and 13 perform steps 6 through 8.

6. Set the test parameters as specified in Table 1.8.3.

7. Send continuously '0' power control bits to the mobile station.

8. Measure the mobile station output power at the mobile station antenna connector.

10. If the mobile station supports the Radio Configuration 3 Reverse Fundamental Channel, Radio Configuration 3 Reverse Supplemental Channel 0 and demodulation of Radio Configuration 3, 4, or 5, set up a call using Supplemental Channel Test Mode 3 with 9600 bps Fundamental Channel and 9600 bps Supplemental Channel 0 data rate, and perform the following:

a) Set the test parameters as specified in Table 1.8.4.

b) Send alternating '0' and '1' power control bits to the mobile station using the smallest supported closed loop power control step size supported by the mobile station.

c) Determine the active channel configuration. If the desired channel configuration is not active, increase by 1 dB and repeat the verification. Repeat this step until the desired channel configuration becomes active.

d) Measure the mobile station output power at the mobile station antenna connector and record reading.

Parameter	Units	Value	Parameter	Units	Value
Îor	dBm/1.23 MHz	-104	Îor	dBm/1.23 MHz	-86
$\frac{\text{Pilot } E_c}{I_{or}}$	dB	-7	$\frac{Pilot E_{c}}{I_{or}}$	dB	-7
Traffic E _c I _{or}	dB	-7.4	$\frac{\text{Traffic } E_c}{I_{or}}$	dB	-7.4

Table 1.8.3

Table 1.8.4

Test Parameters for Maximum RF Output Power for Spreading Rate 1

1.8.2.3 Head SAR Measurements

SAR for head exposure configurations is measured in RC3 with the DUT configured to transmit at full rate using Loopback Service Option SO55. SAR for RC1 is not required when the maximum average output of each channel is less than ¹/₄ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1 using the exposure configuration that results in the highest SAR for that channel in RC3.

Testing Services	SAR Compliance Test Report for the BlackBerry® Smartphone Model RCL21CW		Page 9(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

1.8.2.4 Body SAR Measurements

SAR for body exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. SAR for multiple code channels (FCH + SCH_n) is not required when the maximum average output of each RF channel is less than ¹/₄ dB higher than that measured with FCH only. Otherwise, SAR is measured on the maximum output channel (FCH + SCH_n) with FCH at full rate and SCH₀ enabled at 9600 bps using the exposure configuration that results in the highest SAR for that channel with FCH only. When multiple code channels are enabled, the DUT output may shift by more than 0.5 dB and lead to higher SAR drifts and SCH dropouts.

Body SAR in RC1 is not required when the maximum average output of each channel is less than ¹/₄ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1; with Loopback Service Option SO55, at full rate, using the body exposure configuration that results in the highest SAR for that channel in RC3.

1.8.2.5 1x Ev-DO

For handsets with Ev-Do capabilities, when the maximum average output of each channel in Rev. 0 is less than ¹/₄ dB higher than that measured in RC3 (1x RTT), body SAR for Ev-Do is not required. Otherwise, SAR for Rev. 0 is measured on the maximum output channel at 153.6 kbps using the body exposure configuration that results in the highest SAR for that channel in RC3. SAR for Rev. A is not required when the maximum average output of each channel is less than that measured in Rev. 0 or less than ¹/₄ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel for Rev. A using a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations. A Forward Traffic Channel data rate corresponding to the 2-slot version of 307.2 kbps with the ACK Channel transmitting in all slots should be configured in the downlink for both Rev. 0 and Rev. A.

Testing Services	SAR Compliance Test Report for the BlackBerry® Smartphone Model RCL21CW		Page 10(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

Band	Channe l	1x EvDO (153.6kbps)	CDMA2000 RC	SO2 Loopback	SO55 Loopback	TDSO SO32 Test Data Service
			RC1	24.2	24.2	N/A
	1013	24.0	RC3	24.2	24.1	24.1
CDMA	204	22.5	RC1	23.8	23.8	N/A
800	384	23.5	RC3	23.8	23.8	23.8
		22.6	RC1	23.9	23.8	N/A
	777	23.6	RC3	23.9	23.8	23.9
Band	Channe l	1x EvDO (153.6kbps)	CDMA2000 RC	SO2 Loopback	SO55 Loopback	TDSO SO32 Test Data
		(100.080µ3)		Loopback	Loopback	Service
	25	22.4	RC1	23.5	23.5	N/A
	25	23.4	RC3	23.5	23.4	23.4
CDMA 1900	(00	22.5	RC1	23.6	23.7	N/A
	600	23.5	RC3	23.6	23.7	23.6
	1175	22.2	RC1	23.6	23.5	N/A
	1175	23.3	RC3	23.5	23.5	23.3

Table 1.8.5: Conducted RF output power (dBm) measured for various settings

Testing Services	Document SAR Compliance Test Report for the BlackBerry® Smartphone Model RCL21CW DemosfTet		Page 11(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

1.9 Highlights of the FCC OET SAR Evaluation Considerations for Handsets with Multiple Transmitters/ Antennas

Unlicensed Transmitters

When there is simultaneous transmission -

Stand-alone SAR not required when

- output $\leq 2 \cdot PRef$ and antenna is > 5.0 cm from other antennas
- output \leq PRef and antenna is > 2.5 cm from other antennas
- the other antenna(s), which are < 2.5 cm away, has an output \leq PRef OR max 1g SAR < 1.2 W/kg

Otherwise stand-alone SAR is required

• test SAR on highest output channel for each wireless mode and exposure condition

• if SAR for highest output channel is > 50% of SAR limit, evaluate all channels according to normal procedure

Simultaneous Transmission SAR not required:

Unlicensed only

- when stand-alone 1-g SAR is not required and antenna is > 5 cm from other antennas
- when the other antenna(s), which are < 2.5 cm away, has an output \leq PRef OR max 1g SAR < 1.2 W/kg

Licensed & Unlicensed

 \bullet when the sum of the 1-g SAR is < 1.6 W/kg for each pair of simultaneous transmitting antennas. or

• when the ratio of SAR to peak SAR separation distance of simultaneous transmitting antenna pair is < 0.3

Simultaneous Transmission SAR required:

Licensed & Unlicensed

• antenna pairs with SAR to antenna separation ratio ≥ 0.3 ; test is only required for the configuration that results in the highest SAR in standalone configuration for each wireless mode and exposure condition.

	2.45	GHz	
P _{Ref}	12	mW	

Device output power should be rounded to the nearest mW to compare with values specified in this table.

Table 1.9.1 – Output Power Thresholds for Unlicensed Transmitters

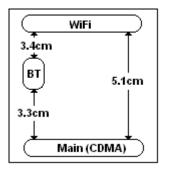


Figure 1.9.1. Back view of device showing closet distance between antenna pairs

Testing Services	Document SAR Compliance Test Report for the BlackBerry® Smartphone Model RCL21CW		Page 12(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

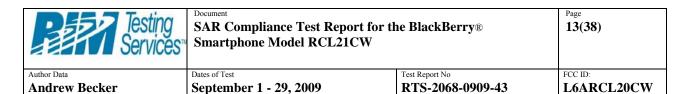

Mode	Configuration	Highest 1 g SAR (W/kg)	Seperation distance between two peaks (cm)	Ratio of 1 g SAR to distance (cm) between two peaks
CDMA	Head-Right-Touch	1.31	6.02	0.28
802.11 b/g	Head-Right-Touch	0.35	0.02	0.28
CDMA	Body-Vertical Holster Back	0.66		
802.11b/g	Body- Vertical Holster Back	0.09		

Table 1.9.2. Highest SAR values for the same setup

Simultaneous Transmission SAR is not required for body SAR based on the sum of 1-g SAR values for each pair of simultaneous transmitting antennas being < 1.6W/kg.

Simultaneous Transmission SAR is not required for head configuration based on ratio of SAR to peak SAR separation distance of simultaneous transmitting antenna pairs being < 0.3

BT stand-alone SAR is not required since antenna is > 2.5 cm away from the other antenna has an output \le PRef, therefore Simultaneous Transmission SAR is not required

2.0 DESCRIPTION OF THE TEST EQUIPMENT

2.1 SAR measurement system

SAR measurements were performed using a Dosimetric Assessment System (DASY4), an automated SAR measurement system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich, Switzerland.

The DASY 4 system for performing compliance tests consists of the following items:

• A standard high precision 6-axis robot (Stäubli RX family) with controller and software.

• An arm extension for accommodating the data acquisition electronics (DAE).

· A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in

tissue simulating liquid. The probe is equipped with an optical surface detector system.

• A DAE module that performs the signal amplification, signal

multiplexing, A/D conversion, offset measurements, mechanical surface detection,

collision detection, etc. The unit is battery powered with standard or rechargeable

batteries. The signal is optically transmitted to the Electro-optical coupler (EOC).

• A unit to operate the optical surface detector that is connected to the EOC.

 \cdot The EOC performs the conversion from an optical signal into the digital electric signal of the DAE. The EOC is connected to the PC plug-in card.

• The functions of the PC plug-in card based on a DSP is to perform the time critical tasks such as signal filtering, surveillance of the robot operation fast movement interrupts.

· A computer operating Windows 2000.

 \cdot DASY 4 software version 4.7.

• Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.

• The SAM Twin Phantom enabling testing left-hand and right-hand usage.

 \cdot The device holder for mobile phones.

• Tissue simulating liquid mixed according to the given recipes (see section 6.1).

· System validation dipoles allowing for the validation of proper functioning of the system.

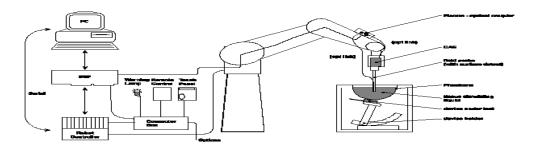


Figure 2.1.1. System Description

Testing Services	SAR Compliance Test Report for the BlackBerry® Smartphone Model RCL21CW		Page 14(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

2.1.1 Equipment List

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date (MM/DD/YY)
SCHMID & Partner Engineering AG	E-field probe	ET3DV6	1642	01/12/2010
SCHMID & Partner Engineering AG	Data Acquisition Electronics (DAE3)	DAE3 V1	472	03/03/2010
SCHMID & Partner Engineering AG	Dipole Validation Kit	D835V2	446	01/05/2011
SCHMID & Partner Engineering AG	Dipole Validation Kit	D1900V2	545	01/06/2011
SCHMID & Partner Engineering AG	Dipole Validation Kit	D2450V2	747	11/06/2009
Agilent Technologies	Signal generator	8648C	4037U03155	09/20/2009
Agilent Technologies	Signal generator	E8257D	MY45140527	10/09/2010
Agilent Technologies	Power meter	E4419B	GB40202821	09/19/2009
Agilent Technologies	Power sensor	8481A	MY41095417	10/30/2009
Agilent Technologies	Power sensor	N1921A	SG45240281	05/08/2010
Agilent Technologies	Power meter	N1911A	MY45100905	05/01/2011
Amplifier Research	Amplifier	5S1G4M3	300986	CNR
Agilent Technologies	Network analyzer	8753ES	US39174857	10/29/2009
Rohde & Schwarz	Base Station Simulator	CMU 200	109747	12/07/2009

 Table 2.1.2. Equipment list

Testing Services	Document SAR Compliance Test Report for th Smartphone Model RCL21CW	SAR Compliance Test Report for the BlackBerry®		
Author Data	Dates of Test	Test Report No	FCC ID:	
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW	

2.2 Description of the test setup

Before SAR measurements are conducted, the device and the DASY equipment are setup as follows:

2.2.1 Device and base station simulator setup

- Power up the device.
- Turn on the base station simulator and set the radio channel and power to the appropriate values.
- Connect an antenna to the RF IN/OUT of the communication test set and place it close to the device.

2.2.2 DASY setup

- Turn the computer on and log on to Windows 2000.
- Start the DASY4 software by clicking on the icon located on the Windows desktop.
- Mount the DAE unit and the probe. Turn on the DAE unit.
- Turn the Robot Controller on by turning the main power switch to the horizontal position
- Align the probe by clicking the 'Align probe in light beam' button.
- Open a file and configure the proper parameters probe, medium, communications system etc.
- Establish a connection between the Device and the communications test instrument. Place the Device on the stand and adjust it under the phantom.
- Start SAR measurements.

3.0 ELECTRIC FIELD PROBE CALIBRATION

3.1 Probe Specifications

SAR measurements were conducted using the dosimetric probe ET3DV6, designed by Schmid & Partner Engineering AG for the measurement of SAR. The probe is constructed using the thin film technique, with printed resistive lines on ceramic substrates. It has a symmetrical design with triangular core, built-in optical fibre for the surface detection system and built-in shielding against static discharge. The probe is sensitive to E-fields and thus incorporates three small dipoles arranged so that the overall response is close to isotropic. The table below summarizes the technical data for the probe.

Property	Data
Probe model ET3D	V6
Frequency range	30 MHz – 3 GHz
Linearity	±0.1 dB
Directivity (rotation around probe axis)	$\leq \pm 0.2 \text{ dB}$
Directivity (rotation normal to probe axis)	±0.4 dB
Dynamic Range	5 mW/kg – 100 W/kg
Probe positioning repeatability	±0.2 mm
Spatial resolution	< 0.125 mm ³

 Table 3.1.1. Probe specifications

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services Copyright 2005-2009, RIM Testing Services, A division of Research In Motion Limited

Testing Services	SAR Compliance Test Report for the Smartphone Model RCL21CW	Page 16(38)	
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

3.2 Probe calibration and measurement uncertainty

The probe ET3DV6 was calibrated with an accuracy better than $\pm 10\%$. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe were tested. The probe calibration parameters are shown on Appendix D.

4.0 SAR MEASUREMENT SYSTEM VERIFICATION

Prior to conducting SAR measurements, the system was validated using the dipole validation kit and the flat section of the SAM phantom. A power level of 1.0W was applied to the dipole antenna. The verification results are in the table below with a comparison to reference values. Printouts are shown in Appendix A. All the measured parameters are within the allowed tolerances.

f	Limits / Measured	SAR (W/kg)	Dielectric	Parameters	Liquid
(MHz)	(MM/DD/YY)	1 g/ 10 g	ε _r	σ [S/m]	Temp (°C)
	Measured (09/03/2009)	8.94/5.91	39.6	0.86	22.1
835	Measured (09/25/2009)	9.27/6.11	41.1	0.88	22.2
	Recommended Limits	9.50/6.27	41.5	0.90	N/A
	Measured (09/01/2009)	39.1/20.8	38.4	1.45	22.1
1900	Measured (09/24/2009)	37.0/19.4	40.7	1.40	22.0
	Recommended Limits	39.5/20.8	40.0	1.40	N/A
	Measured (09/03/2009)	58.4/27.1	37.5	1.88	21.9
2450	Measured (09/28/2009)	58.4/26.9	37.5	1.88	22.1
	Recommended Limits	53.2/24.8	39.2	1.80	N/A

4.1 System accuracy verification for head adjacent use

 Table 4.1.1. System accuracy (validation for head adjacent use)

Testing Services	Document SAR Compliance Test Report for the Smartphone Model RCL21CW	Page 17(38)	
Author Data	Dates of Test	FCC ID:	
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

5.0 PHANTOM DESCRIPTION

The SAM Twin Phantom, manufactured by SPEAG, was used during the SAR measurements. The phantom is made of a fibreglass shell integrated with a wooden table.

The SAM Twin Phantom is a fibreglass shell phantom with 2 mm shell thickness. It has three measurement areas:

Left side head Right side head Flat phantom

The phantom table dimensions are: 100x50x85 cm (LxWxH). The table is intended for use with freestanding robots.

The bottom shelf contains three pair of bolts for locking the device holder in place. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is

necessary if two phantoms are used (e.g., for different solutions).

A white cover is provided to top the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible; however the optical surface detector does not work properly at the cover surface. Place a sheet of white paper on the cover when using optical surface detection.

Liquid depth of \geq 15 cm is maintained in the phantom for all the measurements.

Figure 5.0.1. SAM Twin Phantom

Testing Services	Document SAR Compliance Test Report for t Smartphone Model RCL21CW	Page 18(38)		
Author Data	Dates of Test	FCC ID:		
Andrew Becker	September 1 - 29, 2009	······································		

6.0 TISSUE DIELECTRIC PROPERTIES

6.1 Composition of tissue simulant

The composition of the brain and muscle simulating liquids for 800-900 MHz and 1800-1900 MHz are shown in the table below.

INGREDIENT	MIXTURE 800–900MHz		MIXTURE 1800– 1900MHz		MIXTURE 2450 MHz	
	Brain %	Muscle %	Brain %	Muscle %	Brain %	Muscle %
Water	40.29	65.45	55.24	69.91	55.0	68.75
Sugar	57.90	34.31	0	0	0	0
Salt	1.38	0.62	0.31	0.13	0	0
HEC	0.24	0	0	0	0	0
Bactericide	0.18	0.10	0	0	0	0
DGBE	0	0	44.45	29.96	40.0	31.25
Triton X-100	0	0	0	0	5.0	0

Table 6.1.1 Tissue simulant recipe

6.1.1 Equipment

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date (MM/DD/YY)
Pyrex, England	Graduated Cylinder	N/A	N/A	N/A
Pyrex, USA	Beaker	N/A	N/A	N/A
Acculab	Weight Scale	V1-1200	018WB2003	N/A
Control Company	Digital Thermometer	15-077-21	51129471	05/01/2010
IKA Works Inc.	Hot Plate	RC Basic	3.107433	N/A

Table 6.1.2 Tissue simulant preparation equipment

6.1.2 Preparation procedure

800-900 MHz liquids

- Fill the container with water. Begin heating and stirring.
- Add the **Cellulose**, the **preservative substance** and the **salt**. After several hours, the liquid will become more transparent again. The container must be covered to prevent evaporation.
- Add Sugar. Stir it well until the sugar is sufficiently dissolved.

• Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation.

Testing Services	Document SAR Compliance Test Report for th Smartphone Model RCL21CW	Page 19(38)		
Author Data	Dates of Test	Test Report No	FCC ID:	
Andrew Becker	September 1 - 29, 2009	September 1 - 29, 2009 RTS-2068-0909-43		

• Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

1800-2450 MHz liquid

- Fill the container with water and place it on hotplate. Begin heating and stirring.
- Add the salt, Glycol/Triton X-100. The container must be covered to prevent evaporation.
- Keep the liquid hot enough to dissolve sugar for at least an hour. The container must be covered to prevent evaporation.
- Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

6.2 Electrical parameters of the tissue simulating liquid

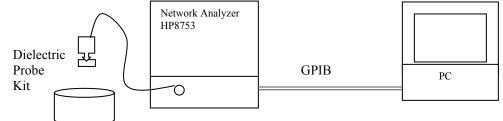
The tissue dielectric parameters shall be measured before a batch can be used for SAR measurements to ensure that the simulated tissue was properly made and will simulate the desired human characteristic. Limits and measured electrical parameters are shown in the table below.

Recommended limits are adopted from IEEE P1528-2003:

"Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", DASY 4 manual and from FCC Tissue Dielectric Properties web page at <u>http://www.fcc.gov/fcc-bin/dielec.sh</u>

	Tissue	Thursday / Managers and	Dielectric	Parameters	Liquid Temp
f (MHz)	Туре	Limits / Measured	ε _r	σ [S/m]	(°C)
		Measured (09/03/2009)	39.6	0.86	22.1
	Head	Measured (09/25/2009)	41.1	0.88	22.2
835		Recommended Limits	41.5	0.90	N/A
633		Measured (09/03/2009)	53.0	0.94	22.0
	Muscle	Measured (09/25/2009)	53.3	0.93	22.2
		Recommended Limits	55.2	0.97	N/A
	Head	Measured (09/01/2009)	38.4	1.45	22.1
		Measured (09/24/2009)	40.7	1.40	22.0
1000		Recommended Limits	40.0	1.40	N/A
1900		Measured (09/01/2009)	50.8	1.57	22.4
	Muscle	Measured (09/24/2009)	51.0	1.58	22.0
		Recommended Limits	53.3	1.52	N/A
		Measured (09/03/2009)	37.5	1.88	21.9
	Head	Measured (09/28/2009)	37.5	1.88	22.1
2450		Recommended Limits	39.2	1.80	N/A
2450		Measured (09/04/2009)	50.2	1.96	22.1
	Muscle	Measured (09/29/2009)	50.5	1.99	22.1
		Recommended Limits	52.7	1.95	N/A

 Table 6.2.1 Electrical parameters of tissue simulating liquid


Testing Services	Document SAR Compliance Test Report for th Smartphone Model RCL21CW	Page 20(38)
Author Data	Dates of Test	FCC ID:
Andrew Becker	September 1 - 29, 2009	L6ARCL20CW

6.2.1 Equipment

Manufacturer	Test Equipment	Test Equipment Model Number		Cal. Due Date (MM/DD/YY)
Agilent Technologies	Network Analyzer	8753ES	US39174857	10/29/2009
Agilent Technologies	Dielectric probe kit	HP 85070C	US9936135	CNR
Dell	PC using GPIB card	GX110	347	N/A
Control Company	Digital Thermometer	15-077-21	51129471	05/01/2010

Table 6.2.2. Equipment required for electrical parameter measurements

6.2.2 Test Configuration

Figure 6.2.1 Test configuration

6.2.3 Procedure

- 1. Turn NWA on and allow at least 30 minutes for warm up.
- 2. Mount dielectric probe kit so that interconnecting cable to NWA will not be moved during measurements or calibration.
- 3. Pour de-ionized water and measure water temperature $(\pm 1^{\circ})$.
- 4. Set water temperature in HP-Software (Calibration Setup).
- 5. Perform calibration.
- 6. Relative permittivity $\mathcal{E}\mathbf{r} = \mathcal{E}'$ and conductivity can be calculated from \mathcal{E}''

$$\sigma = \omega \epsilon_0 \epsilon''$$

- 7. Measure liquid shortly after calibration.
- 8. Stir the liquid to be measured. Take a sample (~50ml) with a syringe from the center of the liquid container.
- 9. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
- 10. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
- 11. Perform measurements.
- 12. Adjust medium parameters in DASY4 for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Head 835 MHz) and press 'Option'-button.
- Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 835 MHz).

Sample calculation for 835 MHz head tissue dielectric parameters using data from Table 6.2.3. Relative permittivity $\varepsilon_r = \varepsilon' = 39.64$

Conductivity $\sigma = \omega \epsilon_0 \epsilon'' = (2\pi x 835 x 10^6)(8.854 x 10^{-12})(18.59) = 0.86 \text{ S/m}$

Tes Ser	SAR Compliance Test R Smartphone Model RCL	Page 21(38)	
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW
		Title	
	Title	Title	
	SubTitle	SubTitle	
	September 02, 2009 09:53 PM	September 03, 2009 03:13 PM	
	Frequency e' e"	Frequency e' e''	
	800.000000 MHz 40.1313 18.6672	800.000000 MHz 53.3887 20.1598	
	805.000000 MHz 40.0690 18.6523	805.000000 MHz 53.3293 20.1408	
	810.000000 MHz 39.9891 18.6477	810.000000 MHz 53.2833 20.1564	
	815.000000 MHz 39.9353 18.6365	815.000000 MHz 53.2296 20.1469	
	820.000000 MHz 39.8478 18.6344	820.000000 MHz 53.1952 20.1416	
	825.000000 MHz 39.7898 18.6196	825.000000 MHz 53.1471 20.1413	
	830.000000 MHz 39.7033 18.6126	830.000000 MHz 53.0708 20.1511	
	835.000000 MHz 39.6350 18.5907	835.000000 MHz 53.0505 20.1300	
	840.000000 MHz 39.5948 18.5928	840.000000 MHz 52.9862 20.1358	
	845.000000 MHz 39.5188 18.5736	845.000000 MHz 52.8996 20.1064	
	850.000000 MHz 39.4325 18.5885	850.000000 MHz 52.8802 20.1393	
	855.000000 MHz 39.3734 18.5858	855.000000 MHz 52.8055 20.1062	
	860.000000 MHz 39.3238 18.5401	860.000000 MHz 52.7329 20.1049	
	865.000000 MHz 39.2622 18.5589	865.000000 MHz 52.6813 20.1280	
	870.000000 MHz 39.1752 18.5545	870.000000 MHz 52.6414 20.0936	
	875.000000 MHz 39.1121 18.5238	875.000000 MHz 52.5502 20.0893	
	880.000000 MHz 39.0340 18.5077	880.000000 MHz 52.4834 20.1182	
	885.000000 MHz 38.9866 18.5629	885.000000 MHz 52.4281 20.0905	
	890.000000 MHz 38.9414 18.5330	890.000000 MHz 52.3960 20.0803	
	895.000000 MHz 38.9059 18.5008	895.000000 MHz 52.3685 20.0528 900.000000 MHz 52.3109 20.0526	
	900.000000 MHz 38.8586 18.5115	905.000000 MHz 52.2701 20.0667	
	905.000000 MHz 38.8122 18.4877	910.000000 MHz 52.2413 20.0556	
	910.000000 MHz 38.7254 18.4564	915.000000 MHz 52.1867 20.0289	
	915.000000 MHz 38.6869 18.4553	920.000000 MHz 52.1439 20.0693	
	920.000000 MHz 38.6071 18.4421	925.000000 MHz 52.0815 20.0663	
	925.000000 MHz 38.5512 18.4416	930.000000 MHz 52.0313 20.0659	
	930.000000 MHz 38.4873 18.4435	935.000000 MHz 51.9698 20.0560	
	935.000000 MHz 38.4593 18.4352	940.000000 MHz 51.9276 20.0356	
	940.000000 MHz 38.3908 18.4483	945.000000 MHz 51.8534 20.0583	
	945.000000 MHz 38.3305 18.4214 950.000000 MHz 38.2433 18.4122	950.000000 MHz 51.7967 20.0342	

Head

Muscle

 Table 6.2.3.
 835 MHz head and muscle tissue dielectric parameters

Testing Services		mpliance Test Report for the BlackBerry® none Model RCL21CW			22(38)	Page 22(38)	
Andrew Becker	Dates of To Septer	est nber 1 - 1	29, 2009	Test Report No RTS-2068-()909-43	FCC ID: L6ARCL20C	CW
Title				Title			
SubTitle				SubTitle			
September 01, 20	09 05:37 PM			September 01, 2009 10:58 AM			
Frequenc	v	e'	e"	Frequency	e'	e"	
1.800000	•	38.9325	13.3122	1.800000000 GHz	51.2604	14.4294	
1.805000		38.9052	13.3406	1.805000000 GHz	51.2252	14.4160	
1.810000		38.8776	13.3780	1.81000000 GHz	51.1994	14.4091	
1.815000		38.8575	13.3870	1.815000000 GHz	51.1416	14.4148	
1.820000		38.8323	13.4170	1.820000000 GHz	51.0669	14.3780	
1.825000)00 GHz	38.8008	13.4508	1.825000000 GHz	51.0163	14.3783	
1.830000)00 GHz	38.7788	13.4849	1.830000000 GHz	50.9500	14.3848	
1.835000)00 GHz	38.7496	13.4964	1.835000000 GHz	50.8894	14.3974	
1.840000)00 GHz	38.7260	13.5166	1.840000000 GHz	50.8078	14.3927	
1.845000)00 GHz	38.6939	13.5419	1.845000000 GHz	50.7557	14.4059	
1.850000)00 GHz	38.6620	13.5670	1.850000000 GHz	50.7062	14.4383	
1.855000		38.6401	13.5833	1.855000000 GHz	50.6849	14.4577	
1.860000)00 GHz	38.6080	13.6117	1.860000000 GHz	50.6665	14.4924	
1.865000		38.5927	13.6329	1.865000000 GHz	50.6426	14.5283	
1.870000		38.5627	13.6392	1.870000000 GHz	50.6577	14.5804	
1.875000		38.5432	13.6719	1.875000000 GHz	50.6635	14.6333	
1.880000		38.5121	13.6850	1.880000000 GHz	50.6993	14.6712	
1.885000)00 GHz	38.4783	13.7028	1.885000000 GHz	50.7014	14.7060	
1.890000		38.4438	13.7092	1.890000000 GHz	50.7314	14.7520	
1.895000		38.4140	13.7276	1.895000000 GHz	50.7549	14.7858	
1.900000		38.3943	13.7428	1.900000000 GHz	50.7619	14.8162	
1.905000		38.3454	13.7673	1.905000000 GHz	50.7865	14.8418	
1.910000		38.3200	13.8007	1.91000000 GHz	50.7979	14.8435	
1.915000		38.2971	13.8092	1.915000000 GHz	50.7977	14.8235	
)00 GHz		13.8408	1.92000000 GHz	50.7740 uscle	14.8207	

 Table 6.2.4
 1900 MHz head and muscle tissue dielectric parameters

SAR Compliance Test Report for the BlackBerry® Smartphone Model RCL21CW

Page 23(38)

Author Data
Andrew Becker

Test Report No **RTS-2068-0909-43**

e"

14.2560

14.2760

14.2755

14.2970

14.3110

14.3163

14.3333

14.3470

14.3655

14.3774

14.4027

14.3987 14.3898

14.4005

14.4265

14.4352 14.4408

14.4548

14.4583

14.4824

14.4947

Title			Title	
SubTitle			SubTitle	
September 03, 2009 09:20 PM			September 04, 2009 01:50 AM	
Frequency	e'	e"	Frequency	e'
2.40000000 GHz	37.7113	13.6915	2.400000000 GHz	50.3098
2.405000000 GHz	37.7120	13.6940	2.405000000 GHz	50.2570
2.410000000 GHz	37.6907	13.7166	2.410000000 GHz	50.2307
2.415000000 GHz	37.6616	13.7155	2.415000000 GHz	50.2163
2.420000000 GHz	37.6460	13.7446	2.420000000 GHz	50.2114
2.425000000 GHz	37.6263	13.7444	2.425000000 GHz	50.1928
2.430000000 GHz	37.5980	13.7537	2.430000000 GHz	50.1886
2.435000000 GHz	37.5673	13.7733	2.435000000 GHz	50.2023
2.440000000 GHz	37.5508	13.7898	2.440000000 GHz	50.1970
2.445000000 GHz	37.5367	13.7854	2.445000000 GHz	50.1913
2.450000000 GHz	<mark>37.5078</mark>	13.7929	2.450000000 GHz	50.1806
2.455000000 GHz	37.4895	13.8166	2.455000000 GHz	50.1673
2.460000000 GHz	37.4646	13.8319	2.460000000 GHz	50.1195
2.465000000 GHz	37.4571	13.8414	2.465000000 GHz	50.0706
2.470000000 GHz	37.4233	13.8451	2.470000000 GHz	50.0478
2.475000000 GHz	37.3952	13.8688	2.475000000 GHz	50.0366
2.480000000 GHz	37.3657	13.8774	2.480000000 GHz	50.0220
2.485000000 GHz	37.3504	13.8962	2.485000000 GHz	50.0037
2.490000000 GHz	37.3358	13.9091	2.490000000 GHz	49.9764
2.495000000 GHz	37.3003	13.9228	2.495000000 GHz	49.9530
2.500000000 GHz	37.2737	13.9403	2.500000000 GHz	49.9335

Head

Muscle

Table 6.2.5 2450 MHz head and muscle tissue dielectric parameters

Testing Services	Document SAR Compliance Test Report for t Smartphone Model RCL21CW	the BlackBerry®	Page 24(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

7.0 SAR SAFETY LIMITS

Standards/Guideline	Localized SAR Limit (W/kg) General public (uncontrolled)	Localized SAR Limits (W/kg) Workers (controlled)
ICNIRP (1998) Standard	2.0 (10g)	10.0 (10g)
IEEE C95.1 (1999) Standard	1.6 (1g)	8.0 (1g)

Table 7.0.1. SAR safety limits for Controlled / Uncontrolled environment

Human Exposure	Localized SAR Limits (W/kg) 10g, ICNIRP (1998) Standard	Localized SAR Limits (W/kg) 1g, IEEE C95.1 (1999) Standard
Spatial Average (averaged over the whole body)	0.08	0.08
Spatial Peak (averaged over any X g of tissue)	2.00	1.60
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.00	4.00 (10g)

Table 7.0.2. SAR safety limits

Uncontrolled Environments are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

Testing Services	Document SAR Compliance Test Report for the Smartphone Model RCL21CW	he BlackBerry®	Page 25(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

8.0 **DEVICE POSITIONING**

8.1 Device holder for SAM Twin Phantom

The Device was positioned for all test configurations using the DASY4 holder. The device holder facilitates the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately and with repeatability positioned according to FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

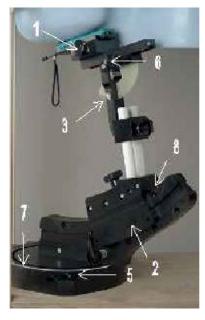


Figure 7. Device Holder

1. Put the phone in the clamp mechanism (1) and hold it straight while tightening. (Curved phones or phones with asymmetrical ear pieces should be positioned so that the earpiece is in the symmetry plane of the clamp).

2. Adjust the sliding carriage (2) to 90° . Then adjust the phone holder angle (3) until the reference line of the phone is horizontal (parallel to the flat phantom bottom). The phone reference line is defined as the front tangential line between the earpiece and the center of the device bottom (or the center of the flip hinge). For devices with parallel front and backsides, the phone holder angle (3) is 0° .

3. Place the device holder at the desired phantom section and move it securely against the positioning pins (4). The screw in front of the turning plate can be applied for correct positioning (5). (Do not tighten it too strongly).

4. Shift the phone clamp (6) so that the earpiece is exactly below the ear marking of the phantom. The phone is now correctly positioned in the holder for all standard phantom measurements, even after changing the phantom or phantom section.

5. Adjust the device position angles to the desired measurement position.

Testing Services	Document SAR Compliance Test Report for th Smartphone Model RCL21CW	ne BlackBerry®	Page 26(38)
Author Data	Dates of Test	FCC ID:	
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

6. After fixing the device angles, move the phone fixture up until the phone touches the ear marking. (The point of contact depends on the design of the device and the positioning angle).

8.2 Description of the test positioning

8.2.1 Test Positions of Device Relative to Head

The handset was tested in two test positions against the head phantom, the "cheek" position and the "tilted" position, on both left and right sides of the phantom.

The handset was tested in the above positions according to IEEE 1528- 2003 "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques".

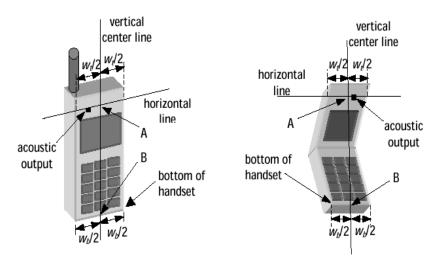


Figure 8.2.1a. Handset vertical and horizontal reference lines – fixed case

Figure 8.2.1b. Handset vertical and horizontal reference lines – "clam-shell"

Testing Services	SAR Compliance Test Report for the Smartphone Model RCL21CW	he BlackBerry®	Page 27(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

8.2.1.1 Definition of the "cheek" position

1) Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover.

2) Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width *wt* of the handset at the level of the acoustic output (point A on Figures 8.2.1a and 8.2.1b), and the midpoint of the width *wb* of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 8.2.1a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 8.2.1b), especially for clamshell handsets, handsets with flip pieces, and other irregularly shaped handsets.

3) Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 8.2.1), such that the plane defined by the vertical center line and the horizontal center line is in a plane approximately parallel to the sagittal plane of the phantom.

4) Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear.

5) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is the plane normal to MB ("*mouth-back*") - NF ("*neck-front*") including the line MB (reference plane).

6) Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF.

7) While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the ear (cheek).

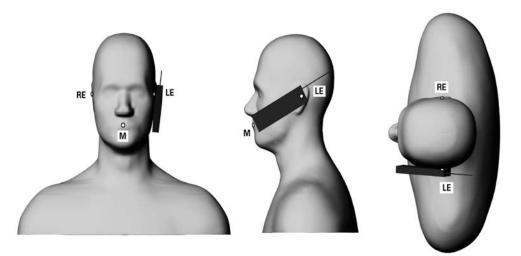


Figure 8.2.2. Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

Testing Services	Document SAR Compliance Test Report for th Smartphone Model RCL21CW	ne BlackBerry®	Page 28(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

8.2.1.2 Definition of the "Tilted" Position

1) Repeat steps 1 to 7 of 5.4.1 (in this report 8.2.1.1) to replace the device in the "cheek position."

2) While maintaining the device in the reference plane (described above) and pivoting against the ear, move the device outward away from the mouth by an angle of 15 degrees, or until the antenna touches the phantom.

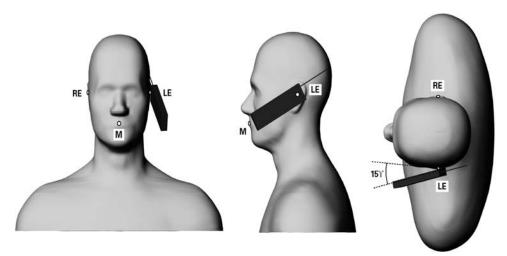
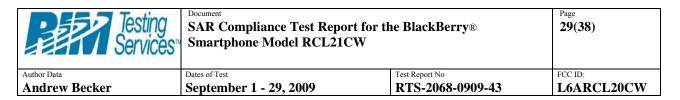



Figure 8.2.3. Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

8.2.2 Body Holster Configuration

Body worn holsters, as shown on Figure 1.4.1, have been test with the device for FCC RF exposure compliance. The EUT was positioned in each holster case and the belt clip was placed against the flat section of the phantom. A headset was then connected to the device to simulate hands-free operation in a body worn holster configuration.

9.0 HIGH LEVEL EVALUATION

9.1 Maximum search

The maximum search is automatically performed after each coarse scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations.

9.2 Extrapolation

The extrapolation can be used in z-axis scans with automatic surface detection. The SAR values can be extrapolated to the inner phantom surface. The extrapolation distance is the sum of the probe sensor offset, the surface detection distance and the grid offset. The extrapolation is based on fourth order polynomial functions. The extrapolation is only available for SAR values.

9.3 Boundary correction

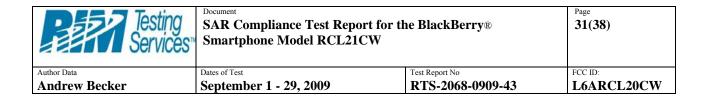
The correction of the probe boundary effect in the vicinity of the phantom surface is done in the standard (worst case) evaluation; the boundary effect is reduced by different weights for the lowest measured points in the extrapolation routine. The result is a slight overestimation of the extrapolated SAR values (2% to 8%) depending on the SAR distribution and gradient. The advanced evaluation makes a full compensation of the boundary effect before doing the extrapolation. This is only possible for probes with specifications on the boundary effect.

9.4 Peak search for 1g and 10g cube averaged SAR

The 1g and 10g peak evaluations are only available for the predefined cube 5x5x7 scan. The routines are verified and optimized for the grid dimensions used in these cube measurements.

The measured volume of 30x30x30mm with 7.5mm resolution in (x,y) and 5mm resolution in z axis amounts to 175 measurement points. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is then moved around until the highest averaged SAR is found. This last procedure is repeated for a 10 g cube. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

Author Data
Andrew Becker


Dates of Test September 1 - 29, 2009 Test Report No **RTS-2068-0909-43**

10.0 MEASUREMENT UNCERTAINTY

DASY4 Uncertainty Budget According to IEEE P1528 [1]								
	Uncertainty	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}
Measurement System								
Probe Calibration	$\pm 4.8\%$	N	1	1	1	±4.8%	$\pm 4.8\%$	∞
Axial Isotropy	$\pm 4.7\%$	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9\%$	$\pm 1.9\%$	∞
Hemispherical Isotropy	$\pm 9.6\%$	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9\%$	$\pm 3.9\%$	∞
Boundary Effects	$\pm 1.0\%$	R	$\sqrt{3}$	1	1	$\pm 0.6\%$	±0.6%	∞
Linearity	$\pm 4.7\%$	R	$\sqrt{3}$	1	1	$\pm 2.7\%$	$\pm 2.7\%$	∞
System Detection Limits	$\pm 1.0\%$	R	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	8
Readout Electronics	±1.0%	N	1	1	1	$\pm 1.0\%$	$\pm 1.0\%$	8
Response Time	$\pm 0.8\%$	R	$\sqrt{3}$	1	1	$\pm 0.5\%$	± 0.5 %	∞
Integration Time	$\pm 2.6\%$	R	$\sqrt{3}$	1	1	$\pm 1.5\%$	$\pm 1.5 \%$	8
RF Ambient Conditions	±3.0%	R	$\sqrt{3}$	1	1	$\pm 1.7\%$	±1.7%	∞
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	$\pm 0.2\%$	±0.2 %	∞
Probe Positioning	$\pm 2.9\%$	R	$\sqrt{3}$	1	1	$\pm 1.7\%$	±1.7%	∞
Max. SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	$\pm 0.6\%$	±0.6 %	8
Test Sample Related								
Device Positioning	$\pm 2.9\%$	N	1	1	1	$\pm 2.9\%$	$\pm 2.9\%$	145
Device Holder	±3.6 %	N	1	1	1	$\pm 3.6\%$	$\pm 3.6\%$	5
Power Drift	$\pm 5.0\%$	R	$\sqrt{3}$	1	1	$\pm 2.9\%$	$\pm 2.9\%$	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	$\pm 2.3\%$	$\pm 2.3 \%$	∞
Liquid Conductivity (target)	$\pm 5.0\%$	R	$\sqrt{3}$	0.64	0.43	±1.8%	$\pm 1.2\%$	8
Liquid Conductivity (meas.)	$\pm 2.5\%$	N	1	0.64	0.43	$\pm 1.6\%$	$\pm 1.1\%$	∞
Liquid Permittivity (target)	$\pm 5.0\%$	R	$\sqrt{3}$	0.6	0.49	$\pm 1.7\%$	±1.4%	∞
Liquid Permittivity (meas.)	$\pm 2.5\%$	N	1	0.6	0.49	$\pm 1.5 \%$	±1.2%	∞
Combined Std. Uncertainty		T				$\pm 10.3\%$	$\pm 10.0\%$	330
Expanded STD Uncertain	ty					$\pm 20.6\%$	$\pm 20.1\%$	

Table 10.0.1. Worst-Case uncertainty budget for DASY4 assessed according to IEEE P1528. Source: Schmid & Partner Engineering AG.

[1] The budget is valid for the frequency range 300MHz - 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

11.0 TEST RESULTS

			Cond.	Liquid	SA	R, averaged	over 1 g
Test Position	Mode	f (MHz)	I Output Temp Maamud			Power Drift (dB)	*Extrapolated (W/kg)
Left		824.70	24.2	22.2	1.21	-0.01	1.21
Head	CDMA 800 MHz	836.52	23.8	22.3	1.01	0.00	1.01
Cheek	WITTZ	848.52	23.9	22.1	1.00	-0.05	1.00
Left		824.70	24.2	22.3	0.61	-0.06	0.61
Head	CDMA 800 MHz	836.52	23.8				
15° Tilt	IVITIZ	848.52	23.9				
Right		824.70	24.2	22.1	1.09	-0.03	1.09
Head	CDMA 800 MHz	836.52	23.8	22.1	0.94	-0.38	1.03
Cheek	IVITIZ	848.52	23.9	22.0	0.89	-0.05	0.89
Right		824.70	24.2	21.9	0.59	0.06	0.59
Head	CDMA 800 MHz	836.52	23.8				
15° Tilt	IVITIZ	848.52	23.9				

11.1 SAR Measurement results at highest power measured against the head

Table 11.1.1. SAR results for CDMA 800 head configuration for Rev 1

* Note: If the power drift is ≤ -0.200 dB, the extrapolated SAR is calculated using the formula: Extrapolated SAR = (Measured SAR) * 10^(|Power Drift (dB)| / 10)

			Cond.	Liquid	SA	R, averaged	over 1 g
Test Position	Mode	f (MHz)	Output Power (dBm)	Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Left		824.70	24.2	22.2	1.26	-0.18	1.26
Head	CDMA 800 MHz	836.52	23.8				
Cheek	IVIIIZ	848.52	23.9				
Right	CDMA 900	824.70	24.2	22.2	1.11	0.08	1.11
Head	CDMA 800 MHz	836.52	23.8				
Cheek	IVITIZ	848.52	23.9				

Table 11.1.2. SAR results for CDMA 800 head configuration for Rev 3

Testing Services	Socument SAR Compliance Test Report for the BlackBerry® Smartphone Model RCL21CW		Page 32(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	L6ARCL20CW	

			Cond.	Liquid	SA	R, averaged	over 1 g
Test Position	Mode	f (MHz)	Output Power (dBm)	Power C C (W/I-m)		Power Drift (dB)	*Extrapolated (W/kg)
Left	CDMA	1851.25	23.5	21.2	0.92	-0.10	0.92
Head	CDMA 1900 MHz	1880.00	23.6	21.2	0.64	0.34	0.64
Cheek	1900 MIIIZ	1908.50	23.5	21.9	0.48	0.11	0.48
Left	CDMA	1851.25	23.5	22.1	0.68	0.01	0.68
Head	CDMA 1900 MHz	1880.00	23.6				
15° Tilt	1900 WITIZ	1908.50	23.5				
Right	CDMA	1851.25	23.5	22.1	1.26	-0.13	1.26
Head	CDMA 1900 MHz	1880.00	23.6	21.9	0.94	-0.01	0.94
Cheek	1900 WIIIZ	1908.50	23.5	21.8	0.59	-0.07	0.59
Right	CDMA	1851.25	23.5	21.6	0.54	-0.06	0.54
Head	CDMA 1900 MHz	1880.00	23.6				
15° Tilt	1 700 WILLZ	1908.50	23.5				

 Table 11.1.3. SAR results for CDMA 1900 head configuration for Rev 1

			Cond.	Liquid	SA	R, averaged	over 1 g
Test Position	Mode	f (MHz)	Output Power (dBm)	Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Left	CDMA	1851.25	23.5	22.0	0.86	-0.01	0.86
Head	CDMA 1900 MHz	1880.00	23.6				
Cheek	1900 WITIZ	1908.50	23.5				
Right	CDMA	1851.25	23.5	22.1	1.31	0.00	1.31
Head	CDMA 1900 MHz	1880.00	23.6				
Cheek	1 900 WILLZ	1908.50	23.5				

Table 11.1.4. SAR results for CDMA 1900 head configuration for Rev 3

Testing Services	SAR Compliance Test Report for the BlackBerry® Smartphone Model RCL21CW		Page 33(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

			Cond.		SAR, averaged over 1 g		
Test Position	Mode	f (MHz)	Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Left	802.11 b	2412	17.60	22.6	0.20	0.20	0.20
Head	802.11 0 2450 MHz	2437	18.00	22.5	0.24	-0.13	0.24
Cheek	2430 MIIIZ	2462	18.05	22.5	0.24	-0.12	0.24
Left	802.11 b	2412	17.60				
Head	802.11 D 2450 MHz	2437	18.00	22.4	0.35	-0.27	0.37
15° Tilt	2430 WIIIZ	2462	18.05				
Right	002 11 1	2412	17.60	22.3	0.33	-0.22	0.35
Head	802.11 b 2450 MHz	2437	18.00	22.4	0.31	-0.16	0.31
Cheek	2430 WIIIZ	2462	18.05	22.3	0.33	-0.07	0.33
Right	90 2 11 h	2412	17.60				
Head	802.11 b 2450 MHz	2437	18.00	22.5	0.30	-0.06	0.30
15° Tilt	2730 WIIIZ	2462	18.05				

Table 11.1.5. Head SAR results for WiFi/WLAN/802.11b head configuration for Rev 1

			Cond.	Tionaid	SAR	d over 1 g	
Test Position	Mode	f (MHz)	Output Power (dBm)	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
Left		2412	17.60				
Head	802.11 b 2450 MHz	2437	18.00	22.2	0.40	-0.02	0.40
15° Tilt	2430 MITZ	2462	18.05				
Right	802.11 b 2450 MHz	2412	17.60	22.1	0.32	0.02	0.32
Head		2437	18.00				
Cheek	2430 WIIIZ	2462	18.05				

Table 11.1.6. Head SAR results for WiFi/WLAN/802.11b head configuration for Rev 3

Testing Services			Page 34(38)		
Author Data	Dates of Test	Test Report No	FCC ID:		
Andrew Becker	September 1 - 29, 2009	······································			

11.2 SAR measurement results at highest power measured against the body using accessories

					SAR	, averaged	over 1 g
Mode	Freq. (MHz)	Cond. Power (dBm)	Holster type / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
	824.70	24.2	Vertical Holster, back side facing	22.1	0.47	-0.26	0.50
	836.52	23.8	Vertical Holster, back side facing	21.9	0.32	-0.08	0.32
	848.52	23.9	Vertical Holster, back side facing	22.0	0.33	-0.01	0.33
	824.70	24.2	Horizontal Holster, back side facing	22.3	0.56	-0.20	0.59
CDMA	836.52	23.8	Horizontal Holster, back side facing	22.3	0.36	-0.17	0.36
800 MHz	848.52	23.9	Horizontal Holster, back side facing	22.4	0.37	-0.03	0.37
WITIZ	824.70	24.2	Horizontal Holster, front side facing	22.4	0.37	-0.21	0.39
	824.70	24.2	Horizontal Holster, back side facing, Headset #1	22.5	0.49	-0.10	0.49
	824.70	24.2	Horizontal Holster, back side facing, Headset #2	22.3	0.48	-0.08	0.48
	824.70	24.2	Horizontal Holster, back side facing, Headset #3	22.3	0.44	0.03	0.44
	824.70	24.2	No Holster, back side 25 mm away	22.4	0.55	-0.11	0.55

Table 11.2.1. SAR results for CDMA 800 body-worn configurations for Rev 1

* Note: If the power drift is ≤ -0.200 dB, the extrapolated SAR is calculated using the formula: Extrapolated SAR = (Measured SAR) * 10^(|Power Drift (dB)| / 10)

		Cond.		Liquid	SAR	, averaged Power	over 1 g
Mode	Freq. (MHz)	Power (dBm)	Holster type / device configuration	Temp. (°C)	Measured (W/kg)	Drift (dB)	*Extrapolated (W/kg)
CDMA 800 MHz	824.70	24.2	Horizontal Holster, back side facing	22.1	0.57	0.00	0.57

Table 11.2.2. SAR results for CDMA 800 body-worn configurations for Rev 3

Testing Services	Document SAR Compliance Test Repor Smartphone Model RCL21C	•	Page 35(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	L6ARCL20CW	

					SAR, averaged over 1 g		
Mode	Freq. (MHz)	Cond. Power (dBm)	Holster type / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
	1851.25	23.5	Vertical Holster, back side facing	22.5	0.62	-0.03	0.62
	1880.00	23.6	Vertical Holster, back side facing	22.4	0.66	-0.10	0.66
	1908.50	23.5	Vertical Holster, back side facing	22.2	0.64	-0.18	0.64
CDMA	1880.00	23.6	Horizontal Holster, back side facing	22.2	0.57	-0.25	0.60
1900 MHz	1880.00	23.6	Vertical Holster, front side facing	21.9	0.08	-0.13	0.08
IVITIZ	1880.00	23.6	Vertical Holster, back side facing, Headset #1	21.8	0.56	-0.11	0.56
	1880.00	23.6	Vertical Holster, back side facing, Headset #2	21.9	0.57	-0.05	0.57
	1880.00	23.6	Vertical Holster, back side facing, Headset #3	21.8	0.58	0.11	0.58
	1880.00	23.6	No Holster, back side 25 mm away	21.8	0.41	-0.13	0.41

 Table 11.2.3. SAR results for CDMA 1900 body-worn configurations for Rev 1

		Gard		T \$ \$ J	SAR, averaged over 1 g		
Mode	Freq. (MHz)	Cond. Power (dBm)	Holster type / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
CDMA 1900 MHz	1880.00	23.6	Vertical Holster, back side facing	22.0	0.65	0.14	0.65

Testing Services	Document SAR Compliance Test Repor Smartphone Model RCL21C	v	Page 36(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

					SAR, averaged over 1 g		l over 1 g
Mode	Freq. (MHz)	Cond. Power (dBm)	Holster type / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
	2412	17.60	Vertical Holster, back side facing	22.5	0.08	-0.09	0.08
	2437	18.00	Vertical Holster, back side facing	22.5	0.09	-0.18	0.09
	2462	18.05	Vertical Holster, back side facing	22.4	0.08	-0.17	0.08
	2412	17.60	Horizontal Holster, back side facing	22.4	0.22	-0.35	0.24
802.11b/	2437	18.00	Horizontal Holster, back side facing	22.4	0.26	-0.26	0.28
WLAN 2450	2462	18.05	Horizontal Holster, back side facing	22.3	0.19	-0.21	0.20
MHz	2437	18.00	Horizontal Holster, front side facing	22.3	0.03	0.13	0.03
	2437	18.00	Horizontal Holster, back side facing, Headset #1	22.4	0.20	-0.07	0.20
	2437	18.00	Horizontal Holster, back side facing, Headset #2	22.4	0.19	-0.20	0.20
	2437	18.00	Horizontal Holster, back side facing, Headset #3	22.4	0.19	-0.12	0.19
	2437	18.00	No Holster, back side 25 mm away	22.3	0.08	-0.32	0.09

 Table 11.2.5:
 SAR results for WiFi/WLAN/802.11b body-worn configurations for Rev 1

					SAR, averaged over 1 g		over 1 g
Mode	Freq. (MHz)	Cond. Power (dBm)	Holster type / device configuration	Liquid Temp. (°C)	Measured (W/kg)	Power Drift (dB)	*Extrapolated (W/kg)
802.11b/ WLAN 2450 MHz	2437	18.00	Horizontal Holster, back side facing	22.1	0.29	-0.22	0.30

Testing Services			Page 37(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

12.0 REFERENCES

[1] IEEE 1528-2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

[2] EN 50360: 2001, Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz - 3 GHz)

[3] EN 50361: 2001, Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz)

[4] ICNIRP, International Commission on Non-Ionizing Radiation Protection (1998), Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz).

[5] Council Recommendation 1999/519/EC of July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)

[6] IEEE C95.3-1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave.

[7] IEEE C95.1-1999, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

[8] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.

[9] FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation.

[10] DASY 4 DOSIMETRIC ASSESSMENT SYSTEM SOFTWARE MANUAL V4.7 Schmid & Partner Engineering AG, June 2006 which follows draft IEC 62209 – Part 2.

[11] Health Canada, Safety Code 6, 1999: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency range from 3 kHz to 300 GHz.

[12] RSS-102, issue 3-2009: Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields.

[13] IEC 62209-1, First Edition-2005: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

[14] FCC OET SAR Measurement Requirements for 3 – 6 GHz, October, 2006.

[15] FCC OET SAR Measurement Procedures for 802.11 a/b/g Transmitters, May, 2007.

Testing Services	Document SAR Compliance Test Report for the BlackBerry® Smartphone Model RCL21CW		Page 38(38)
Author Data	Dates of Test	Test Report No	FCC ID:
Andrew Becker	September 1 - 29, 2009	RTS-2068-0909-43	L6ARCL20CW

[16] FCC OET SAR Evaluation Considerations for Handsets with Multiple Transmitters & Antennas, September, 2008.

[17] FCC OET SAR Test Reduction Procedure for GSM/GPRS/EDGE, December, 2008.

[18] FCC OET SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz – 3 GHz, January, 2007.

[19] FCC OET RF Exposure Procedures for Mobile and Portable Devices, January, 2009.

[20] FCC OET SAR Measurements Procedures for 3G Devices, October, 2007.