Testing Services™	Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW			Page 1(64)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 07-09,2010	RTS-2068-1006-65	L6ARCL20CW	

Annex A: Probe sensitivity and reference signal measurement plots

Testing Services™		Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model		
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 07-09, 2010	RTS-2068-1006-65	L6ARCL20CW	

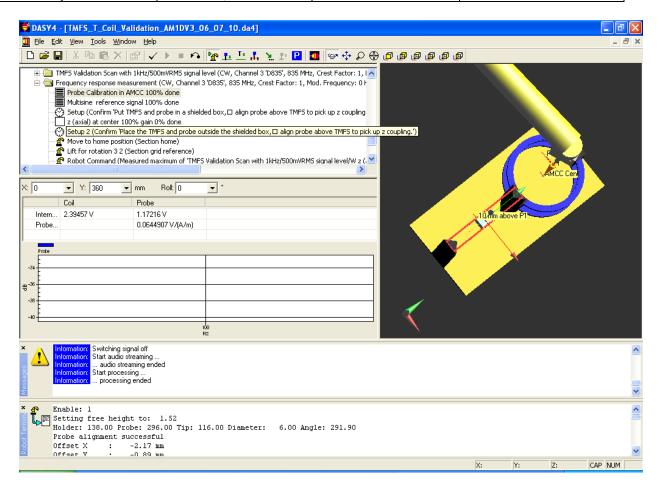


Figure A1: Probe calibration data for coil and probe

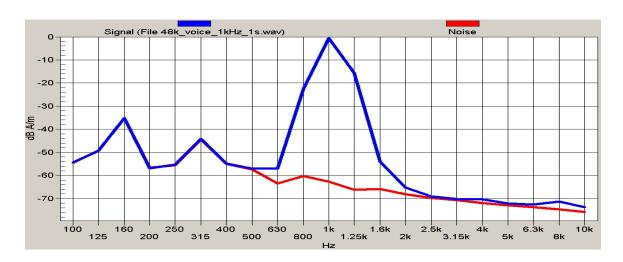


Figure A2: Reference voice 1 kHz signal and noise

Testing Services™	C C	Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model		
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 07-09, 2010	RTS-2068-1006-65	L6ARCL20CW	

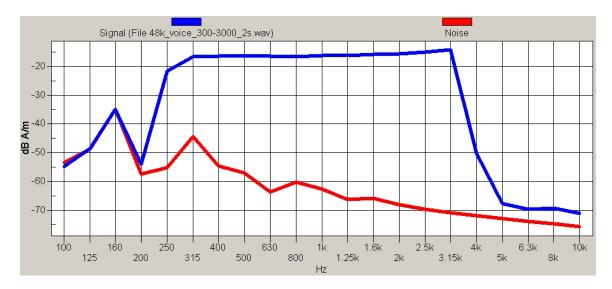


Figure A3: Reference voice simulated signal and noise

Testing Services™	Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW			Page 4(64)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 07-09, 2010	RTS-2068-1006-65	L6ARCL20CW	

Annex B: Ambient noise and TMFS system validation data/plots

Testing Services™	Annex A-D to Hearing Ai (ABM) T-Coil Test Repor	2	0	Page 5(64)
Author Data	Dates of Test	Report No	FCC ID	
Doord Attovi	Tuno 07 00 2010	DTC 2068 1006 65	I 6A DCI 20CW	

Date/Time: 6/7/2010 2:47:03 PM

Test Laboratory: RIM Testing Services

TMFS_T_Coil_Validation_AM1DV3_06_07_10

DUT: TMFS; Type: Sample

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho_r = 1$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

• Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

• Sensor-Surface: 0mm (Fix Surface)

• Electronics: DAE3 Sn473; Calibrated: 1/4/2010

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Background Noise 10 mm above Grid Reference/z (axial) noise/ABM Noise(x,y,z) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Off
Output Gain: 100

Measure Window Start: 2000ms

Measure Window Length: 5000ms

Daoud Attayi

Document

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Dates of Test

June 07-09, 2010

Report No **RTS-2068-1006-65**

L6ARCL20CW

FCC ID

6(64)

Background Noise 10 mm above Grid Reference/z (axial) noise/ABM Noise Spectrum(x,y,z,f) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Off Output Gain: 100

Measure Window Start: 2000ms Measure Window Length: 5000ms

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM = -59.3 dB A/mLocation: 0, 0, 13 mm

Background Noise 10 mm above Grid Reference/x (longitudinal) noise/ABM Noise Spectrum(x,y,z,f) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Off Output Gain: 100

Measure Window Start: 2000ms Measure Window Length: 5000ms

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM = -59.3 dB A/mLocation: 0, 0, 13 mm

Background Noise 10 mm above Grid Reference/y (transversal) noise/ABM Noise Spectrum(x,y,z,f) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Off Output Gain: 100

Measure Window Start: 2000ms Measure Window Length: 5000ms

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM = -59.3 dB A/mLocation: 0, 0, 13 mm

TMFS Validation Scan with 1kHz/500mVRMS signal level/W z (axial) 8 x 8 step 2/ABM Signal(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: 1 kHz Sine Output Gain: 35.7

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.000868546 dB

Daoud Attayi

Document

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65

L6ARCL20CW

FCC ID

7(64)

Cursor:

ABM1 comp = -20.3 dB A/m BWC Factor = 0.000868546 dB

Location: 0, 2, 3 mm

TMFS Validation Scan with 1kHz/500mVRMS signal level/W x (longitudinal) 52 x 16 step 4/ABM Signal(x,y,z) (14x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: 1 kHz Sine Output Gain: 35.7

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.000868546 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

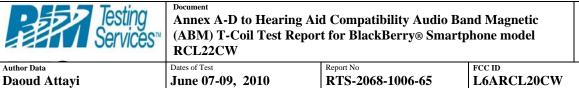
ABM1 comp = -25.0 dB A/m BWC Factor = 0.000868546 dB

Location: -18, 0, 3 mm

TMFS Validation Scan with 1kHz/500mVRMS signal level/W y (transversal) 16 x 52 step 4/ABM Signal(x,y,z) (5x14x1):

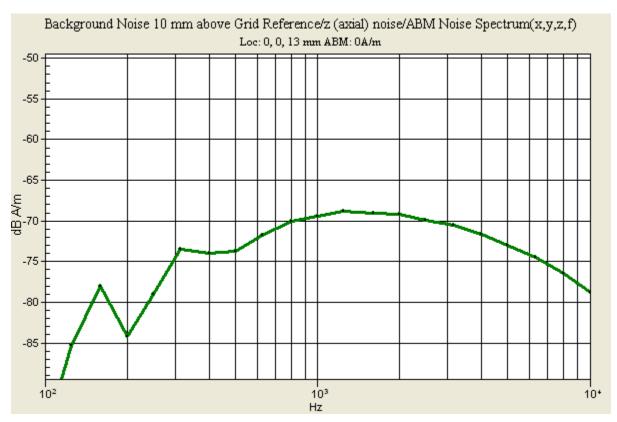
Measurement grid: dx=10mm, dy=10mm

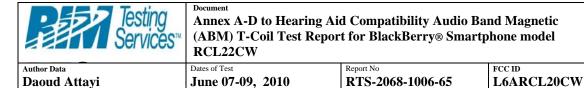
Signal Type: 1 kHz Sine Output Gain: 35.7

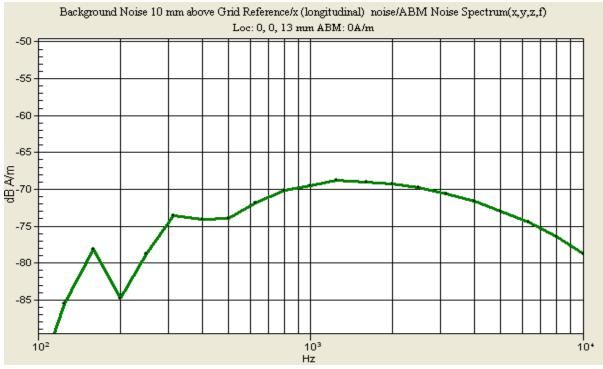

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.000868546 dB

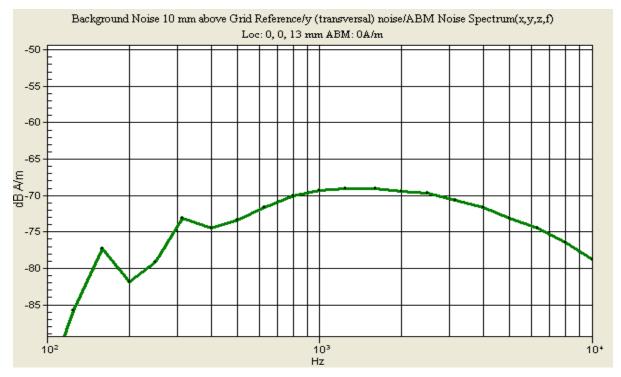
Device Reference Point: 0.000, 0.000, -6.30 mm

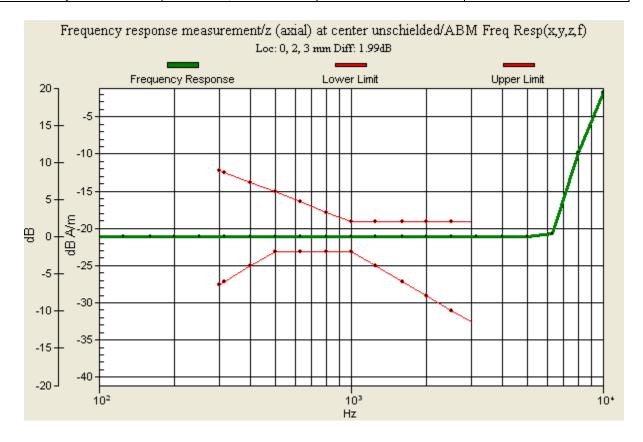
Cursor:


ABM1 comp = -26.3 dB A/m BWC Factor = 0.000868546 dB


Location: 0, -18, 3 mm






9(64)

Background Noise 10 mm above Grid Reference/x (longitudinal) noise/ABM Noise Spectrum(x,y,z,f) Loc: 0, 0, 13 mm ABM: 0A/m -50 -55 -60 -65 -75 -80 -85

Testing Services™	Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW			Page 10(64)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 07-09, 2010	RTS-2068-1006-65	L6ARCL20CW	

Testing Services™	Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW			
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 07-09, 2010	RTS-2068-1006-65	L6ARCL20CW	

Annex C: Audio Band Magnetic measurement data and plots

Testing Services™	Annex A-D to (ABM) T-Coil RCL22CW
Author Data	Dates of Test

Daoud Attayi

Hearing Aid Compatibility Audio Band Magnetic Test Report for BlackBerry® Smartphone model

Report No

RTS-2068-1006-65 L6ARCL20CW

Date/Time: 6/8/2010 8:41:48 PM

FCC ID

12(64)

Test Laboratory: RIM Testing Services HAC_TCoil_CDMA800_low_chan_Axial

DUT: BlackBerry Smartphone;

Communication System: CDMA 800; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

June 07-09, 2010

Phantom section: TCoil Section

DASY4 Configuration:

Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE3 Sn473; Calibrated: 1/4/2010

Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/z (axial) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155041 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 13(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65

L6ARCL20CW

FCC ID

General Scans Low Chan/z (axial) fine 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

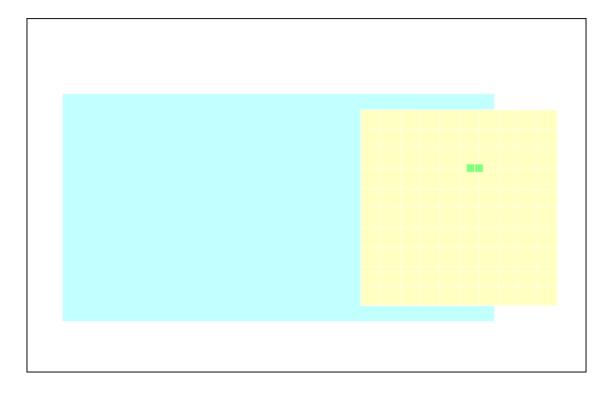
Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155041 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

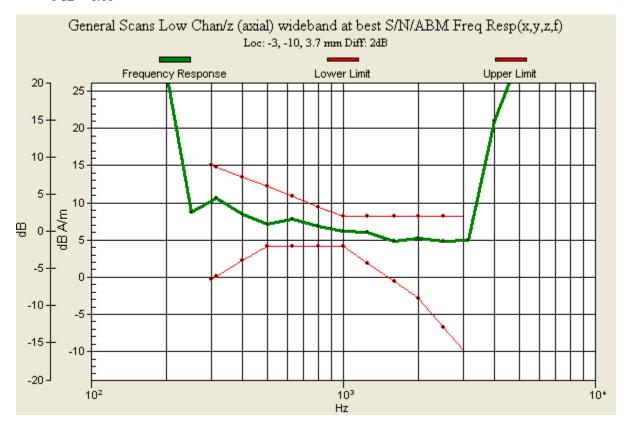
ABM1/ABM2 = 51.9 dB ABM1 comp = 4.86 dB A/m BWC Factor = 0.155041 dB Location: -3, -10, 3.7 mm

General Scans Low Chan/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1):


Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav

Output Gain: 54.9


Measure Window Start: 2000ms Measure Window Length: 4000ms

BWC applied: 10.8 dB

Testing Services™	Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW			Page 14(64)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 07-09,2010	RTS-2068-1006-65	L6ARCL20CW	

 $0\ dB=1.00$

Testing Services™	Annex A-D to Hearing Ai (ABM) T-Coil Test Repor	- v	O	Page 15(64)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 07-09, 2010	RTS-2068-1006-65	L6ARCL20CW	

Date/Time: 6/8/2010 8:52:01 PM

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA800_low_chan_Radial_L

DUT: BlackBerry Smartphone;

Communication System: CDMA 800; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho_r = 1$ kg/m³

Phantom section: TCoil Section

DASY4 Configuration:

• Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

• Sensor-Surface: 0mm (Fix Surface)

• Electronics: DAE3 Sn473; Calibrated: 1/4/2010

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/x (longitudinal) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155041 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

16(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

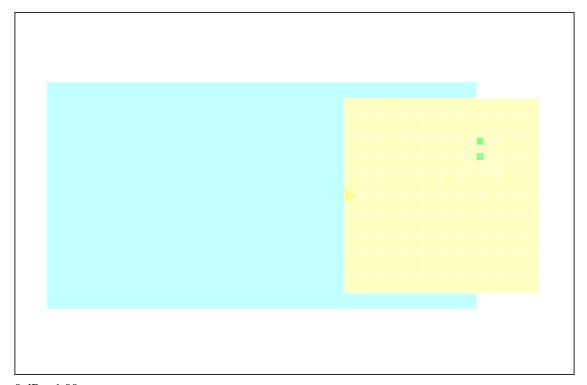
Report No RTS-2068-1006-65

FCC ID L6ARCL20CW

General Scans Low Chan/x (longitudinal) fine 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav


Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155041 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM1/ABM2 = 45.7 dB ABM1 comp = -3.65 dB A/m BWC Factor = 0.155041 dB Location: -10, -14, 3.7 mm

Testing Services™	Annex A-D to Hearing Aid (ABM) T-Coil Test Repor RCL22CW	2 0	_
Author Data	Dates of Test	Report No	FCC ID

June 07-09, 2010

17(64)

Date/Time: 6/8/2010 9:02:35 PM

L6ARCL20CW

RTS-2068-1006-65

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA800_low_chan_Radial_T

DUT: BlackBerry Smartphone;

Communication System: CDMA 800; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

DASY4 Configuration:

Daoud Attayi

Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE3 Sn473; Calibrated: 1/4/2010

Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/y (transversal) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155041 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 18(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65

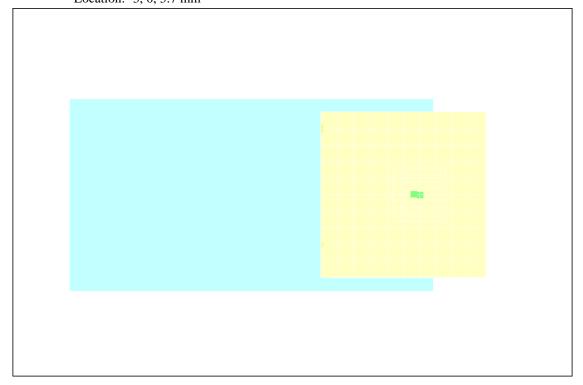
L6ARCL20CW

FCC ID

General Scans Low Chan/y (transversal) fine 2mm 8 x 8/ABM SNR(x,y,z) (9x9x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav


Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155041 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM1/ABM2 = 54.6 dB ABM1 comp = -1.73 dB A/m BWC Factor = 0.155041 dB Location: -3, 0, 3.7 mm

lesting Services™

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 19(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No **RTS-2068-1006-65**

FCC ID L6ARCL20CW

Date/Time: 6/8/2010 8:52:01 PM

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA800_mid_chan_Axial

DUT: BlackBerry Smartphone;

Communication System: CDMA 800; Frequency: 824.7 MHzFrequency: 836.52

MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

DASY4 Configuration:

• Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

Sensor-Surface: 0mm (Fix Surface)

• Electronics: DAE3 Sn473; Calibrated: 1/4/2010

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/x (longitudinal) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155041 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 20(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65

L6ARCL20CW

FCC ID

General Scans Mid Chan/z (axial) fine 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155979 dB

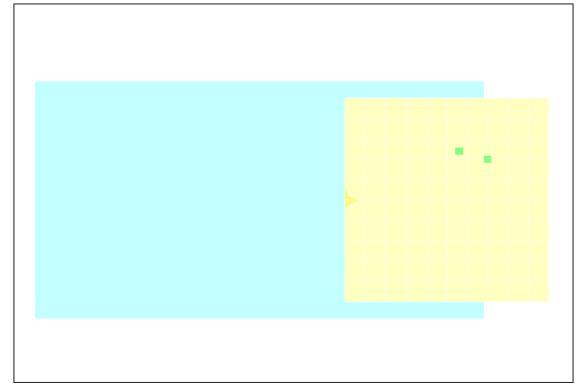
Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

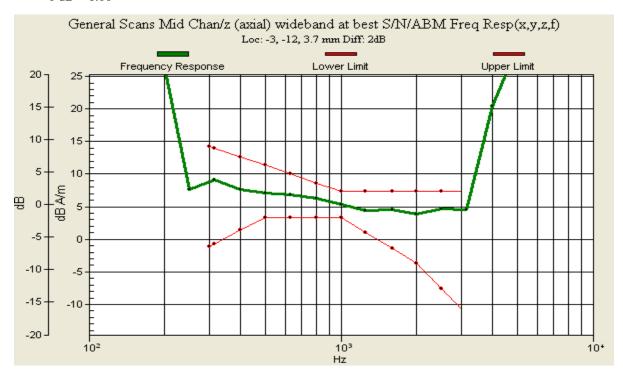
ABM1/ABM2 = 52.0 dB ABM1 comp = 3.91 dB A/m BWC Factor = 0.155979 dB Location: -3, -12, 3.7 mm

General Scans Mid Chan/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1):

Measurement grid: dx=10mm, dy=10mm


Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav

Output Gain: 54.9


Measure Window Start: 2000ms Measure Window Length: 4000ms

BWC applied: 10.8 dB

Testing Services™	Annex A-D to Hearing Ai (ABM) T-Coil Test Repor RCL22CW	2 0	0	Page 21(64)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 07-09, 2010	RTS-2068-1006-65	L6ARCL20CW	

0 dB = 1.00

Testing Services™

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 22(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No **RTS-2068-1006-65**

FCC ID L6ARCL20CW

Date/Time: 6/8/2010 8:52:01 PM

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA800_mid_chan_Radial_L

DUT: BlackBerry Smartphone;

Communication System: CDMA 800; Frequency: 824.7 MHzFrequency: 836.52

MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

DASY4 Configuration:

• Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

• Sensor-Surface: 0mm (Fix Surface)

• Electronics: DAE3 Sn473; Calibrated: 1/4/2010

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/x (longitudinal) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155041 dB

Dates of Test

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Report No

FCC ID L6ARCL20CW 23(64)

Author Data

Daoud Attayi

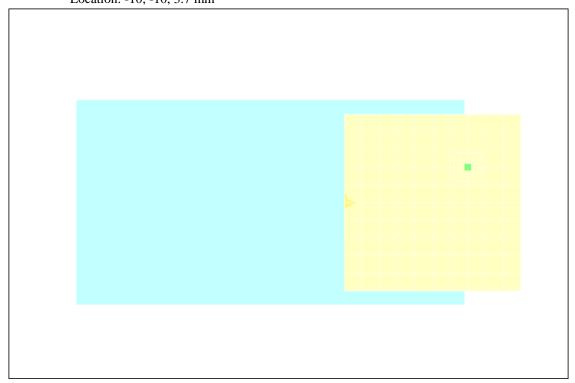
June 07-09, 2010

RTS-2068-1006-65

General Scans Mid Chan/x (longitudinal) fine 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav


Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155979 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM1/ABM2 = 45.9 dB ABM1 comp = -2.10 dB A/m BWC Factor = 0.155979 dB Location: -10, -10, 3.7 mm

OOI 11000	Testing Services™	D A (
-----------	----------------------	-------------

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

24(64)

Author Data **Daoud Attayi** Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65 FCC ID L6ARCL20CW

Date/Time: 6/8/2010 9:02:35 PM

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA800_mid_chan_Radial_T

DUT: BlackBerry Smartphone;

Communication System: CDMA 800; Frequency: 824.7 MHzFrequency: 836.52

MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

DASY4 Configuration:

Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE3 Sn473; Calibrated: 1/4/2010

Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/y (transversal) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155041 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 25(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65

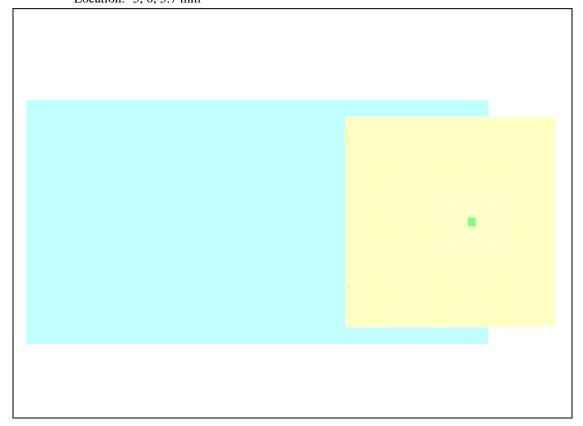
L6ARCL20CW

FCC ID

General Scans Mid Chan/y (transversal) fine 2mm 8 x 8/ABM SNR(x,y,z) (9x9x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav


Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155979 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM1/ABM2 = 54.8 dB ABM1 comp = -2.46 dB A/m BWC Factor = 0.155979 dB Location: -5, 0, 3.7 mm

0 dB = 1.00

Testing Services™

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

26(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No **RTS-2068-1006-65**

FCC ID L6ARCL20CW

Date/Time: 6/8/2010 8:41:48 PM

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA800_high_chan_Axial

DUT: BlackBerry Smartphone;

Communication System: CDMA 800; Frequency: 824.7 MHzFrequency: 848.52

MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

DASY4 Configuration:

• Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

• Sensor-Surface: 0mm (Fix Surface)

• Electronics: DAE3 Sn473; Calibrated: 1/4/2010

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/z (axial) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155041 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 27(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No **RTS-2068-1006-65**

FCC ID L6ARCL20CW

General Scans High Chan/z (axial) fine 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155041 dB

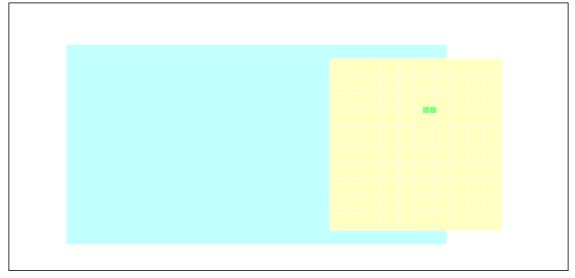
Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM1/ABM2 = 52.3 dB ABM1 comp = 4.68 dB A/m BWC Factor = 0.155041 dB Location: -3, -10, 3.7 mm

General Scans High Chan/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1):

Measurement grid: dx=10mm, dy=10mm


Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav

Output Gain: 54.9

Measure Window Start: 2000ms Measure Window Length: 4000ms

BWC applied: 10.8 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Testing Services™	8	id Compatibility Audio Bart for BlackBerry® Smart	0	Page 28(64)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attavi	June 07-09, 2010	RTS-2068-1006-65	L6ARCL20CW	

Testing Services™	Annex A-D (ABM) T-C RCL22CW
OCI VICES	` .

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic ABM) T-Coil Test Report for BlackBerry® Smartphone model

29(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No **RTS-2068-1006-65**

FCC ID L6ARCL20CW

Date/Time: 6/8/2010 8:52:01 PM

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA800_high_chan_Radial_L

DUT: BlackBerry Smartphone;

Communication System: CDMA 800; Frequency: 824.7 MHzFrequency: 848.52

MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

DASY4 Configuration:

• Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

• Sensor-Surface: 0mm (Fix Surface)

• Electronics: DAE3 Sn473; Calibrated: 1/4/2010

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/x (longitudinal) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

.

BWC applied: 0.155041 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

30(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65

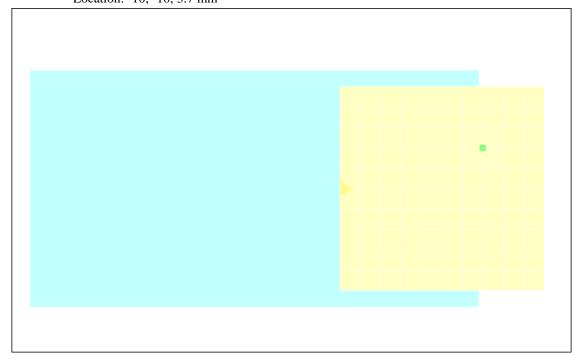
L6ARCL20CW

FCC ID

General Scans High Chan/x (longitudinal) fine 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav


Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155041 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM1/ABM2 = 45.7 dB ABM1 comp = -2.78 dB A/m BWC Factor = 0.155041 dB Location: -10, -10, 3.7 mm

Testing Services™	Annex A-D to Hearing A (ABM) T-Coil Test Repor
Author Data	Dates of Test

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Dates of Test

June 07-09, 2010

REPORT NO

RTS-2068-1006-65

FCC ID

L6ARCL20CW

Date/Time: 6/8/2010 9:02:35 PM

31(64)

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA800_high_chan_Radial_T

DUT: BlackBerry Smartphone;

Communication System: CDMA 800; Frequency: 824.7 MHzFrequency: 848.52

MHz;Duty Cycle: 1:1

Daoud Attayi

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

DASY4 Configuration:

• Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

• Sensor-Surface: 0mm (Fix Surface)

• Electronics: DAE3 Sn473; Calibrated: 1/4/2010

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/y (transversal) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155041 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 32(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65

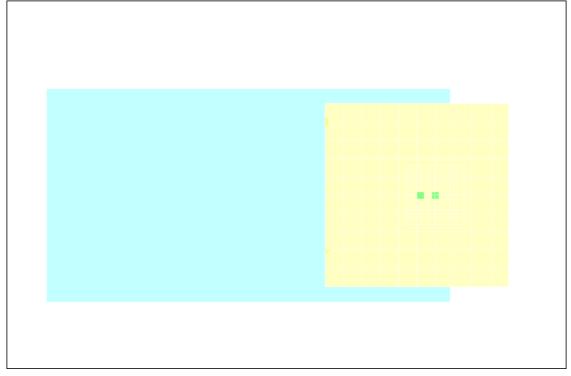
FCC ID

L6ARCL20CW

General Scans High Chan/y (transversal) fine 2mm 8 x 8/ABM SNR(x,y,z) (9x9x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav


Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155041 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM1/ABM2 = 54.1 dB ABM1 comp = -1.12 dB A/m BWC Factor = 0.155041 dB Location: -1, 0, 3.7 mm

神	Testing Services™	Annex A-D to Hea (ABM) T-Coil Tes RCL22CW
Author Data		Dates of Test

Daoud Attayi

aring Aid Compatibility Audio Band Magnetic st Report for BlackBerry® Smartphone model

Report No Dates of Test

June 07-09, 2010 RTS-2068-1006-65 FCC ID L6ARCL20CW 33(64)

Date/Time: 6/9/2010 12:00:29 AM

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA1900_low_chan_Axial

DUT: BlackBerry Smartphone;

Communication System: CDMA 1900; Frequency: 1851.25 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

DASY4 Configuration:

Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE3 Sn473; Calibrated: 1/4/2010

Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/z (axial) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155979 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 34(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65

L6ARCL20CW

FCC ID

General Scans Low Chan/z (axial) fine 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155979 dB

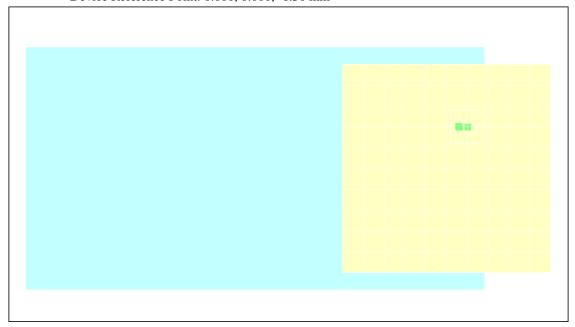
Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM1/ABM2 = 51.4 dB ABM1 comp = 3.70 dB A/m BWC Factor = 0.155979 dB Location: -3, -10, 3.7 mm

General Scans Low Chan/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1):

Measurement grid: dx=10mm, dy=10mm


Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav

Output Gain: 54.9

Measure Window Start: 2000ms Measure Window Length: 4000ms

BWC applied: 10.8 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Testing Services™		id Compatibility Audio Bart for BlackBerry® Smart	0	Page 35(64)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attavi	June 07-09, 2010	RTS-2068-1006-65	L6ARCL20CW	

Testing Services™	Annex A-D to Hearing Aid (ABM) T-Coil Test Report RCL22CW	_
Author Data	Dates of Test	Report No.

June 07-09, 2010

patibility Audio Band Magnetic ackBerry® Smartphone model

RTS-2068-1006-65

36(64)

Date/Time: 6/9/2010 12:10:45 AM

FCC ID

L6ARCL20CW

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA1900_low_chan_Radial_L

DUT: BlackBerry Smartphone;

Communication System: CDMA 1900; Frequency: 1851.25 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

DASY4 Configuration:

Daoud Attayi

Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE3 Sn473; Calibrated: 1/4/2010

Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/x (longitudinal) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155979 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 37(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No

RTS-2068-1006-65

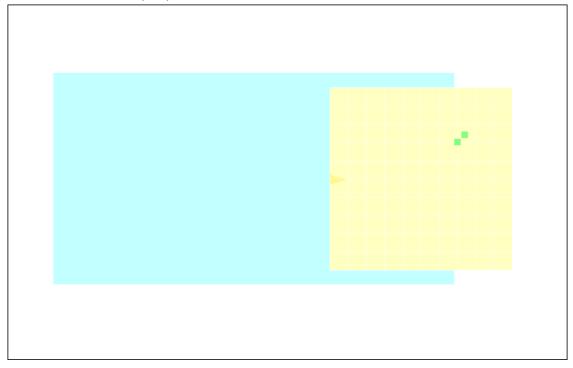
L6ARCL20CW

FCC ID

General Scans Low Chan/x (longitudinal) fine 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav


Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155979 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM1/ABM2 = 45.3 dB ABM1 comp = -4.87 dB A/m BWC Factor = 0.155979 dB Location: -12, -12, 3.7 mm

0 dB = 1.00

評	Testing Services™	Annex A (ABM) RCL220

A-D to Hearing Aid Compatibility Audio Band Magnetic T-Coil Test Report for BlackBerry® Smartphone model

38(64)

Author Data Daoud Attayi Dates of Test June 07-09, 2010 Report No RTS-2068-1006-65

L6ARCL20CW

Date/Time: 6/9/2010 12:21:19 AM

FCC ID

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA1900_low_chan_Radial_T

DUT: BlackBerry Smartphone;

Communication System: CDMA 1900; Frequency: 1851.25 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

DASY4 Configuration:

Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE3 Sn473; Calibrated: 1/4/2010

Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/y (transversal) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155979 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 39(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

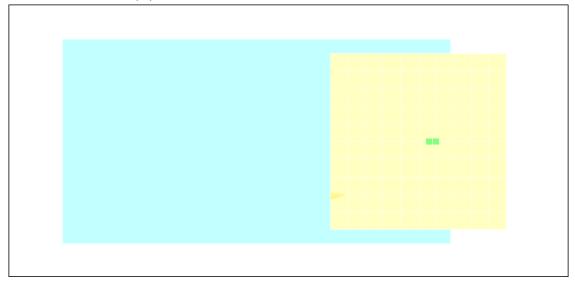
Report No RTS-2068-1006-65

FCC ID L6ARCL20CW

General Scans Low Chan/y (transversal) fine 2mm $8 \times 8/ABM$ SNR(x,y,z) (9x9x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav


Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155979 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM1/ABM2 = 54.2 dB ABM1 comp = -2.12 dB A/m BWC Factor = 0.155979 dB Location: -3, 0, 3.7 mm

0 dB = 1.00

謝	Testing Services™
Author Data	

Daoud Attayi

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic

(ABM) T-Coil Test Report for BlackBerry® Smartphone model

RCL22CW

Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65

FCC ID L6ARCL20CW 40(64)

Date/Time: 6/9/2010 12:00:29 AM

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA1900_mid_chan_Axial

DUT: BlackBerry Smartphone;

Communication System: CDMA 1900; Frequency: 1851.25 MHzFrequency: 1880

MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

DASY4 Configuration:

Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE3 Sn473; Calibrated: 1/4/2010

Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/z (axial) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155979 dB

Services™

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 41(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65

L6ARCL20CW

FCC ID

General Scans Mid Chan/z (axial) fine 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155041 dB

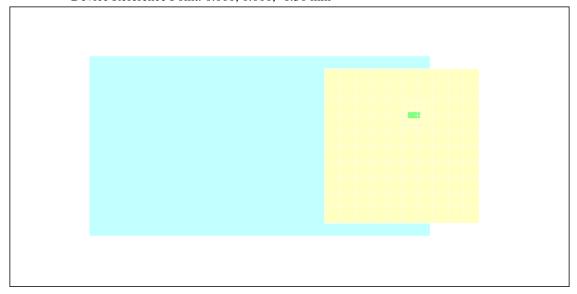
Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM1/ABM2 = 52.2 dB ABM1 comp = 4.97 dB A/m BWC Factor = 0.155041 dB Location: -3, -10, 3.7 mm

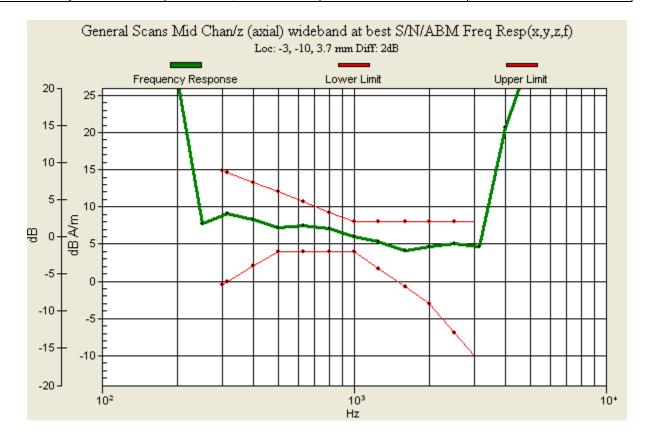
General Scans Mid Chan/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1):

Measurement grid: dx=10mm, dy=10mm


Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav

Output Gain: 54.9

Measure Window Start: 2000ms Measure Window Length: 4000ms


BWC applied: 10.8 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

0 dB = 1.00

Testing Services™		g Aid Compatibility Audio eport for BlackBerry® Sma	0	Page 42(64)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attavi	June 07-09, 2010	RTS-2068-1006-65	L6ARCL20CW	

Testing Services™

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 43(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No **RTS-2068-1006-65**

L6ARCL20CW

Date/Time: 6/9/2010 12:10:45 AM

FCC ID

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA1900_mid_chan_Radial_L

DUT: BlackBerry Smartphone;

Communication System: CDMA 1900; Frequency: 1851.25 MHzFrequency: 1880

MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

DASY4 Configuration:

• Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

• Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE3 Sn473; Calibrated: 1/4/2010

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/x (longitudinal) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155979 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 44(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

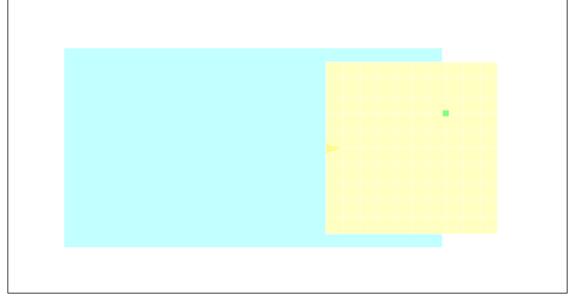
Report No RTS-2068-1006-65

FCC ID L6ARCL20CW

General Scans Mid Chan/x (longitudinal) fine 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav


Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155041 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM1/ABM2 = 45.9 dB ABM1 comp = -2.96 dB A/m BWC Factor = 0.155041 dB Location: -10, -10, 3.7 mm

0 dB = 1.00

lesting Services™

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

45(64)

Author Data **Daoud Attayi** Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65

L6ARCL20CW

Date/Time: 6/9/2010 12:21:19 AM

FCC ID

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA1900_mid_chan_Radial_T

DUT: BlackBerry Smartphone;

Communication System: CDMA 1900; Frequency: 1851.25 MHzFrequency: 1880

MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

DASY4 Configuration:

Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE3 Sn473; Calibrated: 1/4/2010

Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/y (transversal) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155979 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 46(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65

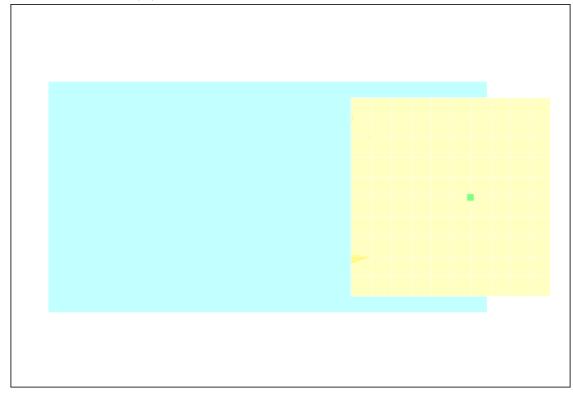
L6ARCL20CW

FCC ID

General Scans Mid Chan/y (transversal) fine 2mm 8 x 8/ABM SNR(x,y,z) (9x9x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav


Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155041 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM1/ABM2 = 54.8 dB ABM1 comp = -2.60 dB A/m BWC Factor = 0.155041 dB Location: -5, 0, 3.7 mm

0 dB = 1.00

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model

RCL22CW

Report No

47(64)

Daoud Attayi

Dates of Test June 07-09, 2010

RTS-2068-1006-65

L6ARCL20CW

Date/Time: 6/9/2010 12:00:29 AM

FCC ID

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA1900_high_chan_Axial

DUT: BlackBerry Smartphone;

Communication System: CDMA 1900; Frequency: 1851.25 MHzFrequency:

1908.5 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE3 Sn473; Calibrated: 1/4/2010

Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/z (axial) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155979 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 48(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65

L6ARCL20CW

FCC ID

General Scans High Chan/z (axial) fine 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

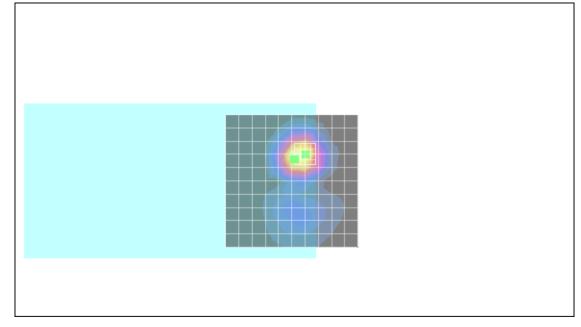
Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155979 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

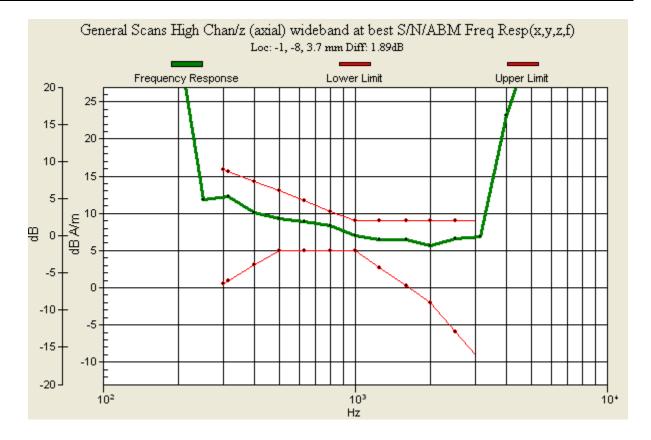
Cursor:

ABM1/ABM2 = 50.4 dB ABM1 comp = 6.15 dB A/m BWC Factor = 0.155979 dB Location: -1, -8, 3.7 mm

General Scans High Chan/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1):


Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav


Output Gain: 54.9

Measure Window Start: 2000ms Measure Window Length: 4000ms

BWC applied: 10.8 dB

Testing Services™		g Aid Compatibility Audio eport for BlackBerry® Sma	O	Page 49(64)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 07-09, 2010	RTS-2068-1006-65	L6ARCL20CW	

Testing Services™

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Report No

50(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010 RTS-2068-1006-65

FCC ID L6ARCL20CW

Date/Time: 6/9/2010 12:10:45 AM

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA1900_high_chan_Radial L

DUT: BlackBerry Smartphone;

Communication System: CDMA 1900; Frequency: 1851.25 MHzFrequency:

1908.5 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

• Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

• Sensor-Surface: 0mm (Fix Surface)

• Electronics: DAE3 Sn473; Calibrated: 1/4/2010

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/x (longitudinal) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155979 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 51(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65

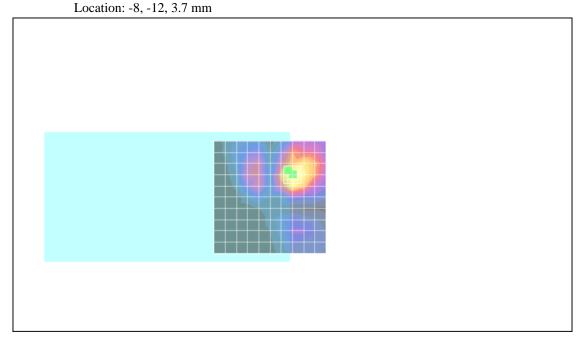
L6ARCL20CW

FCC ID

General Scans High Chan/x (longitudinal) fine 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav


Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155979 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM1/ABM2 = 40.6 dB ABM1 comp = -2.26 dB A/m BWC Factor = 0.155979 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

52(64)

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65

L6ARCL20CW

Date/Time: 6/9/2010 12:21:19 AM

FCC ID

Test Laboratory: RIM Testing Services

HAC_TCoil_CDMA1900_high_chan_Radial T

DUT: BlackBerry Smartphone;

Communication System: CDMA 1900; Frequency: 1851.25 MHzFrequency:

1908.5 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: AM1DV2 - 1016; ; Calibrated: 3/17/2010

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE3 Sn473; Calibrated: 1/4/2010

Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

General Scans Low Chan/y (transversal) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 28

Measure Window Start: 300ms

Measure Window Length: 1000ms

BWC applied: 0.155979 dB

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 53(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

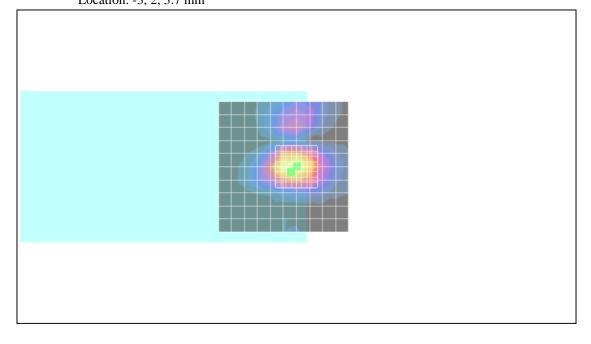
Report No RTS-2068-1006-65

FCC ID L6ARCL20CW

General Scans High Chan/y (transversal) fine 2mm 8 x 8/ABM SNR(x,y,z) (9x9x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav


Output Gain: 28

Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 0.155979 dB

Device Reference Point: 0.000, 0.000, -6.30 mm

Cursor:

ABM1/ABM2 = 49.3 dB ABM1 comp = -1.67 dB A/m BWC Factor = 0.155979 dB Location: -3, 2, 3.7 mm

Testing Services™	Annex A-D to Hearing Ai (ABM) T-Coil Test Repor	2		Page 54(64)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 07-09, 2010	RTS-2068-1006-65	L6ARCL20CW	

Annex D: Probe/TMFS calibration certificate and specification

Author Data

Daoud Attayi

Document

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Dates of Test Report No

June 07-09, 2010 RTS-2068-1006-65

FCC ID L6ARCL20CW 55(64)

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Accreditation No.: SCS 108

Certificate No: AM1DV2-1016_Mar10

CALIBRATION CERTIFICATE Object AM1DV2 - SN: 1016 QA CAL-24.v2 Calibration procedure(s) Calibration procedure for AM1D magnetic field probes and TMFS in the March 17, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 1-Oct-09 (No: 9055) Oct-10 Reference Probe AM1DV2 SN: 1008 21-Jan-10 (No. AM1D-1008_Jan10) Jan-11 SN: 781 22-Jan-10 (No. DAE4-781_Jan10) Jan-11 Secondary Standards ID# Check Date (in house) Scheduled Check AMCC 1050 15-Oct-09 (in house check Oct-09) Function Calibrated by: Approved by: Issued: March 18, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: AM1D-1016_Mar10

Page 1 of 3

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Report No

56(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010 RT

RTS-2068-1006-65

L6ARCL20CW

FCC ID

References

[1] ANSI C63.19-2007

American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

[2] DASY4 manual, Chapter: Hearing Aid Compatibility (HAC) T-Coil Extension

Description of the AM1D probe

The AM1D Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz. The pickup coil is compliant with the dimensional requirements of [1]. The probe includes a symmetric low noise amplifier for the signal available at the shielded 3 pin connector at the side. Power is supplied via the same connector (phantom power supply) and monitored via the LED near the connector. The 7 pin connector at the end of the probe does not carry any signals, but determines the angle of the sensor when mounted on the DAE. The probe supports mechanical detection of the surface.

The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by 120° around its axis. It is aligned with the perpendicular component of the field, if the probe axis is tilted nominally 35.3° above the measurement plane, using the connector rotation and sensor angle stated below. The probe is fully RF shielded when operated with the matching signal cable (shielded) and allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to [1] without additional shielding.

Handling of the item

The probe is manufactured from stainless steel. In order to maintain the performance and calibration of the probe, it must not be opened. The probe is designed for operation in air and shall not be exposed to humidity or liquids. For proper operation of the surface detection and emergency stop functions in a DASY system, the probe must be operated with the special probe cup provided (larger diameter).

Methods Applied and Interpretation of Parameters

- Coordinate System: The AM1D probe is mounted in the DASY system for operation with a HAC
 Test Arch phantom with AMCC Helmholtz calibration coil according to [2], with the tip pointing to
 "southwest" orientation.
- Functional Test: The functional test preceding calibration includes test of Noise level
 - RF immunity (1kHz AM modulated signal). The shield of the probe cable must be well connected. Frequency response verification from 100 Hz to 10 kHz.
- Connector Rotation: The connector at the end of the probe does not carry any signals and is used for fixation to the DAE only. The probe is operated in the center of the AMCC Helmholtz coil using a 1 kHz magnetic field signal. Its angle is determined from the two minima at nominally +120° and 120° rotation, so the sensor in the tip of the probe is aligned to the vertical plane in z-direction, corresponding to the field maximum in the AMCC Helmholtz calibration coil.
- Sensor Angle: The sensor tilting in the vertical plane from the ideal vertical direction is determined
 from the two minima at nominally +120° and -120°. DASY system uses this angle to align the
 sensor for radial measurements to the x and y axis in the horizontal plane.
- Sensitivity: With the probe sensor aligned to the z-field in the AMCC, the output of the probe is
 compared to the magnetic field in the AMCC at 1 kHz. The field in the AMCC Helmholtz coil is given
 by the geometry and the current through the coil, which is monitored on the precision shunt resistor
 of the coil.

Certificate No: AM1D-1016, Mar10	Page 2 of 3	

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

57(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No **RTS-2068-1006-65**

L6ARCL20CW

FCC ID

AM1D probe identification and configuration data

Item	AM1DV2 Audio Magnetic 1D Field Probe
Type No	SP AM1 001 AC
Serial No	1016

Overall length	296 mm
Tip diameter	6.0 mm (at the tip)
Sensor offset	3.0 mm (centre of sensor from tip)
Internal Amplifier	40 dB

Manufacturer / Origin	Schmid & Partner Engineering AG, Zurich, Switzerland
Manufacturing date	Apr-2006
Last calibration date	April 23, 2009

Calibration data

Connector rotation angle (in DASY system) 253.9 ° +/- 3.6 ° (k=2)

Sensor angle (in DASY system) 3.94 ° +/- 0.5 ° (k=2)

Sensitivity at 1 kHz (in DASY system) 0.0652 V / (A/m) +/- 2.2 % (k=2)

Certificate No: AM1D-1016_Mar10

Page 3 of 3

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

58(64)

Author Data Daoud Attayi Dates of Test

June 07-09, 2010

Report No

RTS-2068-1006-65

L6ARCL20CW

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

FCC ID

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

tificate No: TMFS_1003_Jan10

RTS (RIM Testing Services) CALIBRATION CERTIFICAT Object / Identification Calibration procedure(s) Calibration procedure for AM1D magnetic field probes and TMFS in the January 22, 2010 Calibration date Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The calibrations have been conducted in the R&D laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration SN: 0810278 1-Oct-09 (No: 9055) Keithley Multimeter Type 2001 Oct-10 Secondary Standards ID# Cal / Check Date Scheduled Calibration Check AMCC 15-Oct-09 (in house check Oct-09) 1050 Reference Probe AM1DV2 SN: 1008 21-Jan-10 (No. AM1D-1008_Jan10) Jan-11 AMMI Audio Measuring Instrument 1062 14-Jul-09 (in house check Jul-09) Jul-11 Agilent WF Generator 33120A MY40005266 13-Oct-09 (in house check Oct-09) Oct-11 Function Name Calibrated by: Approved by: Issued: January 25, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: TMFS_1003_Jan10

Page 1 of 5

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Page 59(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

Report No **RTS-2068-1006-65**

FCC ID

L6ARCL20CW

References

- [1] ANSI-PC63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
- [2] DASY4 manual, Chapter 29: Hearing Aid Compatibility (HAC) T-Coil Extension (April 2008)


Methods Applied and Interpretation of Parameters

- Coordinate System: The TMFS is mounted underneath the HAC Test Arch touching equivalently to a wireless device according to [2] 29.2.2.: In "North" orientation, the TMFS signal connector is directed to the north, with x and y axes of TMFS and Test arch coinciding (see fig. 1). The rotational (see fig. 1). symmetry axis of the TMFS is aligned to the center of the HAC test Arch. For East. South and West configuration, the TMFS has been rotated clockwise in steps of 90°, so the connector looks into the specified direction. The evaluation of the radial direction is referenced the device orientation equivalent to South direction).
- Measurement Plane: coincidence with standard [1], the measurement plane (probe sensor center) is selected to be at a distance of 10 mm above the the surface of the TMFS touching the frame. The 50 x 50 mm scan area is aligned to the center of the unit. The scanning plane is verified to be parallel to the phantom frame before the measurements using the predefined "Geometry and signal check" procedure according to the predefined procedures described in [2].

North



Fig. 1 TMFS scanning measurement configurations

- tne predefined "Geometry and signal check" procedure according
- Measurement Conditions: Calibration of AM1D probe and AMMI are according to [2]. The 1 kHz sine signal
 for the level measurement is supplied from an external, independent generator via a BNC cable to TMFS IN
 and monitored at TMFS OUT with an independent RMS voltmeter or Audio Analyzer. The level is set to 0.5
 Vrms and monitored during the scans.
- For the frequency response, a higher suppression of the background ambient magnetic field over the full
 frequency range was achieved by placing the TMFS in a magnetically shielded box. The AM1D probe was
 fixed without robot positioner near the axial maximum for this measurement. The background noise
 suppression was typ. 30 dB at 100 Hz (minimum) and 42 dB at 1 kHz. The predefined multisine signal
 (48k_multisine_50-10000_10s.wav) was used and evaluated in the third-octave bands from 100 Hz to 10000
 Hz

Certificate No: TMFS_1003_Jan10

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Report No

Page 60(64)

Author Data

Daoud Attayi

Dates of Test

June 07-09, 2010

RTS-2068-1006-65

L6ARCL20CW

FCC ID

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2 B162	
DASY PP Version	SEMCAD	V14.0 B59	
Phantom	HAC Test Arch	SD HAC P01 BA, #1002	
Distance TMFS Top - Probe Centre	10 mm		
Scan resolution	dx, $dy = 5$ mm	area = 50 x 50 mm	
Frequency	for field scans	1 kHz	
Signal level to TMFS	for field scans	500 mV RMS	
Signal	for frequency response	multisine signal 50-10000 Hz, each third-octave band	

Table 1: System configuration

2 Axial Maximum Field

Configuration	East	South	West	North	Subset Average	Average
Axial Max	-20.17	-20.17	-20.16	-20.17		-20.17
TMFS Y Axis 1st Max	-25.74	-25.74	-25.70	-25.70		
TMFS Y Axis 2nd Max	-25.92	-25.66	-26.02	-25.7		
Longitudinal Max Avg	-25.83	-25.70	-25.86	-25.70	-25.77	
TMFS X Axis 1st Max	-25.73	-25.71	-25.73	-25.67		
TMFS X Axis 2nd Max	-25.68	-25.91	-25.67	-25.96		
Transversal Max Avg	-25.71	-25.81	-25.70	-25.82	-25.76	
Radial Max						-25.77

Table 2: Axial and radial field maxima measured with probe center at 10mm distance in dB A/m

The maximum was calculated as the average from the values measured in the 4 orientations listed in table 2.

Axiai Maximum -20.17 dB A/m

(+/- 0.33dB, k=2)

3 Radial Maximum Field

In addition, the average from the 16 maxima of the radial field listed in table 2 (measured at 10mm) was calculated:

Radial Maximum -25.77 dB A/m

Certificate No: TMFS_1003_Jan10

Page 3 of 5

Testing Services™	Document Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW Dates of Test Report No FCC ID			
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attavi	June 07-09 2010	RTS-2068-1006-65	L6ARCL20CW	

4 Appendix

4.1 Frequency response

Max. deviation measured, relative to 1 kHz: min. -0.03, max. +0.02 dB

Frequency [Hz]	Response [dB]
100	0.02
125	0.00
160	-0.01
200	0.00
250	0.02
315	-0.01
400	0.00
500	0.00
630	0.00
800	0.00
1000	0.00
1250	-0.01
1600	-0.01
2000	-0.01
2500	-0.01
3150	-0.01
4000	-0.02
5000	-0.02
6300	-0.03
8000	-0.03
10000	-0.03

Table 3: Frequency response

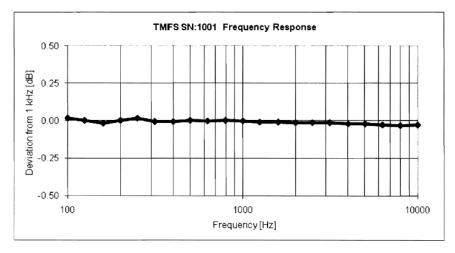


Fig. 2 Frequency response 100 to 10'000 Hz

Certificate No: TMFS_1003_Jan10

Testing Services™	Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW			Page 62(64)	
Author Data	Dates of Test Report No FCC ID				
Daoud Attavi	June 07-09, 2010	RTS-2068-1006-65	L6ARCL20CW		

4.2 Field plots

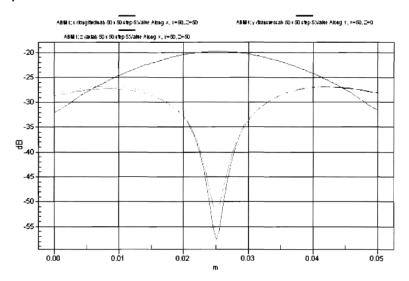


Fig. 3: Typical 2D field plots for x (red), y (green) and z (blue) components

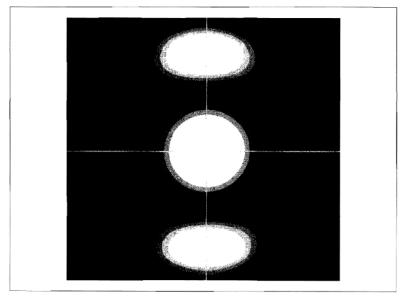


Fig. 4: Superponed field plots of z (axial), x and y radial magnetic field, 50 x 50 mm, individual scaling: white = max. field level, black = -4dB below max. The lines show the position of the 2D field plot of figure 3.

Certificate No: TMFS_1003_Jan10 Page 5 of 5

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

63(64)

Author Data Daoud Attayi Dates of Test

June 07-09, 2010

Report No RTS-2068-1006-65 FCC ID

L6ARCL20CW

Schmid & Partner Engineering AG

a g e

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Certificate of conformity

Audio Magnetic Calibration Coil AMCC	
SD HAC P02 A	
1001 ff.	
Schmid & Partner Engineering AG	
	AMCC SD HAC P02 A 1001 ff.

Description of the item
The Audio Magnetic Calibration coil (AMCC) is a Helmholtz Coil designed according to standard [1], section D.9 for calibration of the AM1D probe. Two horizontal coils are positioned above a non-metallic base plate and generate a homogeneous magnetic field in the z direction (normal to it).

Configuration
The AMCC consists of two parallel coils of 20 turns with radius 143 mm connected in parallel in a distance of 143 mm. With this design, a current of 10 mA produces a field of 1 A/m.

The DC input resistance at the input BNC socket is adjusted by a series resistor to a DC resistance of approximately 50 Ohm. The voltage required to produce a field of 1 A/m is consequently approx. 500 mV.

To current through the coil is monitored via a shunt resistor of 10 Ohm +/- 1%. The voltage is available on a BNO socket with 100 mV corresponding to 1 A/m.

Handling of the item

The coil shall be positioned in a non-metallic environment to avoid distortion of the magnetic field.

Tests

Test	Requirement	Details	Units tested
Number of turns	N = 20 per coil	Resistance measurment	all
Orientation of coils	parallel coils with same direction of windings	Magnetic field variation in the AMCC axis	all
Coil radius	r = 143 mm	mechanical dimension	First article
Coil distance	d = 143 mm distance between coil centers	mechanical dimension	First article
Input resistance	51.7 +/- 2 Ohm	DC resistance at BNC input connector	all
Shunt resistance	R = 10.0 Ohm +/- 1 %	DC resistance at BNO output connector	all
Shunt sensitivity	Hc = 1 A/m per 100 mV according to formula Hc = (U / R) * N / r / (1.25^1.5)	Field measurement compared with Narda ELT400 + BN2300/90.10	First article

Standards[1] ANSI PC63.19-2006 Draft 3.12

Conformity

Based on the tests above, we certify that this item is in compliance with the requirements of [1].

Date

22.5.2006

Stamp / Signature

A Pariner Engineering AG
asstrasse 43, 8004 Zurich Sattanda
411 242 7607 244 411 145 9779

Doc No 880 - SD HAC P02 A - A

Page

1 (1)

Testing Services™

Author Data

Daoud Attayi

Document

Annex A-D to Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RCL22CW

Report No

Dates of Test

June 07-09, 2010 RTS-2068-1006-65

FCC ID L6ARCL20CW 64(64)

Specifications

Audio Magnetic Field Probe AM1D

The AM1D probe is an active probe with a single sensor according to [1] section D.8. It is fully RF shielded and has a rounded tip of 6 mm diameter incorporating a pickup coil with its center offset 3mm from the tip and the sides.

SPEAG, the manufacturer of the T-Coil system tested the probe frequency response and its dynamic range. The compliance is stated in the Certificate of conformity document 880 – SPAM1001A-A. Also the probe frequency has been verified and the response deviation from the ideal differentiator was within +0.05 and - 0.46 dB in the range 100 Hz to 10 kHz on the center frequencies of the third-octave bands. Note that it includes the probe preamplifier and also with the AMMI internal preamplifiers, filters and processing.

Dynamic range:

maximum + 21 dB A/m @ 1 kHz Noise level typically -70 dB A/m @ 1 kHz ABM2 typically -60 dB A/m

Linearity

Within < 0.1 dB from 5 dB below limitation to 16 dB above noise level

Sensitivity

Typically -24 dBV / A/m @ 1 kHz probe output

Audio Magnetic Measurement Instrument (AMMI)

sampling rate 48 kHz / 24 bit dynamic range 85 dB test signal generation user selectable and predefined (via PC) calibration auto-calibration / full system calibration using AMCC with monitor output dimensions $482 \times 65 \times 270 \text{ mm}$

Helmholtz Calibration Coil (AMCC)

dimensions 370 x 370 x 196 mm, according to ANSI-PC63.19

The Audio Magnetic Calibration coil is a Helmholtz Coil designed according to [1], section D.9 for calibration of the AM1D probe. The two horizontal coils generate a homogeneous magnetic field in the z direction.

Shunt sensitivity Hc = 1 A/m per 100mV according to formula:

 $Hc = (U/R) * N/r/(1.25 ^ 1.5)$

Number of turns N = 20 per coil Coil radius r = 143 mm Shunt resistance R = 10.00 Ohm