RTS RIM Testing Services	Appendix for the BlackBerr SAR Report	y® Smartphone Model	RCD21IN	Page 1(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

RIM Testing Services Author Data Jean-Paul Hacquoil Document Appendix for the BlackBerry® Smartphone Model RCD21IN SAR Report Test Report No RTS-1271-0810-07 RTS-1271-0810-07 RTS-1271-0810-07

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

FT0 4040 1 00

Accreditation No.: SCS 108

Certificate No: ET3-1642_Jan08 CALIBRATION CERTIFICATE ET3DV6 - SN:1642 Object QA CAL-01.v8 Calibration procedure(s) Calibration procedure for dosimetric E-field probes January 18, 2008 Calibration date: Condition of the calibrated item In Tolorance This calibration certificate documents the traceability to national standards, which malize the physical units of measurements (SI) The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) Gal Date (Calibrated by, Certificate No.) Scheduled Calibration Primary Standards Power meter E4419B GB41293874 29-Mar-07 (METAS, No. 217-00670) Power sensor E4412A MY41495277 29-Mar-07 (METAS, Nc. 217-00670) Mar.08 Mar-08 Power sensor E4412A MY41498087 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) Reference 3 dB Attenuator SN: S5054 (3c) Aug-08 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-07 (METAS, No. 217-00671) Mar-08 Reference 30 dB Attenuator SN: S5129 (30b) 8-Aug-07 (METAS, No. 217-00720) Aug-08 2-Jan-08 (SPEAG, No. ES3-3013_Jan08) Reference Probe ES3D/2 SN: 3013 Jan-09 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Apr-08 Secondary Standards Scheduled Check ID# Check Date (in house) RF generator HP 86480 US3642U01700 4-Aug-99 (SPEAG, in house check Oct-07) Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Oct-07) In house check: Oct-08 Namo Calibrated by: Katja Pokovic Technical Manager Quality Manager Approved by: Niels Kuster Issued: January 18, 2008 This calibration certificare shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1642_Jan08

Page 1 of 9

RTS RIM Testing Services	Appendix for the BlackBerry SAR Report	y® Smartphone Model	RCD21IN	Page 3(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzaro di taratura
S Swiss Callbration Service

Accorditation No.: SCS 108

Auxidition by the Owise Accreditation Service (EAS)

The Swiss Accreditation Service is one of the signaturies to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid sensitivity in free space conF sensitivity in TSL / NORMx,y,z diode compression point φ rotation around probe axis

Polarization 8 9 rotation around an axis that is in the plane normal to proce axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y z does not effect the E²-field uncertainty naide TSI (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * irequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Oifset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance recuired.

Page 2 of 9		
	Page 2 of 9	Page 2 of 9

RTS RIM Testing Services	Appendix for the BlackBerr SAR Report	y® Smartphone Model	RCD21IN	Page 4(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

January 18, 2008

Probe ET3DV6

SN:1642

Manufactured: November 7, 2001 Last calibrated: January 15, 2007 Recalibrated: January 18, 2008

Calibrated for DASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ET3-1642_Jan08

Page 3 of 9

RTS RIM Testing Services	Appendix for the BlackBerr SAR Report	y® Smartphone Model	RCD21IN	Page 5(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

January 18, 2008

DASY - Parameters of Probe: ET3DV6 SN:1642

Sensitivity in Fre	e Space ^A		Diode C	ompression ^B
NormX	1.67 ± 10.1%	$\mu V/(V/m)^2$	DCP X	91 mV
NormY	1.86 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	91 mV
NormZ	1.64 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	94 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Bounda	ry Effect				
TSL	900	MHz	Typical SAR gradient: 5 % per	mm	
Sc	ensor Center to) Phanto	om Surface Distance	3.7 mm	4.7 mm
S/	NR _{bs} [%]	Without	t Correction Algorithm	11.3	6.7
SA	AR _{be} [%]	With Co	prrection Algorithm	8.0	0.4
TSL	1810	MHz	Typical SAR gradient: 10 % po	er mm	
Se	ensor Center to	o Phanto	om Surface Distance	3.7 mm	4.7 mm
SA	AR., [%]	Without	t Correction Algorithm	14.0	8.3
SA	AR _{bs} [%]	With Co	orrection Algorithm	0.9	0.7

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

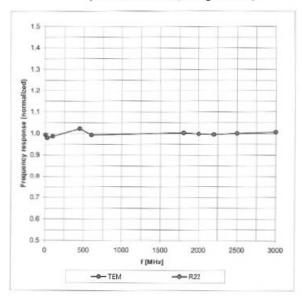
2.7 mm

Probe Tip to Sensor Center

Certificate No: ET3-1642 Jan08

Page 4 of 9

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).


Numerical linearization parameter; uncertainty not required.

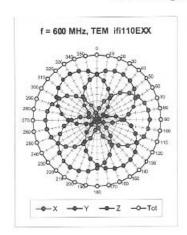
RTS RIM Testing Services	Appendix for the BlackBerr SAR Report	y® Smartphone Model	RCD21IN	Page 6(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

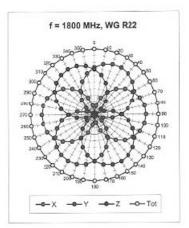
January 18, 2008

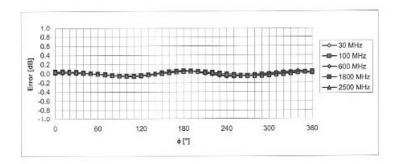
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ET3-1642_Jan08


Page 5 of 9

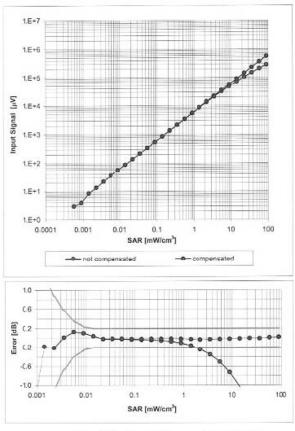

RTS RIM Testing Services	Appendix for the BlackBo SAR Report	erry® Smartphone Mode	l RCD21IN	Page 7(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

January 18, 2008

Receiving Pattern (6), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1642_Jan08


Page 6 of 9

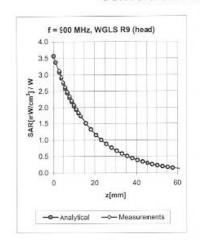
RTS RIM Testing Services	Appendix for the BlackBerry SAR Report	y® Smartphone Model	RCD21IN	Page 8(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

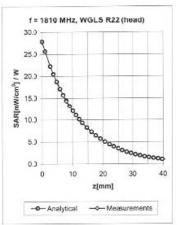
January 18, 2008

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k-2)


Certificate No: ET3-1642_Jan08


Page 7 of 9

RTS RIM Testing Services	Appendix for the BlackBerr SAR Report	ry® Smartphone Model	RCD21IN	Page 9(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

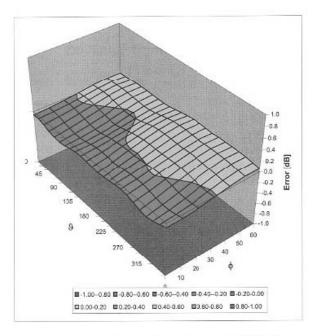
January 18, 2008

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Pernittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	±50/±100	Head	41.5 ± 5%	0.97 ± 5%	0.82	1.74	6.42 ± 11.0% (k=2)
1810	+ 50 / + 100	Head	40.0 ± 5%	1.40 ± 5%	0.52	2.85	5.15 ± 11.0% (k=2)
1950	±50/±100	Head	40.C ± 5%	1.40 ± 5%	0.57	2.49	4.98 ± 11.0% (k=2)
2450	± 50 /± 100	Head	39.2 ± 5%	1.80 ± 5%	0.76	1.92	4.52 ± 11.8% (k=2)
900	±50/±100	Body	55.C ± 5%	1.05 ± 5%	0.85	1.73	6.13 ± 11.0% (k=2)
1810	150/1100	Body		1.52 ± 5%	0.66	2.70	4.85 ± 11.0% (k-2)
1950	± 50 /± 100	Body	53.2 ± 5%	1.52 ± 5%	0.61	2.32	4.56 ± 11.0% (k=2)
2450	±50/±100	Body	52.7 ± 5%	1.95 ± 5%	0.81	1.88	4.08 ± 11.8% (k=2)

Certificate No: ET3-1642_Jan08

Page 8 of 9


⁶ The validity of ±100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

RTS RIM Testing Services	Appendix for the BlackBerr SAR Report	y® Smartphone Model	RCD21IN	Page 10(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

January 18, 2008

Deviation from Isotropy in HSL

Error (¢, 3), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k-2)

Certificate No: ET3-1642_Jan08

Page 9 of 9

RIM Testing Services Author Data Jean-Paul Hacquoil Document Appendix for the BlackBerry® Smartphone Model RCD21IN SAR Report Test Report No RTS-1271-0810-07 RTS-1271-0810-07 L6ARCD20IN

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8604 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation.

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: SCS 108

Client RIM

Cortificate No: D835V2-446_Jan07

Object	D835V2 - SN: 44	D835V2 - SN: 446	
Calibration procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits	
Calibration date:	January 8, 2007		A TENERAL PROPERTY.
Condition of the calibrated item	In Tolerance		
		robability are given on the following pages and an γ facility: environment temperature (22 ± 3)°C and	
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	TE critical for calibration)	Call Date (Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards Power meter EPVI-442A	ID # GB37480704	03-Oct-06 (METAS, No. 217-00808)	Oct-07
Primary Standards Power meter EPV-442A Power sensor HP 8481A	ID # GB37480704 US37292783	03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608)	Oct-07 Oct-07
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 SN: 5086 (20g)	03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591)	Oct-07 Oct-07 Aug-07
Primary Standards Power moter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator	ID # GB37480704 US37292783 SN: 5085 (20g) SN: 5047.2 (10r)	03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591)	Oct-07 Oct-07 Aug-07 Aug-07
Primary Standards Power moter EPW-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV8 (HF)	ID # GB37480704 US37292783 SN: 5086 (20g)	03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06)	Oct-07 Oct-07 Aug-07 Aug-07 Oct-07
Primary Standards Power meter EPM-442A Power sensor HF 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET30V6 (HF) DAE4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 907	03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 20-Jul-06 (SPEAG, No. DAE4-907_Jul06)	Oct-07 Oct-07 Aug-07 Aug-07
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 (HF) DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: 5085 (20g) SN: 5047.2 (10r) SN 1507 SN 907	03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507_Oci06) 20-Jul-06 (SPEAG, No. DAE4-907_Jul06) Check Oate (in house)	Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Jul-07 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 (HF) DAE4 Secondary Standards Power sensor HF 8481A	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 907	03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591) 10-Aug-06 (METAS, No. 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 20-Jul-06 (SPEAG, No. DAE4-907_Jul06) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05)	Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Jul-07 Scheduled Check In house check: Oct-07
Primary Standards Power moter EPW-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV8 (HF) DAE4 Secondary Standards Power sensor HP 8481A RF generator Aquent E4421B	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047-2 (10r) SN 1507 SN 907 ID # MY41092317 MY41090675	03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591) 10-Aug-06 (METAS, No. 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 20-Jul-06 (SPEAG, No. DAE4-907_Jul-06) Check Date (in house) 18-Oct-02 (SPEAG, in house check Nor-05) 11-May-05 (SPEAG, in house check Nor-05)	Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Juf-07 Scheduled Check In house check: Oct-07 In house check: Nov-07
Primary Standards Power moter EPW-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV8 (HF) DAE4 Secondary Standards Power sensor HP 8481A RF generator Aquent E4421B	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 907	03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591) 10-Aug-06 (METAS, No. 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 20-Jul-06 (SPEAG, No. DAE4-907_Jul06) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05)	Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Jul-07 Scheduled Check In house check: Oct-07
Primary Standards Power meter EPV-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 (HF) DAE4 Secondary Standards Power sensor HP 8481A RF generator Aquent E4421B	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047-2 (10r) SN 1507 SN 907 ID # MY41092317 MY41090675	03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591) 10-Aug-06 (METAS, No. 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 20-Jul-06 (SPEAG, No. DAE4-907_Jul-06) Check Date (in house) 18-Oct-02 (SPEAG, in house check Nor-05) 11-May-05 (SPEAG, in house check Nor-05)	Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Juf-07 Scheduled Check In house check: Oct-07 In house check: Nov-07
Primary Standards Power meter EPW-442A Power sensor HP 9481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET30V6 (HF) DAE4 Secondary Standards Power sensor HP 8481A RF generator Agient E4421B Network Analyze: HP 8753E	ID W GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 907 ID # MY41092317 MY41090575 US37390585 S4206	03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591) 10-Aug-06 (METAS, No. 217-00591) 10-Oct-06 (SPEAG, No. ET3-1507, Oct06) 20-Jul-06 (SPEAG, No. DAE4-907, Jul-06) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Oct-06)	Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Oct-07 Jul-07 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Oct-67
Calibration Equipment used (M&T Primary Standards Power moter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET30V6 (HF) DAE4 Secondary Standards Power sensor HF 8281A RF generator Agient E4421B Network Analyze: HP 8753E Calibrated by:	ID W GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 907 ID # MY41092317 MY41090675 US37390585 S4206 Name	03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591) 10-Aug-06 (METAS, No. 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507, Oct06) 20-Jul-06 (SPEAG, No. DAE4-907, Jul-06) Check Oate (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 15-Oct-01 (SPEAG, in house check Nov-05) 15-Oct-01 (SPEAG, in house check Oct-06)	Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Oct-07 Jul-07 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Oct-67

Certificate No: D835V2-446_Jan07

Page 1 of 6

RTS RIM Testing Services	Appendix for the BlackBo SAR Report	erry® Smartphone Mode	l RCD21IN	Page 12(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-446 Jan07

RTS RIM Testing Services	Appendix for the BlackBe SAR Report	erry® Smartphone Mode	RCD21IN	Page 13(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.2 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature during test	(22.2 ± 0.2) °C	-	-

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.33 mW / g
SAR normalized	normalized to 1W	9.32 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.28 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.52 mW / g
SAR normalized	normalized to 1W	6.08 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.04 mW / g ± 16.5 % (k=2)

¹ Correction to numinal TSL parameters according to d), chapter "SAR Sensitivities"

RTS RIM Testing Services	Appendix for the BlackBo SAR Report	erry® Smartphone Mode	I RCD21IN	Page 14(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8 Ω - 5.8 jΩ	
Return Loss	- 24.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.386 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they wight have not been applied to the dipole.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 24, 2001

RTS RIM Testing Services	Appendix for the BlackBo SAR Report	erry® Smartphone Mode	I RCD21IN	Page 15(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

DASY4 Validation Report for Head TSL

Date/Time: 08.01.2007 11:34:46

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 446

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz;

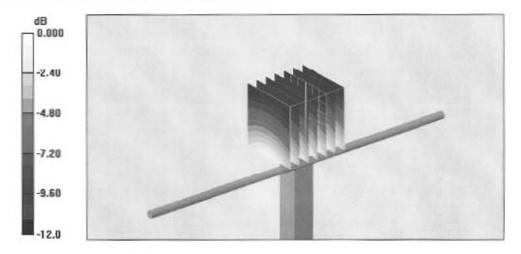
Medium parameters used: f = 835 MHz; $\sigma = 0.88$ mho/m; $\epsilon_t = 40.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(6.09, 6.09, 6.09); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn907; Calibrated: 20.07.2006
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 55.7 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 3.43 W/kg

SAR(1 g) = 2.33 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.51 mW/g

0 dB = 2.51 mW/g

RTS RIM Testing Services	Appendix for the BlackBerry SAR Report	y® Smartphone Model	RCD21IN	Page 16(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

Appendix for the BlackBerry® Smartphone Model RCD21IN 17(28) **SAR Report RIM Testing Services** Author Data FCC ID: Dates of Test Test Report No Jean-Paul Hacquoil Sep 23 – Oct 21, 2008 RTS-1271-0810-07 L6ARCD20IN

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Accreditation No.: SCS 108

Multilateral Agreement for the recognition of calibration certificates RIM Client

Certificate No: D900V2-133_Jan07

Object	D900V2 - SN: 133		
Calibration procedure(s)	QA CAL-05.v6 Calibration procedure for dipole validation kits		
Calibration date:	January 8, 2007		
Condition of the calibrated item	In Tolerance		
All calibrations have been conduc-	ted in the closed laborator	v facility: environment temperature (22 ± 33°C apr	humidity < 70%
Calibration Equipment used (M&T	"E critical for calibration)	y facility: environment temperature (22 ± 3)*C and	
Calibration Equipment used (M&T	"E critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A	TE critical for calibration) ID # GB37480704	Cal Date (Calibrated by, Certificate No.) 03-Oct-06 (METAS, No. 217-00608)	Scheduled Calibration Oct-07
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A	TE critical for calibration) 10 # GB37480704 US37292783	Cal Date (Calibrated by, Certificate No.) 03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608)	Scheduled Calibration Oct-07 Oct-07
rimary Standards rower meter EPM-442A rower sensor HP 8481A reference 20 dB Attenuator	TE critical for calibration) ID # GB37480704	Cal Date (Calibrated by, Certificate No.) 03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591)	Scheduled Calibration Oct-07 Oct-07 Aug-07
rimary Standards ower meter EPM-442A ower sensor HP 8481A deference 20 dB Attenuator deference 10 dB Attenuator	TE critical for calibration) 10 # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Calibrated by, Certificate No.) 03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591)	Scheduled Calibration Oct-07 Oct-07
Calibration Equipment used (M&T Primary Standards Power meter EPNI-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV8 (HF)	TE critical for calibration) 10 # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r)	Cal Date (Calibrated by, Certificate No.) 03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591)	Scheduled Calibration Oct-07 Oct-07 Aug-07 Aug-07
	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507	Cal Date (Calibrated by, Certificate No.) 03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06)	Scheduled Calibration Oct-07 Oct-07 Aug-07 Aug-07 Oct-07
Calibration Equipment used (M&T Primary Standards Power meter EPNI-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV8 (HF) DAE4 Secondary Standards Power sensor HP 8481A	TE critical for calibration) ID # G837480704 US37292783 SN: 5085 (20g) SN: 5047.2 (10r) SN 1507 SN 907	Cal Date (Calibrated by, Certificate No.) 03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591) 10-Aug-06 (METAS, No. 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 20-Jul-06 (SPEAG, No. DAE4-907_Jul06)	Scheduled Calibration Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Jul-07
Calibration Equipment used (M&T Primary Standards Power meter EPNI-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV8 (HF) DAE4 Secondary Standards Power sensor HP 8481A RF generator Aglient E4421B	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 907 ID # MY41092317 MY41090675	Cai Date (Calibrated by, Certificate No.) 03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00691) 10-Aug-06 (METAS, No 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 20-Jul-08 (SPEAG, No. DAE4-907_Jul06) Check Date (In house)	Scheduled Calibration Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Jul-07 Scheduled Check
Calibration Equipment used (M&T Primary Standards Power meter EPNI-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV8 (HF) DAE4 Recondary Standards Power sensor HP 8481A RF generator Agilent E4421B	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 907 ID # MY41092317	Cal Date (Calibrated by, Certificate No.) 03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591) 10-Aug-06 (METAS, No. 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 20-Jul-08 (SPEAG, No. DAE4-907_Jul06) Check Date (In house)	Scheduled Calibration Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Jul-07 Scheduled Check In house check: Oct-07
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV8 (HF) DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 907 ID # MY41092317 MY41000675 US37390585 S4206 Name	Cal Date (Calibrated by, Certificate No.) 03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591) 10-Aug-06 (METAS, No. 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 20-Jul-06 (SPEAG, No. DAE4-907_Jul06) Check Date (In house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05)	Scheduled Calibration Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Jul-07 Scheduled Check In house check: Oct-07 In house check: Nov-07
Calibration Equipment used (M&T Primary Standards Power meter EPNI-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV8 (HF) DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 907 ID # MY41092317 MY41000675 US37390585 S4206	Cal Date (Calibrated by, Certificate No.) 03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591) 10-Aug-06 (METAS, No. 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 20-Jul-06 (SPEAG, No. DAE4-907_Jul06) Check Date (In house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Scheduled Calibration Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Jul-07 Scheduled Check In house check: Oct-07 In house check: Oct-07

RTS RIM Testing Services	Appendix for the BlackBo SAR Report	erry® Smartphone Mode	I RCD21IN	Page 18(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zwushausstrasse: 43, 8004 Zurlch, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation.

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates.

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D900V2-133 Jan07 Page 2 of 6

RTS RIM Testing Services	Appendix for the BlackBo SAR Report	erry® Smartphone Mode	I RCD21IN	Page 19(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resoution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	0.95 mho/m ± 6 %
Head TSL temperature during test	(21.8 ± 0.2) °C		-

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.65 mW / g
SAR normalized	normalized to 1W	10.6 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	10.4 mW/g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.70 mW / g
SAR normalized	normalized to 1W	6.80 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.70 mW /g ± 16.5 % (k=2)

1

^{*}Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

RTS RIM Testing Services	Appendix for the BlackBo SAR Report	erry® Smartphone Mode	I RCD21IN	Page 20(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.8 Ω - 9.5 jΩ	
Return Loss	- 20.3 dB	

General Antenna Parameters and Design

1.401 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 25, 2001	

Certificate No: D900V2-133_Jan07

RTS RIM Testing Services	Appendix for the BlackBo SAR Report	erry® Smartphone Mode	I RCD21IN	Page 21(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

DASY4 Validation Report for Head TSL

Date/Time: 08.01.2007 15:27:21

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:133

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz;

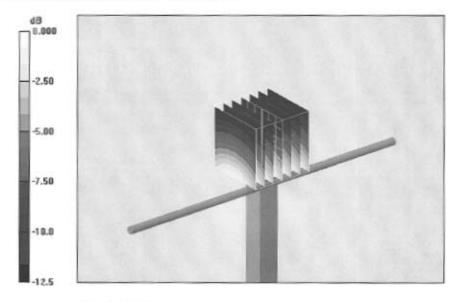
Medium parameters used: f = 900 MHz; $\sigma = 0.95 \text{ mho/m}$; $\varepsilon_c = 39.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

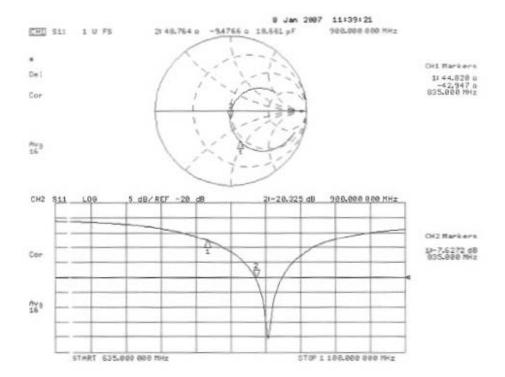
- Probe ET3DV6 SN1507 (HF); ConvF(6.01, 6.01, 6.01); Calibrated; 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn907; Calibrated: 20.07.2006
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 57.2 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 3.99 W/kg


SAR(1 g) = 2.65 mW/g; SAR(10 g) = 1.7 mW/g Maximum value of SAR (measured) = 2.87 mW/g

0 dB = 2.87 mW/g

RTS RIM Testing Services	Appendix for the BlackBook SAR Report	erry® Smartphone Mode	I RCD21IN	Page 22(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

Impedance Measurement Plot for Head TSL

I

RIM Testing Services Appendix for the BlackBerry® Smartphone Model RCD21IN SAR Report Author Data Jean-Paul Hacquoil Dates of Test Sep 23 – Oct 21, 2008 Page 23(28) Page 23(28) Page 23(28) Page 23(28)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

ultilateral Agreement for the recognition of calibratio

Client RIM

Certificate No: D2450V2-747_Nov07

CALIBRATION CERTIFICATE D2450V2 - SN: 747 Object QA CAL-05.v6 Calibration procedure(s) Calibration procedure for dipole validation kits November 06, 2007 Calibration date: In Tolerance Condition of the calibrated Item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards ID # Cal Date (Calibrated by, Certificate No.) Power meter EPM-442A GB37480704 04-Oct-07 (METAS, No. 217-00736) Oct-08 Power sensor HP 8481A 04-Oct-07 (METAS, No. 217-00736) Oct-08 US37292783 Reference 20 dB Attenuator SN: 5086 (20g) 07-Aug-07 (METAS, No 217-00718) Aug-08 SN: 5047.2 (10r) 07-Aug-07 (METAS, No 217-00718) Aug-08 Reference 10 dB Attenuator 26-Oct-07 (SPEAG, No. ES3-3025_Oct07) Oct-08 Reference Probe ES3DV2 SN: 3025 DAE4 SN: 601 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) Jan-08 Secondary Standards ID# Check Date (in house) Scheduled Check In house check: Oct-08 Power sensor HP 8481A MY41092317 18-Oct-02 (SPEAG, in house check Oct-07) RF generator R&S SMT-06 100005 4-Aug-99 (SPEAG, in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (SPEAG, in house check Oct-07) In house check: Oct-08 Function Name Signature Calibrated by: Claudio Leubler Laboratory Technician Technical Manager Approved by: Katja Pokovic This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-747_Nov07

Page 1 of 6

RTS RIM Testing Services	Appendix for the BlackBo SAR Report	erry® Smartphone Mode	I RCD21IN	Page 24(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Callbration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

RTS RIM Testing Services	Appendix for the BlackBe SAR Report	erry® Smartphone Mode	el RCD21IN	Page 25(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

Measurement Conditions

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C	-	1200

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	condition	
SAR measured	250 mW input power	13.6 mW / g
SAR normalized	normalized to 1W	54.4 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	53.2 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.27 mW/g
SAR normalized	normalized to 1W	25.1 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	24.8 mW / g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

RTS RIM Testing Services	Appendix for the BlackBe SAR Report	erry® Smartphone Mode	RCD21IN	Page 26(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.2 Ω + 2.1 jΩ
Return Loss	- 32.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.160 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 01, 2003	

RTS RIM Testing Services	Appendix for the BlackBo SAR Report	erry® Smartphone Mode	I RCD21IN	Page 27(28)
Author Data	Dates of Test	Test Report No	FCC ID:	
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20	IN

DASY4 Validation Report for Head TSL

Date/Time: 06.11.2007 15:01:41

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN747

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 2450 MHz; $\sigma = 1.79$ mho/m; $\epsilon_r = 38$; $\rho = 1000$ kg/m³

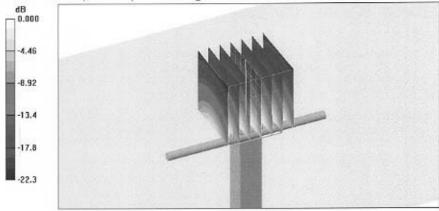
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025 (HF); ConvF(4.41, 4.41, 4.41); Calibrated: 26.10.2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA;;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

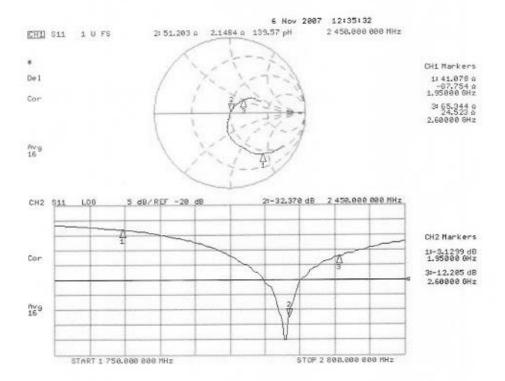
Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.4 V/m; Power Drift = 0.016 dB

Peak SAR (extrapolated) = 29.4 W/kg

SAR(1 g) = 13.6 mW/g; SAR(10 g) = 6.27 mW/g


Maximum value of SAR (measured) = 15.4 mW/g

0 dB = 15.4 mW/g

RTS RIM Testing Services	Appendix for the BlackBo SAR Report	erry® Smartphone Mode	l RCD21IN	Page 28(28)	
Author Data	Dates of Test	Test Report No	FCC ID:	1	l
Jean-Paul Hacquoil	Sep 23 – Oct 21, 2008	RTS-1271-0810-07	L6ARCD20IN		l

Impedance Measurement Plot for Head TSL

