RTS RIM Testing Services	Document Appendix for the BlackBerr SAR Report	ry® Smartphone Model	RBZ41GW	Page 1(15)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 16-29, 2008	RTS-1115-0807-21	L6ARBZ40	GW

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

Shahriar Ninad	July 16-29, 2008	RTS-1115-0807-21	L6ARBZ40GW
Accredited by the S The Swiss Accredit	tner lac w	Schweizerischer K Service suisse d'é Service suisse	talonnage di taratura Service
CALIBRA	TION CERTIFICATE		
Object	ET3DV6 - SN:1642		
Calibration procedu	QA CAL-01.v6 Calibration procedure for d	losimetric E-field probes	
Calibration date:	January 18, 2008		

This calibration certificare documents the traceability to national standards, which maize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

> Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670)

29-Mar-07 (METAS, Nc. 217-00670)

29-Mar-07 (METAS, Nc. 217-00670)

8-Aug-07 (METAS, No. 217-00719)

Check Date (in house)

Page 1 of 9

29-Mar-07 (METAS, Nc. 217-00671) 8-Aug-07 (METAS, No. 217-00720)

2-Jan-08 (SPEAG, No. ES3-3013_Jan08) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07)

4-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in touse check Oct-07)

Technical Vanap

Quality Manager

Function

Scheduled Calibration

Mar-08

Mar-08

Mar-08

Aug-08 Mar-08

Aug-08

Jan-09 Apr-08

Sign

Schaduled Check

In house check: Oct-09 In house check: Oct-08

Issued: January 18, 2008

Copyright 2005-2008, RIM Testing Services (RTS), a division of Research In Motion Limited This report shall <u>NOT</u> be reproduced except in full without the written consent of RTS

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards

Power meter E4419B

Power sensor E4412A

Power sensor E4412A

Reference 3 dB Attenuator Reference 20 dB Attenuator

Reference 30 dB Attenuator

Reference Probe ES3D/2 DAE4

RF generator HP 8648C Network Analyzer HP 8753E

Certificate No: ET3-1642_Jan08

Secondary Standards

Calibrated by:

Approved by:

ID # GB41293874

MY41495277

MY41498087

SN: 3013 SN: 654

ID#

Namo

SN: 55054 (3c) SN: 55086 (20b) SN: 55129 (30b)

US3642U01700

US37390585

Katja Pokovic

Niels Kuster

RTS RIM Testing Services	Document Appendix for the BlackBerry® Smartphone Model RBZ41GW SAR Report					
Author Data	Dates of Test	Test Report No	FCC ID:			
Shahriar Ninad	July 16-29, 2008	RTS-1115-0807-21	L6ARBZ40	GW		

Calibration Laboratory of Schmid & Partner Engineering AG aughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdie s Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

s

dited by the Gwiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agrooment for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization ϕ	φ rotation around probe axis
Polarization 8	9 rotation around an axis that is in the plane normal to proce axis (at
	measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y.z: Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y z does not effect the E²-field uncertainty nside TSI (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * irequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Oifset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance recuired.

Certificate No: ET3-1642_Jan08

Page 2 of 9

RTS RIM Testing Services	Document Appendix for the Black SAR Report	Berry® Smartphone Mode	I RBZ41GW	^{Page} 4(15)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 16-29, 2008	RTS-1115-0807-21	L6ARBZ4	JGW

January 18, 2008

Probe ET3DV6

SN:1642

Manufactured: Last calibrated: Recalibrated: November 7, 2001 January 15, 2007 January 18, 2008

Calibrated for DASY Systems (Note: non-compatible with DASY2 system!)

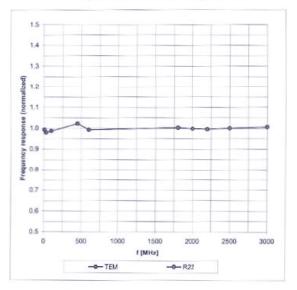
Certificate No: ET3-1642_Jan08

Page 3 of 9

RTS RIM Testing Services	Document Appendix for the Black SAR Report	Berry® Smartphone Mode	I RBZ41GW	Page 5(15)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 16-29, 2008	RTS-1115-0807-21	L6ARBZ40)GW

January 18, 2008

DASY - Parameters of Probe: ET3DV6 SN:1642


Sensitivity	in Free Spa	ce ^A		Diode	Compression
Norr	nX 1.	.67 ± 10.1%	μV/(V/m) ²	DCP X	91 mV
Nor	nY 1.	.86 ± 10.1%	μV/(V/m) ²	DCP Y	91 mV
Nor	mZ 1.	.64 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	94 mV
Sensitivity	in Tissue Si	mulating Li	quid (Convers	ion Factors	5)
Please see P	ege 8.				
Boundary	Effect				
TSL	900 MHz	Typical S/	AR gradient: 5 % p	er mm	
Sens	or Center to Phar	tom Surface D	istance	3.7 mm	4.7 mm
SAR	w [%] Witho	out Correction A	Vgorithm	11.3	6.7
SAR	_{be} [%] With	Correction Algo	prithm	0.8	0.4
TSL	1810 MHz	Typical S/	AR gradient: 10 %	per mm	
Sens	or Center to Phar	ntom Surface D	istance	3.7 mm	4.7 mm
SAR	🗤 [%] 🛛 Witho	out Correction A	Algorithm	14.0	8.3
SAR	te [%] With	Correction Algo	srithm	0.9	0.7
Sensor O	ffset				
Prob	e Tip to Sensor C	enter		2.7 mm	
measurem	ent multiplied b	y the covera	ent is stated as t ge factor k=2, wh of approximately	ich for a nor	uncertainty of mal distribution
	as of NormX,Y,Z do no arization parameter: un		uncertainty inside TSL(s ed.	see Page 8).	

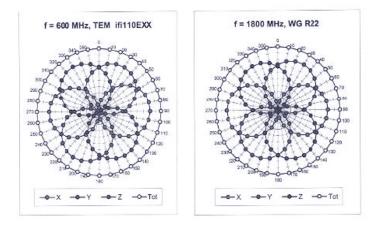
RTS RIM Testing Services	Document Appendix for the Black SAR Report	Berry® Smartphone Mode	RBZ41GW	Page 6(15)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 16-29, 2008	RTS-1115-0807-21	L6ARBZ40	GW

January 18, 2008

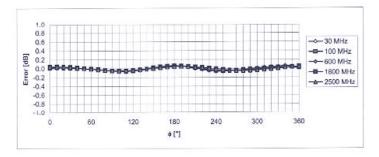
Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1642_Jan08


Page 5 of 9

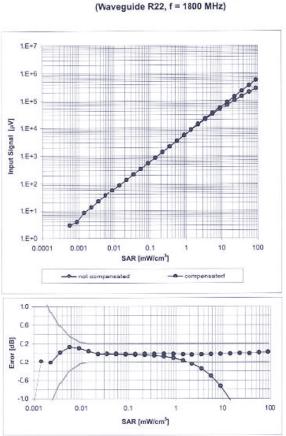
RTS RIM Testing Services	Appendix for the BlackBerry® Smartphone Model RBZ41GW SAR Report				
Author Data	Dates of Test	Test Report No	FCC ID:		
Shahriar Ninad	July 16-29, 2008	RTS-1115-0807-21	L6ARBZ40	GW	


ET3DV6 SN:1642

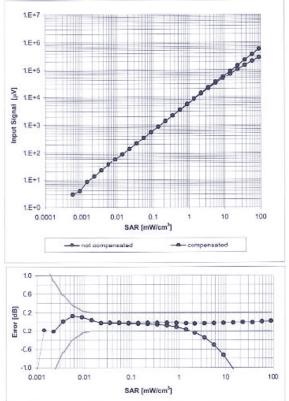
January 18, 2008

.

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

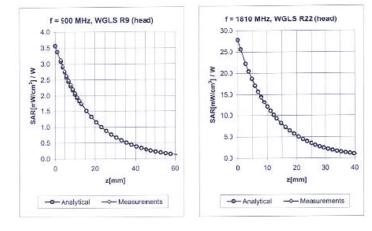

Certificate No: ET3-1642_Jan08

Page 6 of 9

RTS RIM Testing Services	Document Appendix for the Black SAR Report	Berry® Smartphone Mode	I RBZ41GW	Page 8(15)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 16-29, 2008	RTS-1115-0807-21	L6ARBZ4(JGW

January 18, 2008

Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1642_Jan08

Page 7 of 9

AR Report			
ntes of Test	Test Report No PTS_1115_0807_21	FCC ID:	CW
	tes of Test uly 16-29, 2008	·····	

January 18, 2008

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.82	1.74	6.42 ± 11.0% (k=2)
1810	+ 50 / + 100	Head	40.0 ± 5%	1.40 ± 5%	0.52	2.85	5.15 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.C ± 5%	1.40 ± 5%	0.57	2.49	4.98 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.76	1.92	4.52 ± 11.8% (k=2)
900	± 50 /± 100	Body	55.C ± 5%	1.05 ± 5%	0.85	1.73	6.13 ± 11.0% (k=2)
1810	1 50 / 1 100	Body	53.3±5%	1.52 ± 5%	0.65	2.70	4.85 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.2 ± 5%	1.52 ± 5%	0.61	2.32	4.56 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.81	1.88	4.08 ± 11.8% (k=2)

^c The validity of ±100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1642_Jan08

Page 8 of 9

RTS RIM Testing Services	Document Appendix for the BlackBerr SAR Report	y® Smartphone Model	RBZ41GW	Page 10(15)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 16-29, 2008	RTS-1115-0807-21	L6ARBZ40	GW

January 18, 2008

Deviation from Isotropy in HSL

Error (¢, ୬), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k-2)

Certificate No: ET3-1642_Jan08

Page 9 of 9

T Tes	S sting Services	Appendix for th SAR Report	e BlackBerry® Smartpho	Berry® Smartphone Model RBZ41GW		
Data hriar		Dates of Test July 16-29, 200	8 Test Report No 8 RTS -1115-	0807-21	FCC ID: L6ARBZ400	GW
		,,				
	10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000					
	Calibration Laborate Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zur		ilac-MRA (g T z)	Service suiss	cher Kalibrierdienst se d'étalonnage zero di taratura ation Service	
	Accredited by the Swiss Federa The Swiss Accreditation Serv Multilateral Agreement for the	ice is one of the signatorie	s to the EA	on No.: SCS 1	08	
	Client RIM			No: D835V2-4	46_Jan07	
	CALIBRATION	CERTIFICATE		NESS MALL		1
	Object	D835V2 - SN: 44	6			1
	Calibration procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits			
	Calibration date:	January 8, 2007		()		
	Condition of the calibrated item	In Tolerance		-1	Contention of the	
			onal standards, which realize the physical u obsolity are given on the following pages a			
	All calibrations have been cond	lucted in the closed laborator	y fability: environment temperature (22 ± 3)	°C and humidity <	70%.	
	Calibration Equipment used (M	&TE critical for calibration)				
	Primary Standards Power meter EPM-442A	ID # GB37480704	Cal Date (Calibrated by, Certificate No.) 03-Oct-06 (METAS, No. 217-00608)	Schedule Oct-07	ed Calibration	
	Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 (HF)	US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507	03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507_Oct0	Oct-07 Aug-07 Aug-07 5) Oct-07		
	DAE4	SN 907	20-Jul-06 (SPEAG, No. DAE4-907_Jul06			
	Secondary Standards	1D#	Check Date (in house)	Schedule		1
	Power sensor HF 8481A RF generator Agrient E44218	MY41092317 MY41000675	18-Oct-02 (SPEAG, in house check Oct- 11-May-05 (SPEAG, in house check Nov		chedi: Oct-87 chedi: Nov-07	
	Network Analyze: HP 8753E	U\$37390585 \$4206	18-Oct-01 (SPEAG, in house check Oct-		chedi: Oct-07	
	Caliburation	Name	Function	Signature		
	Calibrated by:	Marcel Fehr	Laboratory Technician		Mu	
	141000000000000000000000000000000000000	Katja Pokovic	Technical Manager	21	ic Hay	
	Approved by:			pole	ic llag-	

Copyright 2005-2008, RIM Testing Services (RTS), a division of Research In Motion Limited This report shall <u>NOT</u> be reproduced except in full without the written consent of RTS

I

RTS RIM Testing Services	Document Appendix for the Black SAR Report	Berry® Smartphone Mode	I RBZ41GW	Page 12(15)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 16-29, 2008	RTS-1115-0807-21	L6ARBZ40	GW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

С

s

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the enc of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-445_Jan07

Page 2 of 6

RTS RIM Testing Services	Appendix for the Black SAR Report	Berry® Smartphone Mode	l RBZ41GW	Page 13(15)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 16-29, 2008	RTS-1115-0807-21	L6ARBZ40	GW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

- 53

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) *C	40.2 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature during test	(22.2 ± 0.2) °C	-	-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.33 mW / g
SAR normalized	normalized to 1W	9.32 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.28 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.52 mW / g
SAR normalized	normalized to 1W	6.08 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.04 mW/g±16.5 % (k=2)

* Correction to nominal TSL parameters according to d), chapter *SAR Sensitivities*

Certificate No: D835V2-446_Jan07

.

Page 3 of 6

RTS RIM Testing Services	Document Appendix for the BlackI SAR Report	Berry® Smartphone Mode	I RBZ41GW	Page 14(15)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 16-29, 2008	RTS-1115-0807-21	L6ARBZ40	GW

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8 Ω - 5.8 jΩ	
Return Loss	- 24.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.386 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the

feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 24, 2001	

I

Page 4 of 6

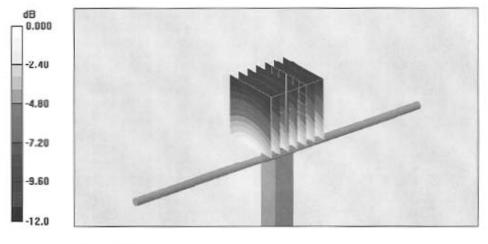
RTS	Appendix for the BlackBerry® Smartphone Model RBZ41GW			Page
RIM Testing Services	SAR Report			15(15)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 16-29, 2008	RTS -1115-0807-21	L6ARBZ40GW	

DASY4 Validation Report for Head TSL

Date/Time: 08.01.2007 11:34.46

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 446


Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: HSL 900 MHz; Medium parameters used: f = 835 MHz; σ = 0.88 mho/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(6.09, 6.09, 6.09); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn907; Calibrated: 20.07.2006
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.7 V/m; Power Drift = 0.017 dB Peak SAR (extrapolated) = 3.43 W/kg SAR(1 g) = 2.33 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.51 mW/g

0 dB = 2.51mW/g

Certificate No: D835V2-446_Jan07

1