

Accredited testing-laboratory

DAR registration number: DAT-P-176/94-D1

Federal Motor Transport Authority (KBA) DAR registration number: KBA-P 00070-97

Recognized by the Federal Communications Commission Anechoic chamber registration no.: 90462 (FCC) Anechoic chamber registration no.: 3463A-1 (IC) Certification ID: DE 0001 Accreditation ID: DE 0002

> Accredited Bluetooth[®] Test Facility (BQTF) The Bluetooth word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Cetecom ICT is under license

Test report no. :	4-3120-01-04/08
Type identification :	RBW71CW
Applicant :	Research In Motion Limited
FCC ID :	L6ARBW70CW
IC Certification No :	2503A-RBW70CW
Test standards :	47 CFR Part 22
	47 CFR Part 24

Table of contents

1	Gene	ral information	3
		otes	
		esting laboratory	
		etails of applicant	
	1.4 A	pplication details	4
2	Test	standard/s:	5
3	Techi	nical tests	6
	3.1 D	etails of manufacturer	6
	3.1.1	Test item	6
	3.2 Te	est Setup	7
4	State	ment of Compliance	8
	4.1 Su	ummary of Measurement Results	8
	4.1.1	Labeling requirements	
	4.1.2	PCS 1900	
	4.1.3	GSM 850	8
	4.1.4	Receiver	8
5	Meas	urements and results	9
	5.1 P/	ART PCS 1900	9
	5.1.1	Radiated Emissions	
	5.2 PA	ART GSM 8501	
	5.2.1	RF Power Output1	9
	5.2.2	Radiated Emissions	2
6	Test	equipment and ancillaries used for tests	2
7	Photo	graphs of the Test Set-up Fehler! Textmarke nicht definiert	•
8	Photo	graphs of the EUT Fehler! Textmarke nicht definiert	•

1 General information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 3.1.1. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

Test laboratory manager:

Stamler **Nicolas Stamber**

2008-09-15 Date

Name

Signature

Technical responsibility for area of testing:

2008-09-15 St

Date

Stefan Bös Name

la hos

Signature

1.2 Testing laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 - 10 66117 Saarbrücken Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 e-mail: info@ICT.cetecom.de Internet: http://www.cetecom-ict.de

State of accreditation:	The test laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 DAR registration number: DAT-P-176/94-D1
Accredited by:	Federal Motor Transport Authority (KBA) DAR registration number: KBA-P 00070-97

Testing location, if different from CETECOM ICT Services GmbH:

Name:Street:Town:Country:Phone:Fax:

1.3 Details of applicant

Name:	Research In Motion Limited
Street:	295 Phillip Street
Town:	Waterloo, ON N2L 3W8
Country:	Canada
Telephone:	+1-519-888-7465
Fax:	+1-519-888-6906
Contact:	Masud Attayi
E-mail:	mattayi@rim.com
Telephone:	+1-519-888-7465

1.4 Application details

2008-08-20
2008-09-08
2008-09-08
2008-09-11
Mr. Masud Attayi

2 Test standard/s:

47 CFR Part 22	2006-10	Title 47 of the Code of Federal Regulations; Chapter I- Federal Communications Commission subchapter B - common carrier services, Part 22-Public mobile services
47 CFR Part 24	2006-10	Title 47 of the Code of Federal Regulations; Chapter I- Federal Communications Commission subchapter B - common carrier services, Part 24-Personal communications services

3 **Technical tests**

3.1 **Details of manufacturer**

Name:	Research In Motion Limited
Street:	295 Phillip Street
Town:	Waterloo, ON N2L 3W8
Country:	Canada

3.1.1 Test item

Kind of test item	:	Blackberry Smartphone
Type identification	:	RBW71CW
Serial Number	:	PIN: 3047A85C, 3047A850
Frequency	:	1850.2 – 1909.8 MHz and 824.2 – 848.8 MHz
Type of modulation	:	GMSK; 8-PSK
Emission Designator for GSM 1900	:	GMSK: xxx KGXW (not measured)
		8-PSK: xxx KG7W (not measured)
Emission Designator for GSM 850	:	GMSK: xxx KGXW (not measured)
		8-PSK: xxx KG7W (not measured)
Number of channels	:	300 (PCS1900) and 125 (PCS850)
Antenna Type	:	Internal Antenna
Power supply (normal)	:	Battery 3.7V DC
Output power GSM 850 / GMSK	:	ERP: 28.8 dBm
Output power GSM 1900 / GMSK	:	Not performed
Output power GSM 850 / 8-PSK	:	ERP: 23.9 dBm
Output power GSM 1900 / 8-PSK	:	Not performed
Transmitter Spurious (worst case)	:	25.7 nW / -45.9 dBm
Receiver Spurious (worst case)	:	1
FCC ID	:	L6ARBW70CW
Certification No. IC	:	2503A-RBW70CW
Open Area Test Site IC No.	:	IC 3463A-1
IC Standards	:	RSS132, Issue 2, RSS133, Issue 4

ATTESTATION: DECLARATION OF COMPLIANCE:

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Laboratory Manager:

2008-09-15 Date

Nicolas Stamber Name

Stamler

Signature

3.2 Test Setup

Hardware		CER-1763-004 Rev 4
Software		V4.7.0.35 (Platform 4.0.0.33)
Mobile; (cond. measurements) Mobile; (rad. measurements)	:	-/- -/-

4 Statement of Compliance

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

4.1 Summary of Measurement Results

 \boxtimes No deviations from the technical specifications were ascertained

There were deviations from the technical specifications ascertained

4.1.1 Labeling requirements

Section in this Report	Test Name	Verdict
5.1	Labeling	Not performed

4.1.2 PCS 1900

Section in this Report	Test Name	Verdict
5.2.1	RF Power Output	Not performed
5.2.2	Frequency Stability	Not performed
5.2.3	Radiated Emissions	pass
5.2.4	Conducted Spurious Emissions	Not performed
5.2.5	Block Edge Compliance	Not performed
5.2.6	Occupied Bandwidth	Not performed

4.1.3 GSM 850

Section in this Report	Test Name	Verdict
5.3.1	RF Power Output	pass
5.3.2	Frequency Stability	Not performed
5.3.3	Radiated Emissions	pass
5.3.4	Conducted Spurious Emissions	Not performed
5.3.5	Block Edge Compliance	Not performed
5.3.6	Occupied Bandwidth	Not performed

4.1.4 Receiver

Section in this Report	Test Name	Verdict
5.4.1	Receiver Radiated emissions	Not performed

5 Measurements and results

5.1 **PART PCS 1900**

For Part 24/22 we use the substitution method (TIA/EIA 603).

All measurements in this report are done in GSM mode. The device is able to transmit data in GPRS mode also. But because the current measurements are performed in PEAK mode no other results from GPRS mode are possible. The only different is the modulation average power, which is 3 dB higher (by using 2 timeslots in the Up-link). All relevant tests have been repeated in 8-PSK Modulation if EDGE Mode is supported.

5.1.1 Radiated Emissions

Reference

FCC:	CFR Part 24.238, 2.1053
IC:	RSS 133, Issue 4, Section 4.4

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load.

c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded.

e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log$ (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results: Radiated Emissions

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (1850.2 MHz, 1880.0 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next table.

All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked, too. The found values are stated in the table below.

As can be seen from this data, the emissions from the test item were within the specification limit.

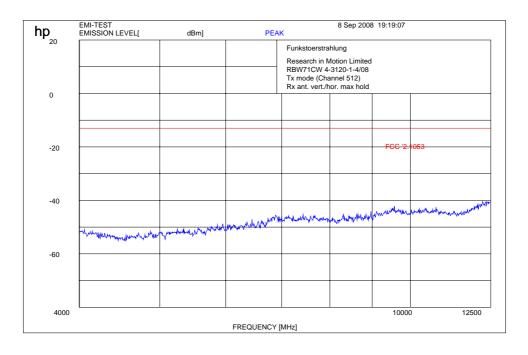
Harmonic	Tx ch512 Freq. (MHz)	Level (dBm)	Tx ch661 Freq. (MHz)	Level (dBm)	Tx ch810 Freq. (MHz)	Level (dBm)
2	3700.4	-	3760	-	3819.6	-
3	5550.6	-	5640	-	5729.4	-
4	7400.8	-	7520	-	7639.2	-
5	9251.0	-	9400	-	9549.0	-
6	11101.2	-	11280	-	11458.8	-
7	12951.4	-	13160	-	13368.6	-
8	14801.6	-	15040	-	15278.4	-
9	16651.8	-	16920	-	17188.2	-
10	18502.0	-	18800	-	19098.0	-

No critical peaks found


Sample calculation:

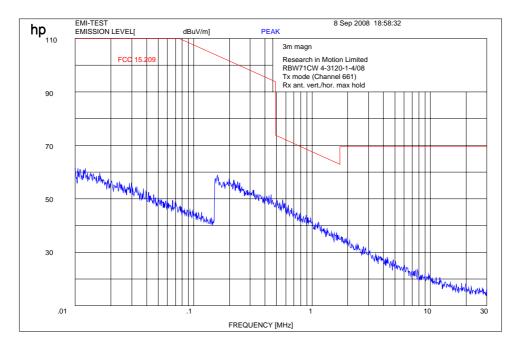
Freq	SA D	SG	Ant.	Dipol	Cable	EIRP	 	
	Reading	Setting	gain	gain	loss	Result		
MHz	dBµV	dBm	dBi	dBd	dB	dBm		
1909.8	132.3	24.6	8.4	0.0	3.3	29.7		

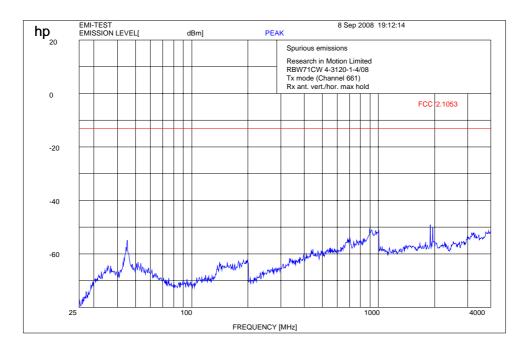
EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)



GSM Mode Channel 512 (30 MHz - 4 GHz)

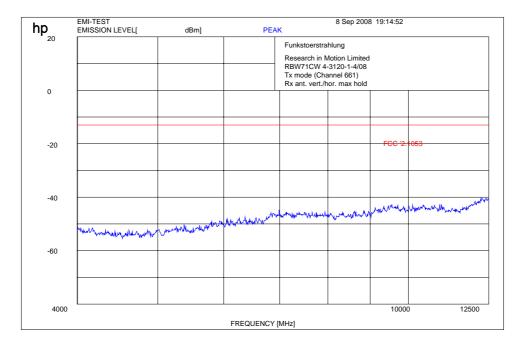
 $\label{eq:general} \begin{array}{ll} f < 1 \ GHz: RBW/VBW: 100 \ kHz & f \geq 1 GHz: RBW \ / \ VBW \ 1 \ MHz \\ Carrier \ suppressed \ with \ a \ rejection \ filter \end{array}$


GSM Mode Channel 512 (4 GHz – 12.5 GHz)


f < 1 GHz: RBW/VBW: 100 kHz

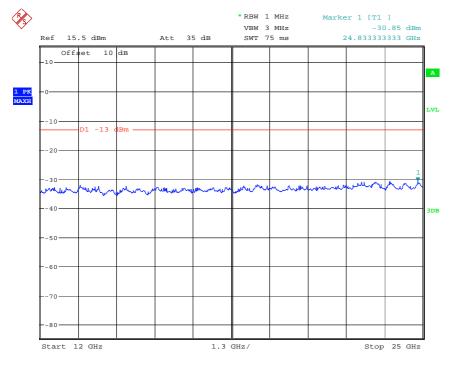
GSM Mode Channel 661 (Traffic mode up to 30 MHz)

GSM Mode Channel 661 (30 MHz - 4 GHz)



f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter

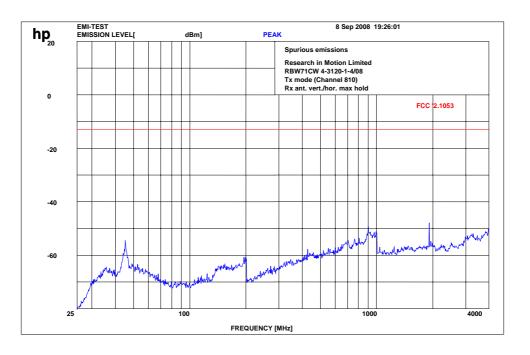
 $f \geq 1GHz: RBW \ / \ VBW \ 1 \ MHz$



GSM Mode Channel 661 (4 GHz – 12.5 GHz)

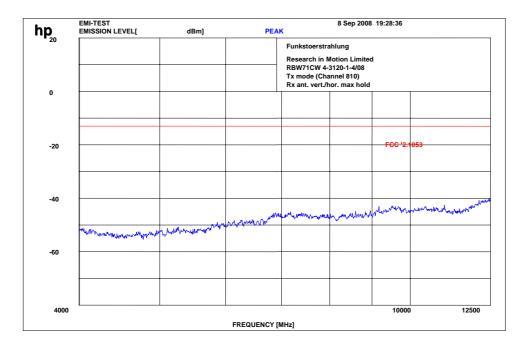
f < 1 GHz : RBW/VBW: 100 kHz

 $f \ge 1GHz$: RBW / VBW 1 MHz



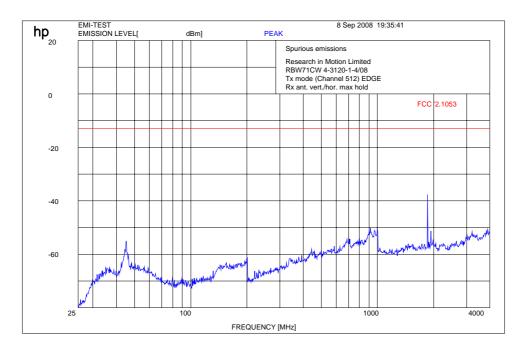
GSM Mode Channel 661 (12 GHz - 25 GHz) valid for all 3 channels

Date: 11.SEP.2008 11:08:32

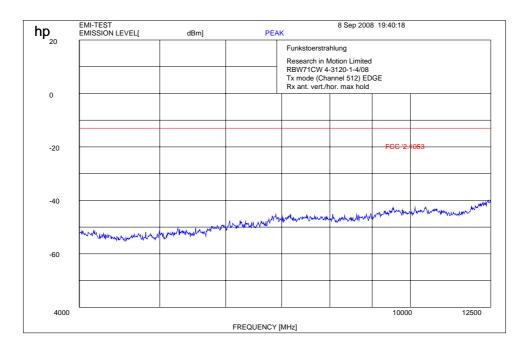


GSM Mode Channel 810 (30 MHz - 4 GHz) GSM Mode

 $\label{eq:general} \begin{array}{ll} f < 1 \ GHz : RBW/VBW : 100 \ kHz & f \geq 1 GHz : RBW \ / \ VBW \ 1 \ MHz \\ Carrier \ suppressed \ with \ a \ rejection \ filter & \end{array}$

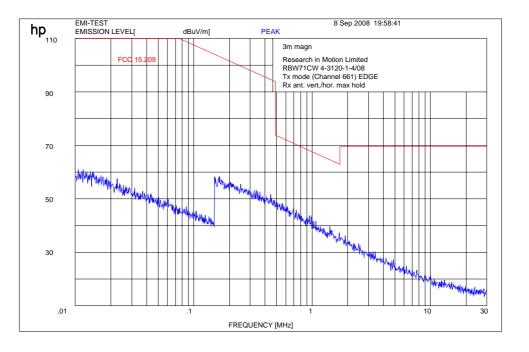

GSM Mode Channel 810 (4 GHz – 12.5 GHz)

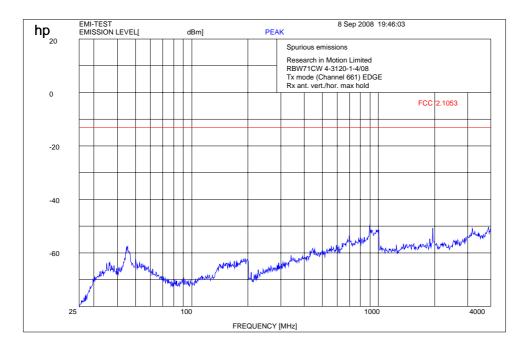
f < 1 GHz: RBW/VBW: 100 kHz



EDGE Mode Channel 512 (30 MHz - 4 GHz)

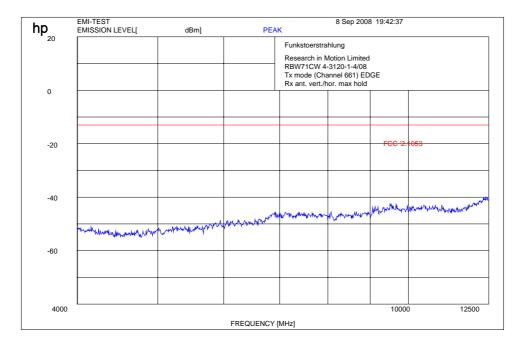
 $\label{eq:general} \begin{array}{ll} f < 1 \ GHz: RBW/VBW: 100 \ kHz & f \geq 1 GHz: RBW \ / \ VBW \ 1 \ MHz \\ Carrier \ suppressed \ with \ a \ rejection \ filter \end{array}$


EDGE Mode Channel 512 (4 GHz – 12.5 GHz)


f < 1 GHz: RBW/VBW: 100 kHz

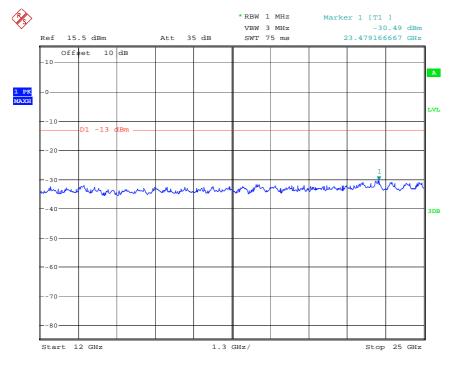
EDGE Mode Channel 661 (Traffic mode up to 30 MHz)

EDGE Mode Channel 661 (30 MHz - 4 GHz)



f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter

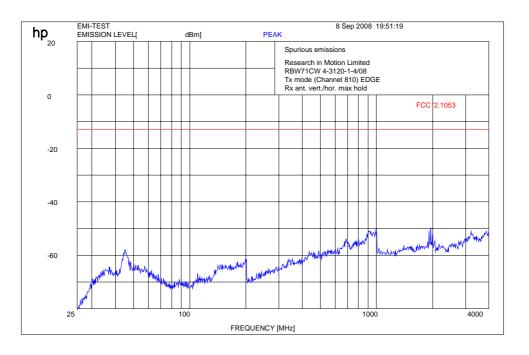
 $f \geq 1GHz: RBW \ / \ VBW \ 1 \ MHz$



EDGE Mode Channel 661 (4 GHz – 12.5 GHz)

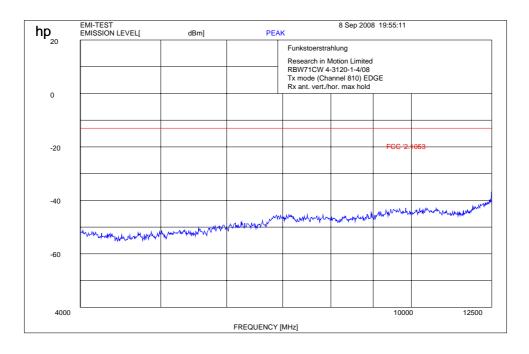
f < 1 GHz: RBW/VBW: 100 kHz

 $f \ge 1GHz$: RBW / VBW 1 MHz



EDGE Mode Channel 661 (12 GHz - 25 GHz) valid for all 3 channels

Date: 11.SEP.2008 11:00:39



EDGE Mode Channel 810 (30 MHz - 4 GHz) GSM Mode

 $\label{eq:general} \begin{array}{ll} f < 1 \ GHz: RBW/VBW: 100 \ kHz & f \geq 1 GHz: RBW \ / \ VBW \ 1 \ MHz \\ Carrier \ suppressed \ with \ a \ rejection \ filter \end{array}$

EDGE Mode Channel 810 (4 GHz – 12.5 GHz)

f < 1 GHz: RBW/VBW: 100 kHz

5.2 **PART GSM 850**

5.2.1 **RF Power Output**

Reference

FCC:	CFR Part 22.9.1.3, 2.1046
IC:	RSS 132, Issue 2, Section 4.4 and 6.4

Summary:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

These measurements were done at 3 frequencies, 824.2 MHz, 836.4 MHz and 848.8 MHz (bottom, middle and top of operational frequency range).

Limits:

Nominal Peak Output Power (dBm)
+38.45

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Test Results: Output Power (conducted) GMSK Mode

Frequency	Average	Peak-to-Average
(MHz)	Output Power	Ratio
	(dBm)	(dB)
824.2		
836.4		
848.8		
Measurement uncertainty	±0.5 dB	

Test Results: Output Power (conducted) 8-PSK Mode

Frequency	Average	Peak-to-Average
(MHz)	Output Power	Ratio
	(dBm)	(dB)
824.2		
836.4		
848.8		
Measurement uncertainty	±0.5 dB	

Test report no.: 4-3120-01-04/08

ERP Measurements

Description: This is the test for the maximum radiated power from the phone. Rule Part 22.913 specifies that "Mobile/portable stations are limited to 7 watts ERP.

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) The measurements were performed with full rf output power and modulation.

(b) Test was performed at listed 3m test site (listed with FCC, IC).

(c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)

(d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.

(e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

(g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.

(h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.

(i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.

(j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.

(k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded. (l) Repeat for all different test signal frequencies

Measuring the ERP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring ERP) as follows:

	(for measuring 2 1 fera) and feeer of #2 (for measuring 2fer) as follows:
Center Frequency	: equal to the signal source
Resolution BW	: 10 kHz
Video BW	: same
Detector Mode	: positive
Average	: off
Span	: 3 x the signal bandwidth
(b) Load an appropriate c	correction factors file in EMI Receiver for correcting the field strength reading level
Total Correction Factor r	ecorded in the EMI Receiver = Cable Loss + Antenna Factor
E (dBuV/m) = Reading (dBuV/m)	dBuV) + Total Correction Factor (dB/m)
(c) Select the frequency a	and E-field levels for ERP/EIRP measurements.
	by a signal generator and one of the following transmitting antennas (substitution antenna):
	quency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.
	ng antenna at 1.5 meter high from the ground plane.
(f) Use one of the follow	wing antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or
.HORN antenna for frequ	
	ha is used, tune its elements to the frequency as specified in the calibration manual.
(h) Adjust both transmitti	ing and receiving antenna in a VERTICAL polarization.
(i) Tune the EMI Receive	
	t antenna from 1 to 4 meters until the maximum signal level was detected.
(k) The transmitter was re	otated through 360 o about a vertical axis until a higher maximum signal was received.
	t antenna from 1 to 4 meters until the maximum signal level was detected.
(m) Adjust input signal	to the substitution antenna until an equal or a known related level to that detected from the
transmitter was obtained	
	el read from the Average Power Meter and calculate the ERP/EIRP as follows:
P = P1 - L1 = (P2 + L2) - (P2 +	-L1 = P3 + A + L2 - L1
EIRP = P + G1 = P3 + L2	2 - L1 + A + G1
ERP = EIRP - 2.15 dB	

Test report no.: **4-3120-01-04/08**

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)

(p) Repeat step (d) to (o) for different test frequency

(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.

(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Limits:

Nominal Peak Output Power (dBm) +38.45

Test Results: Output Power (radiated) GMSK Mode

Frequency (MHz)	Peak Burst Power (dBm)
824.2	29.2
836.4	29.8
848.8	30.9
Measurement uncertainty	±0.5 dB

Test Results: Output Power (radiated) 8-PSK Mode

Frequency (MHz)	Peak Burst Power (dBm)
824.2	24.8
836.4	25.7
848.8	26.0
Measurement uncertainty	±0.5 dB

Sample calculation:

Freg	SA	SG	Ant.	Dipol	Cable	ERP	Substitution Antenna
	Reading	Setting	gain	gain	loss		
MHz	dBµV	dBm	dBi	dBd	dB	dBm	
848.8	137.8	26.6	8.4	0.0	3.3	31.7	UHAP Schwarzbeck S/N 460

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

*ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi

5.2.2 Radiated Emissions

Reference

FCC:	CFR Part 22.917, 2.1053
IC:	RSS 132, Issue 2, Section 4.5 and 6.5

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest

frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load.

c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters using the equation shown below:

e)Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 22.917 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (824.2 MHz, 836.4 MHz and 848.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

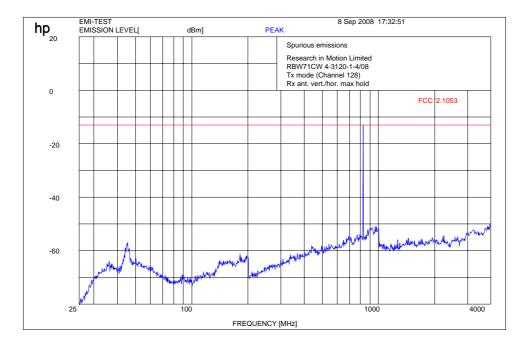
All measurements were done in horizontal and vertical polarization; the plots shows the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked, too. The found values are stated in the table below.

As can be seen from this data, the emissions from the test item were within the specification limit.

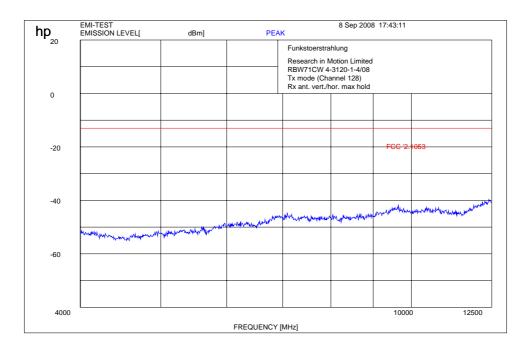
Harmonic	Tx ch128 Freq. (MHz)	Level (dBm)	Tx ch189 Freq. (MHz)	Level (dBm)	Tx ch251 Freq. (MHz)	Level (dBm)
2	1648.4	-45.9 (EDGE)	1672.8	-47.0 (EDGE)	1697.6	-46.7 (EDGE)
3	2472.6	-	2509.2	-	2546.4	-
4	3296.8	-	3345.6	-	3395.2	-
5	4121.0	-	4182.0	-	4244.0	-
6	4945.2	-	5018.4	-	5092.8	-
7	5769.4	-	5854.8	-	5941.6	-
8	6593.6	-	6691.2	-	6790.4	-
9	7417.8	-	7527.6	-	7639.2	-
10	8242.0	-	8364.0	-	8488.0	-

Sample calculation:


Freg	SA Reading	SG Setting	Ant. gain	Dipol gain	Cable loss	ERP	Substitution Antenna
MHz	dBµV	dBm	dBi	dBd	dB	dBm	
848.8	137.8	26.6	8.4	0.0	3.3	31.7	UHAP Schwarzbeck S/N 460

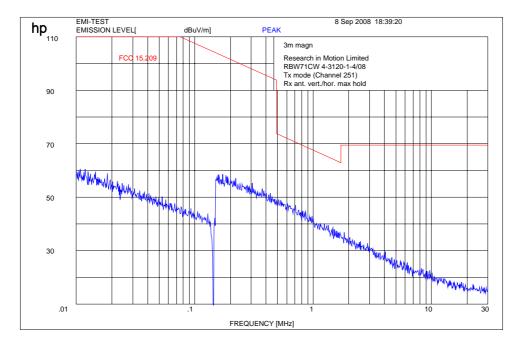
ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

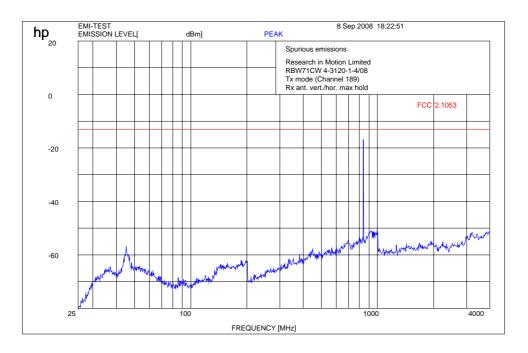
*ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi



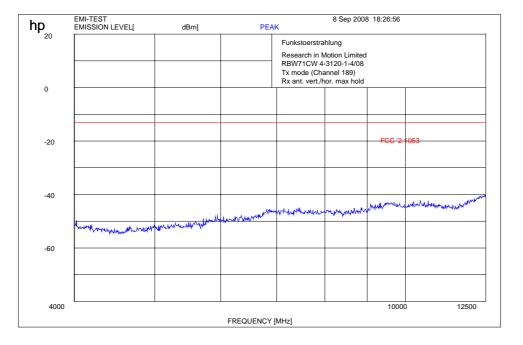
GSM Mode Channel 128 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz The peak at 824 MHz shows the carrier $f \geq 1 GHz: RBW \ / \ VBW \ 1 \ MHz$

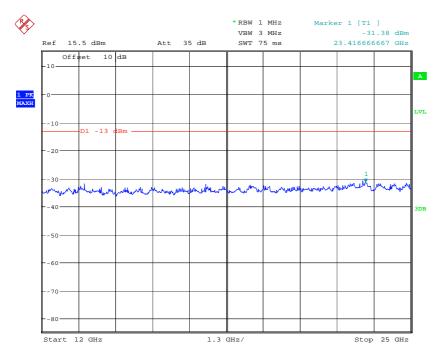

GSM Mode Channel 128 (4 GHz – 12.5 GHz)


f < 1 GHz: RBW/VBW: 100 kHz

GSM Mode Channel 189 (Traffic mode up to 30 MHz)


GSM Mode Channel 189 (30 MHz - 4 GHz)

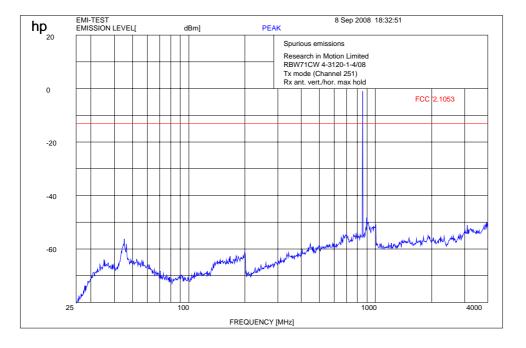
f < 1 GHz : RBW/VBW: 100 kHz The peak at 836 MHz shows the carrier $f \geq 1GHz: RBW \ / \ VBW \ 1 \ MHz$


GSM Mode Channel 189 (4 GHz – 12.5 GHz)

f < 1 GHz : RBW/VBW: 100 kHz

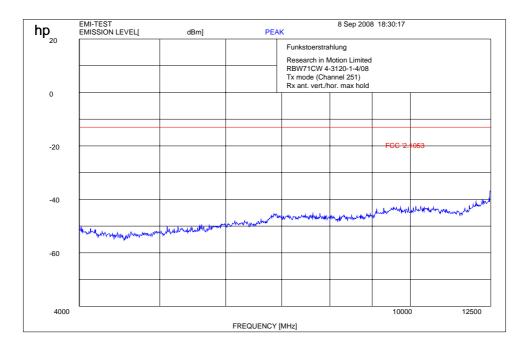
 $f \ge 1GHz$: RBW / VBW 1 MHz

GSM Mode Channel 189 (12 GHz - 25 GHz)


Date: 11.SEP.2008 11:12:26

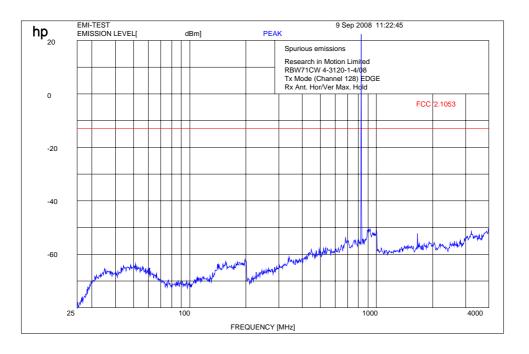
f < 1 GHz: RBW/VBW: 100 kHz

 $f \geq 1 GHz: RBW \ / \ VBW \ 1 \ MHz$

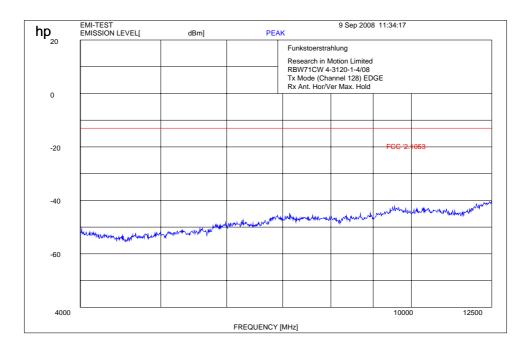


GSM Mode Channel 251 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz The peak at 848 MHz shows the carrier $f \geq 1 GHz: RBW \ / \ VBW \ 1 \ MHz$

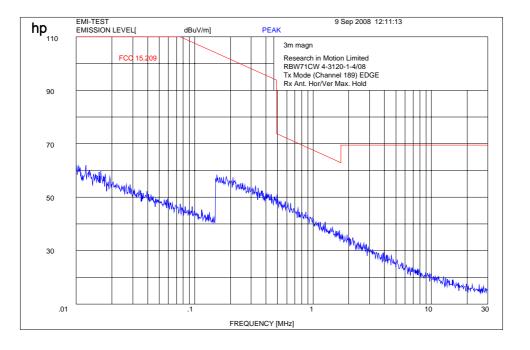

GSM Mode Channel 251 (4 GHz – 12.5 GHz)

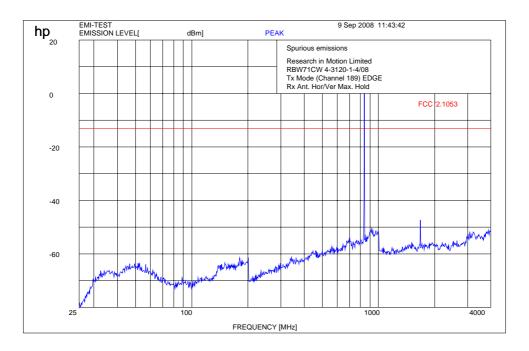
f < 1 GHz: RBW/VBW: 100 kHz


EDGE Mode Channel 128 (30 MHz - 4 GHz)

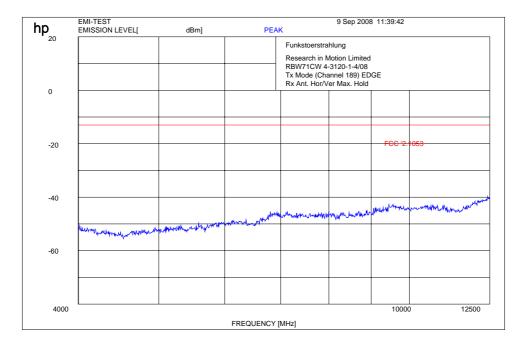
 $f < 1 \ GHz$: RBW/VBW: 100 kHz The peak at 824 MHz shows the carrier

 $f \geq 1GHz: RBW \ / \ VBW \ 1 \ MHz$

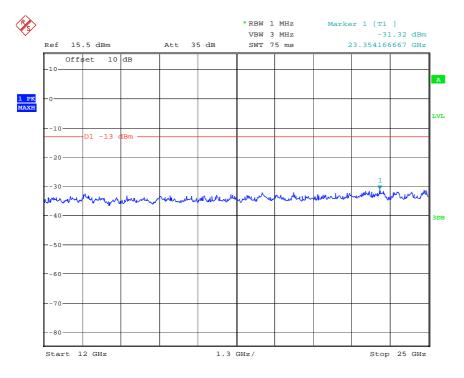

EDGE Mode Channel 128 (4 GHz – 12.5 GHz)


f < 1 GHz: RBW/VBW: 100 kHz

EDGE Mode Channel 189 (Traffic mode up to 30 MHz)


EDGE Mode Channel 189 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz The peak at 836 MHz shows the carrier $f \geq 1GHz: RBW \ / \ VBW \ 1 \ MHz$

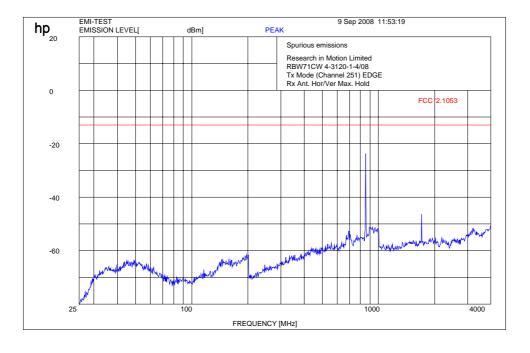


EDGE Mode Channel 189 (4 GHz – 12.5 GHz)

f < 1 GHz : RBW/VBW: 100 kHz

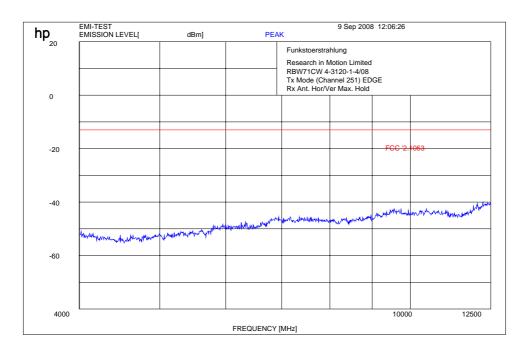
 $f \ge 1GHz$: RBW / VBW 1 MHz

EDGE Mode Channel 189 (12 GHz - 25 GHz)


Date: 11.SEP.2008 11:13:46

f < 1 GHz: RBW/VBW: 100 kHz

 $f \geq 1 GHz: RBW \ / \ VBW \ 1 \ MHz$



EDGE Mode Channel 251 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz The peak at 848 MHz shows the carrier $f \geq 1 GHz: RBW \ / \ VBW \ 1 \ MHz$

EDGE Mode Channel 251 (4 GHz – 12.5 GHz)

f < 1 GHz: RBW/VBW: 100 kHz

6 Test equipment and ancillaries used for tests

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

	23 Band reject filter WRCG2400/2483		right 11	300003351		erification (System	n cal.)
No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	Anechoic chamber	MWB	87400/02	300000996	Monthly verifica	ation	
2	System-Rack 85900	HP I.V.	*	300000222	n.a.		
3	Measurement System 1						
4	Spektrum Analyzer 8566B	HP	3138A07614	300001207	13.12.2007	24	13.12.2009
5	Spektrum Analyzer Display 85662A	HP	3144A28627	300001208	13.12.2007	24	13.12.2009
6	Quasi-Peak-Adapter 85650A	HP	2811A01204	300002308	13.12.2007	24	13.12.2009
7	RF-Preselector 85685A	HP	2837A00778	300002448	13.12.2007	24	13.12.2009
8	PC Vectra VL	HP		300001688	n.a.		
9	Software EMI	HP		300000983	n.a.		
10	Measurement System 2						
11	FSP 30	R&S	100886	300003575	25.08.2008	24	25.08.2010
12	PC	F+W			n.a.		
13	TILE	TILE			n.a.		
14	Biconical antenna	EMCO	S/N: 860 942/003		Monthly verifica	ation (System cal.	.)
15	Log. Period. Antenna 3146	EMCO	2130	300001603	Monthly verifica	ation (System cal.	.)
16	Double Ridged Antenna HP 3115P	EMCO	3088	300001032	Monthly verifica	ation (System cal	.)
17	Active Loop Antenna 6502	EMCO	2210	300001015	Monthly verifica	ation (System cal.	.)
18	Power Supply 6032A	HP	2818A03450	300001040	12.05.2007	36	12.05.2010
19	Busisolator	Kontron		300001056	n.a.		
20	Leitungsteiler 11850C	HP		300000997	Monthly verifica	ation (System cal	.)
21	Power attenuator 8325	Byrd	1530	300001595	Monthly verifica	ation (System cal	.)
22	Band reject filter WRCG1855/1910	Wainwright	7	300003350	Monthly verification (System cal.)		

Anechoic chamber C:

System Rack Room 005 :

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last	Frequency	Next
					Calibration	(months)	Calibration
1	FSP 30	R&S	100886	300003575	25.08.2008	24	25.08.2010
2	СВТ	R&S	100313	300003516	03.09.2008	24	03.09.2010
3	Switch Matrix	HP		300000929	n.a.		
4	Power Supply	HP	3041A00544	300002270	13.05.2007	36	13.05.2010
5	Signal Generator	R&S	836206/0092	300002680	30.05.2007	36	30.05.2010

Signalling Units:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	CBT	R&S	100313	300003516	03.09.2008	24	03.09.2010
2	CBT	R&S	100185	300003416	27.08.2008	24	27.08.2010
3	CMU-200	R&S	103992	300003231	04.06.2008	12	04.06.2009
4	CMU-200	R&S	106240	300003321	27.08.2008	24	27.08.2010
5	CMU-200	R&S	832221/0055	300002862	20.03.2008	24	20.03.2010

Climatic Box:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	Climatic box VT 4002	Heraeus Vötsch	58566046820010	300003019	11.05.2007	24	11.05.2009
2	Climatic box CTS T-40/50	CTS	064023	300003540	03.01.2007	24	03.01.2009

SRD Laboratory Room 002:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	System Controller PSM 12	R&S	835259/007	3000002681-00xx	n.a.		
2	Memory Extension PSM-K10	R&S	To 1	3000002681	n.a.		
3	Operating Software PSM-B2	R&S	To 1	3000002681	n.a.		
4	19" Monitor		22759020-ED	3000002681	n.a.		
5	Mouse		LZE 0095/6639	3000002681	n.a.		
6	Keyboard		G00013834L461	3000002681	n.a.		
7	Spectrum Analyser FSIQ 26	R&S	835540/018	3000002681-0005	10.01.2008	24	10.01.2010
8	Tracking Generator FSIQ-B10	R&S	835107/015	3000002681	s.No.7		
10	RF-Generator SMIQ03 (B1 Signal)	R&S	835541/056	3000002681-0002	26.08.2008	36	26.08.2011
11	Modulation Coder SMIQ-B20	R&S	To 10	3000002681	s.No.10		
12	Data Generator SMIQ-B11	R&S	To 10	3000002681	s.No.10		
13	RF Rear Connection SMIQ- B19	R&S	To 10	3000002681	s.No.10		
14	Fast CPU SM-B50	R&S	To 10	3000002681	s.No.10		
15	FM Modulator SM-B5	R&S	835676/033	3000002681	s.No.10		
16	RF-Generator SMIQ03 (B2 Signal)	R&S	835541/055	3000002681-0001	25.08.2008	36	25.08.2011
17	Modulation Coder SMIQ-B20	R&S	To 16	3000002681	s.No.16		
18	Data Generator SMIQ-B11	R&S	To 16	3000002681	s.No.16		
19	RF Rear Connection SMIQ- B19	R&S	To 16	3000002681	s.No.16		
20	Fast CPU SM-B50	R&S	To 16	3000002681	s.No.16		
21	FM Modulator SM-B5	R&S	836061/022	3000002681	s.No.16		
22	RF-Generator SMP03 (B3 Signal)	R&S	835133/011	3000002681-0003	26.08.2008	36	26.08.2011
23	Attenuator SMP-B15	R&S	835136/014	3000002681	S.No.22		
24	RF Rear Connection SMP-B19	R&S	834745/007	3000002681	S.No.22		
25	Power Meter NRVD	R&S	835430/044	3000002681-0004	26.08.2008	24	26.08.2010
26	Power Sensor NRVD-Z1	R&S	833894/012	3000002681-0013	26.08.2008	24	26.08.2010
27	Power Sensor NRVD-Z1	R&S	833894/011	3000002681-0010	26.08.2008	24	26.08.2010
28	Rubidium Standard RUB	R&S		3000002681-0009	27.08.2008	24	27.08.2010
29	Switching and Signal Conditioning Unit SSCU	R&S	338864/003	3000002681-0006	01.08.2006	24	01.08.2008

CETECOM ICT Services GmbH

Test report no.:	4-3120-01-04/08
------------------	-----------------

	i	i	.	t	1	t	ii
30	Laser Printer HP Deskjet 2100	HP	N/A	3000002681-0011	n.a.		
31	19'' Rack	R&S	11138363000004	3000002681	n.a.		
32	RF-cable set	R&S	N/A	3000002681	n.a.		
33	IEEE-cables	R&S	N/A	3000002681	n.a.		
34	Sampling System FSIQ-B70	R&S	835355/009	3000002681	s.No.7		
35	RSP programmable attenuator	R&S	834500/010	3000002681-0007	26.08.2008	24	26.08.2010
36	Signalling Unit	R&S	838312/011	3000002681	n.a.		
37	NGPE programmable Power Supply for EUT	R&S	192.033.41	3000002681			
39	Power Splitter 6005-3	Inmet Corp.	none	300002841	23.12.2006	24	23.12.2008
40	SMA Cables SPS-1151-985- SPS	Insulated Wire	different	different	n.a.		
41	CBT32 with EDR Signaling Unit	R&S					
42	Coupling unit	Narda	N/A		n.a.		
43	2xSwitch Matrix PSU	R&S	872584/021	300001329	n.a.		
44	RF-cable set	R&S	N/A	different	n.a.		
45	IEEE-cables	R&S	N/A		n.a.		

Note: 3000002681-00xx inventoried as a system

SRD Laboratory Room 005:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	Spektrum Analyzer 8566B	HP	2747A05275	300000219	08.11.2006	24	08.11.2008
2	Spektrum Analyzer Display 85662A	HP	2816A16497	300001690	08.11.2006	24	08.11.2008
3	Quasi-Peak-Adapter 85650A	HP	2811A01135	300000216	08.11.2006	24	08.11.2008
4	Power Supply	Heiden	003202	300001187	12.05.2007	36	12.05.2010
5	Power Supply	Heiden	1701	300001392	12.05.2007	36	12.05.2010

SRD Laboratory Room 011:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	NRP Power Meter	R&S	100212	300003780	27.02.2008	24	27.02.2010

Anechoic chamber F:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	Control Computer	F+W	FW0502032	300003303	-/-	-/-	-/-
2	Trilog Antenna	9163-295	-/-	-/-	30.04.2008	24	30.04.2010
3	Amplifier - 0518C-138	Veritech Micro- wave Inc.	-/-	-/-	-/-	-/-	-/-
4	Switch - 3488A	HP		300000368	-/-	-/-	-/-
5	EMI Test receiver - ESCI	R&S	100083	300003312	31.01.2009	24	31.01.2009
6	Turntable Controller - 1061 3M	EMCO	1218	300000661	-/-	-/-	-/-
7	Tower Controller 1051 Controller	EMCO	1262	300000625	-/-	-/-	-/-
8	Tower - 1051	EMCO	1262	300000625	-/-	-/-	-/-
10	Ultra Notch-Filter Rejected band Ch. 62	WRCD	9	-/-	-/-	-/-	-/-

C.BER Bluetooth Rack Room AC2:

No	Equipment/Type	Manuf.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	System Controller with XP Prof. & C.BER Control Software	F&W	300003580	na		
2	GPIB to USB Converter	Agilent	300003426	na		
3	Spectrum Analyser FSIQ26	R&S	300002681-005	10.01.2008	24	10.01.2010
	Sampling System FSIQ-B70	R&S	300002681-005	s.No.3		
	Tracking Generator FSIQ-B10 for FSIQ26	R&S	300002681-005	s.No.3		
4	RF-Generator SMIQ03 (Interferer Signal)	R&S	300002681-001	25.08.2008	36	25.08.2011
	Modulation Coder SMIQ-B20	R&S	300002681-001	s.No.4		
	Data Generator SMIQ-B11	R&S	300002681-001	s.No.4		
	RF Rear Connection SMIQ-B19	R&S	300002681-001	s.No.4		
	Fast CPU SM-B50	R&S	300002681-001	s.No.4		
	FM Modulator SM-B5	R&S	300002681-001	s.No.4		
5	Rubidium Standard RUB	R&S	300002681-009	27.08.2008	24	27.08.2010
6	Switching Unit 3488A including 2 44476A cards	HP	300000926	Verified with path compensation		
	44472A VHF switch	HP	30000926	Verified with path compensation		
7	Signalling Unit: CBT with EDR	R&S	300003416	27.08.2008	24	27.08.2010
8	RF-cable set	different	no	Verified with path compensation		•
9	IEEE-cables	R&S	no	na		
10	NGPE programmable Power Supply for EUT	R&S	40000078	27.08.2008	24	27.08.2010
11	Coupling Unit 4324-2	Narda	no	Verified with path compensation		
12	Climatic Chamber VT4002	Voetch	300003019	11.05.2007	24	11.05.2009
13	6 dB Attenuator 1W	Narda	no	Verified with path compensation		
14	DCBlocker 30 MHz to 12.75 GHz 1W	Narda	no	Verified with path compensation		

CETECOM ICT Services GmbH Test report no.: 4-3120-01-04/08

OTA chamber:

No	Equipment	Туре	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	Splitter	15542	Mini Circuits	15542	40000086	Verified with path compensation		
2	Splitter	42000	Anaren	4730	40000085	Verified with path compensation		
3	Cable N-Con. 15m	Aircell 7	Aircell		40000087	Verified with path compensation		
4	CTIA-Chamber	AMS 8500	ETS- Lindgren		300003327-0000	Verified with chamber and ripple tests		
5	CTIA-Chamber - Positioning Equipment		EMCO		300003328-0000	na		
6	CTIA-Chamber – Software EMQuest		EMCO		300003328-0001	na		
7	CTIA-Chamber - Antennas	Double Ridged Horn, Dipoles/Loops	EMCO		300003328-0002	na		
8	Power supply 0-50V	6633A	HP Meßtechnik	2851A-01222	300001530	12.5.2007	24	12.05.2009
9	MP5 Five-Beam-Laser	MP5	CST/berger		40000088	na		
10	Mount kit for Laptop		EMCO		300003295	na		
15	Antenna for signalling	3102 L Conical log spir	EMCO	40953	300003296	na		
16	Cable SMA-Con. 15m	KK-MF141- 15	Huber & Suhner		40000090	Verified with path compensation		
17	Cables		Huber & Suhner	different	40000083	Verified with path compensation		
18	Limiting Amplifier	LA 02-801	JCA Tech.	101	300003341	na		
19	Spectrum Analyzer	FSP 30	R&S	100623	300003575	25.08.2008	24	25.08.2010
20	Switch Unit	TS-RSP	R&S	100155	300003281	Verified with path compensation		
21	Step Attenuator 0 139.9 dB	RSP	R&S	860712002	40000079	Verified with path compensation		
22	Signalgenerator	SMIQ03B	R&S	836206/0091	300002679	01.06.2007	36	01.06.2010
23	Universal Communication Tester	CMU 200	R&S	106240	300003321	27.08.2008	24	27.08.2010
24	Hygro-Thermometer	-/-, 5-45°C, 20-100%rF	Thies Clima	-/-	40000089	27.04.2007	12	27.04.2008