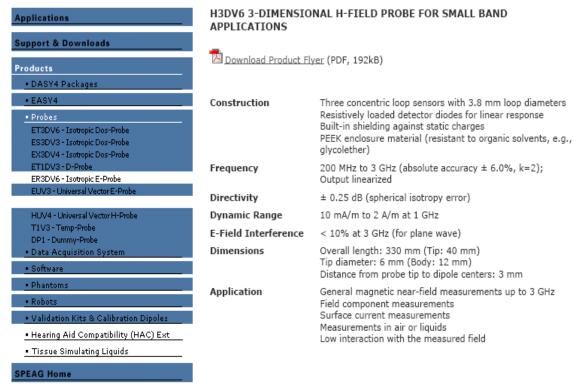
RTS RIM Testing Services	Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			Page 1(36)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007	RTS-0671-0706-11	RTS-0671-0706-11 L6ARBN40GW	

Annex B: Probe and dipole descriptions and calibration certificates

B.1 Probe and measurement chain descriptions and specifications

RTS RIM Testing Services	Annex B to Hearing Aid (Report for the BlackBerr	Page 2(36)		
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007 RTS-0671-0706-11 L6ARBN40GW			SW

DASY Dosimetric Assessment System by Schmid & Partner Engineering AG

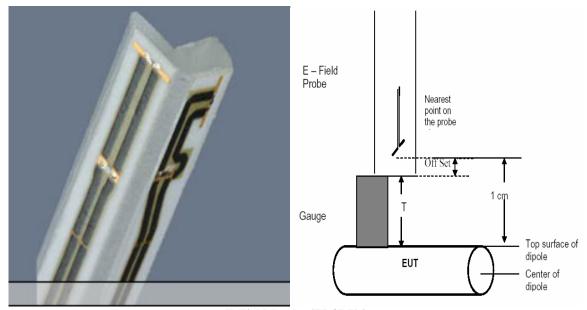

ER3DV6 ISOTROPIC E-FIELD PROBE FOR GENERAL NEAR-FIELD **Applications** MEASUREMENTS Support & Downloads Download Product Flyer (PDF, 192kB) **Products** DASY4 Packages • EASY4 Construction One dipole parallel, two dipoles normal to probe axis Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., ET3DV6 - Isotropic Dos-Probe glycolether) ES3DV3 - Isotropic Dos-Probe EX3DV4 - Isotropic Dos-Probe Calibration ET1DV3 - D-Prob In air from 100 MHz to 3.0 GHz (absolute accuracy ±6.0%, k=2) Frequency 100 MHz to > 6 GHz; Linearity: ± 0.2 dB (100 MHz to 3 GHz) EUV3 - Universal Vector E-Probe H3DV6 - Isotropic H-Probe Directivity ± 0.2 dB in air (rotation around probe axis) HUV4 - Universal Vector H-Probe T1V3 - Temp-Probe ± 0.4 dB in air (rotation normal to probe axis) DP1 - Dummy-Probe Data Acquisition System Dynamic Range 2 V/m to > 1000 V/m; Linearity: ± 0.2 dB Dimensions Overall length: 330 mm (Tip: 16 mm) Tip diameter: 8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.5 mm · Validation Kits & Calibration Dipoles Application General near-field measurements up to 6 GHz Hearing Aid Compatibility (HAC) Ext Field component measurements • Tissue Simulating Liquids Fast automatic scanning in phantoms SPEAG Home

http://www.dasy4.com/er3.htm

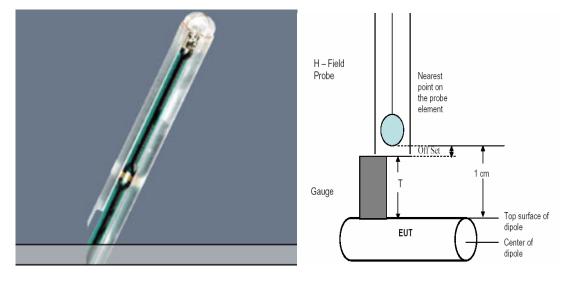
RTS RIM Testing Services		Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			
Author Data	Dates of Test	Report No	FCC ID		
Daoud Attayi	June 01-05, 2007	2007 RTS-0671-0706-11 L6ARBN40GW			

DASY Dosimetric Assessment System by Schmid & Partner Engineering AG

http://www.dasy4.com/h3d.htm


RTS RIM Testing Services	Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			Page 4(36)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007 RTS-0671-0706-11 L6ARBN40GW			·W

All measurements were performed to the nearest element point as per the C63.19 standard. Offset distances were entered in the DASY4 software so that the measurement was to the nearest element.


Figures 1 and 2, provided by the manufacturer, illustrate detail of the probe tip and its dimensions.

ER3DV6 E-Field probe: The distances from the probe tip to the closest points on the dipole sensors are 1.45mm for X and Y and 1.25mm for Z. From the probe tip to the center of the sensors is 2.5mm.

H3DV6 H-Field probe: The distance from the probe tip to the closest point of the X, Y and Z loop sensors is 1.1mm. From the probe tip to the center of the sensor is 3.00mm.

E-Field Probe (ER3DV6)

RTS RIM Testing Services		Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW		
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007	RTS-0671-0706-11	L6ARBN40G	W

H-Field Probe (H3DV6)

RTS RIM Testing Services	Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			Page 6(36)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007	RTS-0671-0706-11	671-0706-11 L6ARBN40GW	

The following information is from the system manufacturer user manual describing the process chain:

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$
(20.1)

with V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dep_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$${
m H-field probes}$$
 :
$$H_i = \sqrt{V_i} \cdot rac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i (i = x, y, z) $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

 $\mu V/(V/m)^2$ for E-field Probes = sensitivity enhancement in solution

ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$
 (20.2)

The measurement / integration time per point is > 500 ms, as per the system manufacturer:

The time response of the field probes has been assessed by exposing the probe to a well-controlled field producing signals larger than HAC E- and H-fields of class M4. The signal response time is evaluated as the time required by the system to reach 90% of the expected final value after an on/off switch of the power source with an integration time of 500 ms and a probe response time of <5 ms. In the current implementation, DASY4 waits longer than 100 ms after having reached the grid point before starting a measurement, i.e., the response time uncertainty is negligible.

If the device under test does not emit a CW signal, the integration time applied to measure the electric field at a specific point may introduce additional uncertainties due to the discretization. The tolerances for the different systems had the worst-case of 2.6%.

RTS RIM Testing Services	Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			Page 7(36)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007	RTS-0671-0706-11	L6ARBN40G	W

B.2 Probe and dipole calibration certificates

RIM Testing Services

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW

Page

8(36)

Author Data

Daoud Attayi

Dates of Test

June 01-05, 2007

Report No RTS-0671-0706-11

FCC ID

L6ARBN40GW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RIM

Accreditation No.: SCS 108

C

S

Certificate No: ER3-2286_Jan07 CALIBRATION CERTIFICATE ER3DV6 - SN:2286 Calibration procedure(s) QA CAL-02.v4 Calibration procedure for E-field probes optimized for close near field evaluations in air Calibration date: January 10, 2007 Condition of the calibrated Item In Tolerance This colibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter £4419B GB41293874 5-Apr-06 (METAS, No. 251-00557) Apr-07 Power sensor E4412A MY41495277 5-Apr-06 (METAS, No. 251-00557) Apr-07 Power sensor E4412A MY41498087 5-Apr-06 (METAS, No. 251-00557) Apr-07 Reference 3 dB Attenuator SN: S5054 (3c) 10-Aug-06 (METAS, No. 217-00592) Aug-07 Reference 20 dB Attenuator SN: \$5086 (20b) 4-Apr-06 (METAS, No. 251-00558) Apr-07 Reference 30 dB Attenuator SN: \$5129 (30b) 10-Aug-06 (METAS, No. 217-00593) Aug-07 Reference Probe ER3DV6 SN: 2328 2-Oct-06 (SPEAG, No. ER3-2328, Oct06) Oct-07 DAE4 SN: 654 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Jun-07 Secondary Standards 1D# Check Date (in house) Scheduled Check RF generator HP 8548C US3642U01700 4-Aug-99 (SPEAG, in house check Nov-05) In house check: Nov-07 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Oct-06) In house check: Oct-07 Name Function Calibrated by Katja Pokovic Technical Manager Approved by: Niels Kuster Quality Manager Issued: January 10, 2007 This calibration cortificate shall not be reproduced except in full without written approval of the laboratory.

RTS RIM Testing Services	Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			Page 9(36)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007	RTS-0671-0706-11	L6ARBN40G	\mathbf{W}

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrusse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienet
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation.

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates.

Glossary:

NORMx,y.z

sensitivity in free space

DCP Polarization φ diode compression point grotation around probe axis

Polarization 8

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot

coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-1996, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", 1996.

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 for XY sensors and θ = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ER3-2286_Jan07 Page 2 of 9

RTS RIM Testing Services	Annex B to Hearing Aid C Report for the BlackBerry	Page 10(36)		
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007	RTS-0671-0706-11	L6ARBN40G	W

January 10, 2007

Probe ER3DV6

SN:2286

Manufactured: Last calibrated: September 19, 2002 January 16, 2006

Recalibrated:

January 10, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Ī

RTS RIM Testing Services	Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			Page 11(36)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007	RTS-0671-0706-11	L6ARBN40G	W

January 10, 2007

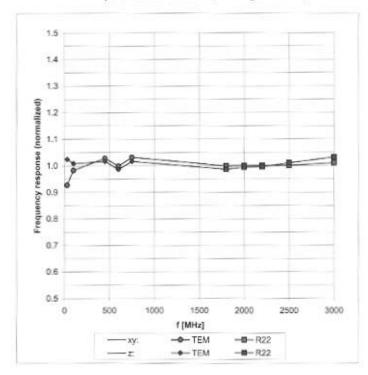
DASY - Parameters of Probe: ER3DV6 SN:2286

Sensitivity in Free	Space $[\mu V/(V/m)^2]$	Diode C	ompression ^A
NormX	2.17 ± 10.1 % (k=2)	DCP X	94 mV
NormY	1.44 ± 10.1 % (k=2)	DCP Y	94 mV
NormZ	$1.55 \pm 10.1 \% (k=2)$	DCP Z	95 mV
Frequency Correct	tion		
×	0.0		
Y	0.0		
Z	0.0		
Sensor Offset	(Probe Tip to Sensor Cent	ter)	
×	2.5 mm		
Y	2.5 mm		
z	2.5 mm		
Connector Angle	-9 °		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ER3-2286_Jan07

Page 4 of 9

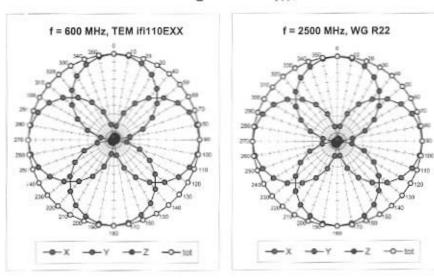

A numerical linearization parameter, uncertainty not required

RTS RIM Testing Services	Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			Page 12(36)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007 RTS-0671-0706-11 L6ARBN40GW			W

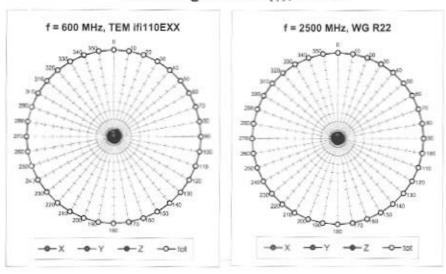
January 10, 2007

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide R22)



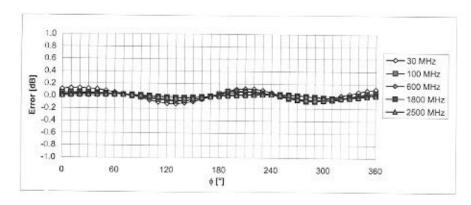
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


RTS RIM Testing Services	Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			Page 13(36)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007	RTS-0671-0706-11	L6ARBN40GW	

January 10, 2007

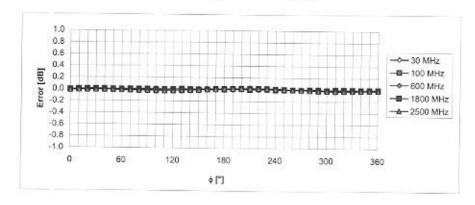
Receiving Pattern (6), 9 = 0°

Receiving Pattern (φ), θ = 90°


Certificate No: ER3-2286_Jan07

Page 6 of 9

RTS RIM Testing Services		Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW		
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007	T		


January 10, 2007

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

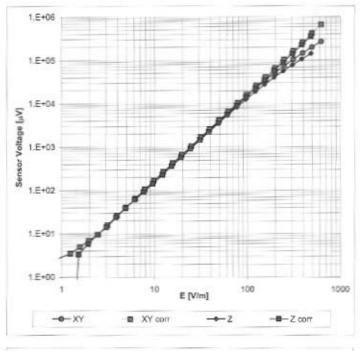
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

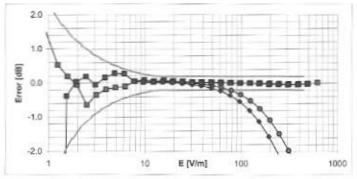
Receiving Pattern (ϕ), ϑ = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ER3-2286_Jan07

Ī


Page 7 of 9


RTS RIM Testing Services	Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			Page 15(36)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007			W

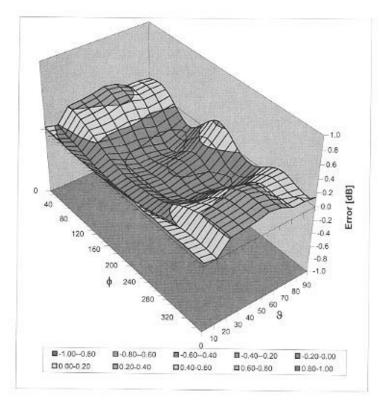
January 10, 2007

Dynamic Range f(E-field)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No. ER3-2286_Jan07


1

Page 8 of 9

RTS RIM Testing Services		Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW		
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007	· · · · · · · · · · · · · · · · · · ·		

January 10, 2007

Deviation from Isotropy in Air Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

RTS RIM Testing Services

Document

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW

Page

17(36)

Author Data

Daoud Attayi

Dates of Test

June 01-05, 2007

Report No **RTS-0671-0706-11**

FCC ID

L6ARBN40GW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RIM

Accreditation No.: SCS 108

Certificate No: H3-6105_Nov06

Object	H3DV6 - SN:61	05	OR DESIGNATION	
Calibration procedure(s)	QA CAL-03.v4 Calibration procedure for H-field probes optimized for close near field evaluations in air			
Calibration date:	November 15, 2	006		
Condition of the calibrated item	In Tolerance			
All calibrations have been condu	cted in the closed laborat	ory facility: environment temperature (22 ± 3)°C an	d humidity < 70%.	
	2012/03/2012/04/04/2012/01/96/2015 #09/06/04			
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration	
Primary Standards Power meter E4419B	ID# GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07	
Primary Standards Power meter E4419B Power sensor E4412A	ID# GB41293874 MY41495277	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	Apr-07 Apr-07	
rimary Standards lower meter E4419B lower sensor E4412A lower sensor E4412A	ID # GB41293874 MY41495277 MY41498087	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	Apr-07 Apr-07 Apr-07	
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592)	Apr-07 Apr-07 Apr-07 Aug-07	
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5066 (20b)	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07	
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593)	Apr-07 Apr-07 Apr-07 Aug-07	
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5066 (20b) SN: S5129 (30b)	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07	
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6 DAE4 Secondary Standards	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5066 (20b) SN: S5129 (30b) SN: 6182 SN: 654	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00593) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Oct-07 Jun-07 Scheduled Check	
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV5 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 6182 SN: 654	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00598) 10-Aug-06 (METAS, No. 217-00598) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Oct-07 Jun-07 Scheduled Check In house check: Nov-07	
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV5 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5066 (20b) SN: S5129 (30b) SN: 6182 SN: 654	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00593) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Oct-07 Jun-07 Scheduled Check	
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5066 (20b) SN: S5129 (30b) SN: 6182 SN: 654 ID # US3642U01700 US37390585 Name	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00593) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Oct-07 Jun-07 Scheduled Check In house check: Nov-07	
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5066 (20b) SN: S5129 (30b) SN: 6182 SN: 654 ID # US3642U01700 US37390585	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00593) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Apr-07 Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Oct-07 Jun-07 Scheduled Check In house check: Nov-07 In house check: Oct-07	

RTS RIM Testing Services	Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			Page 18(36)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007	· · · · · · · · · · · · · · · · · · ·		

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
 C Service suisse d'étalonnage
 C Service suisse d'étalonnage
- Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

Polarization o

NORMx,y,z sensitivity in free space DCP diode compression poin

diode compression point φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot

coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-1996, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", 1996.

Methods Applied and Interpretation of Parameters:

- X, Y, Z_a0a1a2: Assessed for E-field polarization θ = 90 for XY sensors and θ = 0 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- X,Y,Z(f)_a0a1a2= X,Y,Z_a0a1a2* frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the X_a0a1a2 (no uncertainty required).

RTS RIM Testing Services		Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			
Author Data	Dates of Test	Pates of Test Report No FCC ID			
Daoud Attayi	June 01-05, 2007 RTS-0671-0706-11 L6ARBN40G			W	

November 15, 2006

Probe H3DV6

SN:6105

Manufactured: January 4, 2002
Last calibrated: November 11, 2005
Recalibrated: November 15, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

T

RTS RIM Testing Services	Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			Page 20(36)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007			

November 15, 2006

DASY - Parameters of Probe: H3DV6 SN:6105

Sensitivity in Free Space [A/m / √(µV)]

a0 a1 a2 X 2.869E-03 9.376E-5 -2.557E-5 ± 5.1 % (k=2) Y 2.559E-03 1.609E-4 -2.972E-5 ± 5.1 % (k=2) Z 2.930E-03 1.211E-6 -1.970E-5 ± 5.1 % (k=2)

Diode Compression¹

DCP X 87 mV DCP Y 87 mV DCP Z 87 mV

Sensor Offset (Probe Tip to Sensor Center)

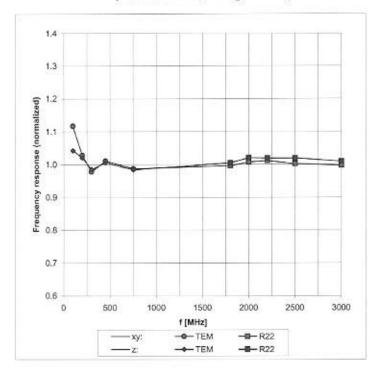
X 3.0 mm Y 3.0 mm Z 3.0 mm

Connector Angle -89 °

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: H3-6105 Nov06

Page 4 of 8

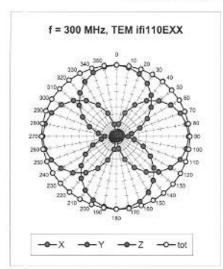

¹ numerical linearization parameter; uncertainty not required

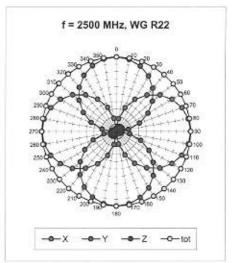
RTS RIM Testing Services	Annex B to Hearing Aid (Report for the BlackBerry			Page 21(36)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007 RTS-0671-0706-11 L6ARBN40GV		ïW	

November 15, 2006

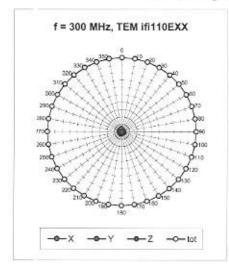
Frequency Response of H-Field

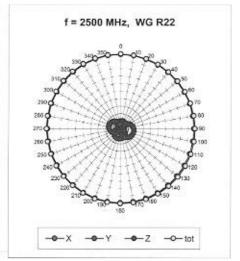
(TEM-Cell:ifi110, Waveguide R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

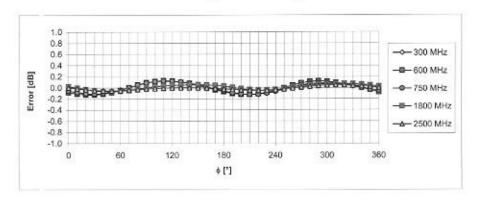

1

RTS RIM Testing Services		Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW		
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007	•		


November 15, 2006

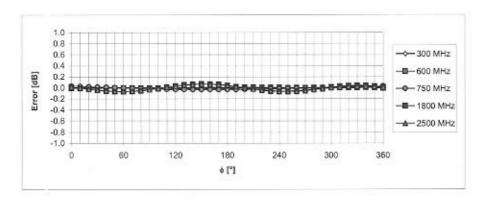

Receiving Pattern (ϕ), ϑ = 90°

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Certificate No: H3-6105_Nov06

Page 6 of 8

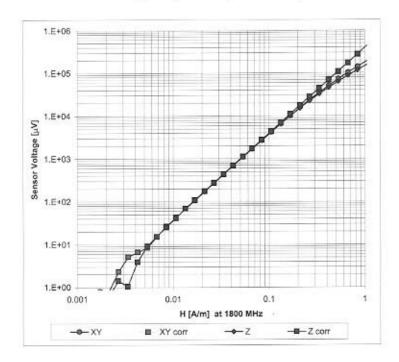
RTS RIM Testing Services		Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			
Author Data	Dates of Test	Report No	FCC ID		
Daoud Attayi	June 01-05, 2007	RTS-0671-0706-11	L6ARBN40G	SW	

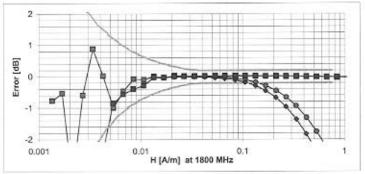

November 15, 2006

Receiving Pattern (ϕ), ϑ = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


RTS RIM Testing Services		Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			
Author Data	Dates of Test	Report No	FCC ID		
Daoud Attayi	June 01-05, 2007	RTS-0671-0706-11	L6ARBN40G	SW	

November 15, 2006

Dynamic Range f(H-field)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

RTS RIM Testing Services

Document

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW

Page

25(36)

Author Data

Daoud Attayi

Dates of Test

June 01-05, 2007

Report No **RTS-0671-0706-11**

FCC ID

L6ARBN40GW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: CD835V3-1011_Dec05 RIM Client CALIBRATION CERTIFICATE Object CD835V3 - SN: 1011 Calibration procedure(s) QA CAL-20.v4 Calibration procedure for dipoles in air Calibration date: December 5, 2005 In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI) All calibrations have been conducted at an environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Primary Standards Power meter EPM-442A GB37480704 04-Oct-05 (METAS, No. 251-00516) Power sensor HP 8481A 04-Oct-05 (METAS, No. 251-00516) Oct-06 US37292783 Reference 20 dB Attenuator SN: 5086 (20g) 11-Aug-05 (METAS, No 251-00498) Aug-06 Reference 10 dB Attenuator SN: 5047.2 (10r) 11-Aug-05 (METAS, No 251-00498) Aug-06 Secondary Standards ID# Check Date (in house) Scheduled Check GB43310788 12-Aug-03 (SPEAG, in house check Oct-05) In house check: Oct-06 Power meter EPM-4419B Power sensor HP 8481A MY41093312 10-Aug-03 (SPEAG, in house check Oct-05) In house check: Oct-07 MY41093315 10-Aug-03 (SPEAG, in house check Oct-05) Power sensor HP 8481A In house check: Oct-06 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov-06 RF generator R&S SMT06 26-Jul-04 (SPEAG, in house check Nov-05) 100005 In house check: Nov-07 DAE4 SN: 660 16-Dec-04 (SPEAG, No. DAE4-901 Dec04) Calibration, Dec-05 Probe ER3DV6 SN: 2336 20-Jan-05 (SPEAG, No. ER3-2336_Jan05) Calibration, Jan-06 Probe H3DV6 10-Dec-04 (SPEAG, No. H3-6065-Dec04) Calibration, Dec-05 SN: 6065 Signature Name Function Calibrated by: Mike Meili Laboratory Technician M. Teil Fin Bomholt Technical Director Approved by:

Issued: December 15, 2005

This calibration certificate is issued as an intermediate solution until the specific calibration procedure is accepted in the frame of the accreditation of the Calibration Laboratory of Schmid & Partner Engineering AG (based on ISO/IEC 17025 International Standard)

Certificate No: CD835V3-1011_Dec05

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

References

 ANSI-PC63.19-2001 (Draft 3.x, 2005)
 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes.
 In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a
 distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions; Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Sessiming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The
 maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as
 calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the
 feed point.

Page 2 of 6	
	Page 2 of 6

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

ic i oyaciii comganaton, ab iai aa ng	egiteri on page 1.	
DASY Version	DASY4	V4.6 B23
DASY PP Version	SEMCAD	V1.8 B160
Phantom	HAC Test Arch	SD HAC P01 BA, #1002
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 180 mm
Frequency	835 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW forward power	0.446 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	162.2 V/m
Maximum measured above low end	100 mW forward power	161.0 V/m
Averaged maximum above arm	100 mW forward power	161.6 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

3 Appendix

3.1 Antenna Parameters

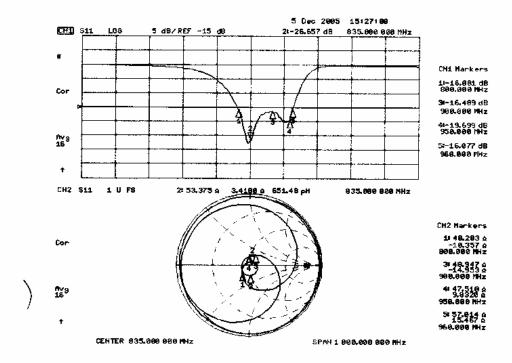
Frequency	Return Loss	Impedance
800 MHz	16.1 dB	(40.2 – j10.4) Ohm
835 MHz	26.7 dB	(53.4 + j3.4) Ohm
900 MHz	16.5 dB	(48.9 – j15.0) Ohm
950 MHz	19.7 dB	(47.5 + j9.8) Ohm
960 MHz	16.1 dB	(57.0 + j15.5) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.


After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD835V3-1011_Dec05 Page 3 of 6

RTS RIM Testing Services	Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			Page 28(36)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007	RTS-0671-0706-11	L6ARBN40G	\mathbf{W}

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

RTS RIM Testing Services

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW

Report No

st W

29(36)

Page

Dates of Test

Daoud Attayi

Author Data

June 01-05, 2007

RTS-0671-0706-11

FCC ID

L6ARBN40GW

3.3.2 DASY4 H-field result

Date/Time: 12/5/2005 3:57:25 PM

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1011

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

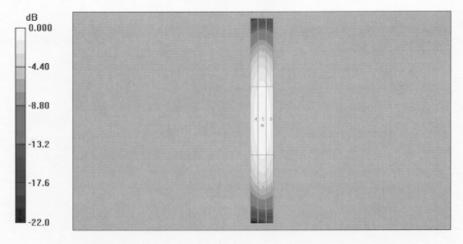
Phantom section: H Dipole Section

DASY4 Configuration:

- Probe: H3DV6 SN6065; Calibrated: 12/10/2004
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 12/16/2004
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

H Scan 10mm above CD 835 MHz/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.446 A/m

Probe Modulation Factor = 1.00

Reference Value = 0.474 A/m; Power Drift = 0.012 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.376	0.398	0.379
Grid 4	Grid 5	Grid 6
0.419	0.446	0.428
Grid 7	Grid 8	Grid 9
0.365	0.391	0.376

0 dB = 0.446 A/m

Certificate No: CD835V3-1011_Dec05

Page 5 of 6

RTS RIM Testing Services

Author Data

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW

30(36)

Page

Dates of Test

Daoud Attayi June 01-05, 2007

Report No **RTS-0671-0706-11**

FCC ID

L6ARBN40GW

3.3.3 DASY4 E-Field result

Date/Time: 12/5/2005 12:21:35 PM

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1011

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Dipole Section

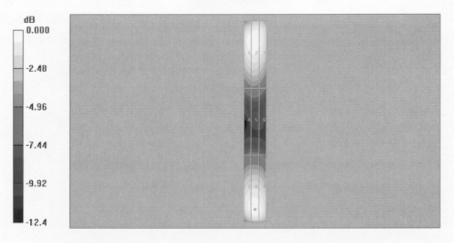
DASY4 Configuration:

- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 1/20/2005
- · Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 12/16/2004
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

E Scan 10mm above CD 835 MHz/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 162.2 V/m


Probe Modulation Factor = 1.00

Reference Value = 105.0 V/m; Power Drift = -0.027 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
159.9	162.2	154.4
Grid 4	Grid 5	Grid 6
87.1	88.4	84.5
Grid 7	Grid 8	Grid 9
155.0	161.0	156.5

0 dB = 162.2 V/m

Certificate No: CD835V3-1011_Dec05

Page 6 of 6

RIM Testing Services

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW

31(36)

Page

Author Data

Daoud Attayi

Dates of Test

June 01-05, 2007

Report No RTS-0671-0706-11 FCC ID L6ARBN40GW

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Certificate No: CD1880V3-1008_Dec05

CALIBRATION CERTIFICATE CD1880V3 - SN: 1008 Object QA CAL-20.v4 Calibration procedure(s) Calibration procedure for dipoles in air December 6, 2005 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI) The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 04-Oct-05 (METAS, No. 251-00516) Oct-06 Oct-06 Power sensor HP 8481A US37292783 04-Oct-05 (METAS, No. 251-00516) 20 dB Attenuator SN: 5086 (20g) 11-Aug-05 (METAS, No 251-00498) Aug-06 10 dB Attenuator SN: 5047.2 (10r) 11-Aug-05 (METAS, No 251-00498) Aug-06 Secondary Standards Check Date (in house) ID# Scheduled Check Power meter EPM-4419B GB43310788 12-Aug-03 (SPEAG, in house check Oct-05) In house check: Oct-06 Power sensor HP 8481A MY41093312 10-Aug-03 (SPEAG, in house check Oct-05) In house check: Oct-07 Power sensor HP 8481A MY41093315 10-Aug-03 (SPEAG, in house check Oct-05) In house check: Oct-06 In house check: Nov-06 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Nov-05) RF generator R&S SMT06 100005 26-Jul-04 (SPEAG, in house check Nov-05) In house check: Nov-07 DAE4 SN: 660 16-Dec-04 (SPEAG, No. DAE4-660_Dec04) Calibration, Dec-05 Probe ER3DV6 SN: 2336 20-Jan-05 (SPEAG, No. ER3-2336_Jan05) Calibration, Jan-06 Probe H3DV6 SN: 6065 10-Dec-04 (SPEAG, No. H3-6065-Dec04) Calibration, Dec-05 Name Function Calibrated by: Mike Meili Laboratory Technician Fin Bomholt Technical Director Approved by: Issued: December 15, 2005 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: CD1880V3-1008_Dec05

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

References

] ANSI-PC63.19-2001 (Draft 3.x, 2005) American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other
 axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to
 be at a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate.
 All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector
 Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of
 reflections was eliminating by applying the averaging function while moving the dipole in the air, at least
 70cm away from any obstacles.
- E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field
 scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field
 value stated as calibration value represents the maximum of the Interpolated H-field, 10mm above the
 dipole surface at the feed point.

Certificate No: CD1880V3-1008 Dec05	Page 2 of 6	

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.6 B23
DASY PP Version	SEMCAD	V1.8 B160
Phantom	HAC Test Arch	SD HAC P01 BA, #1002
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 90 mm
Frequency	1880 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW forward power	0.454 A/m
11		

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	132.9 V/m
Maximum measured above low end	100 mW forward power	131.8 V/m
Averaged maximum above arm	100 mW forward power	132.4 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

Appendix

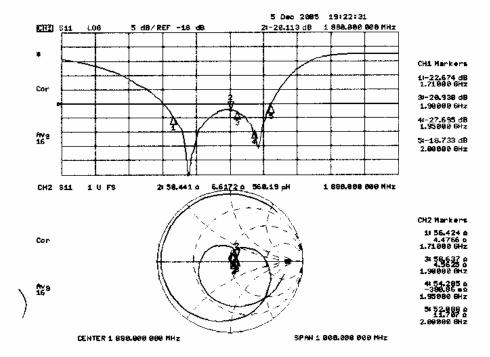
3.1 Antenna Parameters

Frequency	Return Loss	Impedance
1710 MHz	22.7 dB	(56.4 + j4.5) Ohm
1880 MHz	20.1 dB	(58.4 + j6.6 Ohm
1900 MHz	20.9 dB	(58.6 + j4.6) Ohm
1950 MHz	27.7 dB	(54.3 – j0.4) Ohm
2000 MHz	18.7 dB	(52.1 + j11.7) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.


Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

RTS RIM Testing Services	Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW			Page 34(36)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	June 01-05, 2007	RTS-0671-0706-11	L6ARBN40G	·W

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

RTS RIM Testing Services

Document

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW

Page

35(36)

Author Data D

Daoud Attayi

Dates of Test

June 01-05, 2007

Report No **RTS-0671-0706-11**

FCC ID

L6ARBN40GW

3.3.2 DASY4 H-field result

Date/Time: 12/6/2005 7:35:29 PM

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1008

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Dipole Section

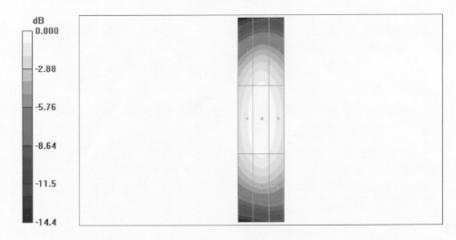
DASY4 Configuration:

- Probe: H3DV6 SN6065; Calibrated: 12/10/2004
- · Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 12/16/2004
- Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

H Scan 10mm above CD1880V3/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.454 A/m


Probe Modulation Factor = 1.00

Reference Value = 0.480 A/m; Power Drift = -0.009 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3		
0.395	0.420	0.403		
Grid 4	Grid 5	Grid 6		
0.431	0.454	0.437		
Grid 7	Grid 8	Grid 9		
0.396	0.417	0.401		

0 dB = 0.454A/m

Certificate No: CD1880V3-1008_Dec05

Page 5 of 6

RIM Testing Services

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RBN41GW

36(36)

Page

Author Data

Daoud Attayi

Dates of Test

June 01-05, 2007

Report No RTS-0671-0706-11 FCC ID L6ARBN40GW

3.3.3 DASY4 E-Field result

Date/Time: 12/6/2005 8:20:46 PM

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1008

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Dipole Section

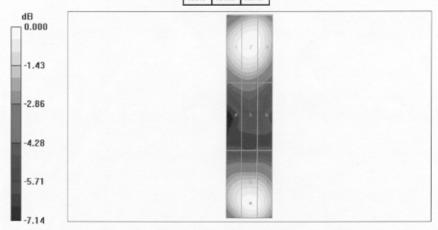
DASY4 Configuration:

- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 1/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 12/16/2004
- Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

E Scan 10mm above CD1880V3/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 132.9 V/m


Probe Modulation Factor = 1.00

Reference Value = 147.2 V/m; Power Drift = 0.033 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

	Grid 1	Grid 2	Grid 3		
	129.6	132.9	129.3		
	Grid 4	Grid 5	Grid 6		
	90.4	92.1	88.0		
	Grid 7	Grid 8	Grid 9		
1	125.5	131.8	129.5		

0 dB = 132.9V/m

Certificate No: CD1880V3-1008_Dec05

Page 6 of 6