EMI Test Report

Tested in accordance with
Federal Communications Commission (FCC)
Personal Communications Services
CFR 47, Parts 2, 22 and 24
&
IC RSS-132 and 133

RIM Testing Services (RTS)

A division of Research In Motion Limited

REPORT NO.: RTS-0491-0702-03

PRODUCT MODEL NO.: RBK41CG

TYPE NAME: BlackBerry **FCC ID**: L6ARBK40CG

IC: 2503A-RBK40CG

DATE: 27 March 2007

Copyright 2005-2007 Page 1 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG		
Test Report No.	Dates of Test	Author Data	
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill	

Statement of Performance:

The BlackBerry Handheld, model RBK41CG, part number CER-14121-001 Rev. 3, and accessories when configured and operated per RIM's operation instructions, performs within the requirements of the test standards.

Declaration:

We hereby certify that:

The test data reported herein is an accurate record of the performance of the sample(s) tested.

The test results are valid for the tested unit (s) only.

The test equipment used was suitable for the tests performed and within manufacturer's published specifications and operating parameters.

The test methods were consistent with the methods described in the relevant standards.

Documented by:

Caitlin O'Neill

Compliance Specialist Date: 27 Mar 2007

Caillin Mill

Tested and reviewed by:

Masud S. Attayi, P.Eng.

Team Lead, Regulatory Compliance

Date: 30 Mar 2007

Tested and reviewed by:

Maurice Buttler

Maurice Battler

Compliance Specialist

Date: 27 Mar 2007

Approved by:

Paul G. Cardinal, Ph.D.

Director

Date: 30 Mar 2007

Copyright 2005-2007 Page 2 of 64

	EMI Test Report for the BlackBerry Handheld Model RBK41CG		
RIM Testing Services			
Test Report No.	Dates of Test	Author Data	
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill	

Table of Contents

A.	Scope	. 4
B.	Associated Documents	. 4
C.	Product Identification	. 4
D.	Support Equipment Used for the Testing of the EUT	. 5
E.	Test Voltage	. 5
F.	Test Results Chart	. 5
G.	Modifications to EUT	. 6
Н.	Summary of Results	. 6
l.	Compliance Test Equipment Used	. 9
APPE	NDIX 1 - CONDUCTED RF EMISSIONS TEST DATA/PLOTS	10
APPE	NDIX 2 – CONDUCTED RF OUTPUT POWER TEST DATA	34
APPE	NDIX 3 – FREQUENCY STABILITY TEST DATA	36
APPE	NDIX 4 - RADIATED EMISSIONS TEST DATA	48

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG		
Test Report No.	Dates of Test	Author Data	
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill	

A. Scope

This report details the results of compliance tests which were performed in accordance to the requirements of:

- FCC CFR 47 Part 2, Oct. 1, 2005
- FCC CFR 47 Part 22, Subpart H, Cellular Radiotelephone Services, Oct. 1, 2005
- FCC CFR 47 Part 24 Subpart E, Broadband PCS, Oct 1. 2005
- Industry Canada, RSS-132 Issue 2, September 2005, Cellular Telephones Employing New Technologies Operating in the Bands 824-849 MHz and 869-894 MHz.
- Industry Canada, RSS-133 Issue 3, June 2005, 2 GHz Personal Communications Services.

B. Associated Documents

Document number RTS-0491-RBK41CG-01

C. Product Identification

Manufactured by Research In Motion Limited located at:

295 Phillip Street Waterloo, Ontario Canada, N2L 3W8 Phone: 519 888 7465 Fax: 519 888 6906

The equipment under test (EUT) was tested at the RIM Testing Services (RTS) EMI test facility, located at:

305 Phillip Street Waterloo, Ontario Canada, N2L 3W8 Phone: 519 888 7465 Fax: 519 888 6906

The testing was performed January 24 to March 27, 2007.

The sample EUT included:

- 1. BlackBerry Handheld, model RBK41CG, CER-14121-001 Rev. 1, PIN: 3016B213
- 2. BlackBerry Handheld, model RBK41CG, CER-14121-001 Rev. 1, PIN: 3016B678
- 3. BlackBerry Handheld, model RBK41CG, CER-14121-001 Rev. 1, PIN: 3016B247

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS) - A division of Research in Motion Limited.

Copyright 2005-2007 Page 4 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG		
Test Report No.	Dates of Test	Author Data	
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill	

Conducted RF measurements were performed on handheld PIN 3016B213. Radiated Emissions measurements were performed on handheld PIN 3016B678 and 3016B247.

To view the differences between CER-14121-001 Rev. 1 and CER-14121-001 Rev. 3, see document number RTS-0491-RBK41CG-01.

Only the differences that maybe impacted by the changes were re-measured.

The transmit frequency bands operating in North America for the Handheld are: Cellular 824 to 849 MHz, PCS 1867.5 to 1872.5 MHz and Bluetooth 2402 to 2480 MHz.

D. Support Equipment Used for the Testing of the EUT

- 1) Agilent Wireless Communication Test Set, model 8960, serial number US41070110
- 2) Communication Tester, Rohde & Schwarz, model CMU 200, serial number 837493/073
- 3) DC Power Supply, HP, model 6632B, serial number US37472178

E. Test Voltage

The ac input voltage was 120 volts, 60 Hz where applicable. This configuration was per RIM's specifications.

F. Test Results Chart

SPECIFICATION	TEST TYPE	MEETS REQUIREMENTS	PERFORMED BY
FCC CFR 47 Part 22, Subpart H IC RSS-132	Radiated Spurious/harmonic Emissions, ERP, LO	Yes	Masud Attayi
FCC CFR 47 Part 2, Subpart J, Part 22, Subpart H IC RSS-132	Conducted Output Power Conducted Emissions, Occupied Bandwidth, Frequency Stability	Yes	Maurice Battler
FCC CFR 47 Part 24, Subpart E IC RSS-133	Radiated Spurious/harmonic Emissions, EIRP, LO	Yes	Masud Attayi
FCC CFR 47 Part 24, Subpart E IC RSS-133	Conducted Emissions, Occupied Bandwidth, Frequency Stability	Yes	Maurice Battler

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS)

Page 5 of 64

Copyright 2005-2007

- A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG		
Test Report No.	Dates of Test	Author Data	
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill	

G. Modifications to EUT

No modifications were required on the EUT.

H. Summary of Results

SPECIFICATIO	N	TEST TYPE	RESULT	TEST DATA
FCC CFR 47	IC	TESTTITE	KESOLI	APPENDIX
Part 22.917 Part 22.901(d)	RSS-132	Conducted Spurious Emissions	Pass	1
Part 2.1057 Part 24.238	RSS-133	Conducted Spurious Emissions	Pass	1
Part 2.202 Part 22.917	RSS-132	Occupied Bandwidth and Channel Mask	Pass	1
Part 2.202 Part 24.238	RSS-133	Occupied Bandwidth and Channel Mask		1
Part 2.1046(a)	RSS-133 RSS-132	Conducted RF Output Power	Pass	2
Part 22.917	RSS-132	Frequency Stability vs. Temperature and Voltage	Pass	3
Part 24.235	RSS-133	Frequency Stability vs. Temperature and Voltage	Pass	3
Part 22, Subpart H	RSS-132	Radiated Spurious/Harmonic Emissions, ERP, LO	Pass	4
Part 24, Subpart E	RSS-133	Radiated Spurious/Harmonic Emissions, EIRP, LO	Pass	4

The EUT met the requirements of the Conducted Spurious Emissions in the Cellular band as per 47 CFR 22.917, CFR 22.901(d) and RSS-132. The EUT was measured in CDMA2000 and 1xEVDO mode on the low, middle and high channels. The frequency range investigated was from 10 MHz to 20 GHz. See APPENDIX 1 for the test data.

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

- A division of Research in Motion Limited.

Copyright 2005-2007 Page 6 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG		
Test Report No.	Dates of Test	Author Data	
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill	

- 2) The EUT met the requirements of the Conducted Spurious Emissions in the PCS band as per 47 CFR 2.1057, CFR 24.238 and RSS-133. The EUT was measured in CDMA2000 and 1xEVDO mode on the low, middle and high channels. The frequency range investigated was from 10 MHz to 20 GHz. See APPENDIX 1 for the test data.
- 3) The EUT met the requirements of the Occupied Bandwidth in the Cellular band as per 47 CFR 2.202, CFR 22.917 and RSS-132. The channels were measured in CDMA2000 and 1xEVDO mode on the low, middle and high channels. See APPENDIX 1 for the test data.
- 4) The EUT met the requirements of the Occupied Bandwidth and channel mask in the PCS band as per 47 CFR 2.202, CFR 24.238 and RSS-133. The channels were measured in CDMA2000 and 1xEVDO mode on the low, middle and high channels. See APPENDIX 1 for the test data.
- 5) The EUT met the requirements of the Conducted RF Output Power for both the Cellular and PCS bands. The channels were measured in CDMA2000 and 1xEVDO mode on the low, middle and high channels. See APPENDIX 2 for the test data.
- 6) The EUT met the requirements of the Frequency Stability vs. Temperature and Voltage for Cellular band as per 22.917 and RSS-132. The maximum frequency error measured was less than 0.1 ppm. The temperature range was from -30°C to +60°C in 10° temperature steps. The EUT was measured on low, middle and high channels at each temperature step. The EUT was measured at low (3.6 volts), nominal (3.8 volts) and high (4.2 volts) do input voltage at each temperature step and channel at maximum output power. See APPENDIX 3 for the test data.
- 7) The EUT met the requirements of the Frequency Stability vs. Temperature and Voltage requirements for the PCS band as per 24.235 and RSS-133. maximum frequency error measured was less than 0.1 ppm. The temperature range was from -30°C to +60°C in 10 degree temperature steps. The EUT was measured on low, middle and high channels at each temperature step. The EUT was measured at low (3.6 volts), nominal (3.8 volts) and high (4.2 volts) dc input voltage at each temperature step and channel at maximum output power. See APPENDIX 3 for the test data.
- 8) The radiated spurious emissions/harmonics and ERP/EIRP were measured for both Cellular and PCS bands. The results are within the limits. The EUT was placed on a nonconductive styrofoam table, 100 cm high that was positioned on a remote controlled turntable. The test distance used between the EUT and the receiving antenna was three metres. Then the emissions were maximized by elevating the

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS) - A division of Research in Motion Limited.

Copyright 2005-2007 Page 7 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG			
Test Report No.	Dates of Test	Author Data		
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill		

antenna in the range of 1 to 4 metres. The turntable was rotated to determine the azimuth of the peak emissions. The maximum emissions level was recorded. The measurements were performed in a semi-anechoic chamber. The semi-anechoic chamber FCC registration number is **778487** and the Industry Canada file number is **IC4240**. The EUT was measured on the low, middle and high channels.

The highest ERP in the Cellular band measured was 23.8 dBm at 836.52 MHz (channel 384).

The highest EIRP in the PCS band measured was 26.5 dBm at 1880.00 MHz (channel 600).

The radiated spurious emissions were measured up to the 10th harmonic for low, middle and high channels in the Cellular and PCS bands.

The lowest test margin for the cellular band was 14.71 dB below the limit at 817.38 MHz.

The lowest test margin for the PCS band was 17.86 dB below the limit at 18701.05 MHz.

The EUT's RF local oscillator emissions were measured in the Cellular band on the low, middle and high channels (1013, 384 and 777) in the standalone vertical position. Both the horizontal and vertical antenna polarizations were measured. The Cellular RF local oscillator emissions were in the NF.

The EUT's RF local oscillator emissions were measured in the PCS band on the low, middle and high channels (25, 600 and 1175) in the standalone Horizontal position. Both the horizontal and vertical antenna polarizations were measured. The PCS RF local oscillator emissions were in the NF.

Sample Calculation:

Field Strength ($dB\mu V/M$) is calculated as follows:

 $FS = Measured Level (dB\mu V) + A.F. (dB/m) + Cable Loss (dB) - Preamp (dB) + Filter Loss (dB)$

Measurement Uncertainty ±4.0 dB

To view the test data see APPENDIX 4.

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

- A division of Research in Motion Limited.

Copyright 2005-2007 Page 8 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG		
Test Report No.	Dates of Test	Author Data	
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill	

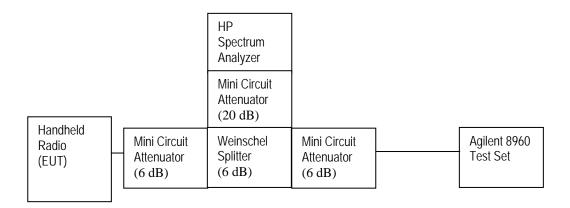
I. Compliance Test Equipment Used

<u>UNIT</u>	MANUFACTURER	<u>MODEL</u>	<u>SERIAL</u> <u>NUMBER</u>	CAL DUE DATE (YY MM DD)	USE
Preamplifier	Sonoma	310N/11909A	185831	07-11-23	Radiated Emissions
Preamplifier system	TDK RF Solutions	PA-02	080010	07-11-22	Radiated Emissions
Hybrid Log Antenna	TDK	HLP-3003C	017401	08-08-04	Radiated Emissions
Horn Antenna	TDK	HRN-0118	030201	09-01-17	Radiated Emissions
Horn Antenna	TDK	HRN-0118	030101	08-07-26	Radiated Emissions
Horn Antenna	Emco	3116	2538	08-09-25	Radiated Emissions
Preamplifier	TDK	18-26	3002	07-11-23	Radiated Emissions
Dipole Antenna	Schwarzbeck	UHAP	973	08-12-18	Radiated Emissions
Dipole Antenna	Schwarzbeck	UHAP	974	08-09-28	Radiated Emissions
Universal Radio Communication Tester	Rohde & Schwarz	CMU 200	837493/073	07-12-01	Radiated Emissions
CDMA base station	Agilent	8960	US41070110	07-08-03	Radiated Emissions
CBT Bluetooth Tester	Rohde & Schwarz	СВТ	100034	07-06-15	RF Conducted Power
EMI Receiver	Rohde & Schwarz	ESIB-40	100255	07-05-11	Radiated Emissions
Spectrum Analyzer	HP	8563E	3745A08112	07-09-20	RF Conducted Emissions
DC Power Supply	HP	6632B	US37472178	07-09-14	RF Conducted Emissions
Environment Monitor	Control Company	1870	230355190	07-12-28	Radiated Emissions
Environment Monitor	Control Company	1870	230355189	07-12-28	RF Conducted Emissions
Temperature Probe	Hart Scientific	61161-302	21352860	07-08-31	Frequency Stability
Environmental Chamber	ESPEC Corp.	SH-240S1	91005607	N/R	Frequency Stability

Copyright 2005-2007 Page 9 of 64

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

⁻ A division of Research in Motion Limited.



RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RE	3K41CG
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Conducted RF Emission Test Data cont'd

This appendix contains measurement data pertaining to conducted spurious emissions, –26 dBc bandwidth, 99% power bandwidth and the channel mask on Handheld PIN 3016B213.

Test Setup Diagram

The environmental test conditions were: Temperature 24°C Pressure 1011mb

Pressure 1011ml Relative Humidity 21%

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 11 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RE	BK41CG
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Conducted RF Emission Test Data cont'd

Date of test: January 31, 2007

The conducted spurious emissions – As per 47 CFR 2.1051, CFR 24.238(a), RSS-133, CFR 22 Subpart H and RSS-132 were measured from 10 MHz to 20 GHz. The EUT emissions were in the noise floor.

See figures 1 to 12 for the plots of the conducted spurious emissions.

Test Data for Cellular and PCS selected Frequencies in CDMA2000 mode

Cellular Frequency (MHz)	99% Occupied Bandwidth (MHz)
824.700	1.273
836.520	1.273
848.310	1.280

PCS Frequency (MHz)	99% Occupied Bandwidth (MHz)
1851.200	1.300
1880.000	1.290
1908.750	1.290

Measurement Plots for Cellular and PCS in CDMA2000 mode

Refer to the following measurement plots for more detail.

See Figures 13 to 18 for the plots of the 99% Occupied Bandwidth.

See Figures 19 to 20 for plots of the channel mask results.

The RF power output was at maximum for all the recorded measurements shown below.

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 12 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Figure 1: Cellular, Spurious Conducted Emissions, Low channel

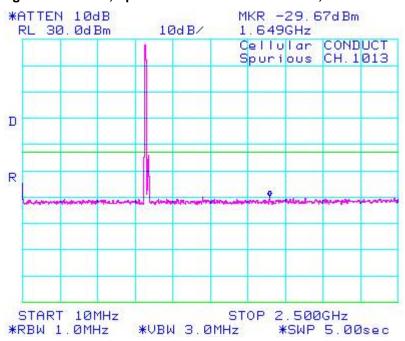
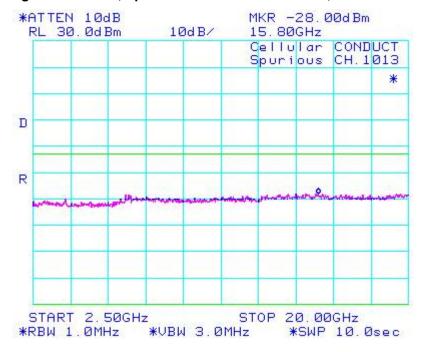



Figure 2: Cellular, Spurious Conducted Emissions, Low channel

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 13 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Figure 3: Cellular, Spurious Conducted Emissions, Middle Channel

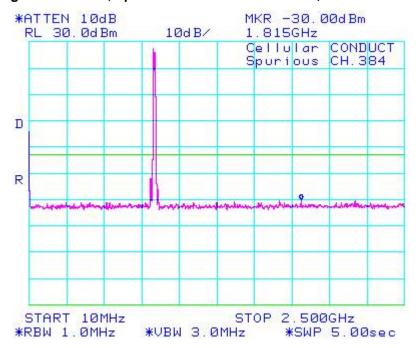
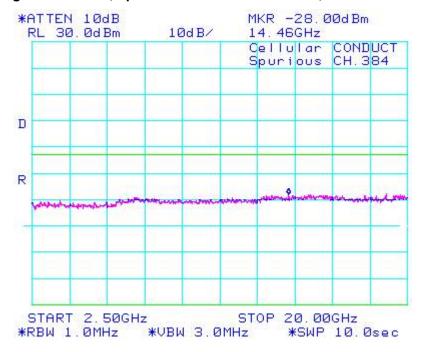



Figure 4: Cellular, Spurious Conducted Emissions, Middle Channel

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 14 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Figure 5: Cellular, Spurious Conducted Emissions, High Channel

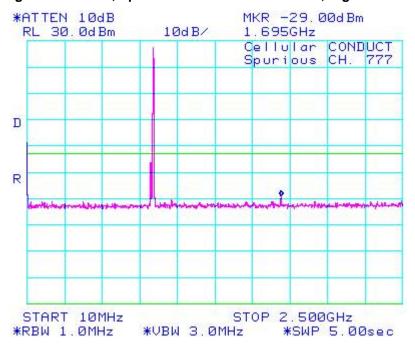
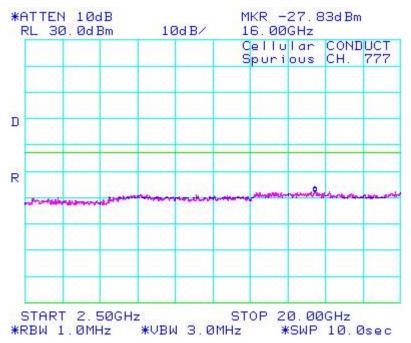



Figure 6: Cellular, Spurious Conducted Emissions, High Channel

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 15 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Figure 7: PCS, Spurious Conducted Emissions, Low Channel

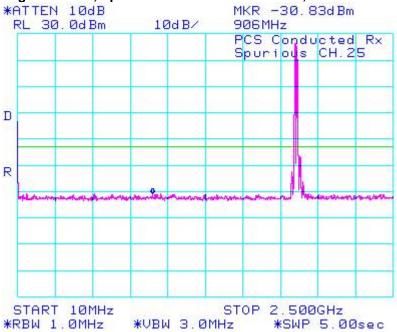



Figure 8: PCS, Spurious Conducted Emissions, Low Channel

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 16 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Figure 9: PCS, Spurious Conducted Emissions, Middle Channel

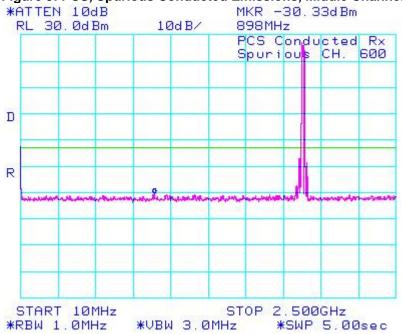
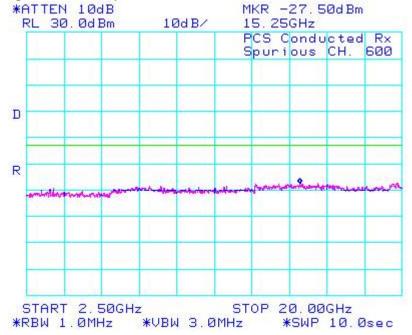



Figure 10: PCS, Spurious Conducted Emissions, Middle Channel

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

- A division of Research in Motion Limited.

Copyright 2005-2007 Page 17 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RE	BK41CG
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Figure 11: PCS, Spurious Conducted Emissions, High Channel

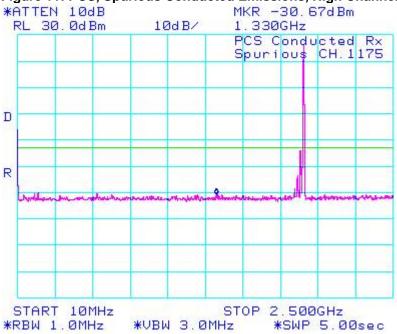
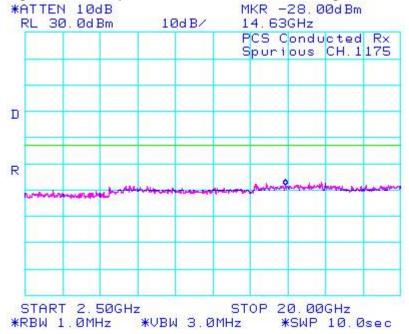



Figure 12: PCS, Spurious Conducted Emissions, High Channel

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 18 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Figure 13: Occupied Bandwidth, Cellular Low Channel

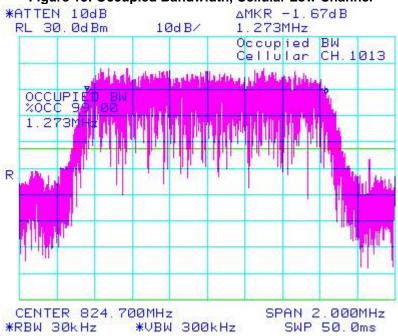
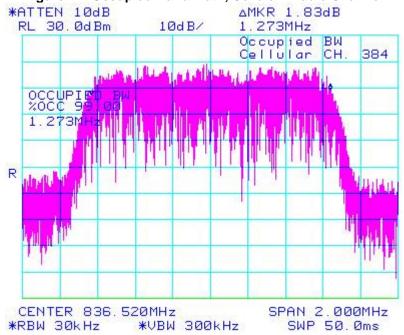



Figure 14: Occupied Bandwidth, Cellular Middle Channel

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

- A division of Research in Motion Limited.

Copyright 2005-2007 Page 19 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Figure 15: Occupied Bandwidth, Cellular High Channel

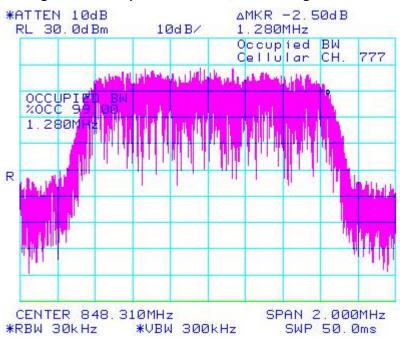
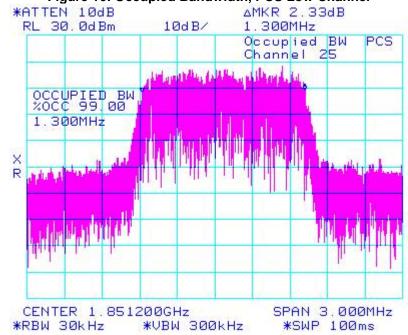
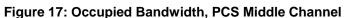
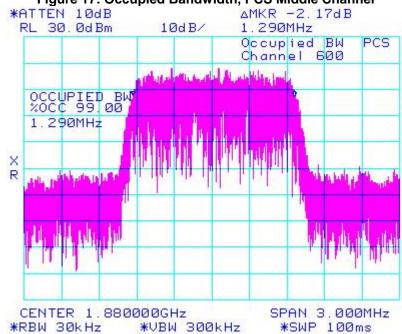
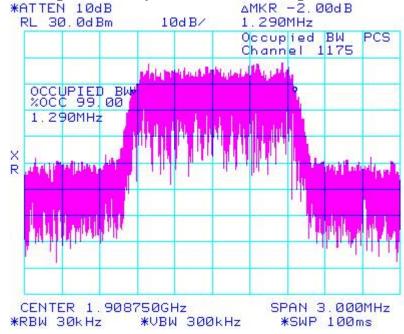



Figure 16: Occupied Bandwidth, PCS Low Channel




This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 20 of 64


⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

- A division of Research in Motion Limited.

Copyright 2005-2007 Page 21 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Figure 19: PCS, Low Channel Mask

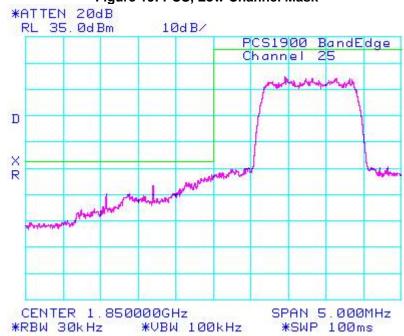
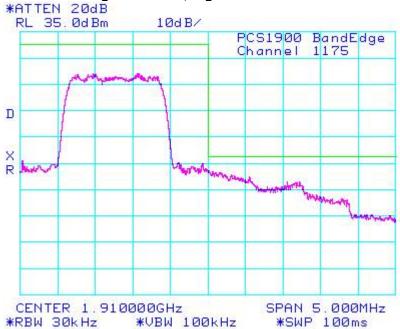



Figure 20: PCS, High Channel Mask

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 22 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RE	BK41CG
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Conducted RF Emission Test Data cont'd

Date of test: February 1, 2007

The conducted spurious emissions – As per 47 CFR 2.1051, CFR 24.238(a), RSS-133, CFR 22 Subpart H and RSS-132 were measured from 10 MHz to 20 GHz. The EUT emissions were in the noise floor.

See figures 21 to 32 for the plots of the conducted spurious emissions.

Test Data for Cellular and PCS selected Frequencies in 1xEVDO mode

Cellular Frequency (MHz)	99% Occupied Bandwidth (MHz)
824.700	1.280
836.520	1.273
848.310	1.280

PCS Frequency (MHz)	99% Occupied Bandwidth (MHz)
1851.200	1.290
1880.000	1.290
1908.750	1.290

Measurement Plots for Cellular and PCS in 1xEVDO mode

Refer to the following measurement plots for more detail.

See Figures 33 to 38 for the plots of the 99% Occupied Bandwidth.

See Figures 39 to 40 for plots of the channel mask results.

The RF power output was at maximum for all the recorded measurements shown below.

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS)

- A division of Research in Motion Limited.

Copyright 2005-2007 Page 23 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Figure 21: Cellular, Spurious Conducted Emissions, Low channel

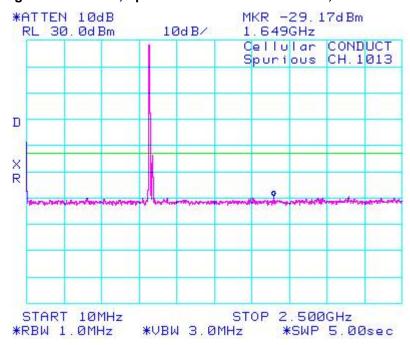
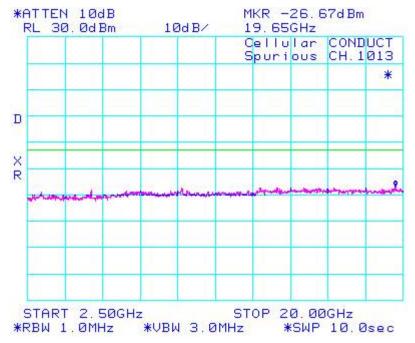



Figure 22: Cellular, Spurious Conducted Emissions, Low channel

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

- A division of Research in Motion Limited.

Copyright 2005-2007 Page 24 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Figure 23: Cellular, Spurious Conducted Emissions, Middle Channel

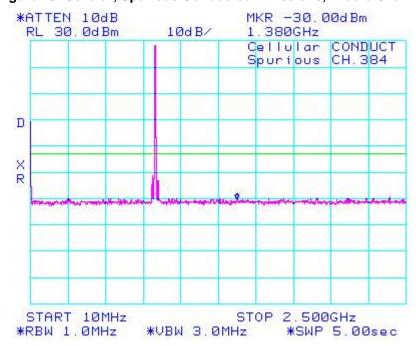
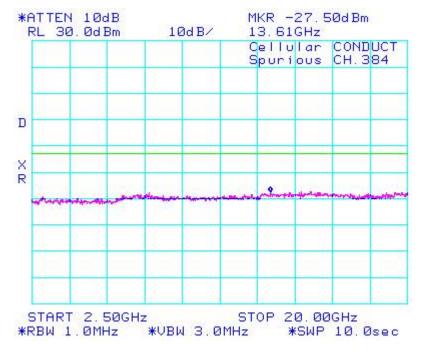



Figure 24: Cellular, Spurious Conducted Emissions, Middle Channel

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 25 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Figure 25: Cellular, Spurious Conducted Emissions, High Channel

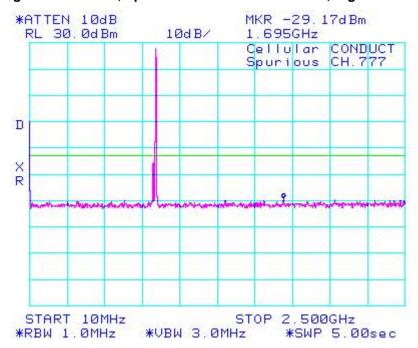
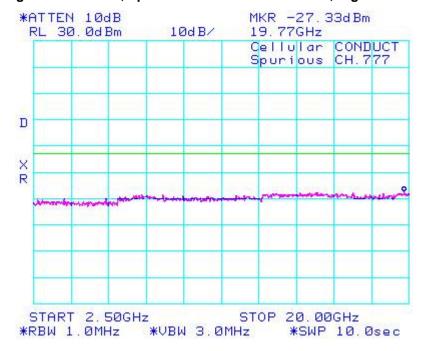



Figure 26: Cellular, Spurious Conducted Emissions, High Channel

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 26 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

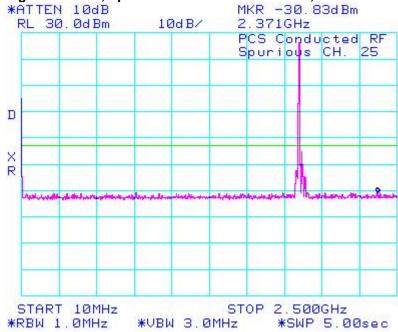
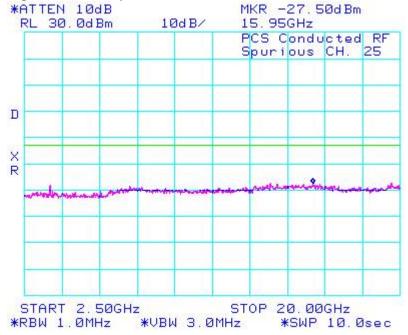



Figure 28: PCS, Spurious Conducted Emissions, Low Channel

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

- A division of Research in Motion Limited.

Copyright 2005-2007 Page 27 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Figure 29: PCS, Spurious Conducted Emissions, Middle Channel

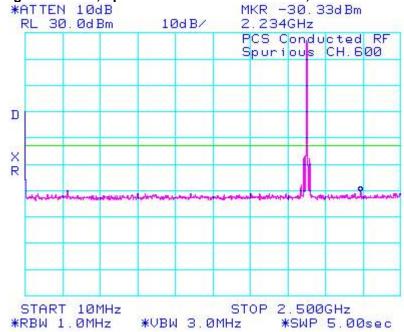
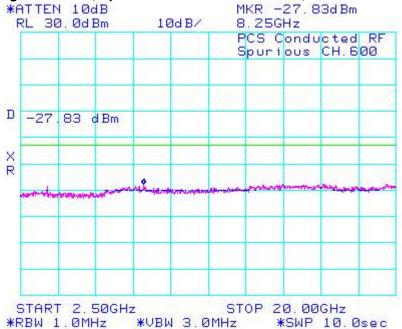



Figure 30: PCS, Spurious Conducted Emissions, Middle Channel

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

- A division of Research in Motion Limited.

Copyright 2005-2007 Page 28 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Figure 31: PCS, Spurious Conducted Emissions, High Channel

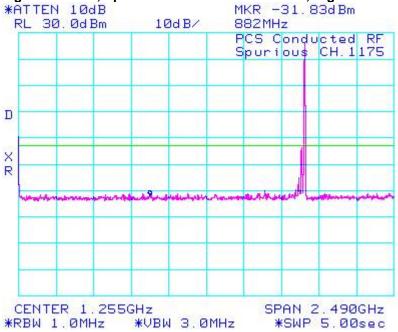


Figure 32: PCS, Spurious Conducted Emissions, High Channel

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

- A division of Research in Motion Limited.

Copyright 2005-2007 Page 29 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG	
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Figure 33: Occupied Bandwidth, Cellular Low Channel

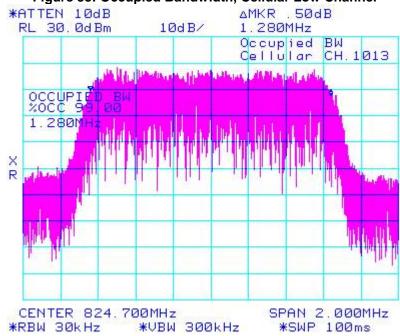
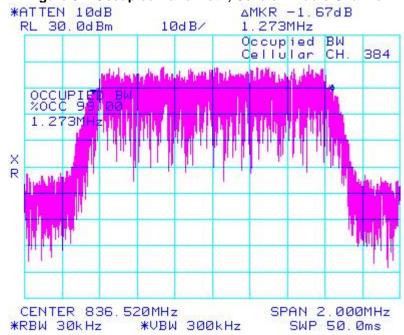



Figure 34: Occupied Bandwidth, Cellular Middle Channel

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

- A division of Research in Motion Limited.

Copyright 2005-2007 Page 30 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG				
Test Report No.	Dates of Test	Author Data			
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill			

Figure 35: Occupied Bandwidth, Cellular High Channel

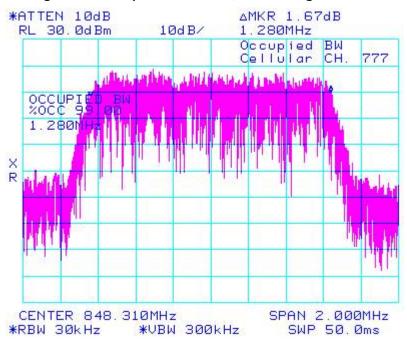
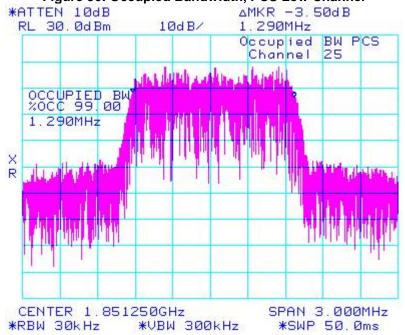
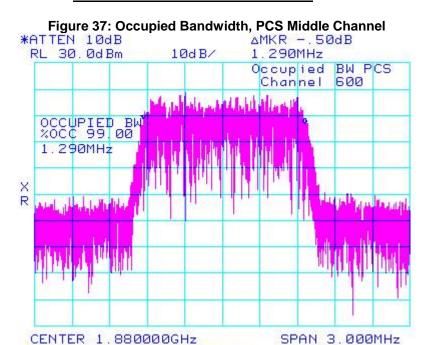



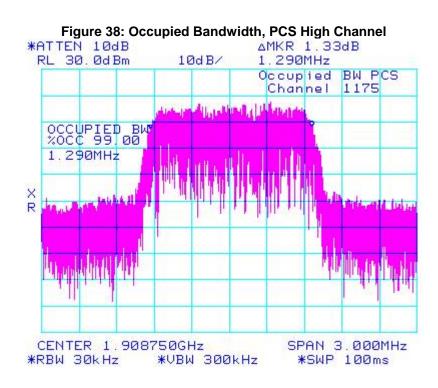
Figure 36: Occupied Bandwidth, PCS Low Channel



This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

- A division of Research in Motion Limited.

Copyright 2005-2007 Page 31 of 64


RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG				
Test Report No.	Dates of Test	Author Data			
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill			

*VBW 300kHz

*SWP 50.0ms

*RBW 30kHz

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS) - A division of Research in Motion Limited.

Copyright 2005-2007 Page 32 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG				
Test Report No.	Dates of Test	Author Data			
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill			

Figure 39: PCS, Low Channel Mask

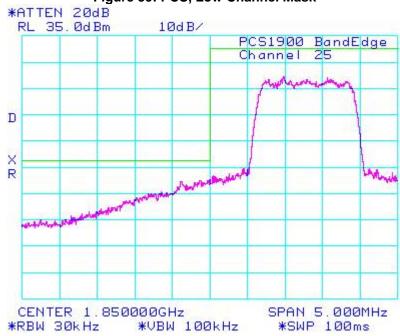
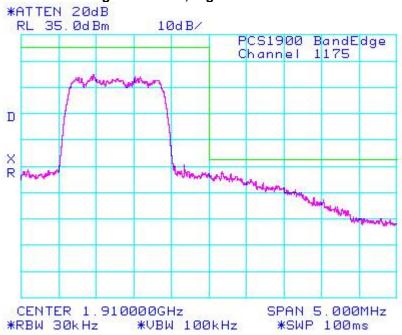



Figure 40: PCS, High Channel Mask

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 33 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG				
Test Report No.	Dates of Test	Author Data			
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill			

APPENDIX 2 -	CONDUCTED	RE OUTPUT	POWER	TEST	$D\Delta T\Delta$
AFFLINDIA Z -	CONDUCTED	NE OUTEUT	FUVVLN	ILOI	DAIA

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG				
Test Report No.	Dates of Test	Author Data			
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill			

Conducted RF Output Power Test Data

The conducted RF output power was measured using the CDMA base station simulator, Rohde & Schwarz CBT Bluetooth Tester. Low, middle and high channels were measured at maximum radio output power at different service options and modes. Peak nominal output power is 24.50 dBm ±0.5 dB for Cellular and 23.50 dBm ±0.5 dB for PCS.

Date of Test: January 31, 2007

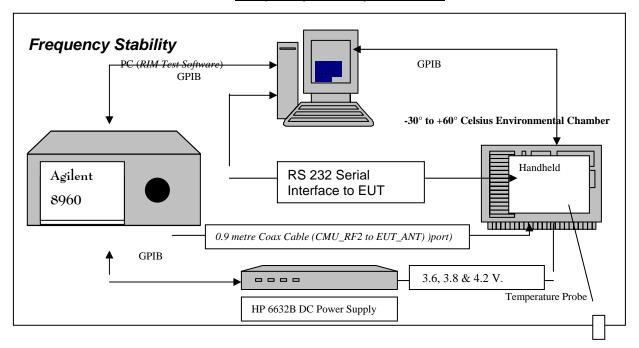
Test Results

Band	Channel	1x EvDO		CDMA2000	SO2		SO55		TDSO	
		(153.6kbps)		Loopback		Loopback		SO32		
		(dbm)	(Watts)	RC	(dbm)	(Watts)	(dbm)	(Watts)	(dbm)	(Watts)
	1013	24.30	0.269	RC1	24.70	0.295	24.70	0.295	-	-
	1013	24.30	0.209	RC3	24.60	0.288	24.70	0.295	24.70	0.295
CDMA	384	24.64	0.291	RC1	24.80	0.302	24.80	0.302	-	-
800	304	24.04	0.231	RC3	24.80	0.302	24.80	0.302	24.70	0.295
	777	24.61	0.289	RC1	24.90	0.309	24.90	0.309	-	-
	777 24.61	24.01	0.209	RC3	24.90	0.309	24.90	0.309	24.90	0.309
Band	Channel	1x EvDO		CDMA2000	SO2		SO55		TDSO	
		(153.6kbps)			Loopback		Loopback		SO32	
		(dbm)	(Watts)	RC	(dbm)	(Watts)	(dbm)	(Watts)	(dbm)	(Watts)
	25	23.10	0.204	RC1	23.80	0.240	23.70	0.234	-	-
	25 25.	23.10 0.204	RC3	23.80	0.240	23.70	0.234	23.65	0.232	
CDMA	600	23.60	0.229	RC1	23.80	0.240	23.80	0.240	-	-
1900	000	23.00	0.229	RC3	23.80	0.240	23.70	0.234	23.70	0.234
1175	1175	23.76	76 0.238	RC1	23.90	0.245	23.90	0.245	-	-
	23.70	0.230	RC3	23.90	0.245	23.90	0.245	23.80	0.240	

Copyright 2005-2007 Page 35 of 64

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

⁻ A division of Research in Motion Limited.


RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG				
Test Report No.	Dates of Test	Author Data			
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill			

APPENDIX 3 – FREQUENCY STABILITY TEST DATA

- A division of Research in Motion Limited. Copyright 2005-2007 Page 36 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG			
Test Report No.	Dates of Test	Author Data		
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill		

Frequency Stability Test Data

CFR 47 Chapter 1 - Federal Communications Commission Rules

Part 2 Required Measurements

2.995 Frequency Stability - Procedures

(a,b) Frequency Stability - Temperature Variation

(d) Frequency Stability - Voltage Variation

24.235 Frequency Stability.

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

The RBK41CG handheld, (referred as EUT herein and after) transmitted frequencies are less than 0.1 ppm of the received frequency from the Agilent 8960 CDMA Base Station Simulator

The EUT meets the requirements as stated in CFR 47 chapter 1, Section 24.235, RSS-133, CFR 47 chapter 1, Section 22.917 and RSS-132 Frequency Stability.

Frequency Stability measurement devices were configured as presented in the block diagram recording frequency, power, data, temperatures, and stepped voltages controlled via a GPIB interface linked to the Environmental chamber, a DC power supply, and the Communications Test Set. A 0.9-metre coax cable was calibrated to characterize the insertion loss for the transmitted frequencies between the RF input/output of the baste station simulator and the EUT antenna port; located inside the environmental chamber.

Calibration for the Cable Loss was performed in the RF Laboratory using the Giga-tronics power metre and Agilent Signal Generator.

Copyright 2005-2007 Page 37 of 64

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS) - A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG			
Test Report No.	Dates of Test	Author Data		
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill		

The cable assembly from the RF input to the RF output was measured at the following Frequencies:

PCS Frequency (MHz)	Cable loss (dB)
1851.20	1.40
1880.00	1.40
1908.75	1.40

Cellular Frequency (MHz)	Cable loss (dB)
824.70	0.90
836.52	0.90
848.31	0.90

Procedure:

The EUT was placed in the Temperature chamber and connected to the Agilent 8960 outside as shown in the figure above. Dry air was pumped inside the temperature chamber to maintain a backpressure during the test. The EUT was kept in the off condition at all times except when the measurements were to be made.

The chamber was switched on and the temperature was set to -30°C.

After the chamber stabilized at -30 °C there was a soak period of one hour to alleviate moisture in the chamber, the EUT voltage was enabled.

The system software recorded the frequency, power, and associated measurements.

A Computer system controlled the automated software. This application was given the command of activating all machines intrinsic to the temperature and voltage tests controlling the base station simulator via the GPIB Bus. The Environmental Chamber was instructed through an RS-232 serial line. The EUT dialogue was passed through a serial connection.

The EUT repetitively transmitted 100 bursts for each set of programmed parameters recording temperature, voltage settings, and systematically selected frequencies. The power supply was cycled from minimum voltage 3.6 volts, to 3.8 volts to 4.2 volts nominal voltage. The frequency error was measured at a maximum output power and recorded by the automated system test software.

The EUT output power and frequency was measured at 3.6 volts, 3.8 volts and 4.2 volts. The transmit frequency was varied in 3 steps consisting of 824.70, 836.52, and 848.31 MHz for the cellular band and 1851.20, 1880.00 and 1908.75 MHz for the PCS band. This frequency was recorded in MHz and deviation from nominal, in Parts Per Million. After the initial one-hour soak at the beginning of the tests, a period of thirty minutes soak was initialized between each ascending temperature step, before proceeding to the next measurement test cycle.

Copyright 2005-2007 Page 38 of 64

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS)

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG			
Test Report No.	Dates of Test	Author Data		
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill		

PROCEDURE:

The test system software for commencing the Frequency Stability Tests carried through the following cycle.

- 1. Switch on the HP 6632B power supply; AGILENT 8960, and Environmental Chamber.
- 2. Start test program
- 3. Set the Temperature to -30°C and maintain a period of one- hour soak time, with the EUT supply voltage disabled.
- 4. Set power supply voltage to 3.6 volts.
- 5. Set up base station simulator.
- 6. Command the base station simulator to switch to the low channel.
- 7. Enable the voltage to the EUT, and connect a link to the base station simulator.
- 8. EUT is commanded to Transmit 100 Bursts.
- 9. Software logs the following data from the base station simulator, power supply and temperature chamber: Traffic Channel Number, Traffic Channel Frequency, Power Level, Chamber Temperature, Supply Voltage, Power, Frequency Error.
- 10. The base station simulator commands the EUT to change frequency to the middle channel and high channel and repeats steps 7 to 9.
- 11. Repeat steps 5 to 10 changing the supply voltage to 3.8 Volts
- 12. Increase temperature by 10°C and soak for 1/2 hour.
- 13. Repeat steps 4 12 for temperatures –30°C to 60°C.
- 14. Repeat steps 5 to 10 changing the supply voltage to 4.2 volts

Procedure 5 to 10 was repeated at room temperature (20°C) with the power supply voltage set to 3.6, 3.8 and 4.2 volts.

The maximum frequency error in the Cellular band measured was -0.0109 PPM. The maximum frequency error in the PCS band measured was -0.0114 PPM.

Date of test, March 26 - 27, 2007.

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS) - A division of Research in Motion Limited.

Copyright 2005-2007 Page 39 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG			
Test Report No.	Dates of Test	Author Data		
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill		

Cellular Channel results: channels 1013, 384 and 777 @ 20°C maximum transmitted power

Traffic Channel Number	Cellular Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
1013	824.700	3.6	20	-1.177	-0.0014
384	836.520	3.6	20	0.422	0.0005
777	848.310	3.6	20	-0.231	-0.0003

Traffic Channel Number	Cellular Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
1013	824.700	3.8	20	0.381	0.0005
384	836.520	3.8	20	-0.207	-0.0002
777	848.310	3.8	20	-0.680	-0.0008

Traffic Channel Number	Cellular Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
1013	824.700	4.2	20	-0.159	-0.0002
384	836.520	4.2	20	-0.551	-0.0007
777	848.310	4.2	20	-0.086	-0.0001

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 40 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG			
Test Report No.	Dates of Test	Author Data		
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill		

Cellular Results: channel 1013 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
1013	824.700	3.6	-30	-0.814	-0.0010
1013	824.700	3.6	-20	-1.092	-0.0013
1013	824.700	3.6	-10	-0.435	-0.0005
1013	824.700	3.6	0	-0.754	-0.0009
1013	824.700	3.6	10	-0.698	-0.0008
1013	824.700	3.6	20	-1.177	-0.0014
1013	824.700	3.6	30	-0.985	-0.0012
1013	824.700	3.6	40	-1.244	-0.0015
1013	824.700	3.6	50	-1.265	-0.0015
1013	824.700	3.6	60	-1.567	-0.0019

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
1013	824.700	3.8	-30	-6.176	-0.0075
1013	824.700	3.8	-20	5.311	0.0064
1013	824.700	3.8	-10	2.579	0.0031
1013	824.700	3.8	0	3.946	0.0048
1013	824.700	3.8	10	2.064	0.0025
1013	824.700	3.8	20	0.381	0.0005
1013	824.700	3.8	30	0.010	0.0000
1013	824.700	3.8	40	1.268	0.0015
1013	824.700	3.8	50	0.802	0.0010
1013	824.700	3.8	60	3.511	0.0043

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
1013	824.700	4.2	-30	-1.418	-0.0017
1013	824.700	4.2	-20	4.293	0.0052
1013	824.700	4.2	-10	1.395	0.0017
1013	824.700	4.2	0	3.041	0.0037
1013	824.700	4.2	10	2.097	0.0025
1013	824.700	4.2	20	-0.159	-0.0002
1013	824.700	4.2	30	0.341	0.0004
1013	824.700	4.2	40	0.692	0.0008
1013	824.700	4.2	50	0.582	0.0007
1013	824.700	4.2	60	4.022	0.0049

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)
- A division of Research in Motion Limited.
Copyright 2005-2007 Page 41 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG					
Test Report No.	Dates of Test	Author Data				
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill				

Cellular Results: channel 384 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
384	836.520	3.6	-30	-9.112	-0.0109
384	836.520	3.6	-20	6.320	0.0076
384	836.520	3.6	-10	2.979	0.0036
384	836.520	3.6	0	3.966	0.0047
384	836.520	3.6	10	3.288	0.0039
384	836.520	3.6	20	0.422	0.0005
384	836.520	3.6	30	-0.836	-0.0010
384	836.520	3.6	40	-0.065	-0.0001
384	836.520	3.6	50	0.047	0.0001
384	836.520	3.6	60	2.545	0.0030

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
384	836.520	3.8	-30	-6.168	-0.0074
384	836.520	3.8	-20	4.953	0.0059
384	836.520	3.8	-10	0.992	0.0012
384	836.520	3.8	0	2.518	0.0030
384	836.520	3.8	10	1.872	0.0022
384	836.520	3.8	20	-0.207	-0.0002
384	836.520	3.8	30	-0.200	-0.0002
384	836.520	3.8	40	-0.057	-0.0001
384	836.520	3.8	50	-0.498	-0.0006
384	836.520	3.8	60	2.811	0.0034

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
384	836.520	4.2	-30	-2.324	-0.0028
384	836.520	4.2	-20	3.337	0.0040
384	836.520	4.2	-10	1.128	0.0013
384	836.520	4.2	0	2.119	0.0025
384	836.520	4.2	10	0.232	0.0003
384	836.520	4.2	20	-0.551	-0.0007
384	836.520	4.2	30	-0.288	-0.0003
384	836.520	4.2	40	0.024	0.0000
384	836.520	4.2	50	-0.245	-0.0003
384	836.520	4.2	60	2.983	0.0036

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)
- A division of Research in Motion Limited.

Copyright 2005-2007 Page 42 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG					
Test Report No.	Dates of Test	Author Data				
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill				

Cellular Results: channel 777 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
777	848.310	3.6	-30	-8.352	-0.0099
777	848.310	3.6	-20	5.608	0.0066
777	848.310	3.6	-10	2.441	0.0029
777	848.310	3.6	0	3.950	0.0047
777	848.310	3.6	10	2.680	0.0032
777	848.310	3.6	20	-0.231	-0.0003
777	848.310	3.6	30	-0.426	-0.0005
777	848.310	3.6	40	0.329	0.0004
777	848.310	3.6	50	-0.907	-0.0011
777	848.310	3.6	60	2.908	0.0034

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
777	848.310	3.8	-30	-4.571	-0.0054
777	848.310	3.8	-20	4.435	0.0053
777	848.310	3.8	-10	1.863	0.0022
777	848.310	3.8	0	2.693	0.0032
777	848.310	3.8	10	1.443	0.0017
777	848.310	3.8	20	-0.680	-0.0008
777	848.310	3.8	30	-1.035	-0.0012
777	848.310	3.8	40	-0.697	-0.0008
777	848.310	3.8	50	-0.281	-0.0003
777	848.310	3.8	60	2.736	0.0032

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
777	848.310	4.2	-30	-1.589	-0.0019
777	848.310	4.2	-20	3.694	0.0044
777	848.310	4.2	-10	1.291	0.0015
777	848.310	4.2	0	2.431	0.0029
777	848.310	4.2	10	0.811	0.0010
777	848.310	4.2	20	-0.086	-0.0001
777	848.310	4.2	30	-0.568	-0.0007
777	848.310	4.2	40	-0.357	-0.0004
777	848.310	4.2	50	-0.339	-0.0004
777	848.310	4.2	60	3.442	0.0041

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)
- A division of Research in Motion Limited.
Copyright 2005-2007 Page 43 of 64

RTS	EMI Test Report for the BlackBerry Handheld Model RBK41CG					
RIM Testing Services						
Test Report No.	Dates of Test	Author Data				
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill				

PCS Channel results: channels 25, 600, & 1175 @ 20°C maximum transmitted power

Traffic Channel Number	PCS Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
25	1851.20	3.6	20	-3.910	-0.0021
600	1880.00	3.6	20	0.909	0.0005
1175	1908.75	3.6	20	-0.308	-0.0002

Traffic Channel Number	PCS Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
25	1851.20	3.8	20	-0.198	-0.0001
600	1880.00	3.8	20	-0.547	-0.0003
1175	1908.75	3.8	20	-1.077	-0.0006

Traffic Channel Number	PCS Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
25	1851.20	4.2	20	-0.115	-0.0001
600	1880.00	4.2	20	-1.456	-0.0008
1175	1908.75	4.2	20	-1.569	-0.0008

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

- A division of Research in Motion Limited.

Copyright 2005-2007 Page 44 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG				
Test Report No.	Dates of Test	Author Data			
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill			

PCS Results: channel 25 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
25	1851.20	3.6	-30	0.317	0.0002
25	1851.20	3.6	-20	-2.654	-0.0014
25	1851.20	3.6	-10	-1.829	-0.0010
25	1851.20	3.6	0	-2.056	-0.0011
25	1851.20	3.6	10	-2.761	-0.0015
25	1851.20	3.6	20	-3.910	-0.0021
25	1851.20	3.6	30	-1.855	-0.0010
25	1851.20	3.6	40	-4.341	-0.0023
25	1851.20	3.6	50	-2.807	-0.0015
25	1851.20	3.6	60	-3.300	-0.0018

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
25	1851.20	3.8	-30	-15.737	-0.0085
25	1851.20	3.8	-20	13.003	0.0070
25	1851.20	3.8	-10	4.745	0.0026
25	1851.20	3.8	0	9.762	0.0053
25	1851.20	3.8	10	6.550	0.0035
25	1851.20	3.8	20	-0.198	-0.0001
25	1851.20	3.8	30	-0.089	0.0000
25	1851.20	3.8	40	0.980	0.0005
25	1851.20	3.8	50	-0.871	-0.0005
25	1851.20	3.8	60	9.263	0.0050

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
25	1851.20	4.2	-30	-4.969	-0.0027
25	1851.20	4.2	-20	8.407	0.0045
25	1851.20	4.2	-10	5.381	0.0029
25	1851.20	4.2	0	6.393	0.0035
25	1851.20	4.2	10	4.231	0.0023
25	1851.20	4.2	20	-0.115	-0.0001
25	1851.20	4.2	30	0.666	0.0004
25	1851.20	4.2	40	0.568	0.0003
25	1851.20	4.2	50	0.631	0.0003
25	1851.20	4.2	60	8.549	0.0046

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)
- A division of Research in Motion Limited.
Copyright 2005-2007 Page 45 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG				
Test Report No.	Dates of Test	Author Data			
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill			

PCS Results: channel 600 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
600	1880.00	3.6	-30	-20.250	-0.0108
600	1880.00	3.6	-20	11.502	0.0061
600	1880.00	3.6	-10	5.076	0.0027
600	1880.00	3.6	0	7.730	0.0041
600	1880.00	3.6	10	5.236	0.0028
600	1880.00	3.6	20	0.909	0.0005
600	1880.00	3.6	30	-1.646	-0.0009
600	1880.00	3.6	40	-1.605	-0.0009
600	1880.00	3.6	50	-2.206	-0.0012
600	1880.00	3.6	60	4.048	0.0022

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
600	1880.00	3.8	-30	-17.481	-0.0093
600	1880.00	3.8	-20	12.007	0.0064
600	1880.00	3.8	-10	3.617	0.0019
600	1880.00	3.8	0	7.374	0.0039
600	1880.00	3.8	10	5.051	0.0027
600	1880.00	3.8	20	-0.547	-0.0003
600	1880.00	3.8	30	-3.394	-0.0018
600	1880.00	3.8	40	-0.550	-0.0003
600	1880.00	3.8	50	-1.411	-0.0008
600	1880.00	3.8	60	6.409	0.0034

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
600	1880.00	4.2	-30	-9.135	-0.0049
600	1880.00	4.2	-20	9.558	0.0051
600	1880.00	4.2	-10	2.708	0.0014
600	1880.00	4.2	0	5.255	0.0028
600	1880.00	4.2	10	3.214	0.0017
600	1880.00	4.2	20	-1.456	-0.0008
600	1880.00	4.2	30	-1.452	-0.0008
600	1880.00	4.2	40	-2.546	-0.0014
600	1880.00	4.2	50	-1.419	-0.0008
600	1880.00	4.2	60	6.185	0.0033

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)
- A division of Research in Motion Limited.
Copyright 2005-2007 Page 46 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG				
Test Report No.	Dates of Test	Author Data			
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill			

PCS Results: channel 1175 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
1175	1908.75	3.6	-30	-21.680	-0.0114
1175	1908.75	3.6	-20	12.307	0.0064
1175	1908.75	3.6	-10	6.213	0.0033
1175	1908.75	3.6	0	7.953	0.0042
1175	1908.75	3.6	10	6.589	0.0035
1175	1908.75	3.6	20	-0.308	-0.0002
1175	1908.75	3.6	30	-1.088	-0.0006
1175	1908.75	3.6	40	-1.541	-0.0008
1175	1908.75	3.6	50	-1.274	-0.0007
1175	1908.75	3.6	60	5.364	0.0028

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
1175	1908.75	3.8	-30	-14.024	-0.0073
1175	1908.75	3.8	-20	9.875	0.0052
1175	1908.75	3.8	-10	2.494	0.0013
1175	1908.75	3.8	0	6.669	0.0035
1175	1908.75	3.8	10	2.296	0.0012
1175	1908.75	3.8	20	-1.077	-0.0006
1175	1908.75	3.8	30	-3.624	-0.0019
1175	1908.75	3.8	40	1.914	0.0010
1175	1908.75	3.8	50	-1.532	-0.0008
1175	1908.75	3.8	60	7.515	0.0039

Traffic Channel Number	Frequency (MHz)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
1175	1908.75	4.2	-30	-7.198	-0.0038
1175	1908.75	4.2	-20	7.061	0.0037
1175	1908.75	4.2	-10	2.220	0.0012
1175	1908.75	4.2	0	5.689	0.0030
1175	1908.75	4.2	10	2.502	0.0013
1175	1908.75	4.2	20	-1.569	-0.0008
1175	1908.75	4.2	30	-2.638	-0.0014
1175	1908.75	4.2	40	-1.537	-0.0008
1175	1908.75	4.2	50	-0.616	-0.0003
1175	1908.75	4.2	60	5.503	0.0029

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)
- A division of Research in Motion Limited.
Copyright 2005-2007 Page 47 of 64

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RE	3K41CG
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

APPENDIX 4 - RADIATED EMISSIONS TEST DATA

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RE	3K41CG
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

The environmental test conditions were:

Temperature 22°C
Pressure 1011mb
Relative Humidity 22%

Dates of test: January 24, 2007 to February 2, 2007

Test distance was 3.0 metres.

Cellular Band

						1		Su	bstitution	Meth	od		
	EUT			Rx Antenna Spectru Analyze			Tracking Generator						
Туре	Ch	Frequency	Band	Туре	Pol.	Reading	Max (V,H)	Pol. Tx-Rx	Reading	Rea (relat	ected ding ive to ole)	Limit	Diff to Limit
		(MHz)				(dBuV)	(dBuV)		(dBm)	(dBm)	(Watts)	(dBm)	(dB)
		ind (ERP), C Standalone			C3, S0	O55), CH	1013, CH	1 384, (CH 777				
F0	1013	824.70	800	Dipole	٧	72.1	83.2	VV	9.6	22.4	0 210	39.00	-15.6
F0	1013	824.70	800	Dipole	Н	83.2	03.2	нн	7.3	23.4	0.219	39.00	-13.0
F0	384	836.52	800	Dipole	>	72.2	83.5	VV	10.1	22.0	0 240	39.00	15.2
F0	384	836.52	800	Dipole	Ι	83.5	03.5	нн	8.1	23.0	0.240	39.00	-15.2
F0	777	848.32	800	Dipole	٧	71.4	82.6	VV	8.5	21.0	0 155	39.00	-17.1
F0	777	848.32	800	Dipole	Η	82.6	02.0	нн	8.1	21.9	0.133	39.00	-17.1

ERP = Tracking Generator Level + Antenna Gain - Cable Loss + Preamp

Copyright 2005-2007 Page 49 of 64

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RE	BK41CG
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Cellular Band

The environmental test conditions were: Temperature 23°C

Pressure 1003 mb Relative Humidity 23%

Date of Test: January 23 2007

Test Distance was 3.0 metres with a EUT height of 1.0 metres, 30 MHz to 1000 MHz. The Handheld PIN 3016B678 was in standalone, vertical position.

The measurements were performed in CDMA2000 (RC3, SO55) mode, channel 384.

Frequency -	Antenna		Test	Detector	Measured	Correction Factor for	Field Strength Level	Limit @	Test
	Pol.	Height	Angle	/DI/	Level	preamp/antenna/ cables/ filter	(reading+corr)	3.0 m	Margin
(MHz)	(V/H)	(metres)	(Deg.)	(PK or AVE)	(dBµV)	(dB/m)	(dBµV/m)	(dB)	(dB)
817.38	V	1.91	78	PK	70.38	-98.09	-27.71	-13	-14.71
855.62	V	1.55	173	PK	63.26	-96.90	-33.64	-13	-20.64

All other emissions had a test margin greater than 25.0 dB.

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 50 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RE	BK41CG
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Test distance was 3.0 metres.

Cellular Band

Type Ch								Su	bstitution M	ethod			
Type Ch		1	EUT	1	Rx Ante	enna	Spectrum	Analyzer	Tra	acking Gene	erator		ı
MHz	Туре	Ch	Frequency	Band	Туре	Pol.	Reading	Max (V,H)	Pol.	Reading	Reading	Limit	Diff to Limit
CDMA2000, (RC3, SO55), CH 1013, CH 384, CH 777			(MHz)				(dBuV)	(dBuV)	Tx-Rx	(dBm)	`		(dB)
2 nd 1013 1649.40 800 Horn V 51.6 54.9 V-V -17.1 -45.3 -13 -32. The harmonics were investigated up to the 10 th harmonic. Harmonics above the 2 nd harmonic were in the noise floor (NF) Middle Channel – 836.52 MHz 2 nd 384 1673.04 800 Horn V 54.9 58.3 V-V -13.3 -41.5 -13 -28.4 The harmonics were investigated up to the 10 th harmonic. Harmonics above the 2 nd harmonic were in the NF High Channel – 848.32 MHz 2 nd 777 1696.64 800 Horn V 52.1 60.2 V-V -11.5 -39.6 -13 -26.4 The harmonics were investigated up to the 10 th harmonic.	CD	CDMA2000, (RC3, SO55), CH 1013, CH 384, CH 777											
2 nd 1013 1649.40 800 Horn H 54.9 54.9 H-H -16.6 -45.3 -13 -32. The harmonics were investigated up to the 10 th harmonic. Harmonics above the 2 nd harmonic were in the noise floor (NF) Middle Channel - 836.52 MHz 2 nd 384 1673.04 800 Horn V 54.9 58.3 V-V -13.3 -41.5 -13 -28.5 The harmonics were investigated up to the 10 th harmonic. Harmonics above the 2 nd harmonic were in the NF High Channel - 848.32 MHz 2 nd 777 1696.64 800 Horn V 52.1 60.2 V-V -11.5 -39.6 -13 -26.6 The harmonics were investigated up to the 10 th harmonic.	Lo	w Cha	nnel – 824.7	0 MHz									
2nd 1013 1649.40 800 Horn H 54.9 H-H -16.6 H-H -16.6	2 nd	1013	1649.40	800	Horn	V	51.6	54.0	V-V	-17.1	-45 3	-13	-323
Harmonics above the 2 nd harmonic were in the noise floor (NF) Middle Channel - 836.52 MHz	2 nd	1013	1649.40	800	Horn	Н	54.9	54.9	H-H	-16.6	75.5	-13	-02.0
Middle Channel – 836.52 MHz 2 nd 384 1673.04 800 Horn V 54.9 58.3 V-V -13.3 H-H -12.8 -41.5 -13 -28.8 2 nd 384 1673.04 800 Horn H 58.3 H-H -12.8 -41.5 -13 -28.8 The harmonics were investigated up to the 10 th harmonic. High Channel – 848.32 MHz 2 nd 777 1696.64 800 Horn V 52.1 2 nd 777 1696.64 800 Horn H 60.2 60.2 H-H -10.8 -39.6 -13 -26.0 The harmonics were investigated up to the 10 th harmonic.	Th	e harr	nonics were	invest	igated ι	ıp to	the 10 th	harmonic).				
2 nd 384 1673.04 800 Horn V 54.9 58.3 V-V -13.3 H-H -12.8 -41.5 -13 -28.5 2 nd 384 1673.04 800 Horn H 58.3 58.3 H-H -12.8 -41.5 -13 -28.5 The harmonics were investigated up to the 10 th harmonic. Harmonics above the 2 nd harmonic were in the NF High Channel – 848.32 MHz 2 nd 777 1696.64 800 Horn V 52.1 60.2 60.2 V-V -11.5 H-H -10.8 -39.6 -13 -26.6 2 nd 777 1696.64 800 Horn H 60.2 H-H -10.8 -39.6 -13 -26.6 The harmonics were investigated up to the 10 th harmonic.	На	ırmoni	cs above th	e 2 nd ha	armonic	wer	e in the r	noise floo	r (NF)				
2 nd 384 1673.04 800 Horn H 58.3 H-H -12.8 -41.5 -13 -28.5 The harmonics were investigated up to the 10 th harmonic. High Channel – 848.32 MHz 2 nd 777 1696.64 800 Horn V 52.1 60.2 V-V -11.5 -39.6 -13 -26.0 2 nd 777 1696.64 800 Horn H 60.2 H-H -10.8 -39.6 -13 -26.0 The harmonics were investigated up to the 10 th harmonic.	Mie	ddle C	hannel – 830	6.52 M⊢	lz								
2 nd 384 1673.04 800 Horn H 58.3 H-H -12.8 The harmonics were investigated up to the 10 th harmonic. High Channel – 848.32 MHz 2 nd 777 1696.64 800 Horn V 52.1 60.2 V-V -11.5 -39.6 -13 -26.0 2 nd 777 1696.64 800 Horn H 60.2 H-H -10.8 -39.6 -13 -26.0 The harmonics were investigated up to the 10 th harmonic.	2 nd	384	1673.04	800	Horn	V	54.9	F0 2	V-V	-13.3	44 E	12	20.5
Harmonics above the 2^{nd} harmonic were in the NF High Channel – 848.32 MHz 2^{nd} 777 1696.64 800 Horn V 52.1 60.2 V-V -11.5 -39.6 -13 -26.0 The harmonics were investigated up to the 10^{th} harmonic.	2 nd	384	1673.04	800	Horn	Н	58.3	36.3	Н-Н	-12.8	-41.5	-13	-20.3
High Channel – 848.32 MHz 2 nd 777 1696.64 800 Horn V 52.1 60.2 V-V -11.5 -39.6 -13 -26.0 2 nd 777 1696.64 800 Horn H 60.2 H-H -10.8 -39.6 -13 -26.0 The harmonics were investigated up to the 10 th harmonic.	Th	e harr	nonics were	invest	igated ι	ıp to	the 10 th	harmonic).				
2 nd 777 1696.64 800 Horn V 52.1 60.2 V-V -11.5 -39.6 -13 -26.0 2 nd 777 1696.64 800 Horn H 60.2 H-H -10.8 -39.6 -13 -26.0 The harmonics were investigated up to the 10 th harmonic.	На	ırmoni	cs above th	e 2 nd ha	armonic	wer	e in the N	١F					
2 nd 777 1696.64 800 Horn V 52.1 60.2 V-V -11.5 -39.6 -13 -26.0 2 nd 777 1696.64 800 Horn H 60.2 H-H -10.8 -39.6 -13 -26.0 The harmonics were investigated up to the 10 th harmonic.	Hig	gh Cha	annel – 848.3	32 MHz									
The harmonics were investigated up to the 10 th harmonic.					Horn	٧	52.1	60.0	V-V	-11.5	20.0	40	00.0
	2 nd	777	1696.64	800	Horn	Н	60.2	60.2	Н-Н	-10.8	-39.6	-13	-∠6.6
marmonics above the 2 marmonic were in the NF		The harmonics were investigated up to the 10 th harmonic. Harmonics above the 2 nd harmonic were in the NF											

Copyright 2005-2007 Page 51 of 64

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RE	BK41CG
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Test distance was 3.0 metres.

Cellular Band

								Su	bstitution M	ethod		
	1	EUT	1	Rx Ant	enna	Spectrum	n Analyzer	Tra	acking Gene	erator		
Туре	Ch	Frequency	Band	Туре	Pol.	Reading	Max (V,H)	Pol.	Reading	Corrected Reading (relative to	Limit	Diff to Limit
		(MHz)				(dBuV)	(dBuV)	Tx-Rx	(dBm)	dipole)	(dBm)	(dB)
CE	Cellular Band (Harmonics) CDMA2000, (RC3, TDSO SO32), CH 1013, CH 384, CH 777 Handheld Standalone, USB up											
Lo	w Cha	nnel – 824.7	0 MHz									
2 nd	1013	1649.40	800	Horn	V	51.8	54.9	V-V	-16.9	-45.3	-13	-32.3
2 nd	1013	1649.40	800	Horn	Н	54.9	34.9	H-H	-16.6	45.5	-13	-32.3
Th	e harr	nonics were	invest	igated ι	ıp to	the 10 th	harmonic).				
На	ırmoni	cs above th	e 2 nd ha	armonio	wer	e in the r	noise floo	r (NF)				
Mi	ddle C	hannel – 830	6.52 MF	lz								
2 nd	384	1673.04	800	Horn	V	51.1	53.8	V-V	-18.4	-46.5	-13	-33.5
2 nd	384	1673.04	800	Horn	Н	53.8	55.6	Н-Н	-17.8	-40.5	-13	-33.3
		nonics were		•	•).				
На	ırmoni	cs above th	e 2 nd ha	armonic	wer	e in the N	NF.					
Hig	gh Cha	annel – 848.3	32 MHz									
2 nd	777	1696.64	800	Horn	V	56.8	59.9	V-V	-11.8	-39.9	-13	-26.9
2 nd	777	1696.64	800	Horn	Н	59.9	33.3	H-H	-11.1	-33.8	-13	-20.9
Th	The harmonics were investigated up to the 10 th harmonic.											
На	Harmonics above the 2 nd harmonic were in the NF											

Copyright 2005-2007 Page 52 of 64

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RE	BK41CG
Test Report No.	Dates of Test	Author Data
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill

Cellular Band

The environmental test conditions were: Temperature 24°C

Pressure 1013 mb Relative Humidity 22%

Date of Test: January 18 2007

Test Distance was 3.0 metres with a EUT height of 1.0 metres, 30 MHz to 1000 MHz. The Handheld PIN 3016B247 was in standalone, vertical position.

The measurements were performed in 1xEVDO mode, channel 384.

Frequency	Ar Pol.	ntenna Height	Test Angle	Detector	Measured Level	Correction Factor for preamp/antenna/ cables/ filter	Field Strength Level (reading+corr)	Limit @ 3.0 m	Test Margin
(MHz)	(V/H)	(metres)	(Deg.)	(PK or AVE)	(dBµV)	(dB/m)	(dBµV/m)	(dB)	(dB)
817.40	V	1.90	303	PK	68.72	-98.09	-29.37	-13	-16.37
855.63	V	1.65	271	PK	63.89	-96.90	-33.01	-13	-20.01

All other emissions had a test margin greater than 25.0 dB.

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 53 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	Livil Test Report for the blackberry Handried Model RBR4100						
Test Report No.	Dates of Test	Author Data					
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill					

Test distance was 3.0 metres.

Cellular Band

Substitution Method												
		EUT	1	Rx Ante	enna	Spectrun	n Analyzer	Tra	acking Gene	erator		ı
Туре	Ch	Frequency	Band	Туре	Pol.	Reading	Max (V,H)	Pol.	Reading	Corrected Reading (relative to	Limit	Diff to Limit
		(MHz)				(dBuV)	(dBuV)	Tx-Rx	(dBm)	` dipole)	(dBm)	(dB)
	Cellular Band (Harmonics) 1xEVDO, CH 1013, CH 384, CH 777											
'^	1xEVDO, CH 1013, CH 384, CH 777											
На	andhel	d Standalor	ne, USE	3 up								
Lo	w Cha	nnel – 824.7	'0 MHz									
2 nd	1013	1649.40	800	Horn	٧	50.7		V-V	-16.7			
2 nd	1013	1649.40	800	Horn	Н	55.1	55.1 -	Н-Н	-16.4	-45.1	-13	-32.1
Th	The harmonics were investigated up to the 10 th harmonic.											
		cs above th		-	-							
M	ddla C	hannel – 830	≎ 52 ML	I- -								
2 nd	384	1673.04	800	Horn	V	50.0		V-V	-19.2			
2 nd	384	1673.04	800	Horn	Н	53.1	53.1	H-H	-18.6	-47.3	-13	-34.3
Th		nonics were					harmonio					
		cs above th		•	•			,.				
		annel – 848.3		2111101110	****	0 111 1110 1	**					
2 nd	777	1696.64	800	Horn	V	48.5	54.2	V-V	-18.1	-46.1	-13	-33.1
2 nd	777	1696.64	800	Horn	Н	54.2	04.2	H-H	-17.3	-40. I	-13	-33. i
Th	e harr	nonics were	invest	igated ι	ıp to	the 10 th	harmonic	;.				
На	armoni	cs above th	e 2 nd ha	armonic	wer	e in the l	NF					

Copyright 2005-2007 Page 54 of 64

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG							
Test Report No.	Dates of Test	Author Data						
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill						

Test distance was 3.0 metres.

Cellular Band

								Sub	stitution M	lethod		
		EUT		Rx Ant	enna	Spectrum An	alyzer	Tra	cking Gen	erator		
Туре	Ch	Frequency	Band	Туре	Pol.	Reading	Max (V,H)	Pol.	Reading	Corrected Reading (relative to dipole)	Limit	Diff to Limit
		(MHz)				(dBuV)	(dBuV)	Tx-Rx	(dBm)	(dBm)	(dBm)	(dB)
Cellular BAND RF Local Oscillator (LO) Handheld Standalone, vertical position Low Channel												
F0	1013	1739.40	800	Horn	V	NF	_	V-V	1		-13	_
F0	1013	1739.40	800	Horn	Η	NF	_	H-H	-	-		
Emi	ssions	were in the	e NF.									
Midd	lle Cha	<u>ınnel</u>										
F0	384	1763.04	800	Horn	V	NF		V-V	-		-13	
F0	384	1763.04	800	Horn	Н	NF	_	Н-Н	-	-	-13	-
	ssions Chan	s were in the nel	e NF.									
F0	777	1786.62	800	Horn	V	NF		V-V	_		-13	
F0	777	1786.62	800	Horn	Н	NF	- H-I		-		-13	-
Emi	ssions	were in the	NF.									

Copyright 2005-2007 Page 55 of 64

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	Emi rest report for the blackberry Handreid Model RBR4766						
Test Report No.	Dates of Test	Author Data					
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill					

PCS Band

Test distance was 3.0 metres.

									Substitut	ion Metho	d		
		EUT		Receive A	ntenna	Spectrum	pectrum Analyzer			Tracking Generator			
Туре	Ch	Frequency	Band	Туре	Pol.	Reading	Max (V,H)	Pol.	Reading	Corrected Reading (relative to Isotropic Radiator)		Limit	Diff to Limit
		(MHz)				(dBuV)	dBuV	Tx-Rx	(dBm)	(dBm)	(Watts)	(dBm)	(dB)
PCS	PCS BAND (EIRP), CDMA2000, (RC3, SO55) - CH 25, CH 600, CH 1175												
Hand	dheld S	Standalone	e, USE	3 down									
F0	25	1851.25	1900	Horn	V	87.1	87.1	V-V	-12.3	24.6	0.288	33	-8.4
F0	25	1851.25	1900	Horn	Н	86.0	07.1	Н-Н	-10.7	24.0	0.200	33	-0.4
F0	600	1880.00	1900	Horn	V	87.9	87.9	V-V	-10.3	26.5	0.447	33	-6.5
F0	600	1880.00	1900	Horn	Н	85.3	67.9	Н-Н	-8.6	20.5	0.447	33	-0.5
F0	1175	1908.75	1900	Horn	V	87.6	87.6	V-V	-10.3	26.0	0.398	33	-7.0
F0	1175	1908.75	1900	Horn	Н	82.6	01.0	Н-Н	-8.9	20.0	0.390	55	-1.0

EIRP = Tracking Generator Level + Antenna Factor – Cable Loss + Preamp Gain

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 56 of 64

⁻ A division of Research in Motion Limited.

RTS								
RIM Testing Services								
Test Report No.	Dates of Test	Author Data						
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill						

PCS Band

The environmental test conditions were: Temperature 23°C

Pressure 1029mb Relative Humidity 22%

Date of Test: January 22 2007

Test Distance was 3.0 metres with a EUT height of 1.0 metres, 30 MHz to 1000 MHz. The Handheld PIN 3016B678 was in standalone, vertical position.

The measurements were performed in CDMA2000 (RC3, SO55) mode, channel 600.

	Antenna		Test	Detector Measured Level		Correction Factor for preamp/antenna/	Field Strength Level	Limit @	Test
	Pol.	Height	Angle	PK or	Levei	cables/ filter	(reading+corr)	3.0 m	Margin
(MHz)	(V/H)	(metres)	(Deg.)	AVE)	(dBµV)	(dB/m)	(dBµV/m)	(dB)	(dB)
-	-	-	-	-	-	-	-	-	-

All emissions were in the noise floor (NF).

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 57 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG							
Test Report No.	Dates of Test	Author Data						
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill						

PCS Band

The environmental test conditions were: Temperature 23°C

Pressure 1018 mb Relative Humidity 23%

Date of Test: January 16 2007

Test Distance was 3.0 metres with a EUT height of 1.0 metres, 1 GHz to 19 GHz. The Handheld PIN 3016B247 was in standalone, vertical position.

The measurements were performed in CDMA2000 (RC3, SO55) mode, channel 600.

Frequency			Test Angle	Detector	Measured Level	Correction Factor for preamp/antenna/	Field Strength Level (reading+corr)	Limit @ 3.0 m	Test Margin
(MHz)	(V/H)	Height (metres)	(Deg.)	(PK or AVE)	(dBµV)	cables/ filter (dB/m)	(dBµV/m)	(dB)	(dB)
1840.74	V	1.88	32	PK	58.63	-93.22	-34.59	-13	-21.59
18705.05	V	2.53	306	PK	42.01	-73.22	-31.21	-13	-18.21
18700.33	Н	1.42	175	PK	41.34	-73.03	-31.69	-13	-18.69

All other emissions had a test margin greater than 25.0 dB.

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 58 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMI Test Report for the BlackBerry Handheld Model RBK41CG							
Test Report No.	Dates of Test	Author Data						
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill						

PCS Band

Test distance was 3.0 metres.

								S	Substitution	n Method		
		EUT		Receive Ante	enna	Spectrur	n Analyzer	1	racking G	enerator		
Туре	Ch	Frequency (MHz)	Band	Pol. Type	Pol.	Reading (dBuV)	Max (V,H)	Pol. Tx-Rx	Reading (dBm)	Corrected Reading (relative to Isotropic Radiator) (dBm)	Limit (dBm)	Diff to Limit (dB)
CDI Har	PCS BAND (Harmonics) CDMA2000, (RC3, SO55) - CH 25, CH 600, CH 1175 Handheld Standalone, USB down Low Channel 1851.25 MHz											
2 nd	25	3702.50	1900	Horn	V	45.9		V-V	-14.4			
2 nd	25	3702.50	1900	Horn	Н	46.5	46.5	H-H	-14.7	-36.4	-13	-23.4
The	The harmonics were investigated up to the 10th harmonic.											
Emi	ssion	s above the	e 2 nd h	armonic w	ere	in the no	ise floor	(NF)				
Mide	dle Cl	nannel 188	0.00 N	ИHz								
2 nd	600	3760.00	1900	Horn	V	45.2	46.7	V-V	-14.8	-35.6	-13	-22.6
2 nd	600	3760.00	1900	Horn	Н	46.7	40.7	Н-Н	-13.5	-35.6	-13	-22.0
The	harn	nonics were	inves	stigated up	to th	ne 10th I	narmonic.					
Emi	ssion	s above the	e 2 rd h	armonic we	ere i	n the NF	.					
High	<u>Cha</u>	<u>nnel</u> 1908.	75 MH	lz								
2 nd	600	3760.00	1900	Horn	V	45.5	45.0	V-V	-15.1	07.0	40	04.6
2 nd	600	3760.00	1900	Horn	Н	45.9	45.9	Н-Н	-15.3	-37.3	-13	-24.3
The h	narmo	onics were	invest	igated up t	o the	e 10th ha	armonic.					
		above the										

Copyright 2005-2007 Page 59 of 64

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services EMI Test Report for the BlackBerry Handheld Model RBK41CG						
Test Report No.	Dates of Test	Author Data				
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill				

PCS Band

Test distance was 3.0 metres.

Substitution Method													
	EUT		Receive Antenna Spectrum Anal				n Analyzer	Tracking Generator					
Туре	Ch	Frequency	Band	Pol. Type	Pol.	Reading	Max (V,H)	Pol.	Reading	Corrected Reading (relative to Isotropic Radiator)	Limit	Diff to Limit	
CDI Har	(MHz) (dBuV) (dBuV) Tx-Rx (dBm)												
2 nd	25	3702.50	1900	Horn	V	44.9		V-V	-14.6				
2 nd	25	3702.50	1900	Horn	Н	46.3	46.3	H-H	-15.1	-36.6	-13	-23.6	
The h	The harmonics were investigated up to the 10th harmonic.												
Harm	onics	above the		armonic we				NF)					
2 nd	600	<u>nannel</u> 188 3760.00	1900	Horn	V	44.8		V-V	-14.8				
2 nd	600	3760.00	1900	Horn	Н	45.6	45.6	H-H	-15.0	-36.9	-13	-23.9	
		nonics were					narmonic		10.0				
		cs above th		•				•					
		<u>nnel</u> 1908.			VCIC	111 (110 14	•						
2 nd	600	3760.00	1900	Horn	V	45.3		V-V	-15.0				
2 nd	600	3760.00	1900	Horn	Н	46.2	46.2	H-H	-15.1	-37.2	-13	-24.2	
The harmonics were investigated up to the 10th harmonic.													
	Harmonics above the 2 nd harmonic were in the NF												
1 Idii		20 400 111	<u> </u>	idillionio v	. 0.0	(110 14	•						

Copyright 2005-2007 Page 60 of 64

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

⁻ A division of Research in Motion Limited.

RTS EMI Test Report for the BlackBerry Handheld Model RBK41CG							
RIM Testing Services	·						
Test Report No.	Dates of Test	Author Data					
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill					

PCS Band

The environmental test conditions were: Temperature 23°C

Pressure 1029mb Relative Humidity 22%

Date of Test: January 19 2007

Test Distance was 3.0 metres with a EUT height of 1.0 metres, 30 MHz to 1000 MHz. The Handheld PIN 3016B678 was in standalone, vertical position.

The measurements were performed in 1xEVDO mode, channel 600.

Frequency	Antenna		Antenna		Detector , ,		Measured	Correction Factor for	Field Strength Level	Limit @	Test	
	Pol.	Height	Angle	(PK or	Level	preamp/antenna/ cables/ filter	(reading+corr)	3.0 m	Margin			
(MHz)	(V/H)	(metres)	(Deg.)	AVE)	(dBµV)	(dB/m)	(dBµV/m)	(dB)	(dB)			
-	-	-	-	-	-	-	-	-	-			

All emissions were in the noise floor (NF).

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 61 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services	EMITTEST Report for the blackberry Handried Model RbR41CO						
Test Report No.	Dates of Test	Author Data					
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill					

PCS Band

The environmental test conditions were: Temperature 23°C

Pressure 1029 mb Relative Humidity 22%

Date of Test: January 16 2007

Test Distance was 3.0 metres with a EUT height of 1.0 metres, 1 GHz to 19 GHz. The Handheld PIN 3016B247 was in standalone, vertical position.

The measurements were performed in 1xEVDO mode, channel 600.

Frequency	Frequency Antenna Pol. Height		Test Angle	Detector	Measured Level	Correction Factor for preamp/antenna/ cables/ filter	Field Strength Level (reading+corr)	Limit @ 3.0 m	Test Margin
(MHz)	(V/H)	(metres)	(Deg.)	(PK or AVE)	(dBµV)	(dB/m)	(dBµV/m)	(dB)	(dB)
1840.40	V	1.81	45	PK	59.30	-93.22	-33.92	-13	-20.92
18704.96	Н	1.47	297	PK	42.28	-73.22	-30.94	-13	-17.94
18701.05	V	1.04	226	PK	42.30	-73.16	-30.86	-13	-17.86
18726.03	Н	1.63	49	PK	42.44	-75.56	-33.12	-13	-20.12

All other emissions had a test margin greater than 25.0 dB.

This report shall <u>NOT</u> be reproduced except in full without the written consent of RIM Testing Services (RTS)

Copyright 2005-2007 Page 62 of 64

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services EMI Test Report for the BlackBerry Handheld Model RBK41CG						
Test Report No.	Dates of Test	Author Data				
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill				

PCS Band

Test distance was 3.0 metres.

Substitution Method												
	EUT		Receive Antenna Spectru			n Analyzer	Tracking Generator					
Туре	Ch	Frequency (MHz)	Band	Pol. Type	Pol.	Reading (dBuV)	Max (V,H)	Pol. Tx-Rx	Reading (dBm)	Corrected Reading (relative to Isotropic Radiator) (dBm)	Limit (dBm)	Diff to Limit (dB)
PCS BAND (Harmonics) 1xEVDO - CH 25, CH 600, CH 1175 Handheld Standalone, USB down Low Channel 1851.25 MHz												
2 nd	25	3702.50	1900	Horn	V	45.7		V-V	-12.4			
2 nd	25	3702.50	1900	Horn	H	48.1	48.1	H-H	-12.4	-34.4	-13	-21.4
		onics were						п-п	-12.0			
Harm <u>Mid</u>	nonics	s above the		ere in the i								
2 nd	600	3760.00	1900	Horn	V	45.5	46.7	V-V	-13.4	-35.5	-13	-22.5
2 nd	600	3760.00	1900	Horn	Н	46.7	40.7	H-H	-13.5	33.3	13	22.0
The I	narmo	onics were	invest	igated up t	o the	e 10th ha	armonic.					
Harm	nonics	s above the	2 nd ha	armonic we	ere ir	n the NF						
Hig	h Cha	<u>nnel</u> 1908.	75 MH	lz								
2 nd	600	3760.00	1900	Horn	٧	44.5	47.0	V-V	-13.5	05.4	40	00.4
2 nd	600	3760.00	1900	Horn	Н	47.6	47.6	H-H	-13.2	-35.4	-13	-22.4
The harmonics were investigated up to the 10th harmonic.												
Harm	Harmonics above the 2 nd harmonic were in the NF											

Copyright 2005-2007 Page 63 of 64

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

⁻ A division of Research in Motion Limited.

RTS RIM Testing Services EMI Test Report for the BlackBerry Handheld Model RBK41CG						
Test Report No.	Dates of Test	Author Data				
RTS-0491-0702-03	January 15 to March 27, 2007	C. O'Neill				

Test distance was 3.0 metres.

PCS Band

				S	ubstitution	Method								
		EUT		Receive Antenna Spectrum Ana			n Analyzer	Т	racking Ge	nerator				
Туре	Ch	Frequency (MHz)	Band	Туре	Pol.	Reading (dBuV)	Max (V,H)	Pol. Tx-Rx	Reading (dBm)	Corrected Reading (relative to Isotropic Radiator) (dBm)	Limit (dBm)	Diff to Limit (dB)		
	PCS Band – RF LO													
	Transmit mode with the handheld in standalone USB down position. Low Channel													
			1		l		Γ							
F0	25	1716.67	1900	Horn	V	NF	_	V-V	-	-	-13	_		
F0	25	1716.67	1900	Horn	Н	NF		H-H	-					
Em	Emissions were in the NF.													
Mid	dle Cl	<u>hannel</u>												
F0	600	1742.22	1900	Horn	٧	NF		V-V	-		-13			
F0	600	1742.22	1900	Horn	Н	NF	-	Н-Н	-	-	-13	-		
En	Emissions were in the NF.													
Hiç	High Channel													
F0	1175	1767.78	1900	Horn	V	NF		V-V	-		-13			
F0	1175	1767.78	1900	Horn	Н	NF	-	Н-Н	-	-	-13	-		
En	nissio	ns were in	the NF	·.										

Copyright 2005-2007 Page 64 of 64

This report shall NOT be reproduced except in full without the written consent of RIM Testing Services (RTS)

⁻ A division of Research in Motion Limited.