| RTS RIM Testing Services | Appendices for the BlackBerry<br>Model RBH42GW / RBH44GV |                  | Page 1(49) |
|--------------------------|----------------------------------------------------------|------------------|------------|
| Author Data              | Dates of Test                                            | Test Report No   | FCC ID:    |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                                  | RTS-0447-0607-11 | L6ARBH40GW |

### APPENDIX A: SAR DISTRIBUTION COMPARISON FOR ACCURACY VERIFICATION

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 2(49) |
|--------------------------|-------------------------------------------------------|------------------|------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:    |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW |

Date/Time: 22/06/2006 11:19:51 PM

Test Laboratory: RTS

File Name: 835MHz Validation Ambient Temp 23 5 C Liquid Temp 22 0 C 06 22 06.da4

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:446

**Program Name: Unnamed Program** 

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz;  $\sigma = 0.9$  mho/m;  $\varepsilon_r = 41.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

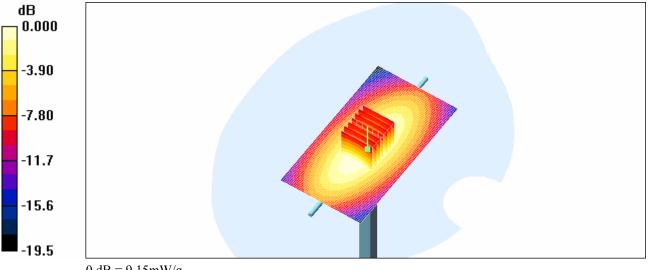
Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: ET3DV6 SN1642; ConvF(6.36, 6.36, 6.36); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 25/04/2006
- Phantom: SAM 1; Type: SAM 4.0; Serial: 1076
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

#### **Dipole Validation/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.1 V/m; Power Drift = -0.020 dB


Peak SAR (extrapolated) = 11.7 W/kg

SAR(1 g) = 8.38 mW/g; SAR(10 g) = 5.59 mW/g

Maximum value of SAR (measured) = 9.05 mW/g

#### **Dipole Validation/Area Scan (51x91x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 9.15 mW/g



0 dB = 9.15 mW/g

| RTS RIM Testing Services | Appendices for the BlackBerr<br>Model RBH42GW / RBH44C | 2                | Page 3(49) |
|--------------------------|--------------------------------------------------------|------------------|------------|
| Author Data              | Dates of Test                                          | Test Report No   | FCC ID:    |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                                | RTS-0447-0607-11 | L6ARBH40GW |

Date/Time: 19/07/2006 1:00:28 AM

Test Laboratory: RTS

File Name: 835MHz Validation Ambient Temp 24 3 C Liquid Temp 23 1 C 07 19 06.da4

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:446

**Program Name: Unnamed Program** 

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz;  $\sigma = 0.91$  mho/m;  $\varepsilon_r = 42.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

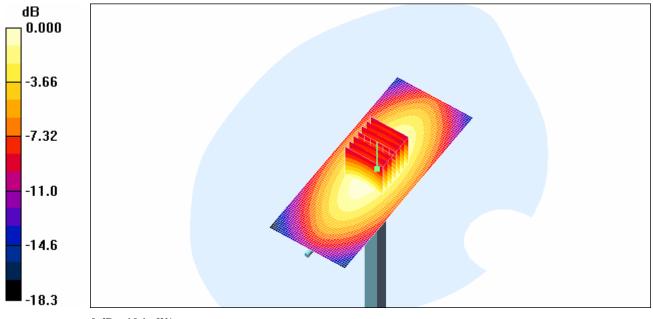
Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: ET3DV6 SN1642; ConvF(6.36, 6.36, 6.36); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 25/04/2006
- Phantom: SAM 1; Type: SAM 4.0; Serial: 1076
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

**Dipole Validation/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.7 V/m; Power Drift = -0.017 dB


Peak SAR (extrapolated) = 14.0 W/kg

SAR(1 g) = 9.43 mW/g; SAR(10 g) = 6.15 mW/g

Maximum value of SAR (measured) = 10.2 mW/g

**Dipole Validation/Area Scan (41x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 10.1 mW/g



0 dB = 10.1 mW/g

| RTS RIM Testing Services      | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                                 | Page 4(49)                |
|-------------------------------|-------------------------------------------------------|---------------------------------|---------------------------|
| Author Data <b>Kevin Chow</b> | Dates of Test  Jun. 22 – Jul. 20, 2006                | Test Report No RTS-0447-0607-11 | FCC ID: <b>L6ARBH40GW</b> |

Date/Time: 22/06/2006 6:05:30 PM

Test Laboratory: RTS

File Name: 1900MHz Validation Ambient Temp 23 8 C Liquid Temp 22 3 C 06 22 06.da4

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:545

**Program Name: Unnamed Program** 

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz;  $\sigma = 1.44$  mho/m;  $\varepsilon_r = 38.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

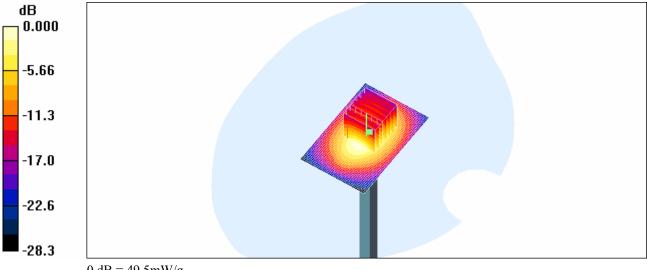
Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: ET3DV6 SN1642; ConvF(5.18, 5.18, 5.18); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 25/04/2006
- Phantom: SAM 1; Type: SAM 4.0; Serial: 1076
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

**Dipole Validation/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 190.9 V/m; Power Drift = 0.023 dB


Peak SAR (extrapolated) = 73.3 W/kg

SAR(1 g) = 41.5 mW/g; SAR(10 g) = 21.7 mW/g

Maximum value of SAR (measured) = 47.1 mW/g

**Dipole Validation/Area Scan (41x61x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 49.5 mW/g



0 dB = 49.5 mW/g

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 5(49) |
|--------------------------|-------------------------------------------------------|------------------|------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:    |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW |

Date/Time: 18/07/2006 4:32:38 PM

Test Laboratory: RTS

File Name: 1900MHz Validation Ambient Temp 24 2 C Liquid Temp 23 1 C 07 18 06.da4

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:545

**Program Name: Unnamed Program** 

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz;  $\sigma = 1.43 \text{ mho/m}$ ;  $\varepsilon_r = 39$ ;  $\rho = 1000 \text{ kg/m}^3$ 

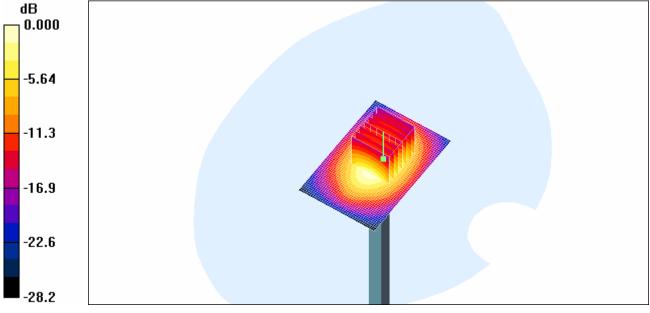
Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: ET3DV6 SN1642; ConvF(5.18, 5.18, 5.18); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn472: Calibrated: 25/04/2006
- Phantom: SAM 1; Type: SAM 4.0; Serial: 1076
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

**Dipole Validation/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 190.9 V/m; Power Drift = -0.026 dB


Peak SAR (extrapolated) = 69.2 W/kg

SAR(1 g) = 39.8 mW/g; SAR(10 g) = 21 mW/g

Maximum value of SAR (measured) = 45.0 mW/g

**Dipole Validation/Area Scan (41x61x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 48.5 mW/g



0 dB = 48.5 mW/g

| RTS RIM Testing Services | Appendices for the BlackBerry<br>Model RBH42GW / RBH44G |                  | Page 6(49) |
|--------------------------|---------------------------------------------------------|------------------|------------|
| Author Data              | Dates of Test                                           | Test Report No   | FCC ID:    |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                                 | RTS-0447-0607-11 | L6ARBH40GW |

Date/Time: 20/07/2006 5:31:04 PM

Test Laboratory: RTS

File Name: 1900MHz Validation Ambient Temp 23 1 C Liquid Temp 22 0 C 07 20 06.da4

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:545

**Program Name: Unnamed Program** 

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

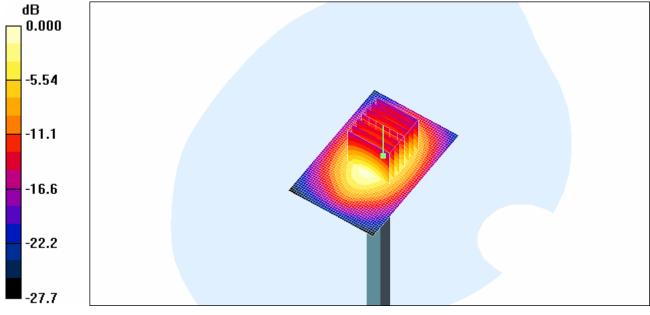
Medium parameters used: f = 1900 MHz;  $\sigma = 1.43$  mho/m;  $\varepsilon_r = 39$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: ET3DV6 SN1642; ConvF(5.18, 5.18, 5.18); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 25/04/2006
- Phantom: SAM 1; Type: SAM 4.0; Serial: 1076
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

**Dipole Validation/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 189.0 V/m; Power Drift = -0.105 dB

Peak SAR (extrapolated) = 71.3 W/kg

SAR(1 g) = 40.4 mW/g; SAR(10 g) = 21.1 mW/g

Maximum value of SAR (measured) = 45.7 mW/g

**Dipole Validation/Area Scan (41x61x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 49.1 mW/g



0 dB = 49.1 mW/g

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GV |                  | Page 7(49) |
|--------------------------|-------------------------------------------------------|------------------|------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:    |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW |

APPENDIX B: SAR DISTRIBUTION PLOTS FOR HEAD CONFIGURATION

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 8(49) |
|--------------------------|-------------------------------------------------------|------------------|------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:    |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW |

Date/Time: 23/06/2006 6:02:08 PM

Test Laboratory: RTS

File Name: Right Touch GSM850 Mid Chan Ambient Temp 23 5 C Liquid Temp 22 1 C.da4

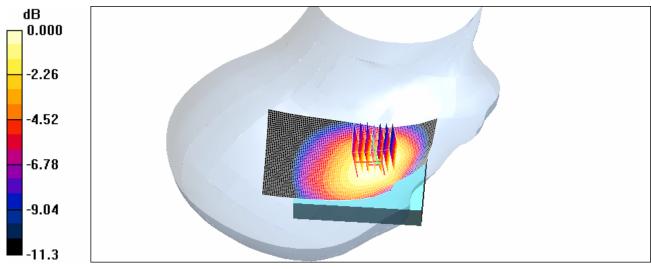
DUT: BlackBerry Wireless Handheld; Type: Sample; Serial: Not Specified Program Name: Compliance Testing: P1528 Protocol (Right-Hand Side)

Communication System: GSM 850; Frequency: 836.8 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 836.8 MHz;  $\sigma$  = 0.9 mho/m;  $\epsilon_r$  = 41.8;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Right Section

#### DASY4 Configuration:

- Probe: ET3DV6 SN1642; ConvF(6.36, 6.36, 6.36); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 25/04/2006
- Phantom: SAM 1; Type: SAM 4.0; Serial: 1076
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


**Touch position - Middle/Area Scan (51x91x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.805 mW/g

**Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.8 V/m; Power Drift = -0.086 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.764 mW/g; SAR(10 g) = 0.540 mW/gMaximum value of SAR (measured) = 0.813 mW/g



0 dB = 0.813 mW/g

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 9(49) |
|--------------------------|-------------------------------------------------------|------------------|------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:    |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW |

Date/Time: 22/06/2006 7:08:48 PM

Test Laboratory: RTS

File Name: Right Touch GSM1900 Mid Chan Ambient Temp 23 8 C Liquid Temp 22 5 C.da4

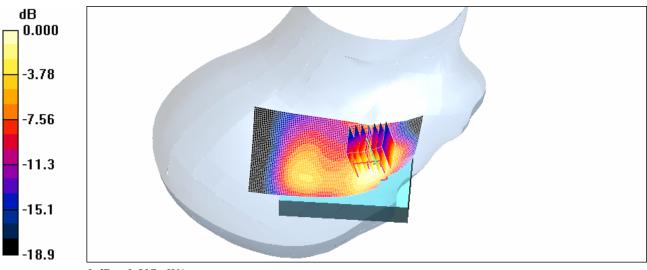
DUT: BlackBerry Wireless Handheld; Type: Sample; Serial: Not Specified Program Name: Compliance Testing: P1528 Protocol (Right-Hand Side)

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz;  $\sigma$  = 1.44 mho/m;  $\epsilon_r$  = 38.1;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Right Section

#### DASY4 Configuration:

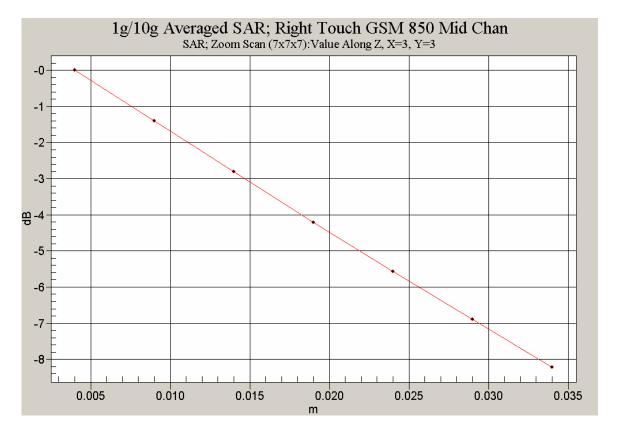
- Probe: ET3DV6 SN1642; ConvF(5.18, 5.18, 5.18); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 25/04/2006
- Phantom: SAM 1; Type: SAM 4.0; Serial: 1076
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


**Touch position - Middle/Area Scan (51x91x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.517 mW/g

**Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.03 V/m; Power Drift = 0.468 dB

Peak SAR (extrapolated) = 0.716 W/kg


SAR(1 g) = 0.468 mW/g; SAR(10 g) = 0.296 mW/gMaximum value of SAR (measured) = 0.507 mW/g



0 dB = 0.507 mW/g

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page<br>10(49) |
|--------------------------|-------------------------------------------------------|------------------|----------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:        |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW     |

## Z axis plot for the worst case head configuration:



| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page<br>11(49) |
|--------------------------|-------------------------------------------------------|------------------|----------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:        |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW     |

APPENDIX C: SAR DISTRIBUTION PLOTS FOR BODY-WORN CONFIGURATION

| RTS RIM Testing Services | Appendices for the BlackBerr<br>Model RBH42GW / RBH44G | •                | Page 12(49) |
|--------------------------|--------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                          | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                                | RTS-0447-0607-11 | L6ARBH40GW  |

Date/Time: 19/07/2006 5:11:15 PM

Test Laboratory: RTS

File Name:

Body Worn GPRS850 PlasticHolster Front Batt.1 Low Chan Amb Temp 24.0 C Liq Temp 22.6 C.da4

DUT: BlackBerry Wireless Handheld; Type: Sample; Serial: Not Specified Program Name: Compliance Testing: Body-worn with holster

Communication System: GPRS 850; Frequency: 824.2 MHz; Duty Cycle: 1:4.2

Medium parameters used (interpolated): f = 824.2 MHz;  $\sigma = 0.97 \text{ mho/m}$ ;  $\varepsilon_r = 53.4$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

#### DASY4 Configuration:

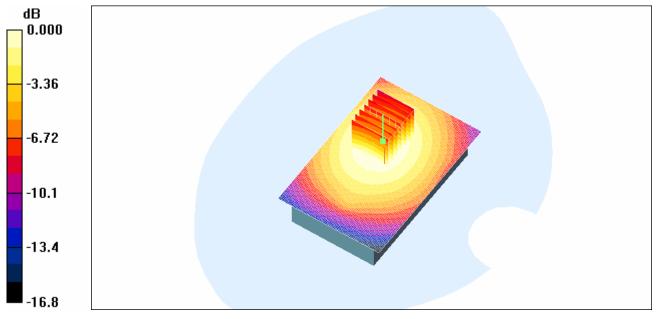
- Probe: ET3DV6 SN1642; ConvF(6.13, 6.13, 6.13); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 12/01/2006
- Phantom: SAM 2; Type: SAM 4.0; Serial: 1080
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.8 V/m; Power Drift = 0.075 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.996 mW/g; SAR(10 g) = 0.734 mW/g


Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.05 mW/g

Unnamed procedure/Area Scan (81x121x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 1.06 mW/g



0 dB = 1.06 mW/g

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GV |                  | 13(49)     |
|--------------------------|-------------------------------------------------------|------------------|------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:    |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW |

Date/Time: 19/07/2006 4:45:54 PM

Test Laboratory: RTS

File Name:

Body Worn GPRS850 PlasticHolster Front Batt.1 Mid Chan Amb Temp 23.5 C Liq Temp 22.2 C.da4

DUT: BlackBerry Wireless Handheld; Type: Sample; Serial: Not Specified Program Name: Compliance Testing: Body-worn with holster

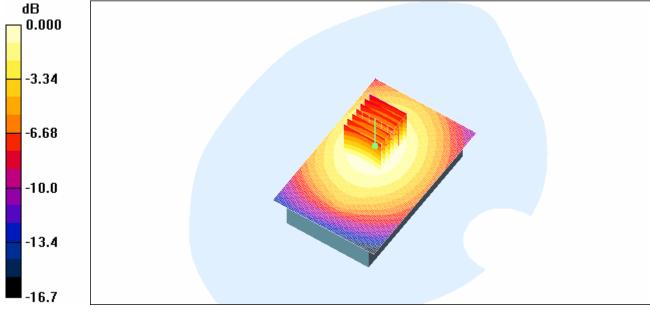
Communication System: GPRS 850; Frequency: 836.8 MHz; Duty Cycle: 1:4.2 Medium parameters used: f = 836.8 MHz;  $\sigma$  = 0.97 mho/m;  $\epsilon_r$  = 53.4;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: ET3DV6 SN1642; ConvF(6.13, 6.13, 6.13); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 12/01/2006
- Phantom: SAM 2; Type: SAM 4.0; Serial: 1080
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 30.7 V/m; Power Drift = -0.101 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.875 mW/g; SAR(10 g) = 0.651 mW/g

Maximum value of SAR (measured) = 0.925 mW/g

**Unnamed procedure/Area Scan (81x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.937 mW/g



0 dB = 0.937 mW/g

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page<br>14(49) |
|--------------------------|-------------------------------------------------------|------------------|----------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:        |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW     |

Date/Time: 19/07/2006 5:36:45 PM

Test Laboratory: RTS

File Name:

Body Worn GPRS850 PlasticHolster Front Batt.1 High Chan Amb Temp 23.5 C Liq Temp 22.5 C.da4

DUT: BlackBerry Wireless Handheld ; Type: Sample ; Serial: Not Specified Program Name: Compliance Testing: Body-worn with holster

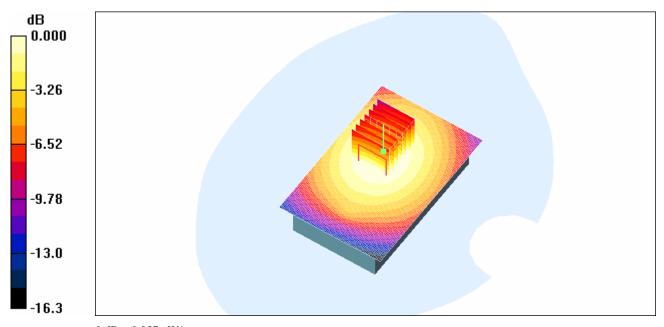
Communication System: GPRS 850; Frequency: 848.8 MHz; Duty Cycle: 1:4.2 Medium parameters used: f = 848.8 MHz;  $\sigma$  = 0.97 mho/m;  $\epsilon_r$  = 53.4;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: ET3DV6 SN1642; ConvF(6.13, 6.13, 6.13); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 12/01/2006
- Phantom: SAM 2; Type: SAM 4.0; Serial: 1080
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 31.1 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.912 mW/g; SAR(10 g) = 0.670 mW/g

Maximum value of SAR (measured) = 0.960 mW/g

**Unnamed procedure/Area Scan (81x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.957 mW/g



0~dB=0.957mW/g

| RTS RIM Testing Services | Appendices for the BlackBerry V<br>Model RBH42GW / RBH44GW |                  | Page<br>15(49) |
|--------------------------|------------------------------------------------------------|------------------|----------------|
| Author Data              | Dates of Test                                              | Test Report No   | FCC ID:        |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                                    | RTS-0447-0607-11 | L6ARBH40GW     |

Date/Time: 20/07/2006 4:42:40 PM

Test Laboratory: RTS

File Name:

Body Worn GPRS850 25mm away Back Batt.1 Mid Chan Amb Temp 23.5 C Liq Temp 23.0 C.da4

DUT: BlackBerry Wireless Handheld; Type: Sample; Serial: Not Specified Program Name: Compliance Testing: Body-worn no holster

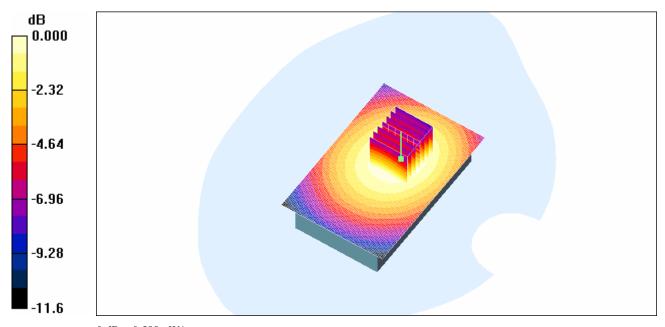
Communication System: GPRS 850; Frequency: 836.8 MHz;Duty Cycle: 1:4.2 Medium parameters used: f = 836.8 MHz;  $\sigma$  = 0.97 mho/m;  $\epsilon_r$  = 53.4;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: ET3DV6 SN1642; ConvF(6.13, 6.13, 6.13); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 12/01/2006
- Phantom: SAM 2; Type: SAM 4.0; Serial: 1080
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 24.7 V/m; Power Drift = -0.107 dB

Peak SAR (extrapolated) = 0.714 W/kg

SAR(1 g) = 0.552 mW/g; SAR(10 g) = 0.409 mW/g

Maximum value of SAR (measured) = 0.584 mW/g

**Unnamed procedure/Area Scan (81x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.588 mW/g



0~dB=0.588mW/g

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GV |                  | Page<br>16(49) |
|--------------------------|-------------------------------------------------------|------------------|----------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:        |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW     |

Date/Time: 19/07/2006 6:05:04 PM

Test Laboratory: RTS

File Name:

Body Worn GPRS850 PlasticHolster withHeadsetBT Front Batt.1 Low Chan Amb Temp 23.8 C Liq Temp 22 .7 C.da4

## DUT: BlackBerry Wireless Handheld; Type: Sample; Serial: Not Specified Program Name: Compliance Testing: Body-worn no holster

Communication System: GPRS 850; Frequency: 824.2 MHz; Duty Cycle: 1:4.2

Medium parameters used (interpolated): f = 824.2 MHz;  $\sigma = 0.97 \text{ mho/m}$ ;  $\varepsilon_r = 53.4$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

#### DASY4 Configuration:

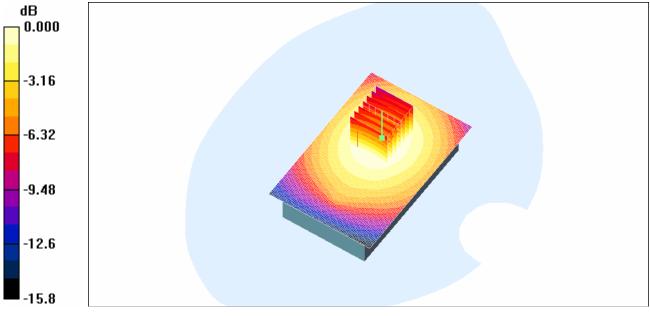
- Probe: ET3DV6 SN1642; ConvF(6.13, 6.13, 6.13); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 12/01/2006
- Phantom: SAM 2; Type: SAM 4.0; Serial: 1080
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

#### Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.1 V/m; Power Drift = -0.153 dB

Peak SAR (extrapolated) = 0.913 W/kg

SAR(1 g) = 0.702 mW/g; SAR(10 g) = 0.518 mW/g


Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.743 mW/g

Unnamed procedure/Area Scan (81x121x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.749 mW/g



0 dB = 0.749 mW/g

| RTS RIM Testing Services | Appendices for the BlackBerry V<br>Model RBH42GW / RBH44GW |                  | Page<br>17(49) |
|--------------------------|------------------------------------------------------------|------------------|----------------|
| Author Data              | Dates of Test                                              | Test Report No   | FCC ID:        |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                                    | RTS-0447-0607-11 | L6ARBH40GW     |

Date/Time: 18/07/2006 5:05:51 PM

Test Laboratory: RTS

File Name:

Body Worn GPRS1900 PlasticHolster Front Batt.1 Mid Chan Amb Temp 24.3 C Liq Temp 23.1 C.da4

DUT: BlackBerry Wireless Handheld ; Type: Sample ; Serial: Not Specified Program Name: Compliance Testing: Body-worn with holster

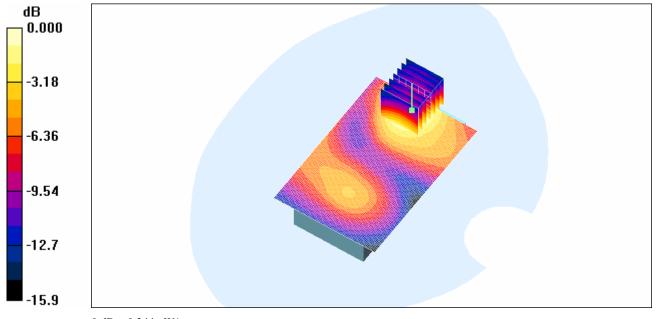
Communication System: GPRS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4.2 Medium parameters used: f = 1880 MHz;  $\sigma = 1.59$  mho/m;  $\varepsilon_r = 50.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: ET3DV6 SN1642; ConvF(4.72, 4.72, 4.72); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 12/01/2006
- Phantom: SAM 2; Type: SAM 4.0; Serial: 1080
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 5.09 V/m; Power Drift = -0.355 dB

Peak SAR (extrapolated) = 0.494 W/kg

SAR(1 g) = 0.308 mW/g; SAR(10 g) = 0.182 mW/g

Maximum value of SAR (measured) = 0.339 mW/g

**Unnamed procedure/Area Scan (81x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.344 mW/g



0~dB=0.344mW/g

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GV |                  | Page 18(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |

Date/Time: 20/07/2006 7:23:13 PM

Test Laboratory: RTS

File Name:

Body Worn GPRS1900 25mm away Back Batt.1 Low Chan Amb Temp 23.7 C Liq Temp 22.3 C.da4

DUT: BlackBerry Wireless Handheld; Type: Sample; Serial: Not Specified Program Name: Compliance Testing: Body-worn no holster

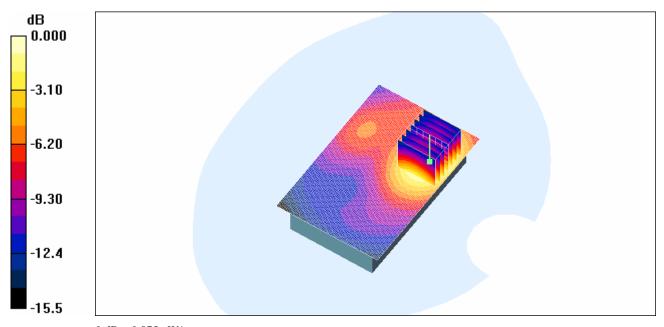
Communication System: GPRS 1900; Frequency: 1850.2 MHz;Duty Cycle: 1:4.2 Medium parameters used: f = 1850.2 MHz;  $\sigma$  = 1.59 mho/m;  $\epsilon_r$  = 50.7;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: ET3DV6 SN1642; ConvF(4.72, 4.72, 4.72); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 12/01/2006
- Phantom: SAM 2; Type: SAM 4.0; Serial: 1080
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 10.1 V/m; Power Drift = 0.123 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.801 mW/g; SAR(10 g) = 0.482 mW/g

Maximum value of SAR (measured) = 0.885 mW/g

**Unnamed procedure/Area Scan (81x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.875 mW/g



0~dB = 0.875 mW/g

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | 19(49)     |
|--------------------------|-------------------------------------------------------|------------------|------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:    |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW |

Date/Time: 20/07/2006 6:58:21 PM

Test Laboratory: RTS

File Name:

Body Worn GPRS1900 25mm away Back Batt.1 Mid Chan Amb Temp 22.9 C Liq Temp 22.0 C.da4

DUT: BlackBerry Wireless Handheld; Type: Sample; Serial: Not Specified Program Name: Compliance Testing: Body-worn no holster

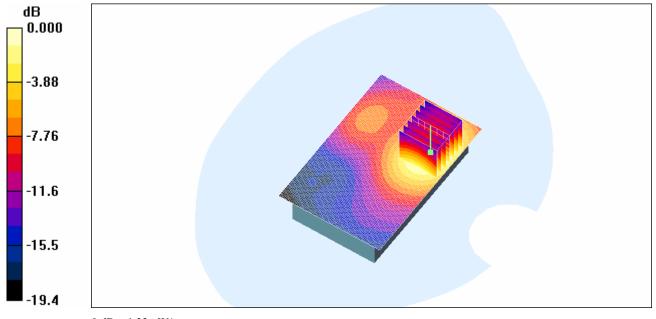
Communication System: GPRS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4.2 Medium parameters used: f = 1880 MHz;  $\sigma = 1.59$  mho/m;  $\varepsilon_r = 50.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: ET3DV6 SN1642; ConvF(4.72, 4.72, 4.72); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 12/01/2006
- Phantom: SAM 2; Type: SAM 4.0; Serial: 1080
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 12.4 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 1.90 W/kg

SAR(1 g) = 1.2 mW/g; SAR(10 g) = 0.713 mW/g

Maximum value of SAR (measured) = 1.33 mW/g

**Unnamed procedure/Area Scan (81x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.32 mW/g



0 dB = 1.32 mW/g

| RTS RIM Testing Services | Appendices for the BlackBerr<br>Model RBH42GW / RBH440 | 2                | Page 20(49) |
|--------------------------|--------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                          | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                                | RTS-0447-0607-11 | L6ARBH40GW  |

Date/Time: 20/07/2006 2:17:31 AM

Test Laboratory: RTS

File Name:

Body Worn GPRS1900 25mm away Back Batt.1 High Chan Amb Temp 23.7 C Liq Temp 22.7 C.da4

DUT: BlackBerry Wireless Handheld; Type: Sample; Serial: Not Specified Program Name: Compliance Testing: Body-worn no holster

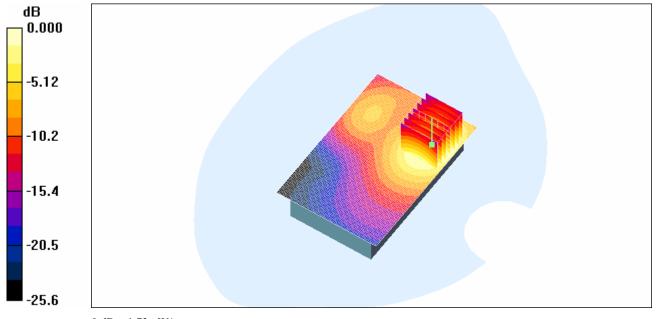
Communication System: GPRS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:4.2 Medium parameters used: f = 1909.8 MHz;  $\sigma$  = 1.59 mho/m;  $\epsilon_r$  = 50.7;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: ET3DV6 SN1642; ConvF(4.72, 4.72, 4.72); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 12/01/2006
- Phantom: SAM 1; Type: SAM 4.0; Serial: 1076
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 11.7 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 2.49 W/kg

SAR(1 g) = 1.55 mW/g; SAR(10 g) = 0.898 mW/g

Maximum value of SAR (measured) = 1.70 mW/g

**Unnamed procedure/Area Scan (81x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.73 mW/g



0 dB = 1.73 mW/g

| RTS RIM Testing Services | Appendices for the BlackBerry V<br>Model RBH42GW / RBH44GW |                  | Page 21(49) |
|--------------------------|------------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                              | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                                    | RTS-0447-0607-11 | L6ARBH40GW  |

Date/Time: 18/07/2006 8:31:10 PM

Test Laboratory: RTS

File Name:

Body Worn GPRS1900 PlasticHolster Front withHeadsetBT Batt.1 Mid Chan Amb Temp 24.3 C Liq Temp 2 3.1 C.da4

## DUT: BlackBerry Wireless Handheld; Type: Sample; Serial: Not Specified Program Name: Compliance Testing: Body-worn with holster

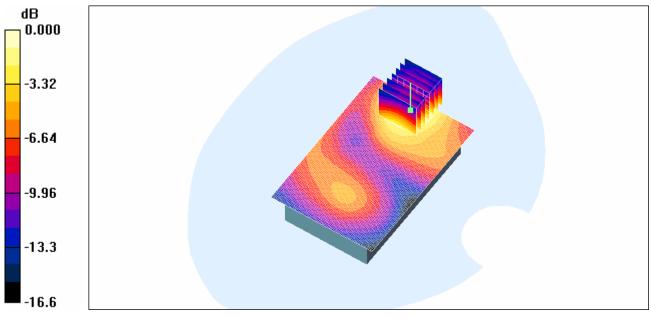
Communication System: GPRS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4.2 Medium parameters used: f = 1880 MHz;  $\sigma$  = 1.59 mho/m;  $\varepsilon_r$  = 50.7;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: ET3DV6 SN1642; ConvF(4.72, 4.72, 4.72); Calibrated: 19/01/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn472; Calibrated: 12/01/2006
- Phantom: SAM 2; Type: SAM 4.0; Serial: 1080
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

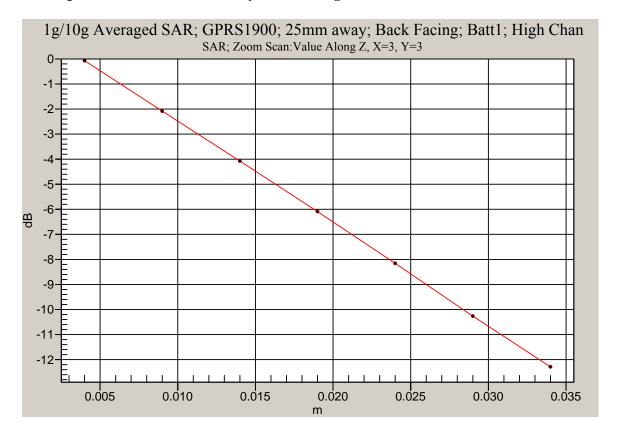
#### Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 4.85 V/m; Power Drift = 0.094 dB

Peak SAR (extrapolated) = 0.557 W/kg

SAR(1 g) = 0.346 mW/g; SAR(10 g) = 0.203 mW/g

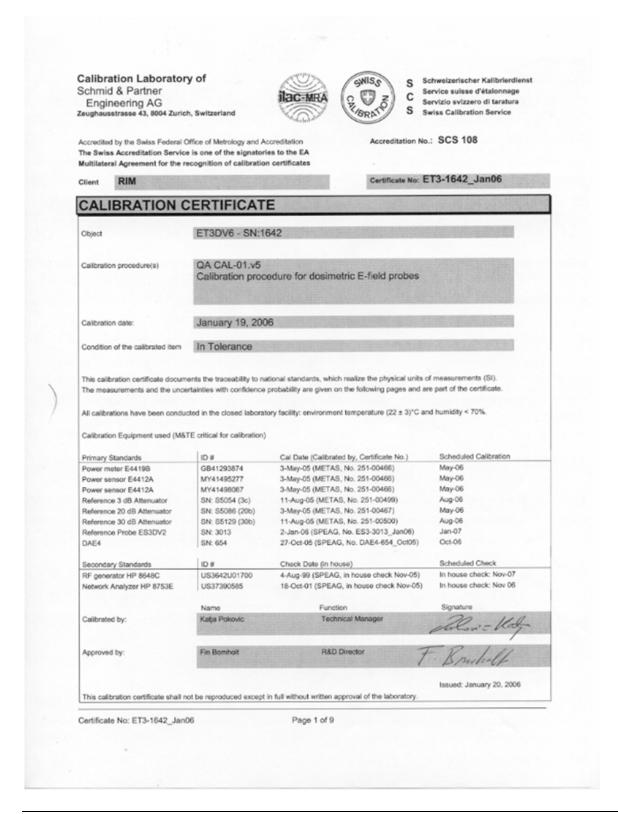
Maximum value of SAR (measured) = 0.383 mW/g


## **Unnamed procedure/Area Scan (81x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.384 mW/g



0 dB = 0.384 mW/g

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 22(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| <b>Kevin Chow</b>        | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |


## Z axis plot for the worst case body worn configuration:



| RTS RIM Testing Services | Appendices for the BlackBerry<br>Model RBH42GW / RBH44GV |                  | Page 23(49) |
|--------------------------|----------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                            | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                                  | RTS-0447-0607-11 | L6ARBH40GW  |

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 24(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |



| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 25(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zaughausstraus 42, 6004 Zurich, Switzerland





S Schweizerlacher Kellbrierdinnet
C Service suisse d'étalcamage
Servizio avizzoro di tereture
S Swies Calibration Service

Accreditation No.: SCS 108

Accredited by the Swess Federal Office of Metrology and Accreditation.

The Swiss Accreditation Service is one of the algoratories to the EA Multileteral Agreement for the recognition of calibration certificates.

#### Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization ## protation around probe axis

Potarization 9 8 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e.,  $\theta = 0$  is normal to probe axis

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This
  linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
  the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and Inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

| Certificate No: ET3-1642_Jen06 | Page 2 of 9 |  |
|--------------------------------|-------------|--|
|                                |             |  |

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GV |                  | Page 26(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |

January 19, 2006

# Probe ET3DV6

SN:1642

Manufactured: November 7, 2001 Last calibrated: January 7, 2005 Recalibrated: January 19, 2006

Calibrated for DASY Systems
(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1642\_Jan06

Page 3 of 9

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 27(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |

January 19, 2006

#### DASY - Parameters of Probe: ET3DV6 SN:1642

| Diode Compression <sup>6</sup> |
|--------------------------------|
|                                |

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

#### **Boundary Effect**

TSL 900 MHz Typical SAR gradient: 5 % per mm

 Sensor Center to Phantom Surface Distance
 3.7 mm
 4.7 mm

 SAR<sub>be</sub> [%]
 Without Correction Algorithm
 6.5
 4.8

 SAR<sub>be</sub> [%]
 With Correction Algorithm
 0.1
 0.1

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance 3.7 mm 4.7 mm SAR<sub>be</sub> [%] Without Correction Algorithm 12.3 8.1 SAR<sub>be</sub> [%] With Correction Algorithm 0.6 0.3

#### Sensor Offset

Probe Tip to Sensor Center

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

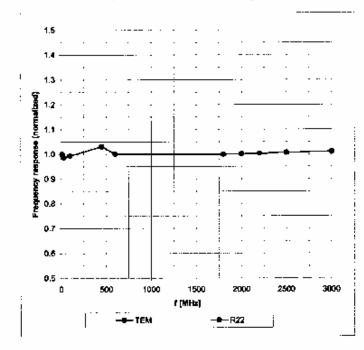
2.7 mm

Çerbilcala No. ET3-1642\_Jan06

Page 4 of 9

<sup>\*</sup> The uncertainties of NormX,Y,Z do not affect the  $E^2$ -field uncertainty inside TSL (see Page 8).

Numerical insertaction parameter: uncertainty not required.


| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 28(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |



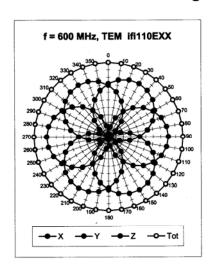
January 19, 2006

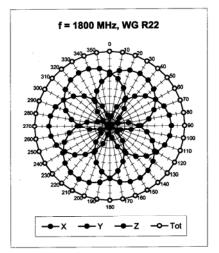
## Frequency Response of E-Field

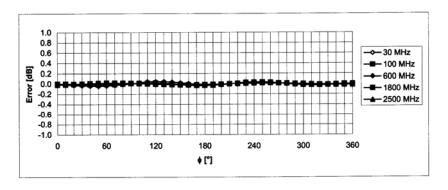
(TEM-Cell:ifi110 EXX, Waveguida: R22)



Uncertainty of Frequency Response of E-field: ± 8.3% (k=2)


Certificate No. ET3-1642\_Jan06


Page 5 of 9

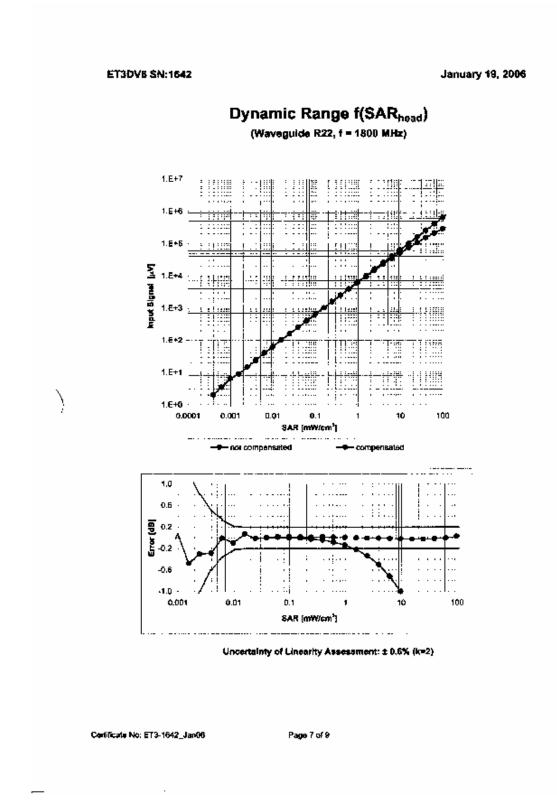

| RTS RIM Testing Services | Appendices for the BlackBerr<br>Model RBH42GW / RBH44G | •                | Page 29(49) |
|--------------------------|--------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                          | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                                | RTS-0447-0607-11 | L6ARBH40GW  |

January 19, 2006

## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$



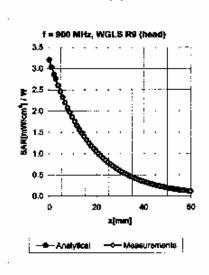


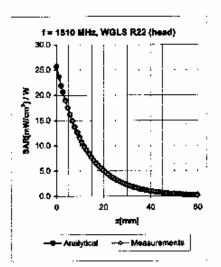



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1642\_Jan06

Page 6 of 9


| RTS RIM Testing Services | Appendices for the BlackBerry<br>Model RBH42GW / RBH44GV |                  | <sup>Page</sup> 30(49) |
|--------------------------|----------------------------------------------------------|------------------|------------------------|
| Author Data              | Dates of Test                                            | Test Report No   | FCC ID:                |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                                  | RTS-0447-0607-11 | L6ARBH40GW             |




| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 31(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |

January 19, 2006

## **Conversion Factor Assessment**

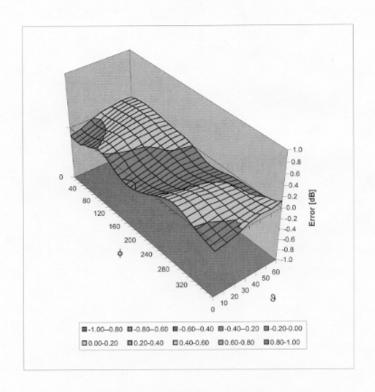




| f [MHz] | Validity (MHz) <sup>C</sup> | TSL  | Permittivity   | Conductivity   | Alpha | Depth | ConvF Uncertainty  |
|---------|-----------------------------|------|----------------|----------------|-------|-------|--------------------|
| 900     | ±50/±100                    | baeH | 41.5 ± 5%      | 0.97 ± 5%      | 0.67  | 1.88  | 6.38 ± 11.0% (k=2) |
| 1810    | ±50/±100                    | Head | 40.0 ± 5%      | 1.40 ± 5%      | 0.66  | 2.12  | 5.18 ± 11.0% (k=2) |
| 1950    | ± 50 / ± 100                | Head | 40.0 ± 5%      | 1.40 ± 5%      | 0.73  | 1.55  | 5.02 ± 11.0% (k=2) |
|         |                             |      |                |                |       |       |                    |
|         |                             |      |                |                |       |       |                    |
| 900     | ±50/±100                    | Body | $55.0 \pm 5\%$ | 1.05 ± 5%      | 0.50  | 2.06  | 6.13 ± 11.0% (k=2) |
| 1810    | ± 60 / ± 100                | Body | 53.3 ± 5%      | 1.52 ± 5%      | 0.67  | 2.05  | 4,72 ± 11.0% (k=2) |
| 1950    | ± 50 / ± 100                | Body | 53.3 ± 5%      | $1.52 \pm 5\%$ | 0.64  | 2.44  | 4.38 ± 11.0% (k=2) |

Certificate No: ET3-1642\_Jan06

Page 8 of 9


<sup>&</sup>lt;sup>6</sup> The validity of ± 100 MHz only applies for DASY vs.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at collection frequency and the uncertainty for the indicated frequency band.

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 32(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |

January 19, 2006

## Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1642\_Jan06

Page 9 of 9

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 33(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |

**Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland



S Schweizerischer Kalibrierdienst Service suisse d'étaionnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Certificate No: D835V2-446\_Jan05 Client

|                                                                                                                                                                                                                    | ERTIFICATE                                                                                                   |                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| bject                                                                                                                                                                                                              | D835V2 - SN: 44                                                                                              | 6                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |
| calibration procedure(s)                                                                                                                                                                                           | QA CAL-05.v6<br>Calibration proces                                                                           | dure for dipole validation kits                                                                                                                                                                                                                                                                                            | e di se                                                                                                          |
|                                                                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |
| Calibration date:                                                                                                                                                                                                  | January 7, 2005                                                                                              |                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |
| Condition of the calibrated item                                                                                                                                                                                   | In Tolerance                                                                                                 |                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |
|                                                                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |
|                                                                                                                                                                                                                    |                                                                                                              | onal standards, which realize the physical units of                                                                                                                                                                                                                                                                        |                                                                                                                  |
| he measurements and the unce                                                                                                                                                                                       | rtainties with confidence pr                                                                                 | obability are given on the following pages and are                                                                                                                                                                                                                                                                         | part of the certificate.                                                                                         |
| All calibrations have been conduc                                                                                                                                                                                  | ted in the closed laborator                                                                                  | y facility: environment temperature (22 ± 3)°C and                                                                                                                                                                                                                                                                         | I humidity < 70%.                                                                                                |
| Calibration Equipment used (M&T                                                                                                                                                                                    | TE critical for calibration)                                                                                 |                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |
| Primary Standards                                                                                                                                                                                                  | ID#                                                                                                          | Cal Date (Calibrated by, Certificate No.)                                                                                                                                                                                                                                                                                  | Scheduled Calibration                                                                                            |
| ower meter EPM E442                                                                                                                                                                                                | GB37480704                                                                                                   | 12-Oct-04 (METAS, No. 251-00412)                                                                                                                                                                                                                                                                                           | Oct-05                                                                                                           |
|                                                                                                                                                                                                                    | US37292783                                                                                                   | 40 0 4 04 (METAO NI- 054 00440)                                                                                                                                                                                                                                                                                            | Oct-05                                                                                                           |
| ower sensor HP 8481A                                                                                                                                                                                               |                                                                                                              | 12-Oct-04 (METAS, No. 251-00412)                                                                                                                                                                                                                                                                                           |                                                                                                                  |
| *                                                                                                                                                                                                                  | SN: 5086 (20g)                                                                                               | 12-Oct-04 (METAS, No. 251-00412)<br>10-Aug-04 (METAS, No 251-00402)                                                                                                                                                                                                                                                        | Aug-05                                                                                                           |
| Reference 20 dB Attenuator                                                                                                                                                                                         | SN: 5086 (20g)                                                                                               | ,                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |
| Reference 20 dB Attenuator<br>Reference 10 dB Attenuator                                                                                                                                                           |                                                                                                              | 10-Aug-04 (METAS, No 251-00402)                                                                                                                                                                                                                                                                                            | Aug-05                                                                                                           |
| Reference 20 dB Attenuator<br>Reference 10 dB Attenuator<br>Reference Probe ET3DV6                                                                                                                                 | SN: 5086 (20g)<br>SN: 5047.2 (10r)                                                                           | 10-Aug-04 (METAS, No 251-00402)<br>10-Aug-04 (METAS, No 251-00402)                                                                                                                                                                                                                                                         | Aug-05<br>Aug-05                                                                                                 |
| Reference 20 dB Attenuator<br>Reference 10 dB Attenuator<br>Reference Probe ET3DV6<br>DAE4                                                                                                                         | SN: 5086 (20g)<br>SN: 5047.2 (10r)<br>SN 1507                                                                | 10-Aug-04 (METAS, No 251-00402)<br>10-Aug-04 (METAS, No 251-00402)<br>26-Oct-04 (SPEAG, No. ET3-1507_Oct04)                                                                                                                                                                                                                | Aug-05<br>Aug-05<br>Oct-05                                                                                       |
| Reference 20 dB Attenuator<br>Reference 10 dB Attenuator<br>Reference Probe ET3DV6<br>DAE4<br>Recondary Standards                                                                                                  | SN: 5086 (20g)<br>SN: 5047.2 (10r)<br>SN 1507<br>SN 907                                                      | 10-Aug-04 (METAS, No 251-00402)<br>10-Aug-04 (METAS, No 251-00402)<br>26-Oct-04 (SPEAG, No. ET3-1507_Oct04)<br>03-May-04 (SPEAG, No. DAE4-907_May/04)                                                                                                                                                                      | Aug-05<br>Aug-05<br>Oct-05<br>May-05                                                                             |
| Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A                                                                                        | SN: 5086 (20g)<br>SN: 5047.2 (10r)<br>SN 1507<br>SN 907                                                      | 10-Aug-04 (METAS, No 251-00402)<br>10-Aug-04 (METAS, No 251-00402)<br>26-Oct-04 (SPEAG, No. ET3-1507_Oct04)<br>03-May-04 (SPEAG, No. DAE4-907_Mayl04)<br>Check Date (in house)                                                                                                                                             | Aug-05<br>Aug-05<br>Oct-05<br>May-05<br>Scheduled Check                                                          |
| Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SML-03                                                                | SN: 5086 (20g)<br>SN: 5047.2 (10r)<br>SN 1507<br>SN 907                                                      | 10-Aug-04 (METAS, No 251-00402)<br>10-Aug-04 (METAS, No 251-00402)<br>26-Oct-04 (SPEAG, No. ET3-1507_Oct04)<br>03-May-04 (SPEAG, No. DAE4-907_MayI04)<br>Check Date (in house)<br>18-Oct-02 (SPEAG, in house check Oct-03)                                                                                                 | Aug-05 Aug-05 Oct-05 May-05 Scheduled Check In house check: Oct-05                                               |
| Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SML-03                                                                | SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 907 ID # MY41092317 100698                                        | 10-Aug-04 (METAS, No 251-00402)<br>10-Aug-04 (METAS, No 251-00402)<br>26-Oct-04 (SPEAG, No. ET3-1507_Oct04)<br>03-May-04 (SPEAG, No. DAE4-907_MayI04)<br>Check Date (in house)<br>18-Oct-02 (SPEAG, in house check Oct-03)<br>27-Mar-02 (SPEAG, in house check Dec-03)                                                     | Aug-05 Aug-05 Oct-05 May-05 Scheduled Check In house check: Oct-05 In house check: Dec-05                        |
| Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SML-03 Aletwork Analyzer HP 8753E                                     | SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 907  ID #  MY41092317 100698 US37390585 S4206                     | 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) 03-May-04 (SPEAG, No. DAE4-907_MayI04)  Check Date (in house)  18-Oct-02 (SPEAG, in house check Oct-03) 27-Mar-02 (SPEAG, in house check Dec-03) Oct-01 (SPEAG, in house check Nov-04)                               | Aug-05 Aug-05 Oct-05 May-05 Scheduled Check In house check: Oct-05 In house check: Dec-05 In house check: Nov-05 |
| Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SML-03 Retwork Analyzer HP 8753E                                      | SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 907  ID #  MY41092317 100698 US37390585 S4206  Name               | 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) 03-May-04 (SPEAG, No. DAE4-907_MayI04)  Check Date (in house)  18-Oct-02 (SPEAG, in house check Oct-03) 27-Mar-02 (SPEAG, in house check Nov-04)  Function                                                           | Aug-05 Aug-05 Oct-05 May-05 Scheduled Check In house check: Oct-05 In house check: Dec-05 In house check: Nov-05 |
| Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SML-03 Network Analyzer HP 8753E Calibrated by: | SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 907  ID #  MY41092317 100698 US37390585 S4206  Name Judith Müller | 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) 03-May-04 (SPEAG, No. DAE4-907_MayI04) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-03) 27-Mar-02 (SPEAG, in house check Dec-03) Oct-01 (SPEAG, in house check Nov-04) Function Liaborstory Technicism | Aug-05 Aug-05 Oct-05 May-05 Scheduled Check In house check: Oct-05 In house check: Dec-05 In house check: Nov-05 |

Certificate No: D835V2-446\_Jan05

Page 1 of 6

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 34(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |

Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 8004 Zurich, Switzerland



S Schwelzerlscher Kallbrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### **Additional Documentation:**

d) DASY4 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

| ge 2 of 6 |
|-----------|
|-----------|

| RTS RIM Testing Services | Appendices for the BlackBerry V<br>Model RBH42GW / RBH44GW |                  | Page 35(49) |
|--------------------------|------------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                              | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                                    | RTS-0447-0607-11 | L6ARBH40GW  |

#### **Measurement Conditions**

| DASY Version                 | DASY4                     | V4.4        |
|------------------------------|---------------------------|-------------|
| Extrapolation                | Advanced Extrapolation    |             |
| Phantom                      | Modular Flat Phantom V4.9 |             |
| Distance Dipole Center - TSL | 15 mm                     | with Spacer |
| Area Scan resolution         | dx, dy = 15 mm            |             |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         |             |
| Frequency                    | 835 MHz ± 1 MHz           |             |

Head TSL parameters
The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 42.2 ± 6 %   | 0.91 mho/m ± 6 % |
| Head TSL temperature during test | (22.0 ± 0.2) °C |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 250 mW input power | 2.27 mW / g                |
| SAR normalized                                        | normalized to 1W   | 9.08 mW / g                |
| SAR for nominal Head TSL parameters <sup>1</sup>      | normalized to 1W   | 9.10 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 1.48 mW / g                |
| SAR normalized                                          | normalized to 1W   | 5.92 mW / g                |
| SAR for nominal Head TSL parameters 1                   | normalized to 1W   | 5.93 mW / g ± 16.5 % (k=2) |

Certificate No: D835V2-446\_Jan05

Page 3 of 6

<sup>&</sup>lt;sup>1</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | <sup>Page</sup> 36(49) |
|--------------------------|-------------------------------------------------------|------------------|------------------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:                |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW             |

#### **Appendix**

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 50.1 Ω - 7.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.9 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.385 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG            |
|-----------------|------------------|
| Manufactured on | October 24, 2001 |

Certificate No: D835V2-446\_Jan05

Page 4 of 6

| RTS RIM Testing Services | Appendices for the BlackBerry Wireless Handheld<br>Model RBH42GW / RBH44GW Partial SAR Report |                  | <sup>Page</sup> 37(49) |
|--------------------------|-----------------------------------------------------------------------------------------------|------------------|------------------------|
| Author Data              | Dates of Test                                                                                 | Test Report No   | FCC ID:                |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                                                                       | RTS-0447-0607-11 | L6ARBH40GW             |

### **DASY4 Validation Report for Head TSL**

Date/Time: 01/07/05 15:08:43

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN446

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz;

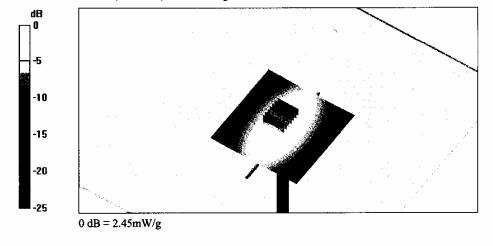
Medium parameters used: f = 835 MHz;  $\sigma = 0.91$  mho/m;  $\varepsilon_f = 42.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

### DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.24, 6.24, 6.24); Calibrated: 26.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn907; Calibrated: 03.05.2004
- Phantom: Flat Phantom 4.9L; Type: QD000P50AA; Serial: SN:1001;
- Measurement SW: DASY4, V4.4 Build 10; Postprocessing SW: SEMCAD, V1.8 Build 133

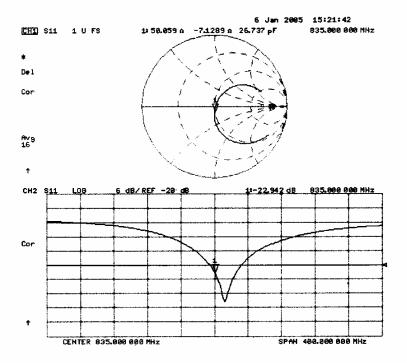

Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.44 mW/g

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.2 V/m; Power Drift = 0.0 dB

Peak SAR (extrapolated) = 3.36 W/kg

SAR(1 g) = 2.27 mW/g; SAR(10 g) = 1.48 mW/gMaximum value of SAR (measured) = 2.45 mW/g




Certificate No: D835V2-446\_Jan05

Page 5 of 6

| RTS RIM Testing Services | Appendices for the BlackE<br>Model RBH42GW / RBH4 | 2                | <sup>Page</sup> 38(49) |
|--------------------------|---------------------------------------------------|------------------|------------------------|
| Author Data              | Dates of Test                                     | Test Report No   | FCC ID:                |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                           | RTS-0447-0607-11 | L6ARBH40GW             |

## Impedance Measurement Plot for Head TSL



Certificate No: D835V2-446\_Jan05

Page 6 of 6

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 39(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | FCC ID:          |             |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1900V2-545\_Jan05 Client RIM

# CALIBRATION CERTIFICATE

D1900V2 - SN: 545 Object

QA CAL-05.v6 Calibration procedure(s)

Calibration procedure for dipole validation kits

Calibration date: January 06, 2005

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID#              | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
|----------------------------|------------------|-------------------------------------------|-----------------------|
| Power meter EPM E442       | GB37480704       | 12-Oct-04 (METAS, No. 251-00412)          | Oct-05                |
| Power sensor HP 8481A      | US37292783       | 12-Oct-04 (METAS, No. 251-00412)          | Oct-05                |
| Reference 20 dB Attenuator | SN: 5086 (20g)   | 10-Aug-04 (METAS, No 251-00402)           | Aug-05                |
| Reference 10 dB Attenuator | SN: 5047.2 (10r) | 10-Aug-04 (METAS, No 251-00402)           | Aug-05                |
| Reference Probe ET3DV6     | SN 1507          | 26-Oct-04 (SPEAG, No. ET3-1507_Oct04)     | Oct-05                |
| DAE4                       | SN 907           | 03-May-04 (SPEAG, No. DAE4-907 Mayl04)    | May-05                |
|                            | 1                |                                           |                       |

Check Date (in house) Scheduled Check Secondary Standards ID# 18-Oct-02 (SPEAG, in house check Oct-03) In house check: Oct-05 Power sensor HP 8481A MY41092317 27-Mar-02 (SPEAG, in house check Dec-03) In house check: Dec-05 RF generator R&S SML-03 100698 In house check: Nov 05 18-Oct-01 (SPEAG, in house check Nov-04) Network Analyzer HP 8753E US37390585 S4206

**Function** Name Calibrated by: Judith Müller

Laboratory Technician

Katja Pokovic Technical Manager Approved by:

Issued: January 13, 2005

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D1900V2-545\_Jan05

Page 1 of 6

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page<br>40(49) |
|--------------------------|-------------------------------------------------------|------------------|----------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:        |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW     |

### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates



S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

### **Additional Documentation:**

d) DASY4 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

| <del></del>                       | ·           |  |
|-----------------------------------|-------------|--|
| Certificate No: D1900V2-545_Jan05 | Page 2 of 6 |  |
|                                   |             |  |

| RTS RIM Testing Services | Appendices for the BlackBerry V<br>Model RBH42GW / RBH44GW |                  | Page 41(49) |
|--------------------------|------------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                              | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                                    | RTS-0447-0607-11 | L6ARBH40GW  |

### **Measurement Conditions**

| DASY Version                 | DASY4                     | V4.4        |
|------------------------------|---------------------------|-------------|
| Extrapolation                | Advanced Extrapolation    |             |
| Phantom                      | Modular Flat Phantom V4.9 |             |
| Distance Dipole Center - TSL | 10 mm                     | with Spacer |
| Area Scan resolution         | dx, dy = 15 mm            |             |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         |             |
| Frequency                    | 1900 MHz ± 1 MHz          |             |

Head TSL parameters
The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 38.9 ± 6 %   | 1.45 mho/m ± 6 % |
| Head TSL temperature during test | (22.0 ± 0.2) °C |              |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | condition          | •                          |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 250 mW input power | 10.2 mW / g                |
| SAR normalized                                        | normalized to 1W   | 40.8 mW / g                |
| SAR for nominal Head TSL parameters <sup>1</sup>      | normalized to 1W   | 39.5 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 5.34 mW / g                |
| SAR normalized                                          | normalized to 1W   | 21.4 mW / g                |
| SAR for nominal Head TSL parameters <sup>1</sup>        | normalized to 1W   | 20.7 mW / g ± 16.5 % (k=2) |

Certificate No: D1900V2-545\_Jan05

Page 3 of 6

<sup>&</sup>lt;sup>1</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 42(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |

### **Appendix**

## Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 51.7 Ω + 2.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 31.5 dB       |

# General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.198 ns                              |
|----------------------------------|---------------------------------------|
|                                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

# **Additional EUT Data**

| Manufactured by | SPEAG             |
|-----------------|-------------------|
| Manufactured on | November 15, 2001 |

| Certificate No | : D1900V2-545 | _Jan05 |
|----------------|---------------|--------|
|----------------|---------------|--------|

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 43(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |

### **DASY4 Validation Report for Head TSL**

Date/Time: 01/06/05 18:30:23

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN545

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 MHz;

Medium parameters used: f = 1900 MHz;  $\sigma = 1.45 \text{ mho/m}$ ;  $\varepsilon_r = 39.6$ ;  $\rho = 1000 \text{ kg/m}^3$ 

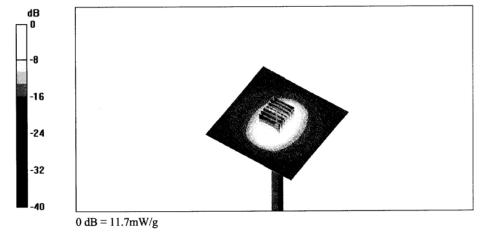
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

### DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 26.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn907; Calibrated: 03.05.2004
- Phantom: Flat Phantom quarter size; Type: QD000P50AA; Serial: SN:1001;
- Measurement SW: DASY4, V4.4 Build 10; Postprocessing SW: SEMCAD, V1.8 Build 133

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.6 mW/g

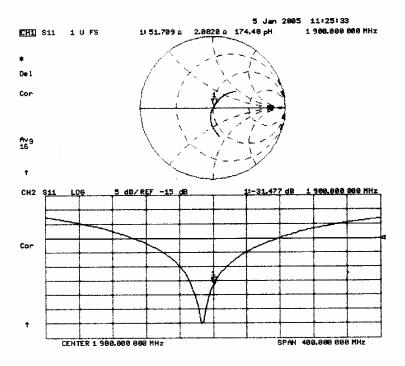

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 95.2 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 18 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.34 mW/gMaximum value of SAR (measured) = 11.7 mW/g




Certificate No: D1900V2-545\_Jan05

Page 5 of 6

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 44(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |

# Impedance Measurement Plot for Head TSL



Certificate No: D1900V2-545\_Jan05

Page 6 of 6

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 45(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |

**APPENDIX E: PHOTOGRAPHS** 

| RTS RIM Testing Services | Appendices for the BlackBer<br>Model RBH42GW / RBH440 | 2                | Page 46(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |

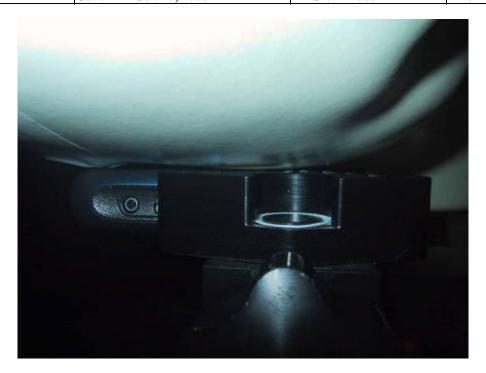





Figure E1. Head configuration (Right Touch)

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 47(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |





Figure E2. Body worn configuration (Plastic Holster; Front side facing phantom)

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 48(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |





Figure E3. Body worn configuration (No Holster; 25 mm away; Back side facing phantom)

| RTS RIM Testing Services | Appendices for the BlackBerry Model RBH42GW / RBH44GW |                  | Page 49(49) |
|--------------------------|-------------------------------------------------------|------------------|-------------|
| Author Data              | Dates of Test                                         | Test Report No   | FCC ID:     |
| Kevin Chow               | Jun. 22 – Jul. 20, 2006                               | RTS-0447-0607-11 | L6ARBH40GW  |





Figure E4. Body worn configuration (Plastic Holster; Headset and Bluetooth connected; Front side facing phantom)