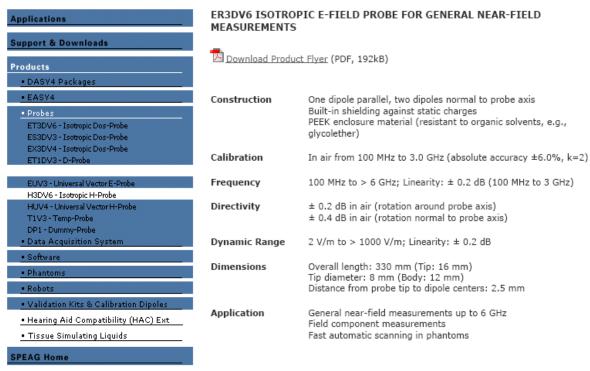
| RTS RIM Testing Services |                                     | ing Aid Compatibility RF  <br>Berry Wireless Handheld N |  | Page 3(42) |
|--------------------------|-------------------------------------|---------------------------------------------------------|--|------------|
| Author Data              | Dates                               |                                                         |  |            |
| Daoud Attayi             | Dates June 26-29, 2005    Report No |                                                         |  | ₩          |

#### Annex B: Probe and dipole descriptions and calibration certificates


**B.1** Probe and measurement chain descriptions and specifications

RIM Testing Services

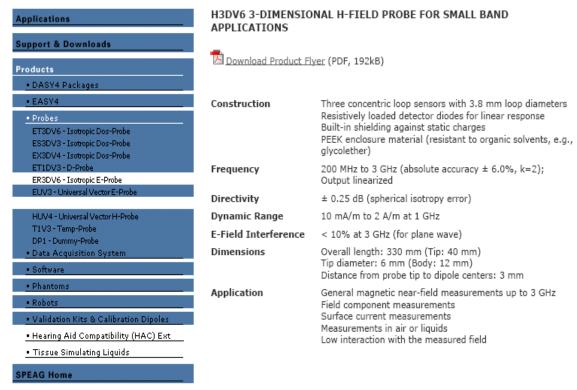
Author Data
Dates
Da

DASY Dosimetric Assessment System by Schmid & Partner Engineering AG





http://www.dasy4.com/er3.htm


RIM Testing Services

Author Data
Dates
Dates
Dates
Document Annexes to Hearing Aid Compatibility RF Emissions
Test Report for BlackBerry Wireless Handheld Model
RBH42GW / RBH44GW

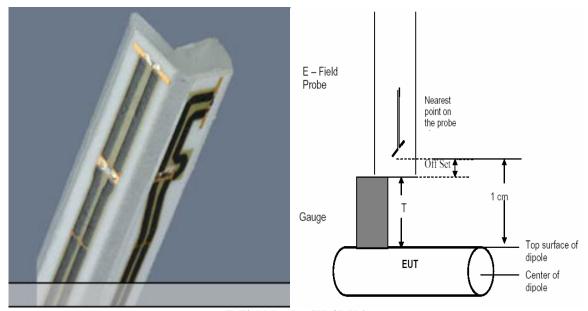
Report No
RTS-0447-0606-24
RTS-0447-0606-24
RTS-0447-0606-24
RTS-0447-0606-24

DASY Dosimetric Assessment System by Schmid & Partner Engineering AG

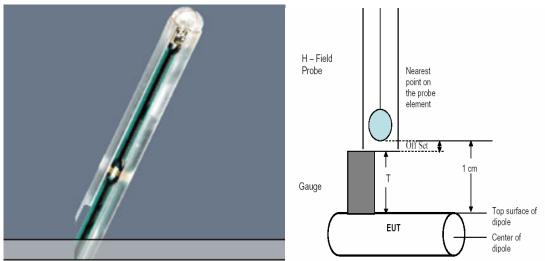




http://www.dasy4.com/h3d.htm


| RTS RIM Testing Services | Test Report for BlackBer RBH42GW / RBH44GW |                  |           | Page 6(42) |
|--------------------------|--------------------------------------------|------------------|-----------|------------|
| Author Data              | Dates Report No FCC ID                     |                  |           |            |
| Daoud Attayi             | June 26-29, 2005                           | RTS-0447-0606-24 | L6ARBH400 | 5W         |

All measurements were performed to the nearest element point as per the C63.19 standard. Offset distances were entered in the DASY4 software so that the measurement was to the nearest element.


Figures 1 and 2, provided by the manufacturer, illustrate detail of the probe tip and its dimensions.

**ER3DV6** E-Field probe: The distances from the probe tip to the closest points on the dipole sensors are 1.45mm for X and Y and 1.25mm for Z. From the probe tip to the center of the sensors is 2.5mm.

**H3DV6** H-Field probe: The distance from the probe tip to the closest point of the X, Y and Z loop sensors is 1.1mm. From the probe tip to the center of the sensor is 3.00mm.



E-Field Probe (ER3DV6)



H-Field Probe (H3DV6)

# RIM Testing Services | Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW | 7(42) | Author Data Dates | Report No RTS-0447-0606-24 | L6ARBH40GW | L6ARBH40GW | RTS-0447-0606-24 | L6ARBH40GW | RTS-0447-0606-24 | RTS-0447-0606-24 | L6ARBH40GW | RTS-0447-0606-24 | RTS-0447-0606-2

The following information is from the system manufacturer user manual describing the process chain:

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$
(20.1)

with  $V_i$  = compensated signal of channel i (i = x, y, z)  $U_i$  = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter)  $dcp_i$  = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – field  
probes : 
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$${
m H-field probes}$$
 :  $H_i = \sqrt{V_i} \cdot rac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$ 

with  $V_i$  = compensated signal of channel i (i = x, y, z)  $Norm_i$  = sensor sensitivity of channel i (i = x, y, z)

> $\mu V/(V/m)^2$  for E-field Probes = sensitivity enhancement in solution

ConvF = sensitivity enhancement in solution  $a_{ij}$  = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 $E_i$  = electric field strength of channel i in V/m  $H_i$  = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$
 (20.2)

The measurement / integration time per point is > 500 ms, as per the system manufacturer:

The time response of the field probes has been assessed by exposing the probe to a well-controlled field producing signals larger than HAC E- and H-fields of class M4. The signal response time is evaluated as the time required by the system to reach 90% of the expected final value after an on/off switch of the power source with an integration time of 500 ms and a probe response time of <5 ms. In the current implementation, DASY4 waits longer than 100 ms after having reached the grid point before starting a measurement, i.e., the response time uncertainty is negligible.

If the device under test does not emit a CW signal, the integration time applied to measure the electric field at a specific point may introduce additional uncertainties due to the discretization. The tolerances for the different systems had the worst-case of 2.6%.

| RTS RIM Testing Services | Document Annexes to Hearing Test Report for BlackBerr RBH42GW / RBH44GW | • • • |  | Page 8(42) |  |
|--------------------------|-------------------------------------------------------------------------|-------|--|------------|--|
| Author Data              | Dates Report No FCC ID                                                  |       |  |            |  |
| Daoud Attayi             | June 26-29, 2005 RTS-0447-0606-24 L6ARBH40GW                            |       |  | SW         |  |

#### **B.2** Probe and dipole calibration certificates

### Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW

Page

9(42)

Author Data

Daoud Attayi

June 26-29, 2005

Report No **RTS-0447-0606-24** 

FCC ID L6ARBH40GW







- S Schweizerischer Kalibrierdienst
  C Service suisse d'étalonnage
  Servizio svizzero di taratura
  S Swiss Calibration Service
- Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

DIM.

Certificate No: ER3-2285\_Apr06

Accreditation No.: SCS 108

| CALIBRATION (                                                                                                                                                                                  | CERTIFICAT                                                                                                         | Έ                                                                                                                                                                                                                                                                            |                                                                                                                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| Object                                                                                                                                                                                         | ER3DV6 - SN:                                                                                                       | 2285                                                                                                                                                                                                                                                                         |                                                                                                                       |  |  |
| Calibration procedure(s)                                                                                                                                                                       | QA CAL-02.v4 Calibration procedure for E-field probes optimized for close near field evaluations in air            |                                                                                                                                                                                                                                                                              |                                                                                                                       |  |  |
| Calibration date:                                                                                                                                                                              | April 27, 2006                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                       |  |  |
| Condition of the calibrated item                                                                                                                                                               | In Tolerance                                                                                                       |                                                                                                                                                                                                                                                                              |                                                                                                                       |  |  |
| All calibrations have been condu  Calibration Equipment used (M&  Primary Standards  Power meter E4419B                                                                                        |                                                                                                                    | tory facility: environment temperature (22 ± 3)°C an  Cal Date (Calibrated by, Certificate No.)  5-Apr-06 (METAS, No. 251-00557)                                                                                                                                             | d humidity < 70%.  Scheduled Calibration  Apr-07                                                                      |  |  |
| Power sensor E4412A                                                                                                                                                                            | MY41495277                                                                                                         | 5-Apr-06 (METAS, No. 251-00557)                                                                                                                                                                                                                                              | Apr-07                                                                                                                |  |  |
|                                                                                                                                                                                                | MY41498087                                                                                                         | 5-Apr-06 (METAS, No. 251-00557)                                                                                                                                                                                                                                              |                                                                                                                       |  |  |
| Power sensor E4412A                                                                                                                                                                            |                                                                                                                    |                                                                                                                                                                                                                                                                              | Apr-07                                                                                                                |  |  |
|                                                                                                                                                                                                | SN: S5054 (3c)                                                                                                     | 11-Aug-05 (METAS, No. 251-00499)                                                                                                                                                                                                                                             | Apr-07<br>Aug-06                                                                                                      |  |  |
| Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator                                                                                                                 |                                                                                                                    | 11-Aug-05 (METAS, No. 251-00499)<br>4-Apr-06 (METAS, No. 251-00558)                                                                                                                                                                                                          | Aug-06                                                                                                                |  |  |
| Reference 3 dB Attenuator                                                                                                                                                                      | SN: S5054 (3c)                                                                                                     | 11-Aug-05 (METAS, No. 251-00499)<br>4-Apr-06 (METAS, No. 251-00558)<br>11-Aug-05 (METAS, No. 251-00500)                                                                                                                                                                      |                                                                                                                       |  |  |
| Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator                                                                                                          | SN: S5054 (3c)<br>SN: S5086 (20b)                                                                                  | 4-Apr-06 (METAS, No. 251-00558)<br>11-Aug-05 (METAS, No. 251-00500)                                                                                                                                                                                                          | Aug-06<br>Apr-07                                                                                                      |  |  |
| Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator<br>Reference Probe ER3DV6                                                                                | SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)                                                               | 4-Apr-06 (METAS, No. 251-00558)                                                                                                                                                                                                                                              | Aug-06<br>Apr-07<br>Aug-06                                                                                            |  |  |
| Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards                                                                | SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)<br>SN: 2328<br>SN: 654                                        | 4-Apr-06 (METAS, No. 251-00558)<br>11-Aug-05 (METAS, No. 251-00500)<br>3-Oct-05 (SPEAG, No. ER3-2328_Oct05)<br>2-Feb-06 (SPEAG, No. DAE4-684_Feb06)<br>Check Date (In house)                                                                                                 | Aug-06<br>Apr-07<br>Aug-06<br>Oct-06                                                                                  |  |  |
| Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ER3DV6 DAE4 Recondary Standards RE generator HP 8648C                                          | SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 2328 SN: 654                                                    | 4-Apr-06 (METAS, No. 251-00558)<br>11-Aug-05 (METAS, No. 251-00500)<br>3-Oct-05 (SPEAG, No. ER3-2328_Oct05)<br>2-Feb-06 (SPEAG, No. DAE4-654_Feb06)<br>Check Date (in house)<br>4-Aug-99 (SPEAG, in house check Nov-05)                                                      | Aug-06<br>Apr-07<br>Aug-06<br>Oct-06<br>Feb-07<br>Scheduled Check<br>In house check: Nov-07                           |  |  |
| Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards RF generator HP 8648C                                          | SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)<br>SN: 2328<br>SN: 654                                        | 4-Apr-06 (METAS, No. 251-00558)<br>11-Aug-05 (METAS, No. 251-00500)<br>3-Oct-05 (SPEAG, No. ER3-2328_Oct05)<br>2-Feb-06 (SPEAG, No. DAE4-684_Feb06)<br>Check Date (In house)                                                                                                 | Aug-06<br>Apr-07<br>Aug-06<br>Oct-06<br>Feb-07<br>Scheduled Check<br>In house check; Nov-07                           |  |  |
| Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E                | SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 2328 SN: 654  ID # US3642U01700 US37390585  Name                | 4-Apr-06 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00500) 3-Oct-05 (SPEAG, No. ER3-2328_Oct05) 2-Feb-06 (SPEAG, No. DAE4-684_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)                            | Aug-06<br>Apr-07<br>Aug-06<br>Oct-06<br>Feb-07                                                                        |  |  |
| Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator<br>Reference Probe ER3DV6<br>DAE4                                                                        | SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 2328 SN: 654 ID # US3642U01700 US37390585                       | 4-Apr-06 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00500) 3-Oct-05 (SPEAG, No. ER3-2328_Oct05) 2-Feb-06 (SPEAG, No. DAE4-684_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)                            | Aug-08<br>Apr-07<br>Aug-06<br>Oct-06<br>Feb-07<br>Scheduled Check<br>In house check: Nov-07<br>In house check: Nov-08 |  |  |
| Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E                | SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 2328 SN: 654  ID # US3642U01700 US37390585  Name                | 4-Apr-06 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00500) 3-Oct-05 (SPEAG, No. ER3-2328_Oct05) 2-Feb-06 (SPEAG, No. DAE4-684_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)                            | Aug-06<br>Apr-07<br>Aug-06<br>Oct-06<br>Feb-07<br>Scheduled Check<br>In house check: Nov-07<br>In house check: Nov-08 |  |  |
| Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: | SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 2328 SN: 654  ID #  US3642U01700 US37390585  Name Katja Pokovic | 4-Apr-06 (METAS, No. 251-00558) 11-Aug-05 (METAS, No. 251-00500) 3-Oct-05 (SPEAG, No. ER3-2328_Oct05) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function Technical Manager | Aug-08<br>Apr-07<br>Aug-06<br>Oct-06<br>Feb-07<br>Scheduled Check<br>In house check: Nov-07<br>In house check: Nov-07 |  |  |

Page 1 of 9

# RIM Testing Services | Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW | 10(42) | Author Data Dates | Dates | Report No RTS-0447-0606-24 | L6ARBH40GW | L6ARBH40GW | RTS-0447-0606-24 | L6ARBH40GW | RTS-0447-0606-24 | RTS-0447-0606-24 | L6ARBH40GW | RTS-0447-0606-24 | RTS-04

Calibration Laboratory of Schmid & Partner Engineering AG Zaughamatrasse 43, 8004 Zurich, Switzerland





Schweisertscher Kalibriertierst Service suisse d'étalonnage Servizio svizzero di tereture Series Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation.
The Swiss Accreditation Service is one of the eignatories to the EA.
Multilisteral Agreement for the recognition of cellbration certificates.

Glossary:

NORMx,y,z sensitivity in free space
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot

coordinate system

#### Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-1996, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", 1998.

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

| Certificate No: ER3-2285_Apr06 | Page 2 of B |  |
|--------------------------------|-------------|--|
|                                |             |  |

| RTS RIM Testing Services | Test Report for BlackBerr<br>RBH42GW / RBH44GW |                  |           | Page 11(42) |
|--------------------------|------------------------------------------------|------------------|-----------|-------------|
| Author Data              | Dates                                          | Report No        | FCC ID    |             |
| Daoud Attayi             | June 26-29, 2005                               | RTS-0447-0606-24 | L6ARBH40G | SW          |

ER3DV6 SN:2285

April 27, 2006

### Probe ER3DV6

SN:2285

Manufactured:

September 20, 2002

Last calibrated:

November 11, 2005

Repaired: Recalibrated: April 20, 2006 April 27, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate Nor ER3-2285\_Apr06

Page 3 of 9

#### 

ER3DV6 \$N:2285 April 27, 2006

#### DASY - Parameters of Probe: ER3DV6 SN:2285

| Sensitivity in Free | Space [μV/(V/m)²]   | Diode Co | ompression^  |
|---------------------|---------------------|----------|--------------|
| NormX               | 1.20 ± 10.1 % (k=2) | DCP X    | <b>93</b> mV |
| NormY               | 1.40 ± 10.1 % (k=2) | DCPY     | 93 mV        |
| NormZ               | 1.54 ± 10.1 % (k=2) | DCP Z    | 98 mV        |
| C                   | -4:                 |          |              |

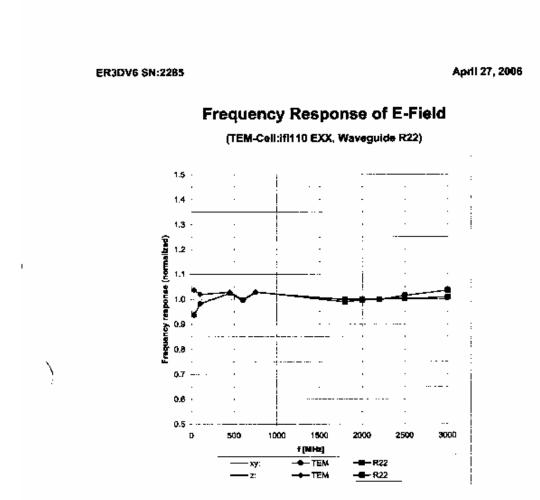
#### Frequency Correction

| x | 0.0 |
|---|-----|
| Y | 0.0 |
| Z | 0.0 |

Sensor Offset (Probe Tip to Sensor Center)

X 2.5 mm Y 2.5 mm Z 2.5 mm

Connector Angle 78 °

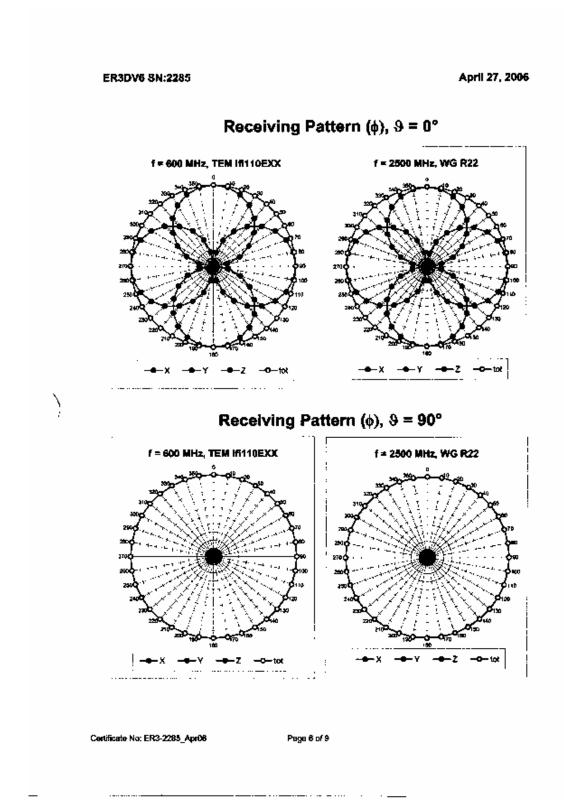

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ER3-2285\_Apr08

Pege 4 of 9

 $<sup>^{\</sup>mathsf{A}}$  numerical linearization parameter; uncertainty not required

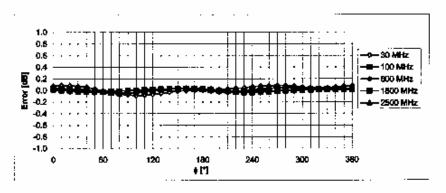
| RTS RIM Testing Services | Test Report for BlackBerr<br>RBH42GW / RBH44GW |                  |           | Page 13(42) |
|--------------------------|------------------------------------------------|------------------|-----------|-------------|
| Author Data              | Dates                                          | Report No        | FCC ID    |             |
| Daoud Attayi             | June 26-29, 2005                               | RTS-0447-0606-24 | L6ARBH40G | W           |




Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

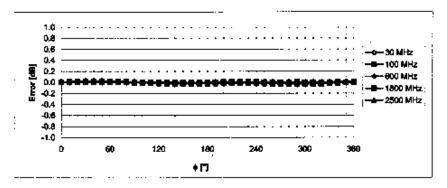
Certificate No: ER3-2265\_Apr06

Page 5 of 9


| RTS RIM Testing Services | Test Report for BlackBe RBH42GW / RBH44GW    | ng Aid Compatibility RF<br>erry Wireless Handheld I |        | Page 14(42) |
|--------------------------|----------------------------------------------|-----------------------------------------------------|--------|-------------|
| Author Data              | Dates                                        | Report No                                           | FCC ID |             |
| Daoud Attayi             | June 26-29, 2005 RTS-0447-0606-24 L6ARBH40GW |                                                     |        | SW WE       |



| RTS RIM Testing Services |                  | ring Aid Compatibility RF<br>Berry Wireless Handheld N<br>V |           | Page 15(42) |
|--------------------------|------------------|-------------------------------------------------------------|-----------|-------------|
| Author Data              | Dates            |                                                             |           |             |
| Daoud Attayi             | June 26-29, 2005 | RTS-0447-0606-24                                            | L6ARBH400 | <b>W</b>    |

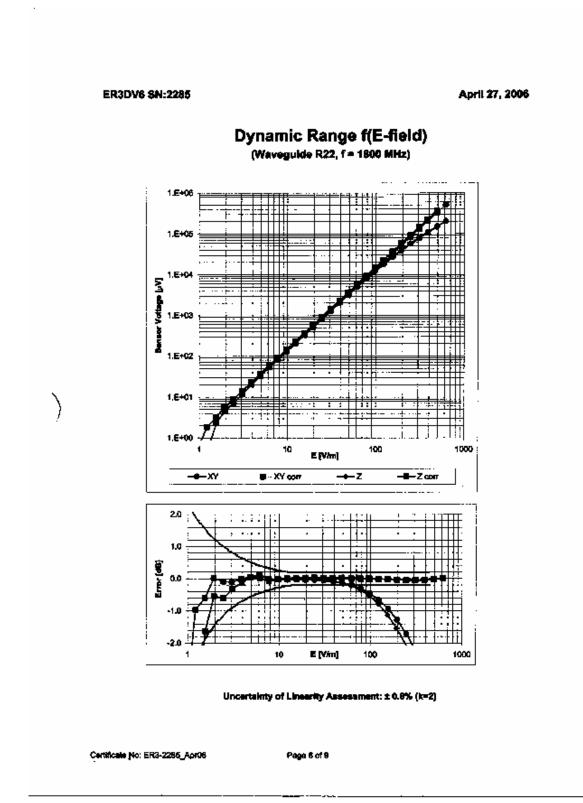



#### Receiving Pattern ( $\phi$ ), $\vartheta$ = 0°



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k≠2)

#### Receiving Pattern (¢), 9 = 90°

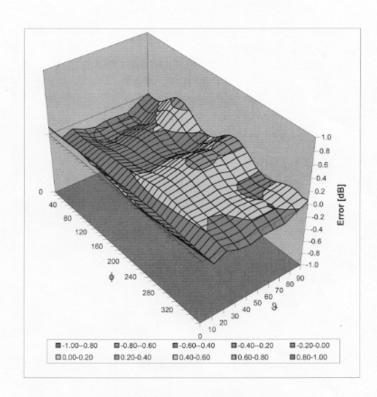



Uncertainty of Axial Isotropy Assessment: 2 0.5% (k=2)

Certificate No: ER3-2265\_Apr06

Page 7 of 9

| RTS RIM Testing Services | Document Annexes to Hearing Test Report for BlackBerr RBH42GW / RBH44GW |                  |           | Page 16(42) |
|--------------------------|-------------------------------------------------------------------------|------------------|-----------|-------------|
| Author Data              | Dates                                                                   | Report No        | FCC ID    |             |
| Daoud Attayi             | June 26-29, 2005                                                        | RTS-0447-0606-24 | L6ARBH40G | SW          |




# RIM Testing Services Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW 17(42) Dates Daoud Attayi Dates June 26-29, 2005 REPORT NO RTS-0447-0606-24 REPORT NO RTS-0447-0606-24 REPORT NO RTS-0447-0606-24

ER3DV6 SN:2285

April 27, 2006

### Deviation from Isotropy in Air Error $(\phi, \theta)$ , f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ER3-2285\_Apr06

Page 9 of 9

### Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW

Page

18(42)

Author Data

Daoud Attavi

Dates

June 26-29, 2005

Report No RTS-0447-0606-24 FCC ID L6ARBH40GW

#### Calibration Laboratory of Schmid & Partner

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RIM

Certificate No: H3-6105\_Nov05

Accreditation No.: SCS 108

#### CALIBRATION CERTIFICATE H3DV6 - SN:6105 Object QA CAL-03.v4 Calibration procedure(s) Calibration procedure for H-field probes optimized for close near field evaluations in air November 11, 2005 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Primary Standards GB41293874 3-May-05 (METAS, No. 251-00466) May-06 Power meter E4419B Power sensor E4412A MY41495277 3-May-05 (METAS, No. 251-00466) May-06 Power sensor E4412A MY41498087 3-May-05 (METAS, No. 251-00466) May-06 11-Aug-05 (METAS, No. 251-00499) Aug-06 Reference 3 dB Attenuator SN: S5054 (3c) Reference 20 dB Attenuator SN: S5086 (20b) 3-May-05 (METAS, No. 251-00467) May-06 11-Aug-05 (METAS, No. 251-00500) Aug-06 SN: S5129 (30b) Reference 30 dB Attenuator 3-Oct-05 (SPEAG, No. H3-6182\_Oct05) Oct-06 Reference Probe H3DV6 SN: 6182 27-Oct-05 (SPEAG, No. DAE4-654\_Oct05) Oct-06 DAE4 SN: 654 Check Date (in house) Scheduled Check ID# Secondary Standards 4-Aug-99 (SPEAG, in house check Dec-03) In house check: Dec-05 US3642U01700 RF generator HP 8648C In house check: Nov 05 18-Oct-01 (SPEAG, in house check Nov-04) Network Analyzer HP 8753E US37390585 Name Function Nico Vetterli Laboratory Technician Calibrated by: Technical Manager Katja Pokovic Approved by: Issued: November 12, 2005 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: H3-6105\_Nov05

Page 1 of 8

#### 

Calibration Laboratory of Schmid & Partner Engineering AG Zouphauestrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kallbrierdierist
Service suisse d'étalonnage
Servizio svizzero di teratura
Swies Calibration Service

Accreditation No.: \$C\$ 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signaturies to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space
DCP diode compression point
Polarization φ rotation around probe axis

Potarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e.,  $\vartheta = 0$  is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot

coordinate system

#### Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-1996, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", 1996.

#### Methods Applied and Interpretation of Parameters:

- X,Y,Z\_a0a1a2: Assessed for E-field polarization 9 = 90 for XY sensors and 9 = 0 for Z sensor (f ≤ 900 MHz in TEM-ceil; f > 1800 MHz: R22 waveguide).
- X,Y,Z(f)\_a0a1a2= X,Y,Z\_a0a1a2\* frequency\_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the X\_a0a1a2 (no uncertainty required).

| Certificate No: H3-6105_Nov05 | Page 2 of 8 | <br> |
|-------------------------------|-------------|------|
|                               |             |      |

| RTS RIM Testing Services | Document Annexes to Hearing Test Report for BlackBerr RBH42GW / RBH44GW |                  |           | Page 20(42) |
|--------------------------|-------------------------------------------------------------------------|------------------|-----------|-------------|
| Author Data              | Dates                                                                   | Report No        | FCC ID    |             |
| Daoud Attayi             | June 26-29, 2005                                                        | RTS-0447-0606-24 | L6ARBH40G | SW          |

H3DV6 SN:6105

November 11, 2005

### Probe H3DV6

SN:6105

Manufactured:

January 4, 2002

Last calibrated:

December 10, 2004

Recalibrated:

November 11, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: H3-6105\_Nov05

Page 3 of 8

| RTS RIM Testing Services | Test Report for BlackBerr<br>RBH42GW / RBH44GW |                  |           | Page 21(42) |
|--------------------------|------------------------------------------------|------------------|-----------|-------------|
| Author Data              | Dates                                          | Report No        | FCC ID    |             |
| Daoud Attayi             | June 26-29, 2005                               | RTS-0447-0606-24 | L6ARBH40G | SW          |

H3DV6 SN:6105

November 11, 2005

#### DASY - Parameters of Probe: H3DV6 SN:6105

Sensitivity in Free Space [A/m / √(μV)]

 a0
 a1
 a2

 X
 2.835E-03
 1.152E-4
 -2.951E-5 ± 5.1 % (k=2)

 Y
 2.554E-03
 1.558E-4
 -2.758E-5 ± 5.1 % (k=2)

 Z
 2.898E-03
 2.014E-5
 -2.154E-5 ± 5.1 % (k=2)

Diode Compression<sup>1</sup>

DCP X 88 mV DCP Y 88 mV DCP Z 89 mV

Sensor Offset (Probe Tip to Sensor Center)

X 3.0 mm Y 3.0 mm Z 3.0 mm

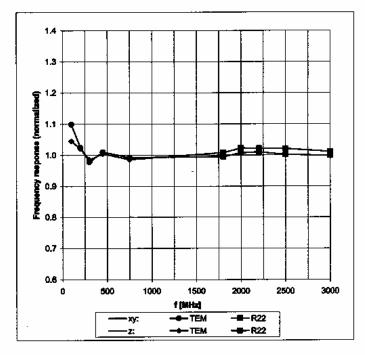
Connector Angle 282 °

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: H3-6105\_Nov05

Page 4 of 8

<sup>&</sup>lt;sup>1</sup> numerical linearization parameter; uncertainty not required


| RTS RIM Testing Services | Test Report for BlackBerr RBH42GW / RBH44GW |                  |           | Page 22(42) |
|--------------------------|---------------------------------------------|------------------|-----------|-------------|
| Author Data              | Dates                                       | Report No        | FCC ID    |             |
| Daoud Attayi             | June 26-29, 2005                            | RTS-0447-0606-24 | L6ARBH400 | SW          |

H3DV6 SN:6105

November 11, 2005

#### Frequency Response of H-Field

(TEM-Cell:iff110, Waveguide R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: H3-8105\_Nov05

Page 5 of

| RTS                  |
|----------------------|
| RIM Testing Services |

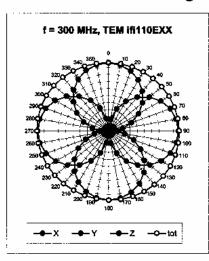
Document Annexes to Hearing Aid Compatibility RF Emissions
Test Report for BlackBerry Wireless Handheld Model
RBH42GW / RBH44GW

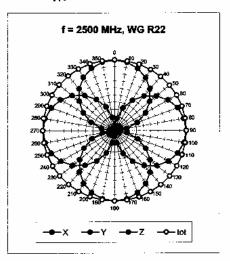
uge

23(42)

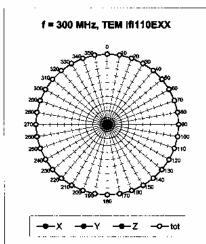
Author Data

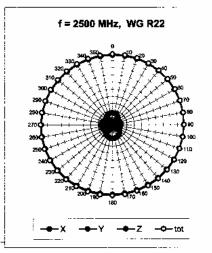
Daoud Attayi


June 26-29, 2005


Report No RTS-0447-0606-24 FCC ID L6ARBH40GW

#### H3DV6 SN:6105


November 11, 2005


#### Receiving Pattern ( $\phi$ ), $\vartheta = 90^{\circ}$

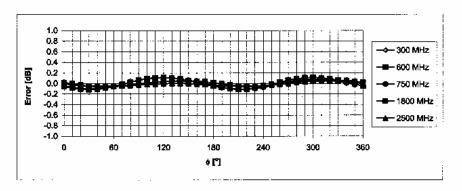




#### Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

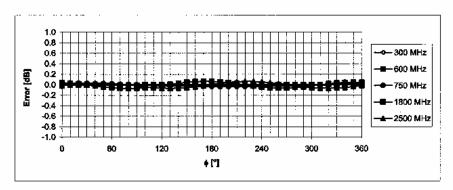





Certificate No: H3-6105\_Nov05

Page 6 of 8

| RTS RIM Testing Services |                  | ring Aid Compatibility RF  <br>Berry Wireless Handheld N<br>N |            | Page 24(42) |
|--------------------------|------------------|---------------------------------------------------------------|------------|-------------|
| Author Data              | Dates            | Report No                                                     | FCC ID     |             |
| Daoud Attavi             | June 26-29, 2005 | RTS-0447-0606-24                                              | I 6ARBH400 | <b>W</b>    |


H3DV6 SN:6105 November 11, 2005

Receiving Pattern ( $\phi$ ),  $\theta$  = 90°



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

#### Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: H3-6105\_Nov05

Page 7 of 8

| RTS      | 5            |
|----------|--------------|
| RIM Test | ing Services |

### Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW

Page

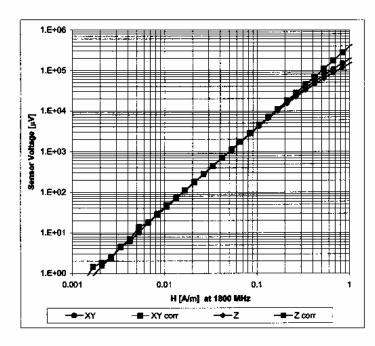
25(42)

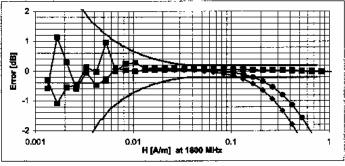
Author Data

Daoud Attayi

June 26-29, 2005

Report No RTS-0447-0606-24


FCC ID L6ARBH40GW


#### H3DV6 SN:6105

#### November 11, 2005

#### Dynamic Range f(H-field)

(Waveguide R22, f = 1800 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: H3-6105\_Nov05

Page 8 of 8

| RTS RIM Testing Services |                  | ing Aid Compatibility RF<br>erry Wireless Handheld N |           | Page 26(42) |
|--------------------------|------------------|------------------------------------------------------|-----------|-------------|
| Author Data              | Dates            | Report No                                            | FCC ID    |             |
| Daoud Attayi             | June 26-29, 2005 | RTS-0447-0606-24                                     | L6ARBH400 | SW          |

#### **Document Annexes to Hearing Aid Compatibility RF Emissions** Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW

Page

27(42)

Author Data **Daoud Attayi**  Dates

June 26-29, 2005

Report No

RTS-0447-0606-24

FCC ID

L6ARBH40GW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Certificate No: CD835V3-1011\_Dec05

#### CALIBRATION CERTIFICATE CD835V3 - SN: 1011 Object Calibration procedure(s) QA CAL-20.v4 Calibration procedure for dipoles in air December 5, 2005 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI) All calibrations have been conducted at an environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Primary Standards Power meter EPM-442A GB37480704 04-Oct-05 (METAS, No. 251-00516) Oct-06 Power sensor HP 8481A US37292783 04-Oct-05 (METAS, No. 251-00516) Oct-06 11-Aug-05 (METAS, No 251-00498) Reference 20 dB Attenuator SN: 5086 (20g) Aug-06 Reference 10 dB Attenuator 11-Aug-05 (METAS, No 251-00498) SN: 5047.2 (10r) Aug-06 Secondary Standards Check Date (in house) Scheduled Check Power meter EPM-4419B GB43310788 12-Aug-03 (SPEAG, in house check Oct-05) In house check: Oct-06 Power sensor HP 8481A MY41093312 10-Aug-03 (SPEAG, in house check Oct-05) In house check: Oct-07 Power sensor HP 8481A MY41093315 10-Aug-03 (SPEAG, in house check Oct-05) In house check: Oct-06 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov-06 RF generator R&S SMT06 100005 26-Jul-04 (SPEAG, in house check Nov-05) In house check: Nov-07 16-Dec-04 (SPEAG, No. DAE4-901\_Dec04) Calibration, Dec-05 SN: 660 Probe ER3DV6 SN: 2336 20-Jan-05 (SPEAG, No. ER3-2336\_Jan05) Calibration, Jan-06 10-Dec-04 (SPEAG, No. H3-6065-Dec04) Calibration, Dec-05 Probe H3DV6 SN: 6065 Mike Meili Laboratory Technician Calibrated by: Fin Bomholt Technical Director Approved by:

Certificate No: CD835V3-1011\_Dec05

Page 1 of 6

This calibration certificate is issued as an intermediate solution until the specific calibration procedure is accepted in the frame of the accreditation of the Calibration Laboratory of Schmid & Partner Engineering AG (based on ISO/IEC 17025 International Standard)

### Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW

Page

28(42)

Author Data

**Daoud Attayi** 

Dates

June 26-29, 2005

Report No

RTS-0447-0606-24

FCC ID

L6ARBH40GW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

#### References

 ANSI-PC63.19-2001 (Draft 3.x, 2005)
 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

#### Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna
  (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes.
  In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a
  distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
  figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
  is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
  directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
  antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The
  maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as
  calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the
  feed point.

| Certificate No: CD835V3-1011_Dec05 | Page 2 of 6 |  |
|------------------------------------|-------------|--|
|                                    | •           |  |

### Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW

Page

29(42)

Author Data

Daoud Attayi

Dates June 26-29, 2005 Report No **RTS-0447-0606-24** 

L6ARBH40GW

FCC ID

#### 1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                          | DASY4            | V4.6 B23             |
|---------------------------------------|------------------|----------------------|
| DASY PP Version                       | SEMCAD           | V1.8 B160            |
| Phantom                               | HAC Test Arch    | SD HAC P01 BA, #1002 |
| Distance Dipole Top - Probe<br>Center | 10 mm            |                      |
| Scan resolution                       | dx, $dy = 5 mm$  | area = 20 x 180 mm   |
| Frequency                             | 835 MHz ± 1 MHz  |                      |
| Forward power at dipole connector     | 20.0 dBm = 100mW |                      |
| Input power drift                     | < 0.05 dB        |                      |

#### 2 Maximum Field values

| H-field 10 mm above dipole surface | condition            | interpolated maximum |
|------------------------------------|----------------------|----------------------|
| Maximum measured                   | 100 mW forward power | 0.446 A/m            |

Uncertainty for H-field measurement: 8.2% (k=2)

| E-field 10 mm above dipole surface | condition            | Interpolated maximum |
|------------------------------------|----------------------|----------------------|
| Maximum measured above high end    | 100 mW forward power | 162.2 V/m            |
| Maximum measured above low end     | 100 mW forward power | 161.0 V/m            |
| Averaged maximum above arm         | 100 mW forward power | 161.6 V/m            |

Uncertainty for E-field measurement: 12.8% (k=2)

#### 3 Appendix

#### 3.1 Antenna Parameters

| Frequency | Return Loss | Impedance            |
|-----------|-------------|----------------------|
| 800 MHz   | 16.1 dB     | (40.2 – j10.4 ) Ohm  |
| 835 MHz   | 26.7 dB     | ( 53.4 + J3.4 ) Ohm  |
| 900 MHz   | 16.5 dB     | (48.9 – j15.0 ) Ohm  |
| 950 MHz   | 19.7 dB     | (47.5 + j9.8 ) Ohm   |
| 960 MHz   | 16.1 dB     | ( 57.0 + j15.5 ) Ohm |

#### 3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

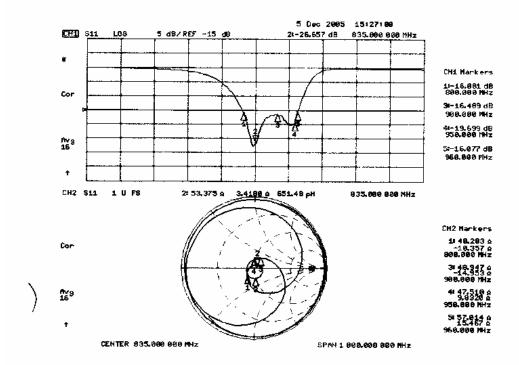
### Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW

Page

30(42)

Author Data

Daoud Attayi


June 26-29, 2005

Report No **RTS-0447-0606-24** 

FCC ID L6ARBH40GW

#### 3.3 Measurement Sheets

#### 3.3.1 Return Loss and Smith Chart



Certificate No: CD835V3-1011\_Dec05

Page 4 of 6

## Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW

Page

31(42)

Author Data

Daoud Attayi

Dates June 26-29, 2005 Report No **RTS-0447-0606-24** 

L6ARBH40GW

#### 3.3.2 DASY4 H-field result

Date/Time: 12/5/2005 3:57:25 PM

FCC ID

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1011

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Air

Medium parameters used:  $\sigma = 0$  mho/m,  $\epsilon_r = 1$ ;  $\rho = 1$  kg/m<sup>3</sup>

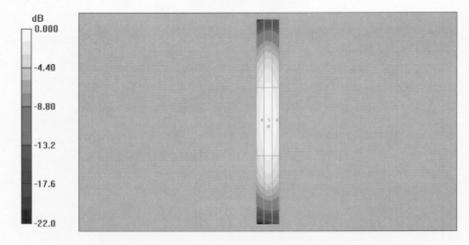
Phantom section: H Dipole Section

#### DASY4 Configuration:

- Probe: H3DV6 SN6065; Calibrated: 12/10/2004
- Sensor-Surface: (Fix Surface)
- · Electronics: DAE4 Sn660; Calibrated: 12/16/2004
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

#### H Scan 10mm above CD 835 MHz/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.446 A/m

Probe Modulation Factor = 1.00

Reference Value = 0.474 A/m; Power Drift = 0.012 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

| Grid 1 | Grid 2 | Grid 3 |
|--------|--------|--------|
| 0.376  | 0.398  | 0.379  |
| Grid 4 | Grid 5 | Grid 6 |
| 0.419  | 0.446  | 0.428  |
| Grid 7 | Grid 8 | Grid 9 |
| 0.365  | 0.391  | 0.376  |



0 dB = 0.446 A/m

Certificate No: CD835V3-1011\_Dec05

Page 5 of 6

## Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW

Report No

Page

32(42)

Author Data

Daoud Attayi

Dates

June 26-29, 2005

RTS-0447-0606-24

L6ARBH40GW

#### 3.3.3 DASY4 E-Field result

Date/Time: 12/5/2005 12:21:35 PM

FCC ID

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1011

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Ai

Medium parameters used:  $\sigma = 0$  mho/m,  $\varepsilon_r = 1$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: E Dipole Section

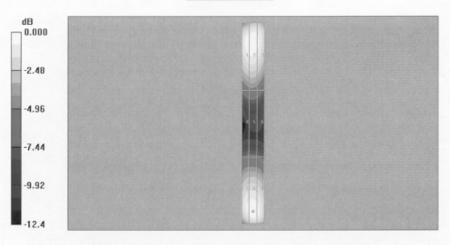
#### DASY4 Configuration:

- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 1/20/2005
- · Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 12/16/2004
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

#### E Scan 10mm above CD 835 MHz/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 162.2 V/m


Probe Modulation Factor = 1.00

Reference Value = 105.0 V/m; Power Drift = -0.027 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

| Grid 1 | Grid 2 | Grid 3 |
|--------|--------|--------|
| 159.9  | 162.2  | 154.4  |
| Grid 4 | Grid 5 | Grid 6 |
| 87.1   | 88.4   | 84.5   |
| Grid 7 | Grid 8 | Grid 9 |
| 155.0  | 161.0  | 156.5  |



0 dB = 162.2V/m

Certificate No: CD835V3-1011\_Dec05

Page 6 of 6

### Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW

Page

33(42)

Author Data

Daoud Attayi

Dates

June 26-29, 2005

Report No **RTS-0447-0606-24** 

FCC ID L6ARBH40GW

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





- S Schweizerischer Kalibrierdienst
  C Service suisse d'étalonnage
  Servizio svizzero di taratura
  S Swiss Calibration Service
- Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

| ALIBRATION (                                                                                                                      | CERTIFICAT                       | E                                                                                                                                  |                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Object                                                                                                                            | CD1880V3 - SN                    | l: 1008                                                                                                                            |                                                                       |
| Calibration procedure(s)                                                                                                          | QA CAL-20.v4<br>Calibration proc | edure for dipoles in air                                                                                                           |                                                                       |
| Calibration date:                                                                                                                 | December 6, 20                   | 005                                                                                                                                |                                                                       |
| Condition of the calibrated item                                                                                                  | In Tolerance                     |                                                                                                                                    |                                                                       |
|                                                                                                                                   | cted in the closed laborat       | probability are given on the following pages and articly facility: environment temperature $(22 \pm 3)^{\circ}$ C and              |                                                                       |
| Primary Standards                                                                                                                 | ID#                              | Cal Date (Calibrated by, Certificate No.)                                                                                          | Scheduled Calibration                                                 |
| Power meter EPM-442A                                                                                                              | GB37480704                       | 04-Oct-05 (METAS, No. 251-00516)                                                                                                   | Oct-06                                                                |
| Power sensor HP 8481A                                                                                                             | US37292783                       | 04-Oct-05 (METAS, No. 251-00516)                                                                                                   | Oct-06                                                                |
| 20 dB Attenuator                                                                                                                  | SN: 5086 (20g)                   | 11-Aug-05 (METAS, No 251-00498)                                                                                                    | Aug-06                                                                |
| 10 dB Attenuator                                                                                                                  | SN: 5047.2 (10r)                 | 11-Aug-05 (METAS, No 251-00498)                                                                                                    | Aug-06                                                                |
| Secondary Standards                                                                                                               | ID#                              | Check Date (in house)                                                                                                              | Scheduled Check                                                       |
| Power meter EPM-4419B                                                                                                             | GB43310788                       | 12-Aug-03 (SPEAG, in house check Oct-05)                                                                                           | In house check: Oct-06                                                |
| Power sensor HP 8481A                                                                                                             | MY41093312                       | 10-Aug-03 (SPEAG, in house check Oct-05)                                                                                           | In house check: Oct-07                                                |
|                                                                                                                                   | MY41093315                       | 10-Aug-03 (SPEAG, in house check Oct-05)                                                                                           | In house check: Oct-06                                                |
| Power sensor HP 8481A                                                                                                             | US37390585                       | 18-Oct-01 (SPEAG, in house check Nov-05)                                                                                           | In house check: Nov-06                                                |
| Network Analyzer HP 8753E                                                                                                         |                                  | 00 1 1 0 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                            | In house check: Nov-07                                                |
| Network Analyzer HP 8753E<br>RF generator R&S SMT06                                                                               | 100005                           | 26-Jul-04 (SPEAG, in house check Nov-05)                                                                                           |                                                                       |
| Network Analyzer HP 8753E<br>RF generator R&S SMT06<br>DAE4                                                                       | SN: 660                          | 16-Dec-04 (SPEAG, No. DAE4-660_Dec04)                                                                                              | Calibration, Dec-05                                                   |
| Network Analyzer HP 8753E<br>RF generator R&S SMT06<br>DAE4<br>Probe ER3DV6                                                       | SN: 660<br>SN: 2336              | 16-Dec-04 (SPEAG, No. DAE4-660_Dec04)<br>20-Jan-05 (SPEAG, No. ER3-2336_Jan05)                                                     | Calibration, Dec-05<br>Calibration, Jan-06                            |
| Network Analyzer HP 8753E<br>RF generator R&S SMT06<br>DAE4<br>Probe ER3DV6                                                       | SN: 660                          | 16-Dec-04 (SPEAG, No. DAE4-660_Dec04)                                                                                              | Calibration, Dec-05                                                   |
| Network Analyzer HP 8753E<br>RF generator R&S SMT06<br>DAE4<br>Probe ER3DV6                                                       | SN: 660<br>SN: 2336              | 16-Dec-04 (SPEAG, No. DAE4-660_Dec04)<br>20-Jan-05 (SPEAG, No. ER3-2336_Jan05)<br>10-Dec-04 (SPEAG, No. H3-6065-Dec04)<br>Function | Calibration, Dec-05 Calibration, Jan-06 Calibration, Dec-05 Signature |
| Network Analyzer HP 8753E<br>RF generator R&S SMT06<br>DAE4<br>Probe ER3DV6<br>Probe H3DV6                                        | SN: 660<br>SN: 2336<br>SN: 6065  | 16-Dec-04 (SPEAG, No. DAE4-660_Dec04)<br>20-Jan-05 (SPEAG, No. ER3-2336_Jan05)<br>10-Dec-04 (SPEAG, No. H3-6065-Dec04)<br>Function | Calibration, Dec-05 Calibration, Jan-06 Calibration, Dec-05 Signature |
| Power sensor HP 8481A Network Analyzer HP 8753E RF generator R&S SMT06 DAE4 Probe ER3DV6 Probe H3DV6 Calibrated by:  Approved by: | SN: 660<br>SN: 2336<br>SN: 6065  | 16-Dec-04 (SPEAG, No. DAE4-660_Dec04)<br>20-Jan-05 (SPEAG, No. ER3-2336_Jan05)<br>10-Dec-04 (SPEAG, No. H3-6065-Dec04)<br>Function | Calibration, Dec-05<br>Calibration, Jan-06<br>Calibration, Dec-05     |

Certificate No: CD1880V3-1008\_Dec05

Page 1 of 6

### Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW

Page

34(42)

Author Data

Daoud Attavi

Dates

June 26-29, 2005

Report No

RTS-0447-0606-24

FCC ID L6ARBH40GW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the ségnatories to the EA
Multilateral Agreement for the recognition of calibration certificates

#### References

 ANSI-PC63.19-2001 (Draft 3.x, 2005)
 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

#### Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna
  (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other
  axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to
  be at a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate.
  All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector
  Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of
  reflections was eliminating by applying the averaging function while moving the dipole in the air, at least
  70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parellelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
  antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field
  scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field
  value stated as calibration value represents the maximum of the Interpolated H-field, 10mm above the
  dipole surface at the feed point.

| Certificate No: CD1880V3-1008_Dec05 | Page 2 of 6 |  |
|-------------------------------------|-------------|--|
|                                     |             |  |
|                                     |             |  |

### Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW

Page

35(42)

Author Data

Daoud Attayi

June 26-29, 2005

Report No **RTS-0447-0606-24** 

L6ARBH40GW

FCC ID

#### 1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                       | DASY4            | V4.6 B23             |
|------------------------------------|------------------|----------------------|
| DASY PP Version                    | SEMCAD           | V1.8 B160            |
| Phantom                            | HAC Test Arch    | SD HAC P01 BA, #1002 |
| Distance Dipole Top - Probe Center | 10 mm            |                      |
| Scan resolution                    | dx, dy = 5 mm    | area = 20 x 90 mm    |
| Frequency                          | 1880 MHz ± 1 MHz |                      |
| Forward power at dipole connector  | 20.0 dBm = 100mW |                      |
| Input power drift                  | < 0.05 dB        |                      |

#### 2 Maximum Field values

| H-field 10 mm above dipole surface | condition            | interpolated maximum |
|------------------------------------|----------------------|----------------------|
| Maximum measured                   | 100 mW forward power | 0.454 A/m            |

Uncertainty for H-field measurement: 8.2% (k=2)

| E-field 10 mm above dipole surface | condition            | Interpolated maximum |
|------------------------------------|----------------------|----------------------|
| Maximum measured above high end    | 100 mW forward power | 132.9 V/m            |
| Maximum measured above low end     | 100 mW forward power | 131.8 V/m            |
| Averaged maximum above arm         | 100 mW forward power | 132.4 V/m            |

Uncertainty for E-field measurement: 12.8% (k=2)

#### 3 Appendix

#### 3.1 Antenna Parameters

| Frequency | Return Loss | Impedance           |
|-----------|-------------|---------------------|
| 1710 MHz  | 22.7 dB     | ( 56.4 + j4.5 ) Ohm |
| 1880 MHz  | 20.1 dB     | ( 58.4 + j6.6 Ohm   |
| 1900 MHz  | 20.9 dB     | ( 58.6 + j4.6 ) Ohm |
| 1950 MHz  | 27.7 dB     | ( 54.3 – j0.4 ) Ohm |
| 2000 MHz  | 18.7 dB     | (52.1 + j11.7) Ohm  |

#### 3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

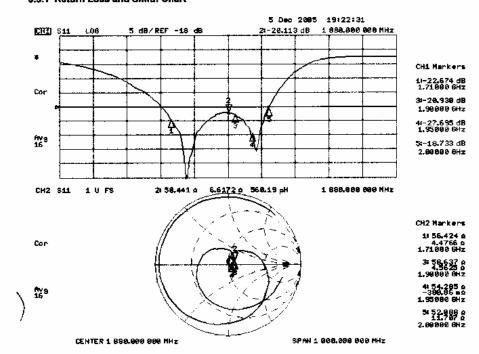
### Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW

Page

36(42)

Author Data

Daoud Attayi


June 26-29, 2005

Report No **RTS-0447-0606-24** 

FCC ID L6ARBH40GW



#### 3.3.1 Return Loss and Smith Chart



Certificate No: CD1880V3-1008\_Dec05

Page 4 of 6

## Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW

Page

37(42)

Author Data

Daoud Attayi

Dates

June 26-29, 2005

Report No **RTS-0447-0606-24** 

L6ARBH40GW

FCC ID

#### 3.3.2 DASY4 H-field result

Date/Time: 12/6/2005 7:35:29 PM

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1008

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air

Medium parameters used:  $\sigma = 0$  mho/m,  $\epsilon_r = 1$ ;  $\rho = 1$  kg/m<sup>3</sup>

Phantom section: H Dipole Section

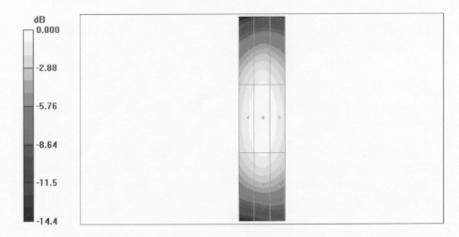
#### DASY4 Configuration:

- Probe: H3DV6 SN6065; Calibrated: 12/10/2004
- · Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 12/16/2004
- Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

#### H Scan 10mm above CD1880V3/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.454 A/m


Probe Modulation Factor = 1.00

Reference Value = 0.480 A/m; Power Drift = -0.009 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

| Grid 1<br>0.395 | Grid 2<br>0.420 | Grid 3<br>0.403 |
|-----------------|-----------------|-----------------|
| Grid 4          | Grid 5          | Grid 6          |
| 0.431           | 0.454           | 0.437           |



0 dB = 0.454A/m

Certificate No: CD1880V3-1008\_Dec05

Page 5 of 6

## Document Annexes to Hearing Aid Compatibility RF Emissions Test Report for BlackBerry Wireless Handheld Model RBH42GW / RBH44GW

Report No

Page

38(42)

Author Data

Daoud Attayi

Dates

June 26-29, 2005

RTS-0447-0606-24

FCC ID L6ARBH40GW

#### 3.3.3 DASY4 E-Field result

Date/Time: 12/6/2005 8:20:46 PM

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1008

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air

Medium parameters used:  $\sigma = 0$  mho/m,  $\epsilon_r = 1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: E Dipole Section

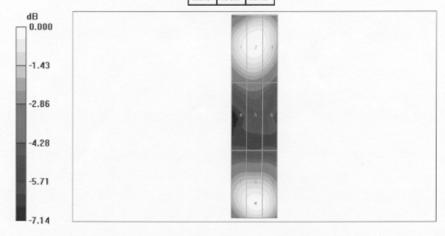
#### DASY4 Configuration:

- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 1/20/2005
- · Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 12/16/2004
- Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

#### E Scan 10mm above CD1880V3/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 132.9 V/m


Probe Modulation Factor = 1.00

Reference Value = 147.2 V/m; Power Drift = 0.033 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

|   | Grid 1 | Grid 2 | Grid 3 |
|---|--------|--------|--------|
|   | 129.6  | 132.9  | 129.3  |
|   | Grid 4 | Grid 5 | Grid 6 |
|   | 90.4   | 92.1   | 88.0   |
|   | Grid 7 | Grid 8 | Grid 9 |
| ١ | 125.5  | 131.8  | 129.5  |



0 dB = 132.9V/m

Certificate No: CD1880V3-1008\_Dec05

Page 6 of 6

| RTS RIM Testing Services | Test Report for BlackBern RBH42GW / RBH44GW |  |  | <sup>Page</sup> 39(42) |  |
|--------------------------|---------------------------------------------|--|--|------------------------|--|
| Author Data              | Dates Report No FCC ID                      |  |  |                        |  |
| Daoud Attayi             | June 26-29, 2005                            |  |  |                        |  |

Annex C: Test set up photos

| RTS RIM Testing Services | Document Annexes to Hearing<br>Test Report for BlackBer<br>RBH42GW / RBH44GW |                  |           | Page 40(42) |
|--------------------------|------------------------------------------------------------------------------|------------------|-----------|-------------|
| Author Data              | Dates                                                                        | Report No        | FCC ID    |             |
| Daoud Attayi             | June 26-29, 2005                                                             | RTS-0447-0606-24 | L6ARBH400 | <b>W</b>    |




Figure 1 – Dipole validation setup

| RTS RIM Testing Services | Document Annexes to Hearing Test Report for BlackBer RBH42GW / RBH44GW |                  |           | Page 41(42) |
|--------------------------|------------------------------------------------------------------------|------------------|-----------|-------------|
| Author Data              | Dates                                                                  | Report No        | FCC ID    |             |
| Daoud Attayi             | June 26-29, 2005                                                       | RTS-0447-0606-24 | L6ARBH400 | SW          |

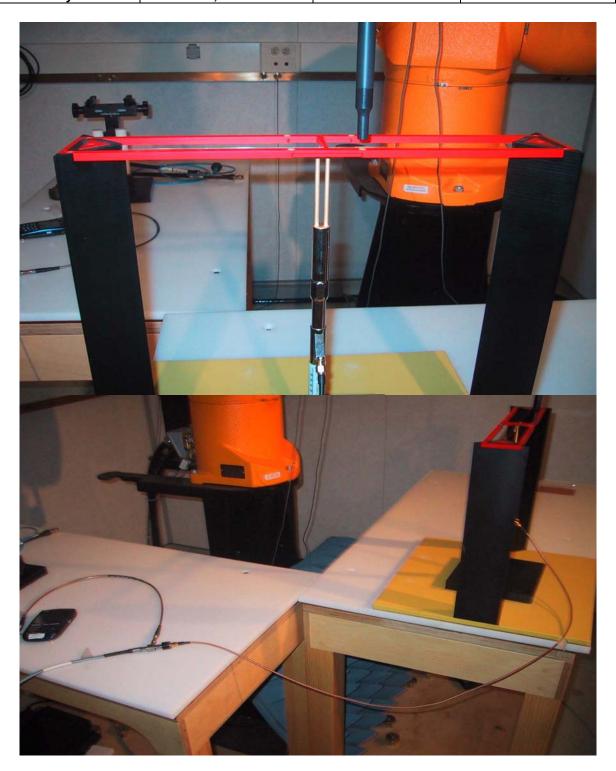



Figure 2 – PMF measurement setup

| RTS RIM Testing Services | Document Annexes to Hearing Test Report for BlackBerry RBH42GW / RBH44GW |                  |           | Page 42(42) |
|--------------------------|--------------------------------------------------------------------------|------------------|-----------|-------------|
| Author Data              | Dates                                                                    | Report No        | FCC ID    |             |
| Daoud Attayi             | June 26-29, 2005                                                         | RTS-0447-0606-24 | L6ARBH40G | W           |

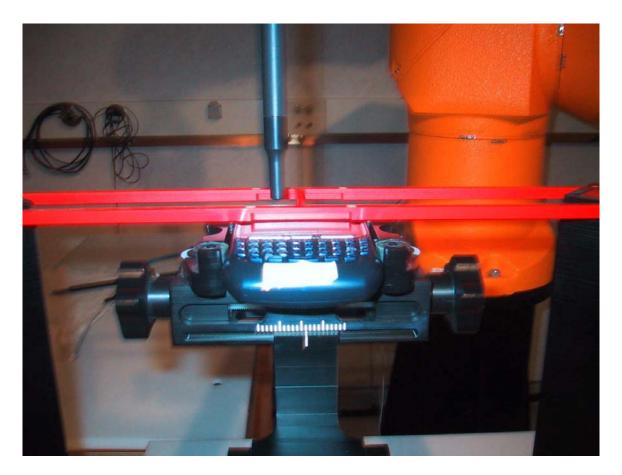



Figure 2 – HAC RF emissions test setup