TEST REPORT DYNAMIC FREQUENCY SELECTION REQUIREMENTS **OF** FCC Part 15 Subpart E (UNII) Research In Motion Limited (RIM) Model: RBG41GW FCC ID: L6ARBG40GW **COMPANY:** Research in Motion 305 Phillip Street Waterloo, Ontario N2L 3W8 Canada TEST SITE: Elliott Laboratories, Inc. > 684 W. Maude Ave Sunnyvale, CA 94086 REPORT DATE: January 8, 2007 March 30, 2007 **RE-ISSUE DATE:** FINAL TEST DATE: March 27, 2007 **AUTHORIZED SIGNATORY:** Chief Technical Officer Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc. # **REVISION HISTORY** | Revision # | Date | Comments | Modified By | |------------|-----------------|--------------------|-------------| | 1 | January 8, 2007 | Original report | - | | 2 | March 30, 2007 | Modifed report for | jm | | | | new test performed | | | | | on March 27 using | | | | | different channel | | | | | loading via ftp | | | | | methods and a | | | | | different sample | | | | | | | | | | | | File: R66628 Page 2 of 21 # **TABLE OF CONTENTS** | COVER PAGE | | |---|----------| | TABLE OF CONTENTS | 3 | | LIST OF FIGURES AND TABLES | 4 | | SCOPE | 5 | | OBJECTIVE | 5 | | STATEMENT OF COMPLIANCE | 5 | | DEVIATIONS FROM THE STANDARD | 6 | | EQUIPMENT UNDER TEST (EUT) DETAILS | 7 | | GENERAL ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT EUT INTERFACE PORTS EUT OPERATION | | | TEST RESULTS | 9 | | TEST RESULTS SUMMARY – FCC PART 15, CLIENT DEVICE
MEASUREMENT UNCERTAINTIES | | | DFS TEST METHODS | 11 | | RADIATED TEST METHODCONDUCTED TEST METHOD | 11 | | DFS MEASUREMENT INSTRUMENTATION | 14 | | RADAR GENERATION SYSTEMCHANNEL MONITORING SYSTEM | | | DFS MEASUREMENT METHODS | 16 | | DFS RADAR DETECTION BANDWIDTH | 16
17 | | APPENDIX A TEST EQUIPMENT CALIBRATION DATA | 18 | | APPENDIX B TEST DATA TABLES FOR RADAR DETECTION | 19 | | APPENDIX C TEST DATA TABLES AND PLOTS FOR CHANNEL CLOSING | 20 | | ECC PART 15 SUBPART E DATA | 20 | # LIST OF FIGURES AND TABLES | Table 1 FCC Part 15 Subpart E Client Device Test Result Summary | 9 | |---|----------| | Table 2 Summary of All Results | 9 | | Table 3 FCC Short Pulse Radar (Type 1) Test Results | 9 | | Table 4 Long Sequence Waveform Summary Error! Bookmark not | | | Table 5 Long Sequence Waveform Trial#1 (Detected) Error! Bookmark not | defined. | | Table 6 FCC Part 15 Subpart E Channel Closing Test Results | 20 | | Figure 1 Test Configuration for Radiated Measurement Method | 11 | | Figure 2 Test Configuration for Conducted Measurement Method | 12 | | Figure 3 Channel Utilization During In-Service Detection Measurements | 19 | File: R66628 Page 4 of 21 # SCOPE The Federal Communications Commission publishes standards regarding ElectroMagnetic Compatibility for radio-communications devices. Tests have been performed on the Research In Motion Limited (RIM) model RBG41GW in accordance with one of these standards. Test data has been taken pursuant to the relevant DFS requirements of the following standard(s): • FCC Part 15 SubPart E Unlicensed National Information Infrastructure (U-NII) Devices Tests were performed in accordance with these standards together with the current published versions of the basic standards referenced therein as outlined in Elliott Laboratories test procedures. The test results recorded herein are based on a single type test of the Research In Motion Limited (RIM) model RBG41GW and therefore apply only to the tested sample. The sample was selected and prepared by Masud Attayi of Research in Motion Limited (RIM). ## **OBJECTIVE** The objective of the manufacturer is to comply with the standards identified in the previous section. In order to demonstrate compliance, the manufacturer or a contracted laboratory makes measurements and takes the necessary steps to ensure that the equipment complies with the appropriate technical standards. Compliance with some DFS features is covered through a manufacturer statement or through observation of the device. ## STATEMENT OF COMPLIANCE The tested sample of Research In Motion Limited (RIM) model RBG41GW complied with the DFS requirements for a client device without radar detection capabilities of: FCC Part 15.407(h) Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report. File: R66628 Page 5 of 21 # **DEVIATIONS FROM THE STANDARD** The following deviations were made from the test methods and requirements covered by the scope of this report: - 1. Used FTP to enable the wireless transfer of the MPEG video test file from the server/computer to the client EUT via the FCC certified Access Point. The EUT did not have to play the MPEG file since it did not have video streaming capabilities. - 2. The certified master AP was set to a constant 6 Mb/s rate by using Cisco web browser menu options under the 802.11a radio. The Data rate was set to 6 Mb/s as a default when it had completed its boot sequence. File: R66628 Page 6 of 21 # **EQUIPMENT UNDER TEST (EUT) DETAILS** ### **GENERAL** The Research In Motion Limited (RIM) model RBG41GW is a handheld organizer and cellular phone with WiFi capabilities. The sample was received on March 8, 2007 and tested on March 27, 2007. The EUT consisted of the following component(s): | Manufacturer | Model | Description | Serial Number | |--------------------|---------|--------------------|----------------| | Research in Motion | RBG41GW | Handheld organizer | Pre-production | | | | and cellular phone | | The manufacturer declared values for the EUT operational characteristics that affect DFS are as follows: | <u>Opera</u> | ting Modes | | | | | | |--------------|----------------------------------|-----------------|-----------------|--|--|--| | | Master Device | | | | | | | | Client Device with no rad | ar detection | | | | | | | Client Device with In-Serv | vice Monitoring | | | | | | Anten | na Gains / EIRP | | | | | | | | | 5250 – 5350 MHz | 5470 – 5725 MHz | | | | | | Lowest Antenna Gain (dBi) 3 0.85 | | | | | | | | Highest Antenna Gain (dBi) | 3.5 | 2 | | | | | | Output Power (dBm) 18 | | | | | | | <u>Chanr</u> | Power can exceed 200mW | eirp | | | | | | | | | | | | | | | Frame Based | | | | | | | | OTHER | | | | | | | | | | | | | | # **ENCLOSURE** The EUT enclosure measures approximately 11 by 6.5 by 1 centimeter. It is primarily constructed of plastic with metal parts. File: R66628 Page 7 of 21 ### **MODIFICATIONS** The EUT did not require modifications during testing in order to comply with the requirements of the standard(s) referenced in this test report. ### SUPPORT EQUIPMENT The following equipment was used as local support equipment for testing: | Manufacturer | Model | Description | Serial Number | FCC ID | |--------------|----------------|----------------------|---------------|------------| | Cisco | AIR- | Access Point | FTX1040T17J | LDK102054E | | | <i>AP1131A</i> | | | | | | G-A-K9 | | | | | Dell | PP02X | Laptop with wireless | 42707742661 | DoC | | | | card | | | The italicized device was the master device. (Note: The master AP was forced to 6Mbps using Cisco web browser access to the AP which in turn has menu options under the 802.11a to be able to set the data rate to 6Mbps as a default when it has completed its boot sequence.) #### **EUT INTERFACE PORTS** The I/O cabling configuration during testing was as follows: | | | Cable(s) | | | |------|--------------|-------------|------------------------|-----------| | Port | Connected To | Description | Shielded or Unshielded | Length(m) | | None | | | | | ### **EUT OPERATION** The EUT was operating with the following software: Client Device: Wireless Handheld v4.2.2.35 (platform 2.4.0.13) During the channel moving tests the system was configured with a streaming video file from the master device (sourced by a server connected to the master device via an Ethernet interface) to the laptop. The streamed file was the "FCC" test MPEG file and the PDA blackberry was using the FTP method, FCC accepted, to provide the channel loading. File: R66628 Page 8 of 21 # **TEST RESULTS** # TEST RESULTS SUMMARY – FCC Part 15, CLIENT DEVICE | Description | Radar
Type | Radar
Frequency | Measured
Value | Requirement | Test Data | Status | |-----------------------------------|---------------|--------------------|-------------------|-------------|------------|--------| | Channel closing transmission time | Type 1 | 5300 MHz | 0.82mS | 60mS | Appendix C | Passed | | Channel move time | Type 1 | 5300 MHz | 0.434S | 10 S | Appendix C | Passed | # **Table 1 FCC Part 15 Subpart E Client Device Test Result Summary** # Notes: 1) Channel availability check, detection threshold and non-occupancy period are not applicable to client devices. | Waveform Name | Success Rate | Number of Trials | |--------------------------------|--------------|------------------| | FCC Short Pulse Radar (Type 1) | 100 % | 1 | **Table 2 Summary of All Results** | Trial # | Pulses/Burst | Pulse Width (us) | PRI (us) | Detected ? | Fr (MHz) and level (dBm) | Hop Seq. | |----------|--------------|------------------|----------|------------|--------------------------|----------| | Trial #1 | 18 | 1 | 1428 | Yes | 5300, -64dBm | N/A | Table 3 FCC Short Pulse Radar (Type 1) Test Results File: R66628 Page 9 of 21 ## **MEASUREMENT UNCERTAINTIES** ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level, with a coverage factor (k=2) and were calculated in accordance with UKAS document LAB 34. | Measurement | Measurement Unit | Expanded Uncertainty | |---|------------------|----------------------------| | Timing (Channel move time, aggregate transmission time) | ms | Timing resolution +/-0.24% | | Timing (non occupancy period) | seconds | 5 seconds | File: R66628 Page 10 of 21 ## **DFS TEST METHODS** #### RADIATED TEST METHOD The combination of master and slave devices is located in an anechoic chamber. The simulated radar waveform is transmitted from a directional horn antenna (typically an EMCO 3115) toward the unit performing the radar detection (radar detection device, RDD). Every effort is made to ensure that the main beam of the EUT's antenna is aligned with the radar generating antenna. Figure 1 Test Configuration for Radiated Measurement Method The signal level of the simulated waveform is set to a reference level equal to the threshold level (plus 1dB if testing against FCC requirements). Lower levels may also be applied on request of the manufacturer. The level reported is the level at the RDD antenna and so it is not corrected for the RDD's antenna gain. The RDD is configured with the lowest gain antenna assembly intended for use with the device. File: R66628 Page 11 of 21 The signal level is verified by measuring the CW signal level from the radar generation system using a reference antenna of gain G (dBi). The radar signal level is calculated from the measured level, R (dBm), and any cable loss, L (dB), between the reference antenna and the measuring instrument: Applied level $$(dBm) = R - GREF + L$$ If both master and client devices have radar detection capability then the device not under test is positioned with absorbing material between its antenna and the radar generating antenna, and the radar level at the non RDD is verified to be at least 20dB below the threshold level to ensure that any responses are due to the RDD detecting radar. The antenna connected to the channel monitoring subsystem is positioned to allow both master and client transmissions to be observed, with the level of the EUT's transmissions between 6 and 10dB higher than those from the other device. #### **CONDUCTED TEST METHOD** The combination of master and slave devices is located in an anechoic chamber. The simulated radar waveform is coupled into the unit performing the radar detection (radar detection device, RDD) via couplers and attenuators. Figure 2 Test Configuration for Conducted Measurement Method File: R66628 Page 12 of 21 Test Report Report Date: *January 8*, 2007 Re-Issue Date: *March 30*, 2007 The signal level of the simulated waveform is set to a reference level equal to the threshold level (plus 1dB if testing against FCC requirements). Lower levels may also be applied on request of the manufacturer. The signal level is verified by measuring the CW signal level at the coupling point to the RDD antenna port. The radar signal level is calculated from the measured level, R (dBm) and the lowest gain antenna assembly intended for use with the RDD, GRDD (dBi): Applied level $$(dBm) = R - GRDD$$ If both master and client devices have radar detection capability then the radar level at the non RDD is verified to be at least 20dB below the threshold level to ensure that any responses are due to the RDD detecting radar. The antenna connected to the channel monitoring subsystem is positioned to allow both master and client transmissions to be observed, with the level of the EUT's transmissions between 6 and 10dB higher than those from the other device. File: R66628 Page 13 of 21 ## DFS MEASUREMENT INSTRUMENTATION #### RADAR GENERATION SYSTEM An Agilent PSG is used as the radar generating source. The integral arbitrary waveform generators are programmed using Agilent's "Pulse Building" software and Elliott custom software to produce the required waveforms, with the capability to produce noth unmodulated and modulated (FM Chirp) pulses. Where there are multiple values for a specific radar parameter then the software selects a value at random and, for FCC tests, the software verifies that the resulting waveform is truly unique. With the exception of the hopping waveforms required by the FCC's rules (see below), the radar generator is set to a single frequency within the radar detection bandwidth of the EUT. Frequency hopping radar waveforms are simulated using a time domain model. A randomly hopping sequence algorithm (which uses each channel in the hopping radar's range once in a hopping sequence) generates a hop sequence. A segment of the first 100 elements of the hop sequence are then examined to determine if it contains one or more frequencies within the radar detection bandwidth of the EUT. If it does not then the first element of the segment is discarded and the next frequency in the sequence is added. The process repeats until a valid segment is produced. The radar system is then programmed to produce bursts at time slots coincident with the frequencies within the segment that fall in the detection bandwidth. The frequency of the generator is stepped in 1 MHz increments across the EUT's detection range. The radar signal level is verified during testing using a CW signal with the AGC function switched on. Correction factors to account for the fact that pulses are generated with the AGC functions switched off are measured annually and an offset is used to account for this in the software. The generator output is connected to the coupling port of the conducted set-up or to the radar generating antenna. File: R66628 Page 14 of 21 ### **CHANNEL MONITORING SYSTEM** Channel monitoring is achieved using a spectrum analyzer and digital storage oscilloscope. The analyzer is configured in a zero-span mode, center frequency set to the radar waveform's frequency or the center frequency of the EUT's operating channel. The IF output of the analyzer is connected to one input of the oscilloscope. A signal generator output is set to send either the modulating signal directly or a pulse gate with an output pulse co-incident with each radar pulse. This output is connected to a second input on the oscilloscope and the oscilloscope displays both the channel traffic (via the if input) and the radar pulses on its display. For in service monitoring tests the analyzer sweep time is set to > 20 seconds and the oscilloscope is configured with a data record length of 10 seconds for the short duration and frequency hopping waveforms, 20 seconds for the long duration waveforms. Both instruments are set for a single acquisition sequence. The analyzer is triggered 500ms before the start of the waveform and the oscilloscope is triggered directly by the modulating pulse train. Timing measurements for aggregate channel transmission time and channel move time are made from the oscilloscope data, with the end of the waveform clearly identified by the pulse train on one trace. The analyzer trace data is used to confirm that the last transmission occurred within the 10 second record of the oscilloscope. If necessary the record length of the oscilloscope is expanded to capture the last transmission on the channel prior to the channel move. Channel availability check time timing plots are made using the analyzer. The analyzer is triggered at start of the EUT's channel availability check and used to verify that the EUT does not transmit when radar is applied during the check time. The analyzer detector and oscilloscope sampling mode is set to peak detect for all plots. File: R66628 Page 15 of 21 ## DFS MEASUREMENT METHODS ### DFS RADAR DETECTION BANDWIDTH The radar detection bandwidth is determined by using on of the radar waveforms (in the FCC case, the selection is limited to the short duration burst waveforms) and applying radar pulses at offset from the center channel frequency by multiples of 1MHz. These bursts are applied with no traffic on the channel. The first frequencies above and below the center channel frequency that have a detection rate below 90% define the radar bandwidth, the actual range being 1MHz below the upper frequency and 1MHz above the lower frequency. ## DFS - CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME Channel clearing and closing times are measured by applying a radar burst with the device configured to change channel and by observing the channel for transmissions. The time between the end of the applied radar waveform and the final transmission on the channel is the channel move time. The aggregate transmission closing time is measured as the total time of all individual transmissions from the EUT that are observed starting 200ms after radar detection. This value is required to be less than 60ms. File: R66628 Page 16 of 21 ### DFS CHANNEL AVAILABILITY CHECK TIME It is preferred that the EUT report when it starts the radar channel availability check. In this case a single burst of one radar type is applied within 6 seconds of observing the start of the channel availability check and it is verified that the device does not use the channel. The test is repeated by applying a radar burst no sooner than 54 seconds and no later than 60 seconds after the start of the check. If the EUT does not report the start of the check time, then the time to start transmitting on a channel after switching the device on is measured to approximate the time from power-on to the end of the channel availability check. The start of the channel availability check is assumed to be 60 seconds prior to the first transmission on the channel. #### UNIFORM LOADING Compliance with the channel loading requirement, where appropriate (i.e. when channel selection is not determined under control of the network), is demonstrated through the manufacturer's statement(s). ## TRANSMIT POWER CONTROL (TPC) Compliance with the transmit power control requirements for devices is demonstrated through measurements showing multiple power levels and manufacturer statements explaining how the power control is implemented. File: R66628 Page 17 of 21 # Appendix A Test Equipment Calibration Data | Manufacturer | <u>Description</u> | Model # | Asset # | Cal Due | |---------------------|---|---------|---------|-----------| | Hewlett Packard | EMC Spectrum Analyzer, 9 kHz - 6.5
GHz | 8595EM | 780 | 05-Sep-07 | | Tektronix | 1 GHz Oscilloscope | TDS5104 | 1435 | 10-Apr-07 | | EMCO | Antenna, Horn, 1-18 GHz | 3117 | 1662 | 07-Apr-07 | | Agilent | Vector Signal Generator (250kHz - 20GHz) | E8267C | 1877 | 23-Nov-07 | File: R66628 Page 18 of 21 # Appendix B Test Data Tables for Radar Detection The plot below shows the channel loading during testing as evaluated over a 1 second period. The traffic was generated by sending a streaming video file from the master device (sourced by a server connected to the master device via an Ethernet interface) to the EUT via FTP connection approved by the FCC. Figure 3 Channel Utilization During In-Service Detection Measurements File: R66628 Page 19 of 21 # Appendix C Test Data Tables and Plots for Channel Closing #### FCC PART 15 SUBPART E DATA | Waveform Type | Channel Closing | | Channel Move | | Result | |---------------|--------------------------------|-------|--------------|-------|--------| | | Transmission Time ¹ | | Time | | | | | Measured | Limit | Measured | Limit | | | Radar Type 1 | 0.82 ms | 60 ms | 0.434 s | 10 s | Pass | **Table 4 FCC Part 15 Subpart E Channel Closing Test Results** Figure 4 - Channel closing File: R66628 Page 20 of 21 pages ¹ Channel closing time for FCC measurements is the aggregate transmission time starting from 200ms after the end of the radar signal to the completion of the channel move. The ETSI requirement is less restrictive on when the 260mS of transmissions can occur. Test Report Report Date: January 8, 2007 Re-Issue Date: March 30, 2007 Figure 5 – Zoomed plot of channel closing After the final channel closing test the channel was monitored for a further 30 minutes. No transmissions occurred on the channel. File: R66628 Page 21 of 21 pages