RTS RIM Testing Services	SAR Compliance Test Report for Wireless Handheld Model RBE4	2	Page 1(27)
Author Data	Dates of Test	Test Report No	FCC ID:
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

SAR Compliance Test Report

Testing Lab:	305 Phil	ting Services (RTS) lip Street	Applicant:	295 Phill	1
	waterloo	o, Ontario		Waterloo	, Ontario
	Canada I	N2L 3W8		Canada N	12L 3W8
	Phone:	519-888-7465		Phone:	519-888-7465
	Fax:	519-880-8173		Fax:	519-888-6906
				Web site:	www.rim.com

- Statement of
Compliance:RIM Testing Services declares under its sole responsibility that the product
to which this declaration relates, is in conformity with the appropriate RF exposure
standards, recommendations and guidelines. It also declares that the product was
tested in accordance with the appropriate measurement standards, guidelines and
recommended practices.
- **Device Category:** This wireless handheld is a portable device, designed to be used in direct contact with the user's head, hand and to be carried in approved accessories when carried on the user's body.

RF exposureThis wireless portable device has been shown to be in compliance forenvironment:This wireless portable device has been shown to be in compliance forlocalized specific absorption rate (SAR) for uncontrolled environment/generalpopulation exposure limits specified in OET Bulletin 65 Supplement C (Edition 01-01), FCC 96-326, IEEE Std. C95.1-1999, Health Canada's Safety Code 6, asreproduced in RSS-102 issue 2-2005 and has been tested in accordance with themeasurement procedures specified in OET Bulletin 65 Supplement C (Edition 01-01),ANSI/IEEE Std. C95.3-1991, IEEE 1528-2003, IEC 62209-1-2005 and HealthCanada's Safety Code 6.

Signatures

Tested and Documented by:

Kevin Chow Compliance Specialist

Tested and Reviewed by:

Daoud Attayi Senior Compliance Specialist

Approved by:

Paul G. Cardinal, Ph.D. Manager

Daond Attagi

22-Jul-2006

20-Jul-2006

Date

Paul & Cardinal

24-Jul-2006

RTS RIM Testing Services	SAR Compliance Test Report for Wireless Handheld Model RBE4		Page 2(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

CONTENTS

GENE	RAL INFORMATION	. 1
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	OPERATING CONFIGURATIONS AND TEST CONDITIONS PICTURE OF HANDHELD ANTENNA DESCRIPTION HANDHELD DESCRIPTION BODY WORN ACCESSORIES HEADSETS BATTERIES LCDs PROCEDURE USED TO ESTABLISH TEST SIGNALS	4 4 4 5 5
2.0 2.1 2.2	DESCRIPTION OF THE TEST EQUIPMENT	6 7 7 7
3.0 3.1 3.2	ELECTRIC FIELD PROBE CALIBRATION PROBE SPECIFICATIONS PROBE CALIBRATION AND MEASUREMENT ERRORS	8
4.0 _{4.1}	SAR MEASUREMENT SYSTEM VERIFICATION SYSTEM ACCURACY VERIFICATION FOR HEAD ADJACENT USE	
5.0	PHANTOM DESCRIPTION	10
6.0 6.1 6.2	TISSUE DIELECTRIC PROPERTIES COMPOSITION OF TISSUE SIMULANT. 6.1.1 EQUIPMENT 6.1.2 PREPARATION PROCEDURE ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID. 6.2.1 EQUIPMENT 6.2.2 TEST CONFIGURATION 6.2.3 TEST PROCEDURE	11 11 12 12 13
7.0	SAR SAFETY LIMITS	18
8.0 8.1 8.2	DEVICE POSITIONING DEVICE HOLDER FOR SAM TWIN PHANTOM DESCRIPTION OF THE TEST POSITION	19 20 20 21 22
9.0 9.1 9.2 9.3 9.4	HIGH LEVEL EVALUATION MAXIMUM SEARCH EXTRAPOLATION BOUNDARY CORRECTION PEAK SEARCH FOR 1g AND 10g AVERAGED SAR	23 23 23
10.0	MEASUREMENT UNCERTAINTY	24

FCC ID:		
07-13 L6ARBE40GW		
Wireless Handheld Model RBE41GW ates of Test Test Report No ful. 10-20, 2006 RTS-0428-0607-13		

11.0		
11.1	HEAD CONFIGURATION	25
11.2	BODY-WORN CONFIGURATION USING HOLSTERS	26
12.0	REFERENCES	27

APPENDIX A: SAR DISTRIBUTION COMPARISON FOR ACCURACY VERIFICATION

APPENDIX B: SAR DISTRIBUTION PLOTS - HEAD CONFIGURATION

APPENDIX C: SAR DISTRIBUTION PLOTS - BODY-WORN CONFIGURATION

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

APPENDIX E: PHOTOGRAPHS

1.0 OPERATING CONFIGURATIONS AND TEST CONDITIONS

1.1 Picture of Handheld

Please refer to Appendix E.

Figure 1. BlackBerry Wireless Handheld

1.2 Antenna description

Туре	Internal fixed antenna
Location	Back bottom centre
Configuration	Internal fixed antenna

Table 1. Antenna description

1.3 Handheld description

Handheld Model	RBE41GW			
FCC ID	L6ARBE40GW			
PIN	204803A6			
Prototype or Production Unit	Production			
	GSM850	GPRS850		
Mode(s) of Operation in North America	GSM1900	GPRS1900	* Bluetooth	
Maximum nominal conducted RF Output	32.0 dBm	32.0 dBm		
Power	29.5 dBm	29.5 dBm	- 0.5 dBm	
Tolerance in Power Setting on centre				
channel	$\pm 0.50 \text{ dB}$	$\pm 0.50 \text{ dB}$	N/A	
Duty Cycle	1:8	2:8	N/A	
	824.2 - 848.8	824.2 - 848.8		
Transmitting Frequency Range (MHz)	1850.2 - 1909.8	1850.2 - 1909.8	2402-2483	

Table 2. Test device description

* Bluetooth application is for hands-free operation with headset only. Therefore, no head SAR testing with BT on is required.

1.4 Body worn accessories

Holsters

The BlackBerry Wireless Handheld has been tested with the following holsters which all contain metal components and the separation distance between the handheld and the user's body is listed in the table below. All of the holsters are designed with the intended handheld orientation being with the LCD facing the belt clip. Proper positioning is vital for protection of the LCD display, and to help maximize the battery life of the handheld. The handheld can also be placed in the holsters with the backside facing the belt clip. Body SAR was evaluated with the worst-case configuration (back of handheld facing belt clip).

Holster Type	Model / Part Number	Separation (mm)
Leather Holster	HDW-13057-00x	16.00
Leather Swivel Holster	HDW-12715-00x	19.00

Please refer to Appendix E.

Figure 2. Body-worn holsters

1.5 Headsets

The BlackBerry Wireless Handheld was tested with and without the following headset model numbers.

- 1) HDW-03458-001 (Mono)
- 2) HDW-12420-001 (Stereo)

1.6 Batteries

The BlackBerry Wireless Handheld was tested with the following Lithium Ion Batteries.

- 1) BAT-11004-001
- 2) BAT-11004-001 (Alternate)

1.7 LCDs

The BlackBerry Wireless Handhelds were tested with the following LCDs.

- 1) LCD-10294-001 / 004
- 2) LCD-10294-002 / 004 (Alternate)
- 3) LCD-10294-003 / 004 (Alternate)

1.8 Procedure used to establish test signal

The Handheld was put into test mode for SAR measurements by placing a voice call from a Rohde & Schwarz CMU 200 Communications Test Instrument. The power control level was set to command the handheld to transmit at full power at the specified frequency. Other parameters include: Channel type = full rate, discontinuous transmission off, frequency hopping off. A Rohde & Schwarz CBT Bluetooth Tester was used to establish a connection with the EUT's Bluetooth radio. Worst case SAR was evaluated with Bluetooth on.

2.0 DESCRIPTION OF THE TEST EQUIPMENT

RTS RIM Testing Services	SAR Compliance Test Report for the BlackBerry Wireless Handheld Model RBE41GW		Page 6(27)
Author Data	Dates of Test	Test Report No	FCC ID:
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

2.1 SAR measurement system

SAR measurements were performed using a Dosimetric Assessment System (DASY4), an automated SAR measurement system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich, Switzerland.

The DASY 4 system for performing compliance tests consists of the following items:

· A standard high precision 6-axis robot (Stäubli RX family) with controller and software.

· An arm extension for accommodating the data acquisition electronics (DAE).

 \cdot A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

• A DAE module that performs the signal amplification, signal

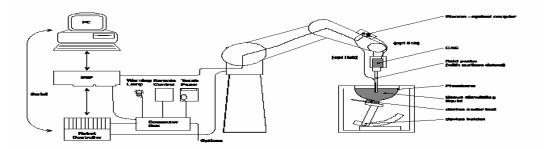
multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the Electro-optical coupler (EOC).

 \cdot A unit to operate the optical surface detector that is connected to the EOC.

 \cdot The EOC performs the conversion from an optical signal into the digital electric signal of the DAE. The EOC is connected to the PC plug-in card.

• The functions of the PC plug-in card based on a DSP is to perform the time critical tasks

such as signal filtering, surveillance of the robot operation fast movement interrupts. • A computer operating Windows 2000.


• DASY 4 software version 4.7.

• Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.

· The SAM Twin Phantom enabling testing left-hand and right-hand usage.

• The device holder for handheld mobile phones.

- Tissue simulating liquid mixed according to the given recipes (see section 6.1).
- · System validation dipoles allowing for the validation of proper functioning of the system.

Figure 3. System Description

RTS RIM Testing Services	SAR Compliance Test Report for Wireless Handheld Model RBE4		Page 7(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

2.1.1 Equipment List

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date
SCHMID & Partner Engineering AG	E-field probe	ET3DV6	1642	01/19/2007
SCHMID & Partner Engineering AG	Data Acquisition Electronics (DAE3)	DAE3 V1	472	04/25/2007
SCHMID & Partner Engineering AG	Dipole Validation Kit	D835V2	446	01/07/2007
SCHMID & Partner Engineering AG	Dipole Validation Kit	D1900V2	545	01/06/2007
Agilent Technologies	Signal generator	HP 8648C	4037U03155	09/13/2007
Agilent Technologies	Power meter	E4419B	GB40202821	09/14/2006
Agilent Technologies	Power sensor	8481A	MY41095417	09/20/2006
Amplifier Research	Amplifier	5S1G4M3	300986	CNR
Agilent Technologies	Network analyzer	8753ES	US39174857	09/14/2006
Rohde & Schwarz	Base Station Simulator	CMU 200	109747	02/08/2007
Rohde & Schwarz	CBT Bluetooth Tester	-	100133	04/11/2007

Table 3. Equipment list

2.2 Description of the test setup

Before a SAR test is conducted, the Handheld and the DASY equipment are setup as follows:

2.2.1 Handheld and base station simulator setup

- Power up the Handheld.
- Turn on the base station simulator and set the radio channel and power to the appropriate values.
- Connect an antenna to the RF IN/OUT of the communication test set and place it close to the Handheld.

2.2.2 DASY setup

- Turn the computer on and log on to Windows 2000.
- Start the DASY4 software by clicking on the icon located on the Windows desktop.
- Mount the DAE unit and the probe. Turn on the DAE unit.
- Turn the Robot Controller on by turning the main power switch to the horizontal position
- Align the probe by clicking the 'Align probe in light beam' button.
- Open a file and configure the proper parameters probe, medium, communications system etc.
- Establish a connection between the Handheld and the communications test instrument. Place the Handheld on the stand and adjust it under the phantom.
- Start SAR measurements.

RTS RIM Testing Services			Page 8(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

3.0 ELECTRIC FIELD PROBE CALIBRATION

3.1 Probe Specifications

SAR measurements were conducted using the dosimetric probe ET3DV6, designed by Schmid & Partner Engineering AG for the measurement of SAR. The probe is constructed using the thin film technique, with printed resistive lines on ceramic substrates. It has a symmetrical design with triangular core, built-in optical fibre for the surface detection system and built-in shielding against static discharge. The probe is sensitive to E-fields and thus incorporates three small dipoles arranged so that the overall response is close to isotropic. The table below summarizes the technical data for the probe.

Property	Data
Frequency range	30 MHz – 3 GHz
Linearity	±0.1 dB
Directivity (rotation around probe axis)	≤ ±0.2 dB
Directivity (rotation normal to probe axis)	±0.4 dB
Dynamic Range	5 mW/kg - 100 W/kg
Probe positioning repeatability	±0.2 mm
Spatial resolution	< 0.125 mm ³

Table 4. Probe specifications

3.2 Probe calibration and measurement errors

The probe was calibrated on January 19, 2006 with an accuracy better than $\pm 10\%$. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe were tested. The probe calibration parameters are shown on Appendix D.

RTS RIM Testing Services			Page 9(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

4.0 SAR MEASUREMENT SYSTEM VERIFICATION

Prior to conducting SAR measurements, the system was validated using the dipole validation kit and the flat section of the SAM phantom. A power level of 1.0W was applied to the dipole antenna. The verification results are in the table below with a comparison to reference values. Printouts are shown in Appendix A. All the measured parameters are within the allowed tolerances.

4.1 System accuracy verification for Head Adjacent use

f	Limits / Measured	SAR (W/kg)		Dielectric Parameters		
(MHz)	Limits / Wieasured	1 g/ 10 g	ε _r	σ [S/m]	Temp (°C)	
	Measured (07/10/2006)	8.31 / 5.53	41.15	0.89	23.2	
835	Measured (07/20/2006)	8.97 / 5.91	42.87	0.91	22.6	
	Recommended Limits	9.10 / 5.93	41.50	0.90	N/A	
	Measured (07/11/2006)	38.9 / 20.4	39.15	1.45	22.8	
	Measured (07/17/2006)	40.6 / 21.3	38.96	1.43	23.0	
1900	Measured (07/18/2006)	39.8 / 21.0	38.96	1.43	23.1	
	Measured (07/20/2006)	40.4 / 21.1	38.96	1.43	22.0	
	Recommended Limits	39.5 / 20.7	40.00	1.40	N/A	

 Table 5. System accuracy (Validation for Head Adjacent use)

RTS RIM Testing Services			Page 10(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

5.0 PHANTOM DESCRIPTION

The SAM Twin Phantom, manufactured by SPEAG, was used during the SAR measurements. The phantom is made of a fibreglass shell integrated with a wooden table.

The SAM Twin Phantom is a fibreglass shell phantom with 2 mm shell thickness. It has three measurement areas:

Left side head Right side head Flat phantom

The phantom table dimensions are: 100x50x85 cm (LxWxH). The table is intended for use with freestanding robots.

The bottom shelf contains three pair of bolts for locking the device holder in place. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is

necessary if two phantoms are used (e.g., for different solutions).

A white cover is provided to top the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible; however the optical surface detector does not work properly at the cover surface. Place a sheet of white paper on the cover when using optical surface detection.

Liquid depth of \geq 15 cm is maintained in the phantom for all the measurements.

Figure 4. SAM Twin Phantom

RTS RIM Testing Services			Page 11(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

6.0 TISSUE DIELECTRIC PROPERTIES

6.1 Composition of tissue simulant

The composition of the brain and muscle simulating liquids for 800-900 MHz and 1800-1900 MHz are shown in the table below.

INGREDIENT	MIXTURE	800–900MHz	MIXTURE 1	800–1900MHz
INGREDIENT	Brain %	Muscle %	Brain %	Muscle %
Water	51.07	65.45	54.88	69.91
Sugar	47.31	34.31	0	0
Salt	1.15	0.62	0.21	0.13
HEC	0.23	0	0	0
Bactericide	0.24	0.10	0	0
DGBE	0	0	44.91	29.96

Table 6. Tissue simulant recipe

6.1.1 Equipment

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date
Pyrex, England	Graduated Cylinder	N/A	N/A	N/A
Pyrex, USA	Beaker	N/A	N/A	N/A
Acculab	Weight Scale	V1-1200	018WB2003	N/A
Control Company	Digital Thermometer	15-077-21	51129471	05/20/2007
IKA Works Inc.	Hot Plate	RC Basic	3.107433	N/A

Table 7. Tissue simulant preparation equipment

6.1.2 Preparation procedure

800-900 MHz liquids

- Fill the container with water. Begin heating and stirring.
- Add the **Cellulose**, the **preservative substance** and the **salt**. After several hours, the liquid will become more transparent again. The container must be covered to prevent evaporation.
- Add **Sugar**. Stir it well until the sugar is sufficiently dissolved.

• Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation.

• Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

1800-1900 MHz liquid

• Fill the container with water. Begin heating and stirring.

RTS RIM Testing Services			Page 12(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

• Add the salt and Glycol. The container must be covered to prevent evaporation.

• Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation.

• Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

6.2 Electrical parameters of the tissue simulating liquid

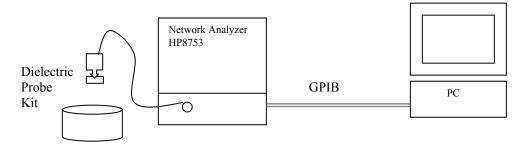
The tissue dielectric parameters shall be measured before a batch can be used for SAR measurements to ensure that the simulated tissue was properly made and will simulate the desired human characteristic. Limits and measured electrical parameters are shown in the table below.

Recommended limits are adopted from IEEE P1528-2003:

"Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", SPEAG dipole calibration certificates and from FCC Tissue Dielectric Properties web page at http://www.fcc.gov/fcc-bin/dielec.sh

f (MIIa)	Tissue	Limits / Measured	Dielectric	Parameters	Liquid Temp
f (MHz) Type		Linnis / Wieasureu	ε _r	σ [S/m]	(°C)
		Measured (07/10/2006)	41.15	0.89	23.2
	Head	Measured (07/19/2006)	42.87	0.91	22.6
835		Recommended Limits	41.50	0.90	N/A
	Muscle	Measured (07/19/2006)	53.37	0.97	23.0
	Muscle	Recommended Limits	55.2	0.97	N/A
		Measured (07/11/2006)	39.15	1.45	22.8
	Head	Measured (07/17/2006)	38.96	1.43	23.0
1900		Recommended Limits	40.0	1.40	N/A
	Musala	Measured (07/17/2006)	50.74	1.59	22.8
	Muscle	Recommended Limits	53.3	1.52	N/A

Table 8. Electrical parameters of tissue simulating liquid


6.2.1 Equipment

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date
Agilent Technologies	Network Analyzer	8753ES	US39174857	07/27/2006
Agilent Technologies	Dielectric probe kit	HP 85070C	US9936135	CNR
Dell	PC using GPIB card	GX110	347	N/A
Control Company	Digital Thermometer	15-077-21	51129471	05/20/2007

Table 9. Equipment required for electrical parameter measurements

RTS RIM Testing Services	SAR Compliance Test Report for Wireless Handheld Model RBE4		Page 13(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

6.2.2 Test Configuration

Figure 5. Test configuration

6.2.3 Procedure

- 1. Turn NWA on and allow at least 30 minutes for warm up.
- 2. Mount dielectric probe kit so that interconnecting cable to NWA will not be moved during measurements or calibration.
- 3. Pour de-ionized water and measure water temperature $(\pm 1^{\circ})$.
- 4. Set water temperature in HP-Software (Calibration Setup).
- 5. Perform calibration.
- 6. Relative permittivity $\varepsilon \mathbf{r} = \varepsilon'$ and conductivity can be calculated from ε'' $\sigma = \omega \varepsilon_0 \varepsilon''$
- 7. Measure liquid shortly after calibration.
- 8. Stir the liquid to be measured. Take a sample (~50ml) with a syringe from the center of the liquid container.
- 9. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
- 10. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
- 11. Perform measurements.
- 12. Adjust medium parameters in DASY4 for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Head 835 MHz) and press 'Option'-button.
- 13. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 835 MHz).

Sample calculation for 835 MHz head tissue dielectric parameters using data from Table 10.

Relative permittivity $\mathcal{E}r = \mathcal{E}' = 41.15$ Conductivity $\sigma = \omega \, \mathcal{E}_0 \, \mathcal{E}'' = (2\pi \, x \, 835 \, x \, 10^6)(8.854 \, x \, 10^{-12})(19.33) = 0.89 \, \text{S/m}$

Title Title Tot. 10-20, 2006 Title Tot. 20, 2006 Title Tot. 20, 2006 Title Tot. 20, 2006 Title L6ARBE40GW SubTitle Jun 9, 200 020 PM e' e' Frequency e' e'<	RTS RIM Testing Services	Wireless Hand	-		Berry	Page 14(27)
SubTitle Jug 10, 2006 T02.07 M SubTitle Jug 10, 2006 C02.07 M SubTitle Jug 10, 2006 C02.07 M 750.000000 MHz 42.4793 19.4572 750.000000 MHz 53.1719 20.9452 755.000000 MHz 42.4906 19.4462 755.000000 MHz 22.99178 760.000000 MHz 42.4906 19.4462 755.000000 MHz 22.9811 20.9452 760.000000 MHz 42.4791 19.3760 765.000000 MHz 52.8933 20.8778 770.000000 MHz 42.4791 19.3760 765.000000 MHz 52.8933 20.8778 775.000000 MHz 42.4253 19.3514 775.000000 MHz 52.8786 20.8549 780.00000 MHz 42.3597 19.2393 780.00000 MHz 52.6786 20.8174 795.000000 MHz 42.3164 19.2755 785.000000 MHz 52.6948 20.8520 790.00000 MHz 41.8952 19.1974 800.000000 MHz 52.6942 20.8373 800.000000 MHz 41.8952 19.1974 800.00000 MHz 52.6944 20.8302 810.000000 MHz 41.8653 1				1	0607-13	
750.00000 MHz 42.4793 19.4572 750.00000 MHz 53.1719 29.9452 755.00000 MHz 42.4906 19.4462 755.00000 MHz 53.0562 20.9178 760.00000 MHz 42.4888 19.4270 760.00000 MHz 52.8931 20.9014 765.00000 MHz 42.4791 19.3760 765.00000 MHz 52.8933 20.8778 770.00000 MHz 42.4571 19.8624 770.000000 MHz 52.8246 20.8367 775.00000 MHz 42.4523 19.3514 775.000000 MHz 52.7220 20.8485 780.00000 MHz 42.3597 19.2939 780.000000 MHz 52.6786 20.8174 795.00000 MHz 42.2200 19.2606 790.00000 MHz 52.6786 20.8174 795.00000 MHz 42.2936 19.2105 795.000000 MHz 52.6382 20.8373 800.000000 MHz 41.8803 19.1784 805.000000 MHz 52.6465 20.7988 810.000000 MHz 41.417173 19.1355 810.000000 MHz 52.6462 20.7845 825.000000 MHz 41.4752 19.1203 820.000000 MHz 52.6462 20.7845	SubT	itle		SubTitle		
875.000000 MHz 40.9764 19.0996 880.000000 MHz 51.7177 20.5190 885.000000 MHz 40.9803 19.1127 885.000000 MHz 51.6366 20.5225	Freque 750.00 755.00 760.00 765.00 770.00 775.00 780.00 785.00 790.00 795.00 800.00 805.00 810.00 815.00 825.00 825.00 830.00 835.00 840.00 855.00 855.00 860.00 875.00 875.00	ncy e' 0000 MHz 42.4793 0000 MHz 42.4906 0000 MHz 42.4888 0000 MHz 42.4888 0000 MHz 42.4791 0000 MHz 42.4791 0000 MHz 42.4571 0000 MHz 42.4571 0000 MHz 42.4253 0000 MHz 42.3597 0000 MHz 42.3597 0000 MHz 42.2200 0000 MHz 42.2200 0000 MHz 42.0936 0000 MHz 41.9952 0000 MHz 41.8803 0000 MHz 41.6140 0000 MHz 41.4752 0000 MHz 41.3653 0000 MHz 41.3653 0000 MHz 41.0779 0000 MHz 41.0027 0000 MHz 41.0027 0000 MHz 40.9663 0000 MHz 40.9663 0000 MHz 40.9663 0000 MHz 40.9661 0000 MHz 40.9662 000	19.4572 19.4462 19.4270 19.3760 19.3624 19.3514 19.2939 19.2755 19.2606 19.2105 19.105 19.1974 19.1355 19.1469 19.1355 19.1469 19.1203 19.1344 19.1117 19.1397 19.1452 19.1302 19.1248 19.1532 19.1248 19.1532 19.1400 19.1199 19.1339 19.0981 19.0996	July 10, 2006 08:08 PM Frequency 750.000000 MHz 755.000000 MHz 760.000000 MHz 765.000000 MHz 770.000000 MHz 775.000000 MHz 785.000000 MHz 790.000000 MHz 800.000000 MHz 805.000000 MHz 810.000000 MHz 815.000000 MHz 825.000000 MHz 835.000000 MHz 835.000000 MHz 845.000000 MHz 855.000000	53.1719 53.0562 52.9811 52.8933 52.8246 52.7536 52.7220 52.6948 52.6786 52.6362 52.6362 52.6318 52.6465 52.6504 52.6504 52.6504 52.6504 52.6504 52.6504 52.6504 52.5295 52.4638 52.3366 52.2555 52.1743 52.0845 52.0088 51.8973 51.8068 51.7177	20.9452 20.9178 20.9014 20.8778 20.8367 20.8549 20.8485 20.8520 20.8174 20.8373 20.8157 20.7988 20.8302 20.7948 20.7948 20.7838 20.7845 20.7614 20.7228 20.7011 20.6791 20.6791 20.6791 20.6156 20.5990 20.5883 20.5487 20.5338 20.5190

RTS RIM Testing Servic	Wireless H	ompliance Test Report for the BlackBerry s Handheld Model RBE41GW		Page 15(27)	
Author Data Kevin Chow	Dates of Test Jul. 10-20, 2	006	Test Report No RTS-0428-0607	-13	FCC ID: L6ARBE40GW
Title	1		Title		
SubT			SubTitle July 19, 2006 01:16 AM		
Freque	ency e'	e"	Frequency	e'	e"
800.00	0000 MHz 43.0910	19.6329	800.000000 MHz	54.0530	20.8790
805.00	0000 MHz 43.0869	19.6379	805.000000 MHz	53.9614	20.8826
810.00	0000 MHz 43.0367	19.6502	810.000000 MHz	53.8133	20.9288
815.00	0000 MHz 42.9961	19.6544	815.000000 MHz	53.7397	20.9097
820.00	0000 MHz 42.9904	19.6272	820.000000 MHz	53.6461	20.9093
825.00	0000 MHz 42.9498	19.6261	825.000000 MHz	53.5460	20.9170
830.00	0000 MHz 42.9122	19.6136	830.000000 MHz	53.4493	20.9294
835.00	0000 MHz 42.8726	19.5913	835.000000 MHz	53.3736	20.9345
840.00	0000 MHz 42.8240		840.000000 MHz	53.2896	20.9428
845.00	0000 MHz 42.7388	19.5319	845.000000 MHz	53.2971	20.9288
850.00	0000 MHz 42.6729	19.5182	850.000000 MHz	53.2693	20.9059
855.00	0000 MHz 42.5889	19.5102	855.000000 MHz	53.2303	20.9088
860.00	0000 MHz 42.5010	19.4676	860.000000 MHz	53.2637	20.9010
	0000 MHz 42.3822		865.000000 MHz	53.2938	20.8832
	0000 MHz 42.3113		870.000000 MHz	53.2731	20.8148
	0000 MHz 42.2183		875.000000 MHz	53.1972	20.7678
	0000 MHz 42.1189		880.000000 MHz	53.2417	20.7286
	0000 MHz 42.0551		885.000000 MHz	53.2748	20.7145
	0000 MHz 41.9692		890.000000 MHz		20.6806
	0000 MHz 41.9545			53.2595	20.6488
	0000 MHz 41.8866		900.000000 MHz	53.2275	20.6385
	0000 MHz 41.8423			53.1142	20.5771
	0000 MHz 41.7748			53.0200	20.5350
	0000 MHz 41.7349			52.9348	20.5519
	0000 MHz 41.6675		920.000000 MHz		20.5383

Head

Muscle

Table 10. 835 MHz head and muscle tissue dielectric parameters

RTS RIM Testing Services					Page 16(27)
Author Data Kevin Chow	Dates of Test Jul. 10-20, 2006		Test Report No RTS-0428-0	607-13	FCC ID: L6ARBE40G
Title SubTitle July 11, 2006 11:55 AM			Title SubTitle July 11, 2006 07:39 PM		
Frequency 1.83000000 1.83500000 1.84000000 1.84500000 1.85500000 1.86500000 1.86500000 1.87500000 1.87500000 1.88500000 1.89500000 1.89500000 1.90000000	0 GHz 39.3261 0 GHz 39.2961 0 GHz 39.2640 0 GHz 39.2640 0 GHz 39.2470 0 GHz 39.2283 0 GHz 39.2252 0 GHz 39.1994 0 GHz 39.1959 0 GHz 39.1959 0 GHz 39.1968 0 GHz 39.1913 0 GHz 39.1913 0 GHz 39.1790 0 GHz 39.1593	e" 13.4516 13.4775 13.4884 13.5247 13.5458 13.5588 13.5772 13.6067 13.6282 13.6544 13.6633 13.6800 13.6950 13.7027 13.7091	Frequency 1.750000000 GHz 1.760000000 GHz 1.770000000 GHz 1.780000000 GHz 1.790000000 GHz 1.80000000 GHz 1.810000000 GHz 1.820000000 GHz 1.840000000 GHz 1.850000000 GHz 1.860000000 GHz 1.870000000 GHz 1.880000000 GHz 1.890000000 GHz	e' 53.2853 53.2502 53.1704 53.0826 52.9864 52.9139 52.8474 52.8493 52.8140 52.8026 52.7763 52.7763 52.7330 52.6872 52.5104 52.0385 51.9621	e" 14.8053 14.8225 14.8409 14.8520 14.8895 14.9478 15.0017 15.0519 15.0650 15.1160 15.1143 15.0915 15.0969 14.9908 14.7789 15.0030

RTS RIM Testing Services		SAR Compliance Test Report for the BlackBerry Wireless Handheld Model RBE41GW			Page 17(27)	
Author Data Kevin Chow	Dates of Test Jul. 10-20, 2	2006	Test Report No RTS-0428-0607	-13	FCC ID: L6ARBE40GW	
Title			Title			
			SubTitle			
SubTitle July 17, 2006 05:31 F	M		July 17, 2006 05:44 PM			
Frequency	e'	e"	Frequency	e'	e"	
1.750000000	-	-	1.750000000 GHz	51.2093	14.5373	
1.760000000			1.760000000 GHz	51.1615	14.5553	
1.770000000			1.770000000 GHz	51.1146	14.5588	
1.780000000			1.780000000 GHz	51.0383	14.58 99	
1.790000000			1.790000000 GHz	50.9846	14.6245	
1.800000000			1.800000000 GHz	50.9358	14.6627	
1.81000000			1.810000000 GHz	50.8757	14.7105	
1.820000000			1.820000000 GHz	50.8956	14.7496	
1.830000000			1.830000000 GHz	50.8941	14.7778	
1.840000000			1.840000000 GHz	50.8745	14.8032	
1.850000000			1.850000000 GHz	50.8914	14.81 9 4	
1.860000000			1.860000000 GHz	50.9105	14.8404	
1.870000000			1.870000000 GHz	50.8856	14.8 95 1	
1.880000000			1.880000000 GHz	50.8798	14.9406	
1.890000000			1.890000000 GHz	50.8254	14.9890	
1.900000000			1.900000000 GHz	50.7448	15.0498	
1.91000000			1.910000000 GHz	50.6622	15.1342	
	Head		Musele			

Head

Muscle

Table 11. 1900 MHz head and muscle tissue dielectric parameters

RTS RIM Testing Services			Page 18(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

7.0 SAR SAFETY LIMITS

Standards/Guideline	Localized SAR Limit (W/kg) General public (uncontrolled)	Localized SAR Limits (W/kg) Workers (controlled)
ICNIRP (1998) Standard	2.0 (10g)	10.0 (10g)
IEEE C95.1 (1999) Standard	1.6 (1g)	8.0 (1g)

Table 12. SAR safety limits for Controlled / Uncontrolled environment

Human Exposure	Localized SAR Limits (W/kg) 10g, ICNIRP (1998) Standard	Localized SAR Limits (W/kg) 1g, IEEE C95.1 (1999) Standard
Spatial Average (averaged over the whole		
body)	0.08	0.08
Spatial Peak (averaged over any X g of		
tissue)	2.00	1.60
Spatial Peak (hands/wrists/feet/ankles		
averaged over 10 g)	4.00	4.00 (10g)

Table 13. SAR safety limits

Uncontrolled Environments are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

RTS RIM Testing Services	SAR Compliance Test Report for Wireless Handheld Model RBE4	Page 19(27)	
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

8.0 DEVICE POSITIONING

8.1 Device holder for SAM Twin Phantom

The Handheld was positioned for all test configurations using the DASY4 holder. The device holder facilitates the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately and with repeatability positioned according to FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 6. Device Holder

1. Put the phone in the clamp mechanism (1) and hold it straight while tightening. (Curved phones or phones with asymmetrical ear pieces should be positioned so that the earpiece is in the symmetry plane of the clamp).

2. Adjust the sliding carriage (2) to 90°. Then adjust the phone holder angle (3) until the reference line of the phone is horizontal (parallel to the flat phantom bottom). The phone reference line is defined as the front tangential line between the earpiece and the center of the device bottom (or the center of the flip hinge). For devices with parallel front and backsides, the phone holder angle (3) is 0° .

3. Place the device holder at the desired phantom section and move it securely against the positioning pins (4). The screw in front of the turning plate can be applied for correct positioning (5). (Do not tighten it too strongly).

4. Shift the phone clamp (6) so that the earpiece is exactly below the ear marking of the phantom. The phone is now correctly positioned in the holder for all standard phantom measurements, even after changing the phantom or phantom section.

Copyright 2006, RIM Testing Services (RTS), A division of Research In Motion Limited This report shall <u>NOT</u> be reproduced except in full without the written consent of RTS

RTS RIM Testing Services	SAR Compliance Test Report for Wireless Handheld Model RBE4	2	Page 20(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

5. Adjust the device position angles to the desired measurement position.

6. After fixing the device angles, move the phone fixture up until the phone touches the ear marking. (The point of contact depends on the design of the device and the positioning angle).

8.2 Description of the test positioning

8.2.1 Test Positions of Device Relative to Head

The handset was tested in two test positions against the head phantom, the "cheek" position and the "tilted" position, on both left and right sides of the phantom.

The handset was tested in the above positions according to IEEE 1528- 2003 "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques".

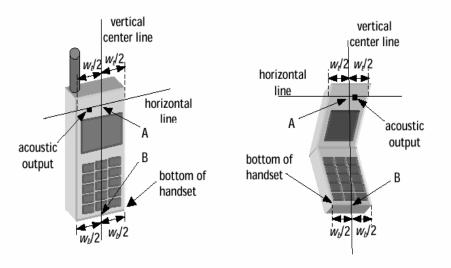


Figure 7a. Handset vertical and horizontal reference lines – fixed case

Figure 7b. Handset vertical and horizontal reference lines – "clam-shell"

RTS RIM Testing Services			Page 21(27)
Author Data	Dates of Test	Test Report No	FCC ID:
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

8.2.1.1 Definition of the "cheek" position

1) Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover.

2) Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width *wt* of the handset at the level of the acoustic output (point A on Figures 7a and 7b), and the midpoint of the width *wb* of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 7a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 7b), especially for clamshell handsets, handsets with flip pieces, and other irregularly shaped handsets.

3) Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7), such that the plane defined by the vertical center line and the horizontal center line is in a plane approximately parallel to the sagittal plane of the phantom.

4) Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear.

5) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is the plane normal to MB ("*mouth-back*") - NF ("*neck-front*") including the line MB (reference plane).

6) Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF.

7) While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the ear (cheek).

Figure 8. Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

RTS RIM Testing Services			Page 22(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

8.2.1.2 Definition of the "Tilted" Position

1) Repeat steps 1 to 7 of 5.4.1 (in this report 8.2.1.1) to replace the device in the "cheek position."

2) While maintaining the device in the reference plane (described above) and pivoting against the ear, move the device outward away from the mouth by an angle of 15 degrees, or until the antenna touches the phantom.

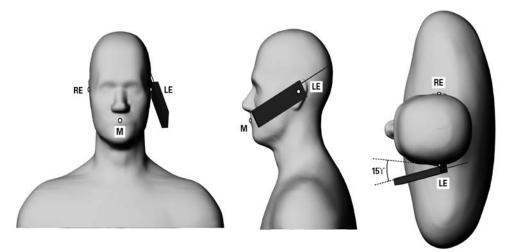


Figure 9. Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

8.2.2 Body Holster Configuration

A body worn holster, as shown on Figure 2, was tested with the Wireless Handheld for FCC RF exposure compliance. The EUT was positioned in the holster case and the belt clip was placed against the flat section of the phantom. A headset was then connected to the handheld to simulate hands-free operation in a body worn holster configuration.

RTS RIM Testing Services	SAR Compliance Test Report for the BlackBerry 2 Wireless Handheld Model RBE41GW 2		Page 23(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

9.0 HIGH LEVEL EVALUATION

9.1 Maximum search

The maximum search is automatically performed after each coarse scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations.

9.2 Extrapolation

The extrapolation can be used in z-axis scans with automatic surface detection. The SAR values can be extrapolated to the inner phantom surface. The extrapolation distance is the sum of the probe sensor offset, the surface detection distance and the grid offset. The extrapolation is based on fourth order polynomial functions. The extrapolation is only available for SAR values.

9.3 Boundary correction

The correction of the probe boundary effect in the vicinity of the phantom surface is done in the standard (worst case) evaluation; the boundary effect is reduced by different weights for the lowest measured points in the extrapolation routine. The result is a slight overestimation of the extrapolated SAR values (2% to 8%) depending on the SAR distribution and gradient. The advanced evaluation makes a full compensation of the boundary effect before doing the extrapolation. This is only possible for probes with specifications on the boundary effect.

9.4 Peak search for 1g and 10g cube averaged SAR

The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scan. The routines are verified and optimized for the grid dimensions used in these cube measurements.

The measured volume of 30x30x30mm mm with 5mm resolution amounts to 343 measurement points. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is then moved around until the highest averaged SAR is found. This last procedure is repeated for a 10 g cube. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

RTS RIM Testing Services	SAR Compliance Test Report for Wireless Handheld Model RBE4	2	Page 24(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	L6ARBE40GW	

10.0 MEASUREMENT UNCERTAINTY

DASY4 Uncertainty Budget According to IEEE P1528 [1]								
	Uncertainty	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	Veff
Measurement System								
Probe Calibration	$\pm 4.8\%$	N	1	1	1	±4.8%	$\pm 4.8\%$	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9\%$	$\pm 1.9\%$	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9\%$	$\pm 3.9\%$	∞
Boundary Effects	$\pm 1.0\%$	R	$\sqrt{3}$	1	1	$\pm 0.6\%$	±0.6%	∞
Linearity	$\pm 4.7\%$	R	$\sqrt{3}$	1	1	$\pm 2.7\%$	$\pm 2.7\%$	∞
System Detection Limits	$\pm 1.0\%$	R	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Readout Electronics	±1.0%	N	1	1	1	$\pm 1.0\%$	$\pm 1.0 \%$	∞
Response Time	$\pm 0.8\%$	R	$\sqrt{3}$	1	1	$\pm 0.5\%$	$\pm 0.5 \%$	<u>∞</u>
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	$\pm 1.5\%$	$\pm 1.5 \%$	∞
RF Ambient Conditions	±3.0%	R	$\sqrt{3}$	1	1	$\pm 1.7\%$	±1.7%	∞
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	$\pm 0.2\%$	±0.2 %	∞
Probe Positioning	$\pm 2.9\%$	R	$\sqrt{3}$	1	1	$\pm 1.7\%$	±1.7%	8
Max. SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	$\pm 0.6\%$	±0.6 %	8
Test Sample Related								
Device Positioning	$\pm 2.9\%$	N	1	1	1	$\pm 2.9\%$	$\pm 2.9\%$	145
Device Holder	±3.6%	N	1	1	1	$\pm 3.6\%$	$\pm 3.6\%$	5
Power Drift	$\pm 5.0\%$	R	$\sqrt{3}$	1	1	$\pm 2.9\%$	$\pm 2.9\%$	∞
Phantom and Setup								
Phantom Uncertainty ±4.0%		R	$\sqrt{3}$	1	1	$\pm 2.3\%$	$\pm 2.3\%$	∞
Liquid Conductivity (target) $\pm 5.0\%$		R	$\sqrt{3}$	0.64	0.43	±1.8%	$\pm 1.2\%$	8
Liquid Conductivity (meas.) $\pm 2.5\%$		N	1	0.64	0.43	$\pm 1.6\%$	$\pm 1.1\%$	∞
Liquid Permittivity (target) $\pm 5.0\%$		R	$\sqrt{3}$	0.6	0.49	$\pm 1.7\%$	$\pm 1.4\%$	∞
Liquid Permittivity (meas.) $\pm 2.5\%$		N	1	0.6	0.49	$\pm 1.5 \%$	±1.2%	∞
Combined Std. Uncertainty	Combined Std. Uncertainty					$\pm 10.3\%$	$\pm 10.0\%$	330
Expanded STD Uncertain					$\pm 20.6\%$	$\pm 20.1\%$		

Table 14. Worst-Case uncertainty budget for DASY4 assessed according to IEEE P1528. Source: Schmid & Partner Engineering AG.

[1] The budget is valid for the frequency range 300MHz - 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

RTS RIM Testing Services	SAR Compliance Test Report for Wireless Handheld Model RBE4	5	Page 25(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	L6ARBE40GW	

11.0 TEST RESULTS

11.1 SAR Measurement results at highest power measured against the head

				SAR, averaged over 1 g (W/kg)			SAR, averaged over 1 g (W/kg)			
		Cond.]	Left-hand		Right-hand			
Mode	f (MHz)	Output Power (dBm)	LCD , Battery #	Liquid Temp (°C)	Cheek	Tilted	Liquid Temp (°C)	Cheek	Tilted	
	824.2	32.1	1, 1				22.7	0.97 ¹		
	836.8	31.9	1, 1				23.0	1.22 ¹		
	848.8	31.8	1, 1				22.8	1.00		
	836.8	31.9	1, 1				23.1		0.51	
	824.2	32.1	1, 1	23.2	0.96					
GSM	836.8	31.9	1, 1	22.9	1.06					
850	848.8	31.8	1, 1	22.9	1.02					
	836.8	31.9	1, 1	23.0		0.60				
	836.8	31.9	1, 2				22.8	1.05		
	836.8	31.9	1, 1				22.1	1.05		
	836.8	31.9	2, 1				22.3	1.06		
	836.8	31.9	3, 1				22.4	0.98		
	1850.2	30.0	1, 1				22.7	1.06 ¹		
	1880.0	29.8	1, 1				22.6	1.14 ¹		
	1909.8	29.6	1, 1				22.9	1.06		
GSM	1880.0	29.8	1, 1				23.0		0.47	
1900	1850.2	30.0	1, 1	23.3	0.93					
1700	1880.0	29.8	1, 1	22.8	1.16 ¹					
	1909.8	29.6	1, 1	23.0	0.92					
	1880.0	29.8	1, 1	23.1		0.39				
	1880.0	29.8	1, 2	23.0	0.88					

Table 15. SAR results for head configuration

¹ If the Power Drift is < - 0.2 dB, then the SAR value must be compensated for by the following formula: SAR (compensated) = SAR (measured) * $10^{(|Power Drift (dB)| / 10)}$

RTS RIM Testing Services	SAR Compliance Test Report for Wireless Handheld Model RBE4		Page 26(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	L6ARBE40GW	

11.2 SAR measurement results at highest power measured against the body using accessories.

Mode	f (MHz)	Cond. Power (dBm)	Liquid Temp (°C)	Holster type / handheld configuration	LCD, Battery #	Body SAR, averaged over 1 g / (W/kg)
	836.8 ¹	31.9	22.0	Leather Holster / Front side facing phantom	1,1	0.71
	836.8 ¹	31.9	22.3	Leather Holster / Back side facing phantom	1,1	0.73
	824.2	32.1	22.4	Leather Swivel Holster / Front side facing	1,1	0.99
	836.8	31.9	22.6	Leather Swivel Holster / Front side facing	1,1	0.86
	848.8	31.8	22.3	Leather Swivel Holster / Front side facing	1,1	0.76
	824.2	32.1	22.2	Leather Swivel Holster / Back side facing	1,1	1.18
	836.8	31.9	22.8	Leather Swivel Holster / Back side facing	1,1	0.97
	848.8	31.8	22.0	Leather Swivel Holster / Back side facing	1,1	0.87
GDDG	824.2	32.1	22.9	No Holster / 15 mm away, Back side facing	1,1	1.49
GPRS 850	836.8	31.9	23.0	No Holster / 15 mm away, Back side facing	1,1	1.51
830	848.8	31.8	22.7	No Holster / 15 mm away, Back side facing	1,1	1.27
	836.8	31.9	23.1	No Holster / 15 mm away, Back side facing phantom, with Mono Headset and Bluetooth connected	1,1	1.07
	836.8	31.9	23.1	No Holster / 15 mm away, Back side facing phantom, with Stereo Headset and Bluetooth connected	1,1	1.09
	836.8	31.9	22.0	No Holster / 15 mm away, Back side facing	1,1	1.52
	836.8	31.9	22.2	No Holster / 15 mm away, Back side facing	2,1	1.43
	836.8	31.9	22.5	No Holster / 15 mm away, Back side facing	3,1	1.48
	1880.0 ¹	29.8	23.0	Leather Holster / Front side facing phantom	1,1	0.55
	1880.0 ¹	29.8	22.8	Leather Holster / Back side facing phantom	1,1	0.75
	1880.0 ¹	29.8	23.1	Leather Swivel Holster / Front side facing	1,1	0.42
	1880.0 ¹	29.8	22.9	Leather Swivel Holster / Back side facing	1,1	0.52
GPRS	1850.2	30.0	22.7	No Holster / 15 mm away, Back side facing	1,1	1.09
1900	1880.0	29.8	22.6	No Holster / 15 mm away, Back side facing	1,1	1.03
	1909.8	29.6	22.5	No Holster / 15 mm away, Back side facing	1,1	1.01
	1850.2	30.0	22.5	No Holster / 15 mm away, Back side facing phantom, with Mono Headset and Bluetooth connected	1,1	1.03 ²

Table 16. SAR results for body-worn configurations

¹ Supplement C: Middle channel testing is sufficient only if SAR < 3dB below limit see PN 02-1438

² If the Power Drift is < - 0.2 dB, then the SAR value must be compensated for by the following formula: SAR (compensated) = SAR (measured) * $10^{(|Power Drift (dB)| / 10)}$

Copyright 2006, RIM Testing Services (RTS), A division of Research In Motion Limited This report shall <u>NOT</u> be reproduced except in full without the written consent of RTS

RTS RIM Testing Services	SAR Compliance Test Report for Wireless Handheld Model RBE4	2	Page 27(27)
Author Data	Dates of Test	FCC ID:	
Kevin Chow	Jul. 10-20, 2006	RTS-0428-0607-13	L6ARBE40GW

12.0 **REFERENCES**

[1] IEEE 1528-2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

[2] EN 50360: 2001, Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz - 3 GHz)

[3] EN 50361: 2001, Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz)

[4] ICNIRP, International Commission on Non-Ionizing Radiation Protection (1998), Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz).

[5] Council Recommendation 1999/519/EC of July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)

[6] IEEE C95.3-1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave.

[7] IEEE C95.1-1999, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

[8] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.

[9] FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation.

[10] DASY 4 DOSIMETRIC ASSESSMENT SYSTEM SOFTWARE MANUAL V4.7 Schmid & Partner Engineering AG, June 2006.

[11] Health Canada, Safety Code 6, 1999: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency range from 3 kHz to 300 GHz.

[12] RSS-102, issue 2-2005: Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields.

[13] IEC 62209-1, First Edition-2005: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)