RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report	Page 1(31)	
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005 Test Report No RTS-0101-0508-10 rev 01		FCC ID: L6ARAT40GW

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

Author Data Daoud Attayi	<u>.</u>		FCC ID: L6ARAT40GW
RTS RIM Testing Services	Appendices for the BlackBerry I Report	Page 2(31)	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlacher Kallbrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multitateral Agreement for the recognition of calibration certificates

Client RIM Certificate No: ET3-1642_Jan05

CALIBRATION CERTIFICATE

Object **ET3DV6 - SN:1642**

Calibration procedure(s) QA CAL-01.v5

Calibration procedure for dosimetric E-field probes

Calibration date: January 7, 2005

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity \leq 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Stancards	ID #	Cal Date (Calibrated by, Certificate No.)	Schoduled Calibration
Power meter E4419B	GB41293874	5-May-04 (METAS, No. 251-00388)	May-05
Power sensor E4412A	: MY41495277	5-May-04 (METAS, No. 251-03388)	May 05
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-04 (METAS, No. 251 00403)	Aug-05
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-04 (METAS, No. 251-00389)	May-05
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-04 (METAS, No. 251-00404)	Aug-05
Reference Probe ES3DV2	SN: 3013	7-Jan-95 (\$PEAG, No. E\$3-3913 Jan95)	Jan-06
DAE4	SN: 617	29-Sep-04 (SPEAG, No. DAE4-617_Scp04)	Sep-05
Secondary Standards	10#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05
RF generator HP 8548C	U\$3642U01700	4-Aug-99 (SPEAG, in house check Dec-03)	In house sheck: Dec-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-04)	In house check: Nov 05
	Name	Function	Signature
Calibrated by	Nico Vetterli	Laboratory Technician	D) Setter
Approved by:	Katja Pokovic	Technical Manager	Maio Makyo
			Issued, January 13, 2005
This calibration certificate shall r	ot be reproduced except	in full without written approval of the laboratory.	

Certificate No. ET3-1642_Jan05

Page 1 of 9

RTS RIM Testing Services	Appendices for the BlackBerry I Report	Page 3(31)	
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005	Test Report No RTS-0101-0508-10 rev 01	FCC ID: L6ARAT40GW

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kailbrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Callbration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z ConF

DCP

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point φ rotation around probe axis

Polarization φ

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1642_Jan05	
--------------------------------	--

RTS RIM Testing Services	Appendices for the BlackBerry I Report	Page 4(31)	
Author Data Daoud Attavi			FCC ID: L6ARAT40GW

January 7, 2005

Probe ET3DV6

SN:1642

Manufactured:

November 7, 2001

Last calibrated:

August 31, 2004

Recalibrated:

January 7, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1642_Jan05

Page 3 of 9

RTS RIM Testing Services	Appendices for the BlackBerry I Report	Page 5(31)	
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005	Test Report No RTS-0101-0508-10 rev 01	FCC ID: L6ARAT40GW

January 7, 2005

DASY - Parameters of Probe: ET3DV6 SN:1642

Sensitivity in Fre	Diode C	ompression	В		
NormX	1.64 ± 10.1%	μV/(V/m)²	DCP X	94 mV	
NormY	1.88 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	94 mV	
NormZ	1.62 ± 10.1%	цV/(V/m) ²	DCP Z	94 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL	900	MHz	Typical SAR gradient: 5 % per i	mm	
	Sensor Center t	o Phanto	om Surface Distance	3.7 mm	4.7 mm
	SAR _{be} [%]	Withou	t Correction Algorithm	9.1 1	4.9
	SAR _{be} [%]	With C	orrection Algorithm	0.0	0.2
TSL	1810	MHz	Typical SAR gradient: 10 % per	· mm	
	Canada Cantan	a Dhant	an Curfosa Distance	3 7 mm	4.7 mm

Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	13.4	9.0	
SAR _{be} [%]	With Correction Algorithm	1.0	0.0	

Sensor Offset

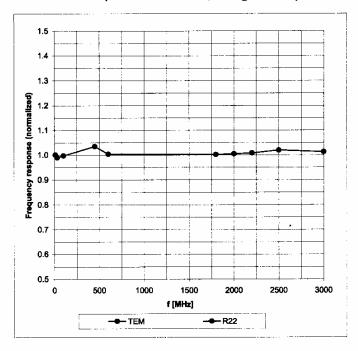
Probe Tip to Sensor Center 2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1642_Jan05

Page 4 of 9

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).


⁸ Numerical linearization parameter: uncertainty not required.

RTS RIM Testing Services	Appendices for the BlackBerry I Report	Page 6(31)	
Author Data Daoud Attavi			FCC ID: L6ARAT40GW
Duoud IIvuji	11agust 21 01 00 000 20 20, 2000	1115 0101 0500 10 10 01	2011111110

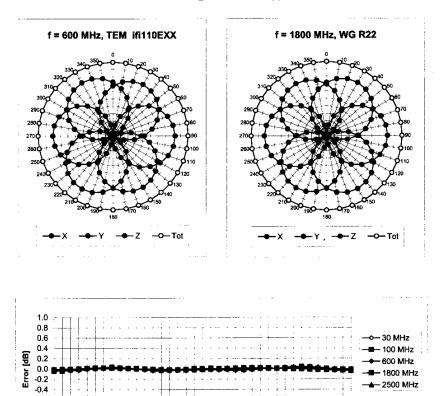
January 7, 2005

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1642_Jan05


Page 5 of 9

RTS RIM Testing Services	Appendices for the BlackBerry I Report	Page 7(31)	
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005	Test Report No RTS-0101-0508-10 rev 01	FCC ID: L6ARAT40GW

January 7, 2005

- 1800 MHz ♣- 2500 MHz

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

300

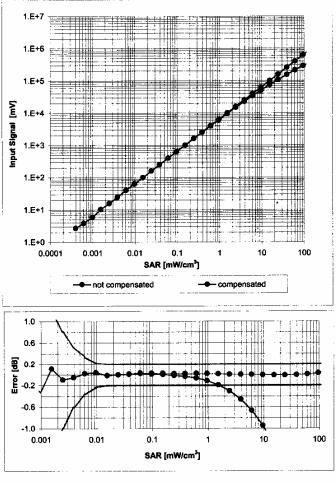
180

∳ [°]

Certificate No: ET3-1642_Jan05

-0.6 -0.8 -1.0

Page 6 of 9


120

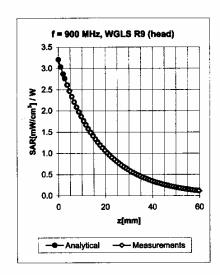
RTS RIM Testing Services	Appendices for the BlackBerry I Report	Page 8(31)	
Author Data Daoud Attavi	Dates of Test August 24 - 31 & Oct. 28-29, 2005	Test Report No RTS-0101-0508-10 rev 01	FCC ID: L6ARAT40GW
,	, , , , , , , , , , , , , , , , , , , ,		

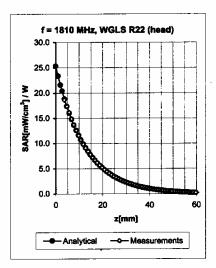
January 7, 2005

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1642_Jan05


Page 7 of 9

RTS RIM Testing Services	Appendices for the BlackBerry I Report	9(31)	
Author Data Daoud Attavi	Dates of Test August 24 - 31 & Oct. 28-29, 2005 Test Report No RTS-0101-0508-10 rev 01		FCC ID: L6ARAT40GW
	2,200	1112 0101 0000 10 10 01	2012111210011

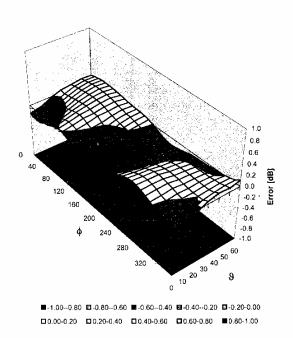
January 7, 2005

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	±50/±100	Head	41.5 ± 5%	0.97 ± 5%	0.65	1.81	6.52 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.62	2.32	5.29 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.53	2.11	6.18 ± 11.0% (k=2)
1810	±50/±100	Body	53.3 ± 5%	1.52 ± 5%	0.58	2.76	4.78 ± 11.0% (k=2)

Certificate No: ET3-1642_Jan05

Page 8 of 9


^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConyF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

RTS RIM Testing Services	Appendices for the BlackBerry I Report	Page 10(31)	
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005	Test Report No RTS-0101-0508-10 rev 01	FCC ID: L6ARAT40GW

January 7, 2005

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1642_Jan05

Page 9 of 9

RTS RIM Testing Services	Appendices for the BlackBerry I Report	Page 11(31)	
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005	Test Report No RTS-0101-0508-10 rev 01	FCC ID: L6ARAT40GW

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Schweizerischer Kalibrierdienst Service suisse d'étaionnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D835V2-446_Jan05

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object D835V2 - SN: 446

QA CAL-05.v6 Calibration procedure(s)

Calibration procedure for dipole validation kits

Calibration date: January 7, 2005

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration	
Power meter EPM E442	GB37480704	12-Oct-04 (METAS, No. 251-00412)	Oct-05	
Power sensor HP 8481A	US37292783	12-Oct-04 (METAS, No. 251-00412)	Oct-05	
Reference 20 dB Attenuator	SN: 5086 (20g)	10-Aug-04 (METAS, No 251-00402)	Aug-05	
Reference 10 dB Attenuator	SN: 5047.2 (10r)	10-Aug-04 (METAS, No 251-00402)	Aug-05	
Reference Probe ET3DV6	SN 1507	26-Oct-04 (SPEAG, No. ET3-1507_Oct04)	Oct-05	
DAE4	SN 907	03-May-04 (SPEAG, No. DAE4-907_Mayl04)	May-05	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check	
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-03)	In house check: Oct-05	
RF generator R&S SML-03	100698	27-Mar-02 (SPEAG, in house check Dec-03)	In house check: Dec-05	
Network Analyzer HP 8753E	US37390585 S4206	Oct-01 (SPEAG, in house check Nov-04)	In house check: Nov-05	

Eunction Calibrated by:

Approved by: Katja Pokovic

Cahadulad Calibration

Issued: January 13, 2005

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-446_Jan05

Page 1 of 6

RTS RIM Testing Services	Appendices for the BlackBerry I Report	Page 12(31)	
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005	Test Report No RTS-0101-0508-10 rev 01	FCC ID: L6ARAT40GW

Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kallbrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-446_Jan05	Page 2 of 6	

RTS RIM Testing Services	Appendices for the BlackBerry I Report	Page 13(31)	
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005	Test Report No RTS-0101-0508-10 rev 01	FCC ID: L6ARAT40GW
2 40 44 12000 1	11.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.		20121111110011

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.2 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	2.27 mW / g
SAR normalized	normalized to 1W	9.08 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	9.10 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.48 mW / g
SAR normalized	normalized to 1W	5.92 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	5.93 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-446_Jan05

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 14(31)
Author Data Daoud Attavi	Dates of Test August 24 - 31 & Oct. 28-29, 2005 Test Report No RTS-0101-0508-10 rev 01		FCC ID: L6ARAT40GW
Duoud Hvayi	11agast 21		Zoriidii io G VV

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.1 Ω - 7.1 jΩ	
Return Loss	- 22.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.385 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 24, 2001

Certificate No: D835V2-446_Jan05

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 15(31)
Author Data	Dates of Test Test Report No		FCC ID:
Daoud Attayi	August 24 - 31 & Oct. 28-29, 2005 RTS-0101-0508-10 rev 01		L6ARAT40GW

DASY4 Validation Report for Head TSL

Date/Time: 01/07/05 15:08:43

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN446

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz;

Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_f = 42.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

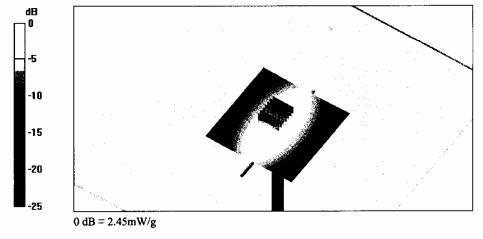
• Probe: ET3DV6 - SN1507; ConvF(6.24, 6.24, 6.24); Calibrated: 26.10.2004

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn907; Calibrated: 03.05.2004

Phantom: Flat Phantom 4.9L; Type: QD000P50AA; Serial: SN:1001;

Measurement SW: DASY4, V4.4 Build 10; Postprocessing SW: SEMCAD, V1.8 Build 133

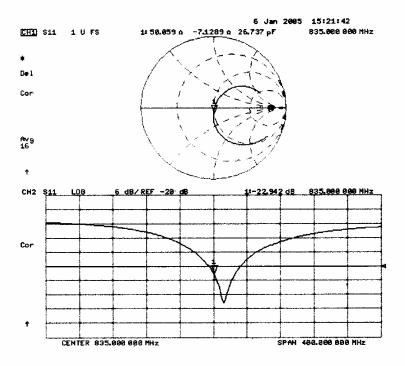

Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.44 mW/g

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.2 V/m; Power Drift = 0.0 dB

Peak SAR (extrapolated) = 3.36 W/kg

SAR(1 g) = 2.27 mW/g; SAR(10 g) = 1.48 mW/gMaximum value of SAR (measured) = 2.45 mW/g



Certificate No: D835V2-446_Jan05

Page 5 of 6

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 16(31)
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005	Test Report No RTS-0101-0508-10 rev 01	FCC ID: L6ARAT40GW

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-446_Jan05

Page 6 of 6

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 17(31)
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005	Test Report No RTS-0101-0508-10 rev 01	FCC ID: L6ARAT40GW

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1900V2-545_Jan05 RIM Client

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 545

Calibration procedure(s)

QA CAL-05.v6

Calibration procedure for dipole validation kits

Calibration date:

January 06, 2005

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Screduled Calibration
Power meter EPM E442	GB37480704	12-Oct-04 (METAS, No. 251-00412)	Oct-05
Power sensor HP 8481A	US37292783	12-Oct-04 (METAS, No. 251-00412)	Oct-05
Reference 20 dB Attenuator	SN: 5086 (20g)	10-Aug-04 (METAS, No 251-00402)	Aug-05
Reference 10 dB Attenuator	SN: 5047.2 (10r)	10-Aug-04 (METAS, No 251-00402)	Aug-05
Reference Probe ET3DV6	SN 1507	26-Oct-04 (SPEAG, No. ET3-1507_Oct04)	Oct-05
DAE4	SN 907	03-May-04 (SPEAG, No. DAE4-907_Mayl04)	May-05
	1		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
			1 1 0 4 00
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-03)	In house check: Oct-05
Power sensor HP 8481A RF generator R&S SML-03	MY41092317 100698	18-Oct-02 (SPEAG, in house check Oct-03) 27-Mar-02 (SPEAG, in house check Dec-03)	In house check: Oct-05 In house check: Dec-05

Calibrated by:

Judith Müller

Function

Approved by:

Katja Pokovic

Technical Manager

Issued: January 13, 2005

Certificate No: D1900V2-545_Jan05

Page 1 of 6

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 18(31)
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005 Test Report No RTS-0101-0508-10 rev 01		FCC ID: L6ARAT40GW

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

	···	
Certificate No: D1900V2-545_Jan05	Page 2 of 6	

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 19(31)
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005 RTS-0101-0508-10 rev 01		FCC ID: L6ARAT40GW
	,		

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4 V4.4	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm with S	
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.45 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	•
SAR measured	250 mW input power	10.2 mW / g
SAR normalized	normalized to 1W	40.8 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	39.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.34 mW / g
SAR normalized	normalized to 1W	21.4 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	20.7 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-545_Jan05

Page 3 of 6

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 20(31)
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005 RTS-0101-0508-10 rev 01		FCC ID: L6ARAT40GW
Daoud Attayi	August 24 - 51 & Oct. 28-29, 2005	K15-0101-0508-10 rev 01	LOAKA 140G W

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.7 Ω + 2.1 jΩ
Return Loss	- 31.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 15, 2001

Certificate No: D1900V2-545_Jan05

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 21(31)
Author Data	Dates of Test		FCC ID:
Daoud Attayi	August 24 - 31 & Oct. 28-29, 2005	RTS-0101-0508-10 rev 01	L6ARAT40GW

DASY4 Validation Report for Head TSL

Date/Time: 01/06/05 18:30:23

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN545

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 MHz;

Medium parameters used: f = 1900 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 26.10.2004

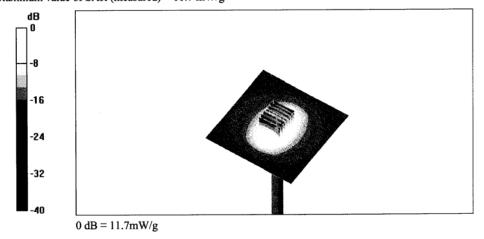
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn907; Calibrated: 03.05.2004

Phantom: Flat Phantom quarter size; Type: QD000P50AA; Serial: SN:1001;

Measurement SW: DASY4, V4.4 Build 10; Postprocessing SW: SEMCAD, V1.8 Build 133

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.6 mW/g

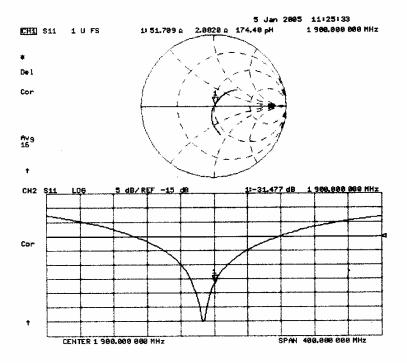

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 95.2 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 18 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.34 mW/gMaximum value of SAR (measured) = 11.7 mW/g



Certificate No: D1900V2-545_Jan05

Page 5 of 6

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 22(31)
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005 Test Report No RTS-0101-0508-10 rev 01		FCC ID: L6ARAT40GW

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-545_Jan05

Page 6 of 6

RTS RIM Testing Services	Appendices for the BlackBerry I Report	Page 23(31)	
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005 Test Report No RTS-0101-0508-10 rev 01		FCC ID: L6ARAT40GW

APPENDIX E: SAR SET UP PHOTOS

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 24(31)
Author Data	Dates of Test Test Report No		FCC ID:
Daoud Attayi	August 24 - 31 & Oct. 28-29, 2005	RTS-0101-0508-10 rev 01	L6ARAT40GW

Figure E1. Right touch position

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 25(31)
Author Data	Dates of Test	Test Report No	FCC ID:
Daoud Attayi	August 24 - 31 & Oct. 28-29, 2005	RTS-0101-0508-10 rev 01	L6ARAT40GW

Figure E2. Right tilt position

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 26(31)
Author Data	Dates of Test	Test Report No	FCC ID:
Daoud Attayi	August 24 - 31 & Oct. 28-29, 2005	RTS-0101-0508-10 rev 01	L6ARAT40GW

Figure E3. Left touch position

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 27(31)
Author Data	Dates of Test	Test Report No	FCC ID:
Daoud Attayi	August 24 - 31 & Oct. 28-29, 2005	RTS-0101-0508-10 rev 01	L6ARAT40GW

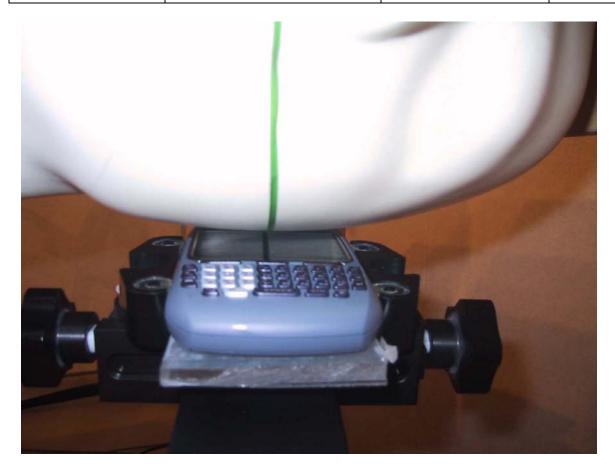


Figure E4. Left tilt position

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 28(31)
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005	Test Report No RTS-0101-0508-10 rev 01	FCC ID: L6ARAT40GW

Figure E6. Body worn configuration (Plastic Swivel Holster)

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 29(31)
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005	Test Report No RTS-0101-0508-10 rev 01	FCC ID: L6ARAT40GW

Figure E7. Body worn configuration (Leather Swivel Holster)

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 30(31)
Author Data	Dates of Test	Test Report No	FCC ID:
Daoud Attayi	August 24 - 31 & Oct. 28-29, 2005	RTS-0101-0508-10 rev 01	L6ARAT40GW

Figure E8. Body worn configuration (15 mm distance)

RTS RIM Testing Services	Appendices for the BlackBerry Model RAT40GW SAR Report		Page 31(31)
Author Data Daoud Attayi	Dates of Test August 24 - 31 & Oct. 28-29, 2005	Test Report No RTS-0101-0508-10 rev 01	FCC ID: L6ARAT40GW

Figure E9. Body worn configuration (Plastic Swivel Holster and Headset attached)