EMI Test Report

Research In Motion Limited

REPORT NO.: RIM-0041-0305-03

PRODUCT MODEL NO: R6230GN

TYPE NAME: BlackBerry Wireless Handheld

FCC ID: L6AR6230GN IC: 2503A-R6230GN

Date: ____11 June 2003_____

Test Date: May 26 to June 10, 2003

Declaration

Statement of Performance:

The BlackBerry Wireless Handheld, model R6230GN ASY-06471-001 tested with the following accessories: Travel Charger model number PSM05R-050Q part number ASY-04078-001, Audio Headset part number HDW-03458-001 and USB Data Cable HDW-04162-001 when configured and operated per RIM's operation instructions, performs within the requirements of the test standards.

Declaration:

We hereby certify that:

The test data reported herein is an accurate record of the performance of the sample(s) tested.

The test equipment used was suitable for the tests performed and within the manufacturers published specifications and operating parameters.

The test methods were consistent with the methods described in the relevant standards.

Tested by

Maurice Battler

Maurin Battler

Compliance Specialist Date: 11 June 2003

Masud S. Attayi, P.Eng.

M. Atlay

Senior Compliance Engineer Date: 12 June 2003

Reviewed and Approved by:

Paul G. Cardinal, Ph.D.

Manager, Compliance and Certification Date: 13 June 2003

Table of Contents

A) Scope	Pg. 3
B) Product Identification	Pg. 3
C) Support Equipment Used for Testing of the EUT	Pg. 4
D) Test Voltage	Pg. 4
E) Test Results Chart	Pg. 4
F) Modifications to EUT	Pg. 4
G) Summary of Results	Pg. 5
H) Compliance Test Equipment Used	Pg. 7
Appendix 1 Conducted Emissions Test Data/Plots	
Appendix 2 Conducted RF Output Power Test Data	
Appendix 3 Frequency Stability Test Data	
Appendix 4 Radiated Emissions Test Data	

Test Date: May 26 to June 10, 2003

A) Scope

This report details the results of compliance tests which were performed in accordance to the requirements of:

FCC CFR 47 Part 2, Oct. 1, 2000

FCC CFR 47 Part 22, Subpart H, Cellular Radiotelephone Services, Oct. 1, 2000

FCC CFR 47 Part 24 Subpart E, Broadband PCS, Oct 1. 2000

Industry Canada, RSS-128 Issue 2, Rev 1, Nov. 699, 800 MHz Dual-Mode TDMA Cellular Telephones

Industry Canada, RSS-133 Issue 2, Rev. 1 Nov. 6/1999, 2.0 GHz Personal Communications Services

B) Product Identification

The equipment under test (EUT) was tested at the Research In Motion (RIM) EMI test facility, located at:

305 Phillip Street Waterloo, Ontario

Canada, N2L 3W8

Phone: 519 888 7465 Fax: 519 888 6906 Web Site: <u>www.rim.net</u>

The testing began on May 26, 2003 and completed on June 10, 2003. The sample equipment under test (EUT) included:

- 1a) BlackBerry Wireless Handheld, model number R6230GN, ASY-06471-001, RF PCB version 004, PIN 20036A96, IMEI 001020.00.027694.0, FCC ID L6AR6230GN, IC: 2503A-R6230GN.
- 1b) BlackBerry Wireless Handheld, model number R6230GN, ASY-06471-001, RF PCB version 004, PIN 20038237, IMEI 001020.00.027868.0, FCC ID L6AR6230GN, IC: 2503A-R6230GN.
- 2) Travel Charger, model number PSM05R-050Q, part number ASY-04078-001 with an output voltage of 5.0 volts dc.
- 3) USB data cable, model number HDW-04162-001, 1.45 metres long.
- 4) Headset, model number HDW-03458-001. The lead length was 1.25 metres long.

The transmit frequency bands for the Handheld are: GSM 824 to 849 MHz, DCS 1710 to 1785 MHz and PCS 1850 to 1910 MHz. Only the GSM band and PCS band emission results are presented here.

Test Date: May 26 to June 10, 2003

C) Support Equipment Used for the Testing of the EUT

- Rohde & Schwarz, Universal Radio Communication Tester, model number CMU 200, serial number 100249
- 2) Rohde & Schwarz, Universal Radio Communication Tester, model number CMU 200, serial number 837493/073
- 3) DC Power Supply, H/P, model 6632B, serial number US37472179

D) Test Voltage

The ac input voltage was 120 volts, 60 Hz. This configuration was per RIM's specifications.

E) Test Results Chart

SPECIFICATION	Test Type	MEETS REQUIREMENTS	Performed By
FCC CFR 47 Part 22, Subpart H IC RSS-128	Radiated Spurious/harmonic Emissions, ERP	Yes	Masud Attayi
FCC CFR 47 Part 22, Subpart H IC RSS-128	Conducted Emissions, Occupied Bandwidth, Frequency Stability	Yes	Maurice Battler
FCC CFR 47 Part 24, Subpart E IC RSS-133	Radiated Spurious/harmonic Emissions, EIRP	Yes	Masud Attayi
FCC CFR 47 Part 24, Subpart E IC RSS-133	Conducted Emissions, Occupied Bandwidth, Frequency Stability	Yes	Maurice Battler

F) Modifications to EUT

No modifications were required to the EUT.

Test Date: May 26 to June 10, 2003

G) Summary of Results

- The EUT passed the Conducted Spurious Emissions requirements in the GSM850 band as per 47 CFR 22.917, CFR 22.901(d). The EUT was measured on the low, middle and high channels. The frequency range investigated was from 10 MHz to 10 GHz. See APPENDIX 1 for the test data.
- 2) The EUT passed the Conducted Spurious Emissions requirements in the PCS band as per 47 CFR 2.1057, CFR 24.238 and RSS-133. The EUT was measured on the low, middle and high channels. The frequency range investigated was from 10 MHz to 20 GHz. See APPENDIX 1 for the test data.
- 3) The EUT passed the Occupied Bandwidth and channel mask requirements in the GSM band as per 47 CFR 2.202, CFR 22.917 and RSS-128. The channels measured were low, middle and high.

See APPENDIX 1 for the test data.

- 4) The EUT passed the Occupied Bandwidth and channel mask requirements in the PCS band as per 47 CFR 2.202, CFR 24.238 and RSS-133. The channels measured were low, middle and high. See APPENDIX 1 for the test data.
- 5) The EUT passed the Conducted RF Output Power requirements for both the GSM850 and PCS bands. The channels measured were low, middle and high.

 See APPENDIX 2 for the test data.
- 6) The EUT passed the Frequency Stability vs. Temperature and Voltage requirements for GSM850 band as per 22.917 and RSS-128.

The maximum frequency error measured was less than 0.1 ppm.

The temperature range was from -30° C to $+60^{\circ}$ C in 10° temperature steps. The EUT was measured on low, middle and high channels at each temperature step. The EUT was measured at low (3.5 volts), nominal (3.8 volts) and high (4.1 volts) dc input voltage at each temperature step and channel at maximum output power.

See APPENDIX 3 for the test data.

The EUT passed the Frequency Stability vs. Temperature and Voltage requirements for the PCS band as per 24.235 and RSS-133. The maximum frequency error measured was less than 0.1

Test Date: May 26 to June 10, 2003

ppm.

The temperature range was from -30° C to $+60^{\circ}$ C in 10 degree temperature steps. The EUT was measured on low, middle and high channels at each temperature step. The EUT was measured at low (3.5 volts), nominal (3.8 volts) and high (4.1 volts) dc input voltage at each temperature step and channel at maximum output power.

See APPENDIX 3 for the test data.

8) The radiated spurious emissions/harmonics and ERP/EIRP were measured for both GSM850 and PCS bands. The results are within the limits. The EUT was placed on a nonconductive wooden table, 80 cm high that was positioned on a remotely rotatable turntable. The test distance used between the EUT and the receiving antenna was three metres. At this point the emissions were maximized by elevating the antenna in the range of 1 to 4 metres. The turntable was rotated to determine the azimuth of the peak emissions. The maximum emissions level was recorded. The measurements were performed in a semi-anechoic chamber. The semi-anechoic chamber FCC registration number is 778487 and the Industry Canada file number is IC4240. The EUT was measured on the low, middle and high channels.

The highest ERP in the GSM850 band measured was 24.1 dBm at 848.8 MHz (channel 251). The highest EIRP in the PCS band measured was 30.6 dBm at 1880.0 MHz (channel 661). To view the test data see APPENDIX 4.

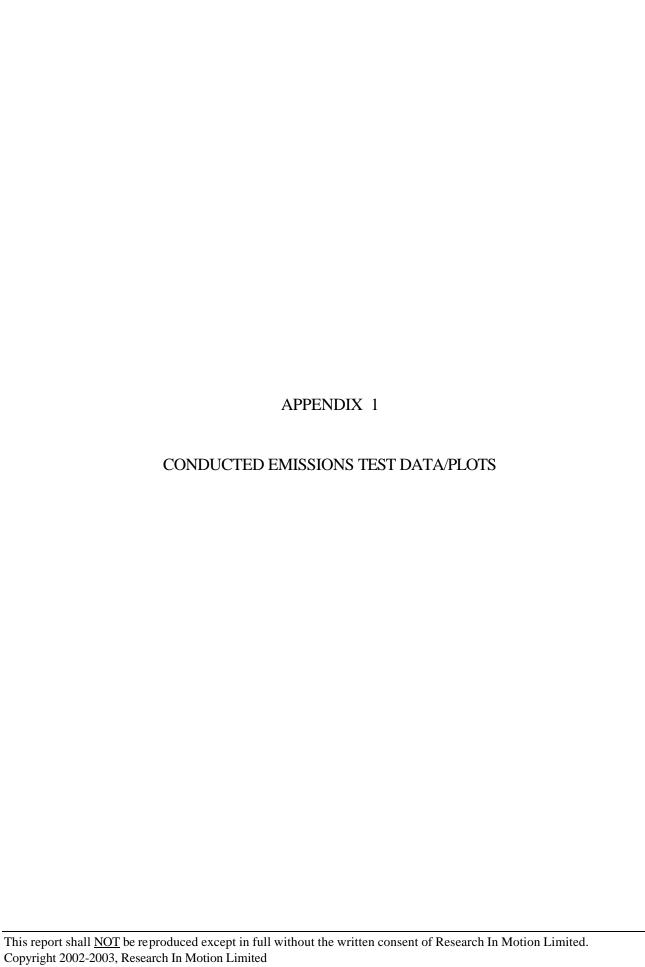
The radiated carrier harmonics were measured up to the 10th harmonic for low, middle and high channels in the GSM850 band and PCS band.

The worst test margin for GSM850 band measured was 18.5 dB below the limit at 1675 MHz. The worst test margin for PCS band measured was 31.6 dB below the limit at 3760 MHz. To view the test data see APPENDIX 4.

Sample Calculation:

Field Strength (dBµV/M) is calculated as follows:

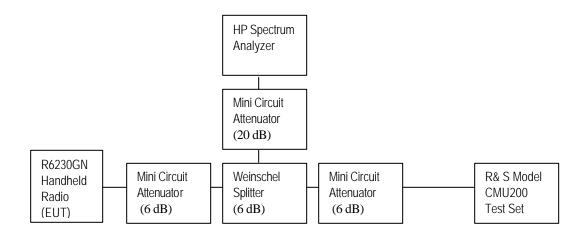
 $FS = Measured Level (dB\mu V) + A.F. (dB/m) + Cable Loss (dB) - Preamp (dB) + Filter Loss (dB)$


Measurement Uncertainty ±4.0 dB

Test Date: May 26 to June 10, 2003

H) Compliance Test Equipment Used

UNIT	<u>MANUFACTURER</u>	MODEL / SE	RIAL NUMBER	CAL DUE DATE (YY MO DD)	USE
Preamplifier system	TDK RF Solutions	PA-02	080010	03-10-02	Radiated Emissions
Preamplifier	Sonoma	310N/11909A	185831	03-10-02	Radiated Emissions
EMC Analyzer	Agilent	E7405A	US40240226	03-09-21	Radiated Emissions
Universal Radio Communication Tester	Rohde & Schwarz	CMU 200	837493/073	04-04-05	Radiated Emissions
Horn Antenna	TDK	HRN-0118	130092	03-08-14	Radiated Emissions
Horn Antenna	TDK	HRN-0118	030201	03-12-11	Radiated Emissions
Hybrid Log Antenna	TDK	HLP-3003C	017301	03-12-11	Radiated Emissions
Dipole Antenna	Schwarzbeck	VHAP	1006	03-09-12	Radiated Emissions
Dipole Antenna	Schwarzbeck	VHAP	1007	03-09-12	Radiated Emissions
Synthesized Sweeper	Agilent	83630B	3844A00927	04-04-30	Radiated Emissions
Universal Radio Communication Tester	Rohde & Schwarz	CMU 200	100249	04-04-05	Conducted Emissions
Spectrum Analyzer	HP	8563E	3745A08112	03-07-31	Conducted Emissions
DC Power Supply	HP	6632B	US37472170	03-07-31	Conducted Emissions
Temperature Probe	Hart Scientific	61161-302	21352860	03-09-10	Conducted Emissions
Environmental Chamber	ESPEC Corp.	SH-240S1	91005607	N/R	Conducted Emissions


Appendix 1 Page 1 of 17

Test Date: Test Date: May 26 to June 10, 2003

Conducted Emission Test Results

This appendix contains measurement data pertaining to conducted spurious emissions, –26 dBc bandwidth, 99% power bandwidth and the channel mask.

Test Setup Diagram

Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer	HP	8563E	374A08112	30 Hz – 26.5 GHz
Splitter	Weinschel	1515	ME092	DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S20W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Universal Radio Communication Tester	Rohde & Schwarz	CMU200	100249	

Appendix 1 Page 2 of 17

Test Date: Test Date: May 26 to June 10, 2003

Conducted Emission Test Data Con't

The conducted spurious emissions – As per 47 CFR 2.202, 47 CFR 2.1057, 47 CFR 24.238, RSS-133, CFR 22 Subpart H and RSS-128 were measured from 10 MHz to 20 GHz. The EUT has a test margin of greater than 20 dB.

See figures 1 to 12 for the plots of the conducted spurious emissions.

-26 dBc Bandwidth and Occupied Bandwidth (99%)

For each carrier frequency of low, middle and high, the modulation spectrum were measured by both methods of 99% power bandwidth and –26 dBc bandwidth.

The resolution bandwidth required for out-of-band emissions in the 1 MHz bands immediately outside and adjacent to the frequency block, was determined to be at least 1% of the emission bandwidth.

The worst case emission bandwidth for the three GSM850 channels was measured to be 278.0 kHz, and for the three PCS channels was measured to be 272 kHz as shown below, which results in 30 kHz resolution bandwidth.

On any frequency outside the frequency block and outside the adjacent 1 MHz bands, a resolution bandwidth of at least 1 MHz was employed.

Test Data for GSM850 and PCS selected Frequencies

GSM Frequency (MHz)	-26dBc Bandwidth (kHz)	-99% Occupied Bandwidth (kHz)
824.2	270	250.0
837.6	278	248.3
848.8	272	246.7

PCS Frequency (MHz)	-26dBc Bandwidth (kHz)	99% Occupied Bandwidth (kHz)
1850.2	270	246.7
1880.0	268	243.3
1909.8	272	245.0

Measurement Plots for GSM850 and PCS

Refer to the following measurement plots for more detail.

See Figures 1 to 12 for plots of the Spurious Emission results

See Figures 13 to 24 for the plots of the -26dBc Bandwidth and 99% Occupied Bandwidth.

See Figures 25 to 28 for plots of the channel mask results.

The RF power output was at maximum for all the recorded measurements shown below.

Appendix 1 Page 3 of 17

Test Date: Test Date: May 26 to June 10, 2003

Figure 1: GSM 850, Spurious Conducted Emissions, Low channel

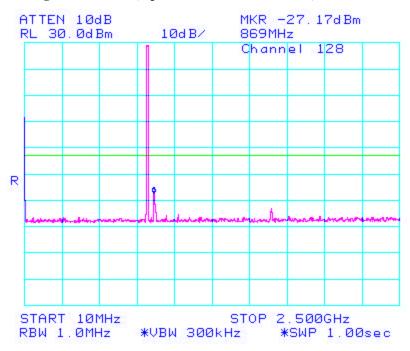
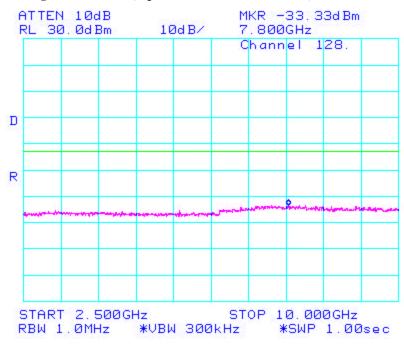



Figure 2: GSM 850, Spurious Conducted Emissions, Low channel

Appendix 1 Page 4 of 17

Test Date: Test Date: May 26 to June 10, 2003

Figure 3: GSM 850, Spurious Conducted Emissions, Middle Channel

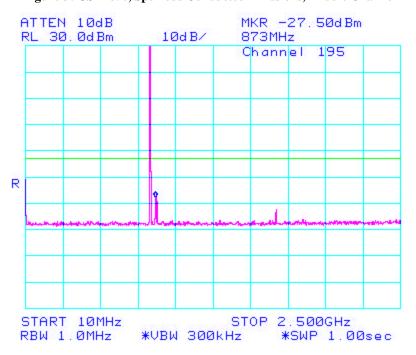
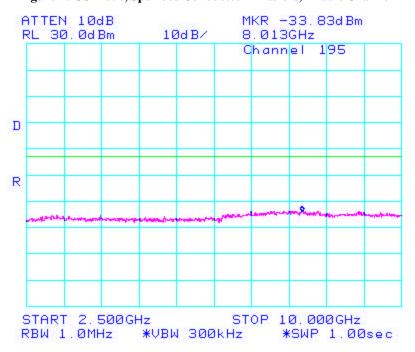



Figure 4: GSM 850, Spurious Conducted Emissions, Middle Channel

Appendix 1 Page 5 of 17

Test Date: Test Date: May 26 to June 10, 2003

Figure 5: GSM 850, Spurious Conducted Emissions, High Channel

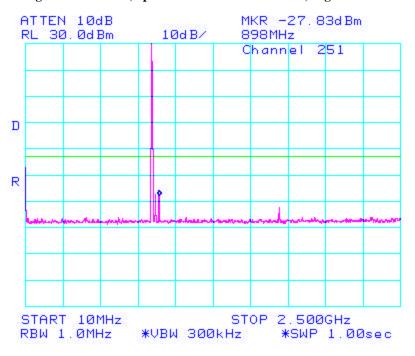
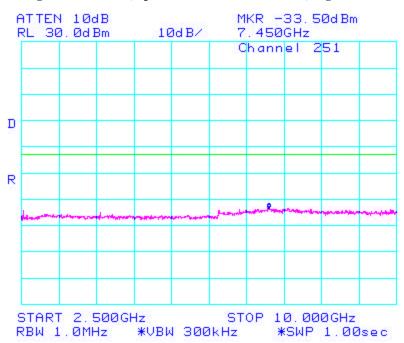



Figure 6: GSM 850, Spurious Conducted Emissions, High Channel

Appendix 1 Page 6 of 17

Test Date: Test Date: May 26 to June 10, 2003

Figure 7: PCS, Spurious Conducted Emissions, Low Channel

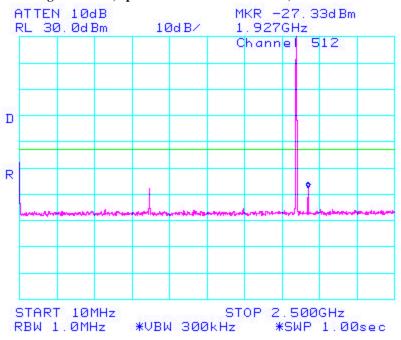
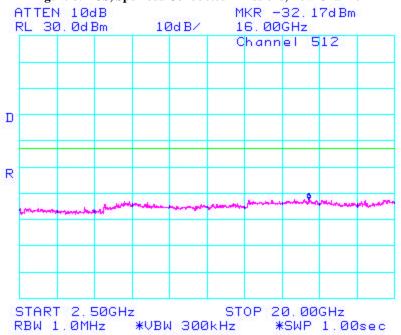



Figure 8: PCS, Spurious Conducted Emissions, Low Channel

Appendix 1 Page 7 of 17

Test Date: Test Date: May 26 to June 10, 2003

Figure 9: PCS, Spurious Conducted Emissions, Middle Channel

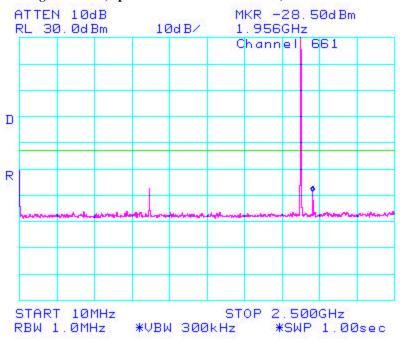
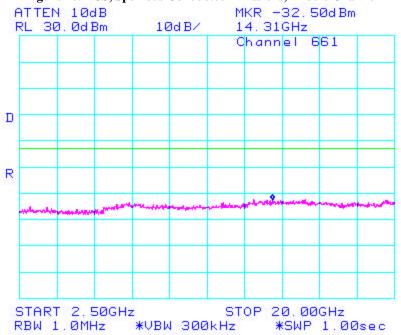



Figure 10: PCS, Spurious Conducted Emissions, Middle Channel

Appendix 1 Page 8 of 17

Test Date: Test Date: May 26 to June 10, 2003

Conducted Emission Test Results Con't

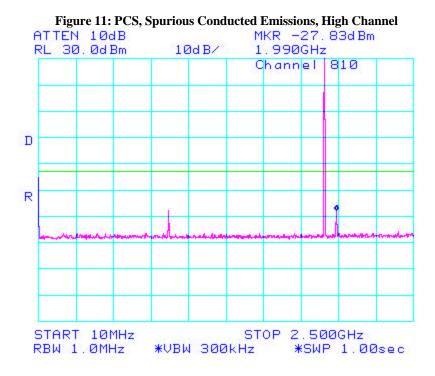
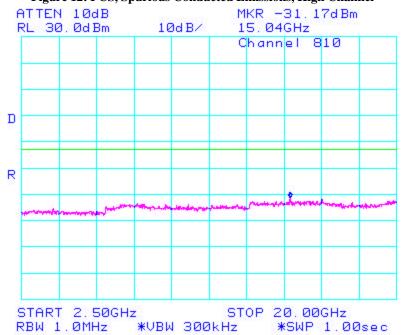



Figure 12: PCS, Spurious Conducted Emissions, High Channel

Appendix 1 Page 9 of 17

Test Date: Test Date: May 26 to June 10, 2003

Figure 13: -26dBc bandwidth, GSM 850 Low Channel

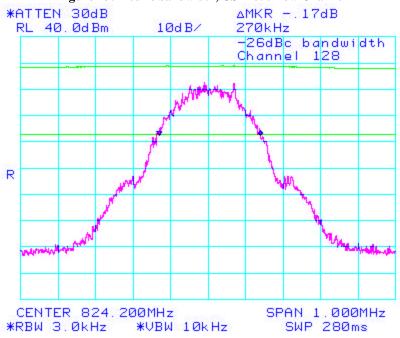
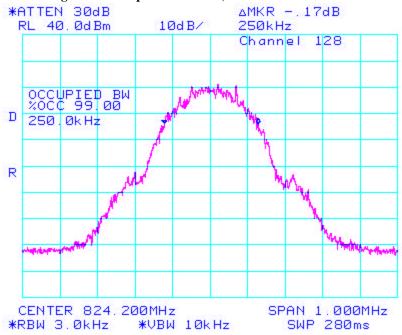



Figure 14: Occupied Bandwidth, GSM 850 Low Channel

Appendix 1 Page 10 of 17

Report No. RIM-0041-0305-03 Test Date: Test Date: May 26 to June 10, 2003

Figure 15: -26dBc bandwidth, GSM 850 Middle Channel

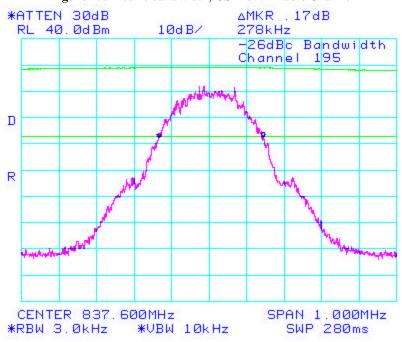
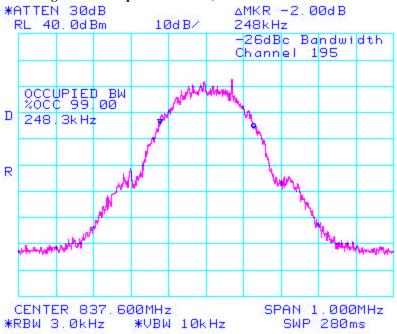



Figure 16: Occupied Bandwidth, GSM 850 Middle Channel

Appendix 1 Page 11 of 17

Test Date: Test Date: May 26 to June 10, 2003

Figure 17: -26dBc bandwidth, GSM 850 High Channel

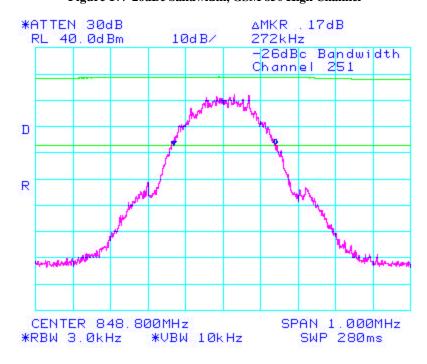
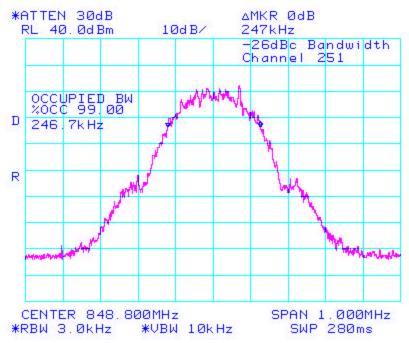



Figure 18: Occupied Bandwidth, GSM 850 High Channel

Appendix 1 Page 12 of 17

Test Date: Test Date: May 26 to June 10, 2003

Figure 19: -26dBc bandwidth, PCS Low Channel

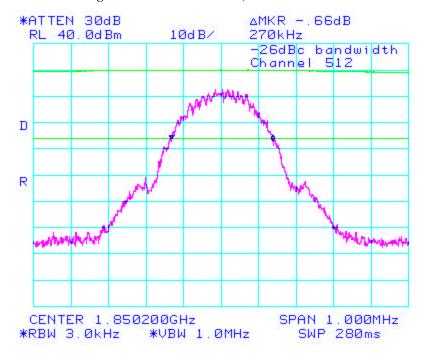
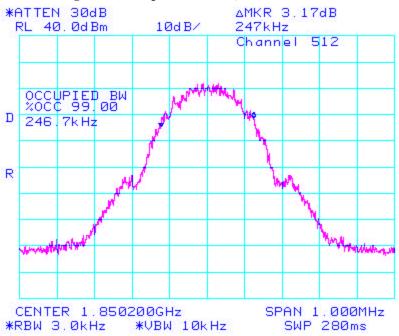



Figure 20: Occupied Bandwidth, PCS Low Channel

Appendix 1 Page 13 of 17

Test Date: Test Date: May 26 to June 10, 2003

Figure 21: -26dBc bandwidth, PCS Middle Channel

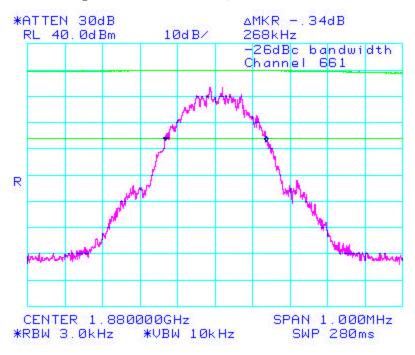
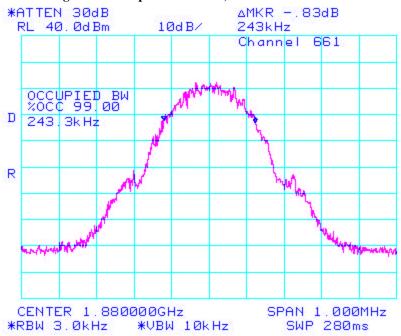



Figure 22: Occupied Bandwidth, PCS Middle Channel

Appendix 1 Page 14 of 17

Test Date: Test Date: May 26 to June 10, 2003

Figure 23: -26dBc bandwidth, PCS High Channel

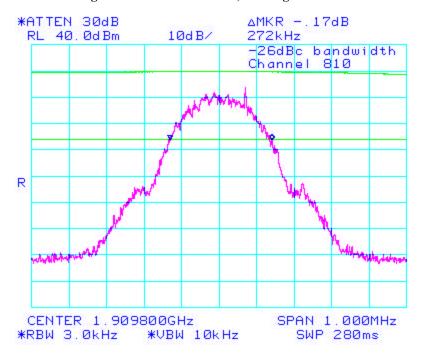
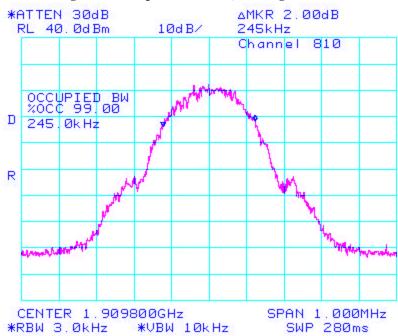



Figure 24: Occupied Bandwidth, PCS High Channel

Appendix 1 Page 15 of 17

Test Date: Test Date: May 26 to June 10, 2003

Figure 25: GSM 850, Low Channel Mask

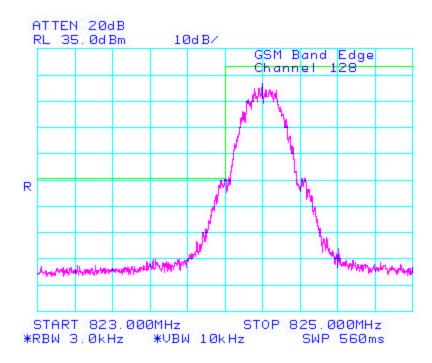
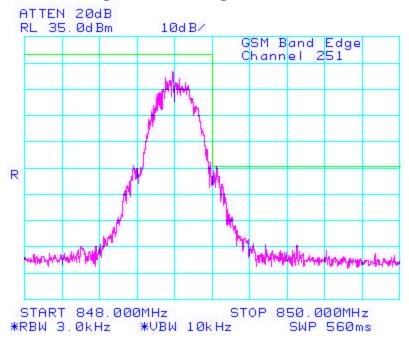



Figure 26: GSM 850 High Channel Mask

Appendix 1 Page 16 of 17

Test Date: Test Date: May 26 to June 10, 2003

Figure 27: PCS, Low Channel Mask

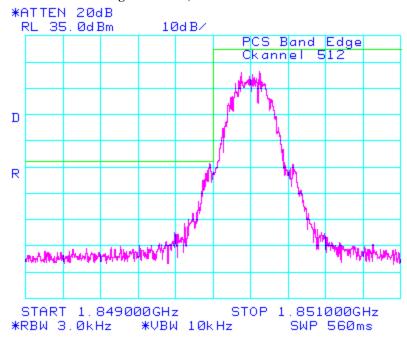
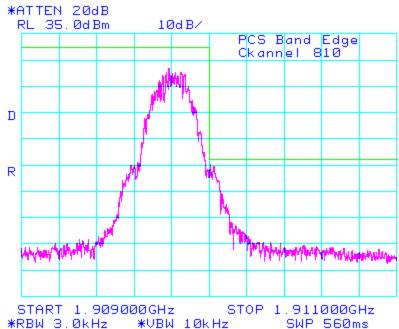
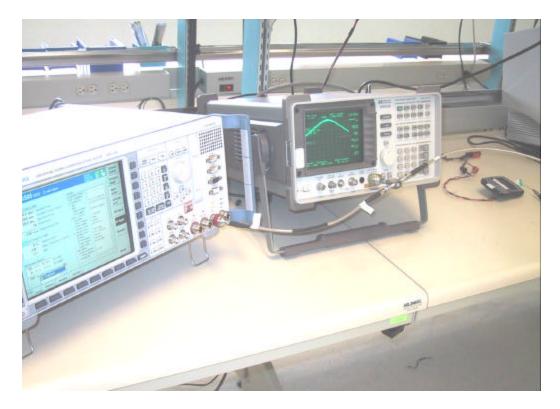



Figure 28: PCS, High Channel Mask

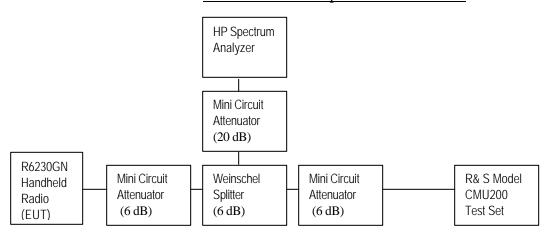

Appendix 1 Page 17 of 17

Report No. RIM-0041-0305-03

Test Date: Test Date: May 26 to June 10, 2003

Conducted Emission Test-Setup Photo

FCC CFR 47 Part 24, Subpart E, RSS-133



Appendix 2 Page 1 of 5

Test Date: Test Date: May 26 to June 10, 2003

Conducted RF Output Power Test Data

Test Equipment List

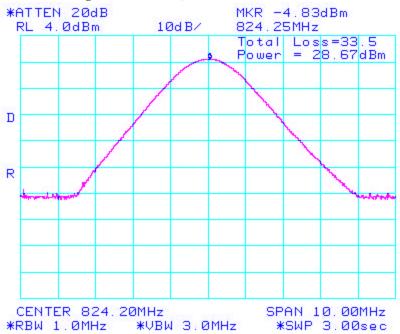
Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer	HP	8563E	374A08112	30 Hz – 26.5 GHz
Splitter	Weinschel	1515	ME092	DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S20W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Universal Radio Communication Tester	Rohde & Schwarz	CMU200	100249	

Appendix 2 Page 2 of 5

Test Date: Test Date: May 26 to June 10, 2003

Power Output for GSM850 and PCS

Report No. RIM-0041-0305-03


At three transmit frequencies the maximum radio output power level was measured using the Spectrum Analyzer. The calibrated insertion loss measured for the attenuator and cable assembly was added to the power measurements which produced the following results.

*Test Data*Peak nominal output power is 29 dBm for GSM850 and 30 dBm for PCS.

Channel	GSM850 Frequency (MHz)	Measured Peak Conducted Power (dBm)	Total Correction Factor (dB)	Corrected Peak Conducted Power (dBm)
128	824.2	-4.83	33.5	28.67
195	837.6	-4.33	33.5	29.17
251	848.8	-4.17	33.5	29.33

Channel	PCS Frequency (MHz)	Measured Peak Conducted Power (dBm)	Total Correction Factor (dB)	Corrected Peak Conducted Power (dBm)
512	1850.2	-3.20	33.6	30.40
661	1880.0	-3.20	33.6	30.40
810	1909.8	-3.20	33.6	30.40

Figure 28: GSM 850, Low Channel Peak Power

Appendix 2 Page 3 of 5

Test Date: Test Date: May 26 to June 10, 2003

Conducted RF Output Power Test Data con't

Figure 29: GSM 850, Middle Channel Peak Power

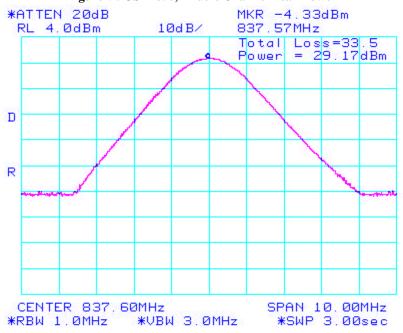
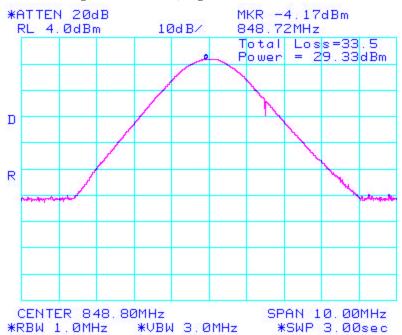



Figure 30: GSM 850, High Channel Peak Power

Appendix 2 Page 4 of 5

Test Date: Test Date: May 26 to June 10, 2003

Conducted RF Output Power Test Data con't

Figure 31: PCS, Low Channel Peak Power

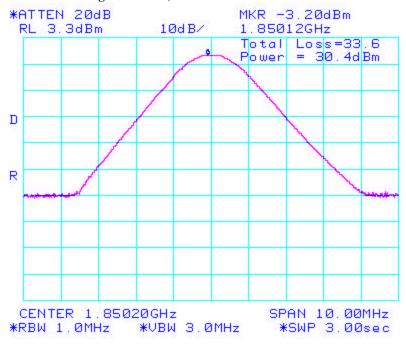
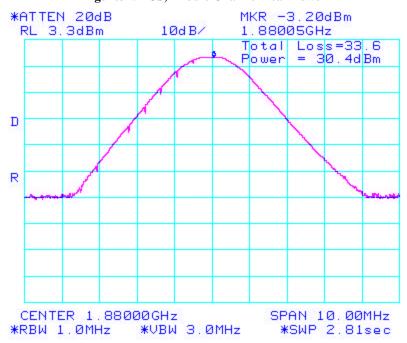
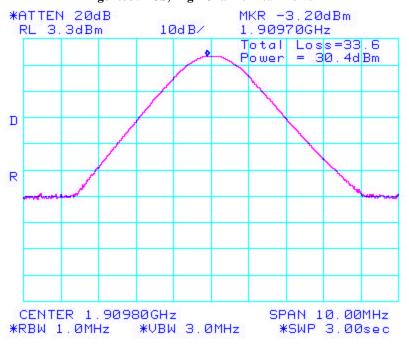
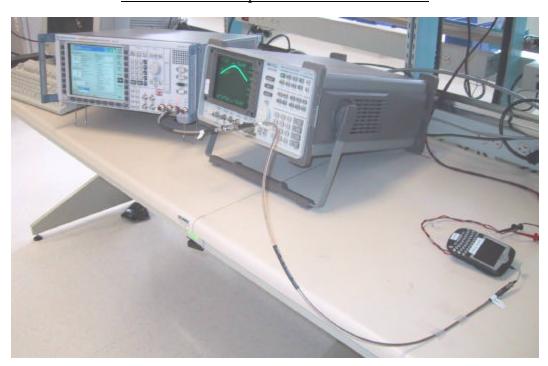



Figure 32: PCS, Middle Channel Peak Power



Appendix 2 Page 5 of 5


Test Date: Test Date: May 26 to June 10, 2003

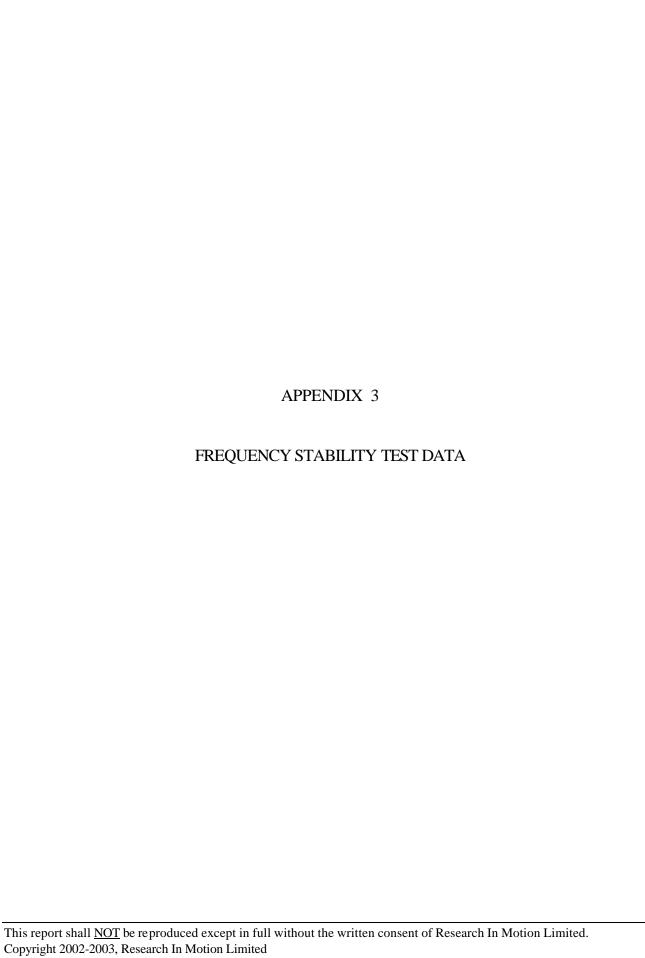
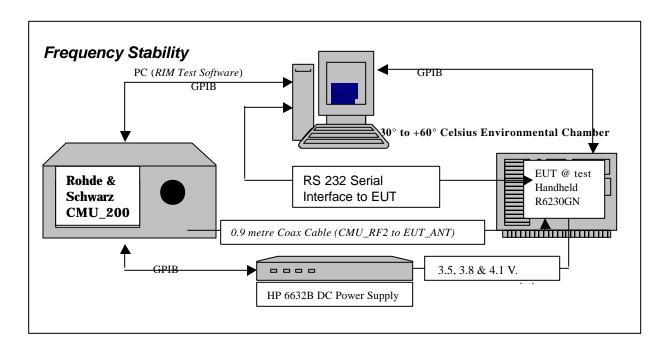

Conducted RF Output Power Test Data con't

Figure 33: PCS, High Channel Peak Power


Conducted RF Output Power Test Data Photo

Test Date: May 26 to June 10, 2003

Frequency Stability Test Data

SYSTEM	Model	Serial Number	Calibration Due Date.
R & S Universal Radio Communication Test Set	CMU200	100249	04-April-2004
HP System DC Power Supply	6632B	US37472170	31-July-2003
Network Analyzer	HP 8753D	20A80400806	12-Aug-2003
Calibration Kit	HP85033D	3423A02787	28-Sept-2003
Espec Environmental Chamber	SH240S1	91005607	N/A
Hart Temperature Probe	61161-302	21352860	10-Sept-2003

CFR 47 Chapter 1 - Federal Communications Commission Rules

Part 2 Required Measurements

- 2.995 Frequency Stability Procedures
- (a,b) Frequency Stability Temperature Variation
- (d) Frequency Stability Voltage Variation

24.235 *Frequency Stability*.

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited

Appendix 3 Page 2 of 10

Test Date: May 26 to June 10, 2003

Report No. RIM-0041-0305-03

The R6230GN handheld, (referred as EUT herein and after) transmitted frequencies are less than 0.1 ppm of the received frequency from the Rhode & Schwarz CMU 200 Universal Radio Communication Test Set. The EUT meets the requirements as stated in CFR 47 chapter 1, Section 24.235, RSS-133, CFR 47 chapter 1, Section 22.917 and RSS-128 Frequency Stability.

Frequency Stability measurement devices were configured as presented in the block diagram recording frequency, power, data, temperatures, and stepped voltages controlled via a GPIB interface linked to the Environmental chamber, a DC power supply, and the Communications Test Set. A 1.9-meter coax cable was calibrated to characterize the insertion loss for the transmitted frequencies between the RF input/output of the CMU 200 and the EUT antenna port; located inside the environmental chamber.

Calibration for the Cable Loss was performed in the RF Laboratory on 30 May 2003.

Procedure:

Full_Two port Calibration of 8720D using the 85033D was completed.

The cable assembly from the RF input to the RF output was measured at the following Frequencies:

PCS Frequency (MHz)	Cable loss (dB)
1850.2	2.67
1880.0	2.67
1909.8	2.67

GSM 850 Frequency (MHz)	Cable loss (dB)
824.2	1.80
836.4	1.80
848.6	1.80

Procedure:

The EUT was placed in the Temperature chamber and connected to CMU 200 outside as shown in the figure above. Dry air was pumped inside the temperature chamber to maintain a backpressure during the test. The EUT was kept in the off condition at all times except when the measurements were to be made.

The chamber was switched on and the temperature was set to -30°C.

After the chamber stabilized at -30 °C there was a soak period of one hour to alleviate moisture in the chamber, the EUT voltage was enabled.

The system software recorded the frequency, power, and associated measurements.

A Computer system controlled the automated software. This application was given the command of activating all machines intrinsic to the temperature and voltage tests controlling the CMU 200 via the GPIB Bus. The Environmental Chamber was instructed through an RS-232 serial line. The EUT dialogue was passed through a serial connection.

Test Date: May 26 to June 10, 2003

The EUT repetitively transmitted 100 bursts for each set of programmed parameters recording temperature, voltage settings, and systematically selected frequencies. The power supply was cycled from minimum voltage 3.5 volts, to 3.8 volts to 4.1 volts nominal voltage.

The frequency error was measured at a maximum output power and recorded by the automated system test software.

The EUT output power and frequency was measured at 3.5 volts, 3.8 volts and 4.1 volts. The transmit frequency was varied in 3 steps consisting of 824.2, 836.4, and 848.6 MHz for the GSM850 band and 1850.2, 1880.0 and 1909.8 MHz for the PCS band. This frequency was recorded in MHz and deviation from nominal, in Parts Per Million.

After the initial one-hour soak at the beginning of the start of the measurement tests, a period of thirty minutes soak was initialized between each ascending temperature step, before proceeding to the next measurement test cycle.

PROCEDURE:

The test system software for commencing the Frequency Stability Tests carried through the following cycle.

- 1. Switch on the HP 6632B power supply; CMU 200 Communications test Set, and Environmental Chamber.
- 2. Start test program
- 3. Set the Temperature to -30 degrees Celsius and maintain a period of one- hour soak time, with the EUT supply voltage disabled.
- 4. Set power supply voltage to 3.5 Volts.
- 5. Set up CMU 200 Radio Communication Tester.
- 6. Command the CMU 200 to switch to the low channel.
- 7. Enable the voltage to the EUT, and connect a link to the CMU 200 test set.
- 8. EUT is commanded to Transmit 100 Bursts.
- 9. Software logs the following data from the CMU 200, power supply and temperature chamber: Traffic Channel Number, Traffic Channel Frequency, Power Level, Chamber Temperature, Supply Voltage, Power, Frequency Error.
- 10. The CMU 200 commands the EUT to change frequency to the middle channel and high channel and repeats steps 7 to 9.
- 11. Repeat steps 5 to 10 changing the supply voltage to 3.8 Volts
- 12. Increase temperature by 10?C and soak for 1/2 hour.
- 13. Repeat steps 4 12 for temperatures -30 degrees to 60 degrees Celsius.
- 14. Repeat steps 5 to 10 changing the supply voltage to 4.1 Volts

Procedure 5 to 10 was repeated at room temperature (20?C) with the power supply voltage set to 3.5, 3.8 and 4.1 Volts.

Appendix 3 Page 4 of 10

Report No. RIM-0041-0305-03 Test Date: May 26 to June 10, 2003

GSM 850 Channel results: channels 128, 189 and 250 @ 20°C maximum transmitted power

Traffic Channel Number	GSM 850 Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
128	824.2	29.23	3.5	20	-42.42	-0.0515
189	836.4	29.75	3.5	20	-27.96	-0.0334
250	848.6	30.23	3.5	20	-39.97	-0.0471

Traffic Channel Number	GSM 850 Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
128	824.2	29.31	3.8	20	-44.23	-0.0537
189	836.4	29.86	3.8	20	-23.31	-0.0279
250	848.6	30.40	3.8	20	-45.46	-0.0536

Traffic Channel Number	GSM 850 Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
128	824.2	29.39	4.1	20	-51.59	-0.0626
189	836.4	29.94	4.1	20	-22.99	-0.0275
250	848.6	30.54	4.1	20	-30.93	-0.0364

PCS Channel results: channels 512, 661, & 810 @ 20°C maximum transmitted power

Traffic Channel Number	PCS Frequency (MHz	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	30.67	3.5	20	35.51	0.0192
661	1880.0	30.70	3.5	20	41.91	0.0223
810	1909.8	30.66	3.5	20	41.65	0.0218

Traffic Channel Number	PCS Frequency (MHz	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	31.13	3.8	20	33.96	0.0184
661	1880.0	31.04	3.8	20	42.04	0.0224
810	1909.8	31.03	3.8	20	42.36	0.0222

Traffic Channel Number	PCS Frequency (MHz	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	31.41	4.1	20	36.87	0.0199
661	1880.0	31.33	4.1	20	37.77	0.0201
810	1909.8	31.03	4.1	20	40.49	0.0212

Appendix 3 Page 5 of 10

Test Date: May 26 to June 10, 2003

Report No. RIM-0041-0305-03

GSM850 Results: channel 128 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
128	824.2	28.78	3.5	-30	-41.58	-0.0504
128	824.2	28.90	3.5	-20	-54.11	-0.0657
128	824.2	28.98	3.5	-10	-79.94	-0.0970
128	824.2	29.12	3.5	0	-56.18	-0.0682
128	824.2	29.20	3.5	10	-37.77	-0.0458
128	824.2	29.23	3.5	20	-42.42	-0.0515
128	824.2	29.29	3.5	30	-48.95	-0.0594
128	824.2	29.33	3.5	40	-63.93	-0.0776
128	824.2	29.45	3.5	50	-26.93	-0.0327
128	824.2	29.30	3.5	60	-40.62	-0.0493

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
128	824.2	28.83	3.8	-30	-51.66	-0.0627
128	824.2	28.94	3.8	-20	-54.69	-0.0664
128	824.2	29.08	3.8	-10	-76.45	-0.0928
128	824.2	29.19	3.8	0	-63.22	-0.0767
128	824.2	29.28	3.8	10	-34.42	-0.0418
128	824.2	29.31	3.8	20	-44.23	-0.0537
128	824.2	29.39	3.8	30	-41.00	-0.0497
128	824.2	29.43	3.8	40	-49.72	-0.0603
128	824.2	29.54	3.8	50	-27.89	-0.0338
128	824.2	29.39	3.8	60	-32.16	-0.0390

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
128	824.2	28.91	4.1	-30	-50.75	-0.0616
128	824.2	29.01	4.1	-20	-51.72	-0.0628
128	824.2	29.15	4.1	-10	-71.55	-0.0868
128	824.2	29.26	4.1	0	-59.08	-0.0717
128	824.2	29.35	4.1	10	-32.48	-0.0394
128	824.2	29.39	4.1	20	-51.59	-0.0626
128	824.2	29.48	4.1	30	-39.65	-0.0481
128	824.2	29.51	4.1	40	-56.44	-0.0685
128	824.2	29.63	4.1	50	-27.77	-0.0337
128	824.2	29.49	4.1	60	-36.68	-0.0445

Appendix 3 Page 6 of 10

Report No. RIM-0041-0305-03

Test Date: May 26 to June 10, 2003

GSM850 Results: channel 189 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
189	836.4	29.41	3.5	-30	-71.42	-0.0854
189	836.4	29.52	3.5	-20	-25.83	-0.0309
189	836.4	29.59	3.5	-10	-54.43	-0.0651
189	836.4	29.69	3.5	0	-56.11	-0.0671
189	836.4	29.76	3.5	10	-27.83	-0.0333
189	836.4	29.75	3.5	20	-27.96	-0.0334
189	836.4	29.80	3.5	30	-22.41	-0.0268
189	836.4	29.82	3.5	40	-45.91	-0.0549
189	836.4	29.93	3.5	50	-31.38	-0.0375
189	836.4	29.75	3.5	60	-39.32	-0.0470

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
189	836.4	29.47	3.8	-30	-65.09	-0.0778
189	836.4	29.56	3.8	-20	-28.80	-0.0344
189	836.4	29.68	3.8	-10	-61.08	-0.0730
189	836.4	29.79	3.8	0	-46.17	-0.0552
189	836.4	29.86	3.8	10	-22.34	-0.0267
189	836.4	29.86	3.8	20	-23.31	-0.0279
189	836.4	29.93	3.8	30	-23.18	-0.0277
189	836.4	29.96	3.8	40	-51.53	-0.0616
189	836.4	30.07	3.8	50	-27.12	-0.0324
189	836.4	29.89	3.8	60	-37.84	-0.0452

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
189	836.4	29.53	4.1	-30	-56.95	-0.0681
189	836.4	29.65	4.1	-20	-26.67	-0.0319
189	836.4	29.78	4.1	-10	-55.53	-0.0664
189	836.4	29.86	4.1	0	-48.30	-0.0577
189	836.4	29.95	4.1	10	-23.57	-0.0282
189	836.4	29.94	4.1	20	-22.99	-0.0275
189	836.4	30.02	4.1	30	-27.96	-0.0334
189	836.4	30.06	4.1	40	-52.43	-0.0627
189	836.4	30.18	4.1	50	-24.92	-0.0298
189	836.4	30.03	4.1	60	-42.29	-0.0506

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited

Appendix 3 Page 7 of 10

Report No. RIM-0041-0305-03

Test Date: May 26 to June 10, 2003

GSM850 Results: channel 250 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
250	848.6	30.07	3.5	-30	-44.23	-0.0521
250	848.6	30.13	3.5	-20	-66.06	-0.0778
250	848.6	30.19	3.5	-10	-43.07	-0.0508
250	848.6	30.24	3.5	0	-28.73	-0.0339
250	848.6	30.27	3.5	10	-33.84	-0.0399
250	848.6	30.23	3.5	20	-39.97	-0.0471
250	848.6	30.26	3.5	30	-22.60	-0.0266
250	848.6	30.27	3.5	40	-52.56	-0.0619
250	848.6	30.34	3.5	50	-30.28	-0.0357
250	848.6	30.17	3.5	60	-31.25	-0.0368

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
250	848.6	30.20	3.8	-30	-50.30	-0.0593
250	848.6	30.24	3.8	-20	-58.05	-0.0684
250	848.6	30.34	3.8	-10	-51.01	-0.0601
250	848.6	30.41	3.8	0	-16.47	-0.0194
250	848.6	30.44	3.8	10	-36.61	-0.0431
250	848.6	30.40	3.8	20	-45.46	-0.0536
250	848.6	30.47	3.8	30	-28.41	-0.0335
250	848.6	30.46	3.8	40	-56.63	-0.0667
250	848.6	30.56	3.8	50	-31.96	-0.0377
250	848.6	30.39	3.8	60	-37.06	-0.0437

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
250	848.6	30.31	4.1	-30	-43.78	-0.0516
250	848.6	30.37	4.1	-20	-62.18	-0.0733
250	848.6	30.45	4.1	-10	-44.23	-0.0521
250	848.6	30.54	4.1	0	-17.76	-0.0209
250	848.6	30.56	4.1	10	-32.29	-0.0381
250	848.6	30.54	4.1	20	-30.93	-0.0364
250	848.6	30.61	4.1	30	-30.41	-0.0358
250	848.6	30.61	4.1	40	-42.62	-0.0502
250	848.6	30.71	4.1	50	-26.02	-0.0307
250	848.6	30.54	4.1	60	-31.32	-0.0369

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited

Appendix 3 Page 8 of 10

Report No. RIM-0041-0305-03

Test Date: May 26 to June 10, 2003

PCS 1900 Results: channel 512 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	31.28	3.5	-30	39.32	0.0213
512	1850.2	31.30	3.5	-20	30.15	0.0163
512	1850.2	31.18	3.5	-10	25.83	0.0140
512	1850.2	31.05	3.5	0	30.15	0.0163
512	1850.2	30.89	3.5	10	31.06	0.0168
512	1850.2	30.67	3.5	20	35.51	0.0192
512	1850.2	30.59	3.5	30	24.47	0.0132
512	1850.2	30.32	3.5	40	-71.80	-0.0388
512	1850.2	30.12	3.5	50	23.50	0.0127
512	1850.2	29.81	3.5	60	-53.40	-0.0289

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	31.71	3.8	-30	32.48	0.0176
512	1850.2	31.71	3.8	-20	37.84	0.0205
512	1850.2	31.62	3.8	-10	39.13	0.0211
512	1850.2	31.45	3.8	0	22.54	0.0122
512	1850.2	31.28	3.8	10	43.59	0.0236
512	1850.2	31.12	3.8	20	33.96	0.0184
512	1850.2	30.96	3.8	30	20.47	0.0111
512	1850.2	30.74	3.8	40	-92.98	-0.0503
512	1850.2	30.42	3.8	50	-17.69	-0.0096
512	1850.2	30.15	3.8	60	-58.63	-0.0317

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	31.94	4.1	-30	-24.28	-0.0131
512	1850.2	32.01	4.1	-20	36.87	0.0199
512	1850.2	31.91	4.1	-10	39.91	0.0216
512	1850.2	31.75	4.1	0	27.89	0.0151
512	1850.2	31.59	4.1	10	27.25	0.0147
512	1850.2	31.41	4.1	20	34.87	0.0188
512	1850.2	31.24	4.1	30	28.28	0.0153
512	1850.2	30.98	4.1	40	-88.14	-0.0476
512	1850.2	30.72	4.1	50	18.27	0.0099
512	1850.2	30.41	4.1	60	-52.88	-0.0286

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited

Appendix 3 Page 9 of 10

Report No. RIM-0041-0305-03

Test Date: May 26 to June 10, 2003

PCS 1900 Results: channel 661 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
661	1880.0	31.22	3.5	-30	33.19	0.0177
661	1880.0	31.21	3.5	-20	55.92	0.0297
661	1880.0	31.13	3.5	-10	45.59	0.0243
661	1880.0	31.00	3.5	0	40.03	0.0213
661	1880.0	30.84	3.5	10	34.74	0.0185
661	1880.0	30.70	3.5	20	41.91	0.0223
661	1880.0	30.52	3.5	30	16.66	0.0089
661	1880.0	30.28	3.5	40	-86.01	-0.0458
661	1880.0	30.07	3.5	50	21.24	0.0113
661	1880.0	29.75	3.5	60	-51.79	-0.0275

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
661	1880.0	31.63	3.8	-30	28.86	0.0154
661	1880.0	31.61	3.8	-20	50.11	0.0278
661	1880.0	31.48	3.8	-10	52.24	0.0154
661	1880.0	31.37	3.8	0	36.81	0.0267
661	1880.0	31.21	3.8	10	51.98	0.0276
661	1880.0	31.04	3.8	20	42.04	0.0224
661	1880.0	30.85	3.8	30	21.11	0.0112
661	1880.0	30.65	3.8	40	-75.87	-0.0404
661	1880.0	30.38	3.8	50	27.70	0.0147
661	1880.0	30.04	3.8	60	-55.08	-0.0293

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
661	1880.0	31.85	4.1	-30	29.77	0.0158
661	1880.0	31.89	4.1	-20	45.07	0.0240
661	1880.0	31.78	4.1	-10	49.40	0.0263
661	1880.0	31.62	4.1	0	39.13	0.0208
661	1880.0	31.44	4.1	10	42.29	0.0225
661	1880.0	31.33	4.1	20	37.77	0.0201
661	1880.0	31.10	4.1	30	31.38	0.0167
661	1880.0	30.85	4.1	40	-78.33	-0.0417
661	1880.0	30.60	4.1	50	24.92	0.0133
661	1880.0	30.22	4.1	60	43.20	0.0230

Appendix 3 Page 10 of 10

Test Date: May 26 to June 10, 2003

Report No. RIM-0041-0305-03

PCS 1900 Results: channel 810 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
810	1909.8	31.18	3.5	-30	46.04	0.0241
810	1909.8	31.16	3.5	-20	61.54	0.0322
810	1909.8	31.10	3.5	-10	61.54	0.0322
810	1909.8	30.96	3.5	0	42.75	0.0224
810	1909.8	30.79	3.5	10	32.87	0.0172
810	1909.8	30.66	3.5	20	41.65	0.0218
810	1909.8	30.52	3.5	30	21.44	0.0112
810	1909.8	30.26	3.5	40	-66.19	-0.0347
810	1909.8	30.02	3.5	50	25.76	0.0135
810	1909.8	29.77	3.5	60	-52.56	-0.0275

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
810	1909.8	31.56	3.8	-30	24.41	0.0128
810	1909.8	31.56	3.8	-20	69.22	0.0362
810	1909.8	31.49	3.8	-10	51.46	0.0269
810	1909.8	31.34	3.8	0	49.78	0.0261
810	1909.8	31.21	3.8	10	52.11	0.0273
810	1909.8	31.03	3.8	20	42.36	0.0222
810	1909.8	30.83	3.8	30	22.21	0.0116
810	1909.8	30.63	3.8	40	-78.20	-0.0409
810	1909.8	30.36	3.8	50	36.48	0.0191
810	1909.8	29.97	3.8	60	-49.85	-0.0261

Traffic Channel Number	Frequency (MHz)	Transmit Power (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
810	1909.8	31.86	4.1	-30	19.05	0.0100
810	1909.8	31.86	4.1	-20	47.01	0.0246
810	1909.8	31.80	4.1	-10	49.72	0.0260
810	1909.8	31.59	4.1	0	53.53	0.0280
810	1909.8	31.48	4.1	10	39.97	0.0209
810	1909.8	31.32	4.1	20	40.49	0.0212
810	1909.8	31.11	4.1	30	35.39	0.0185
810	1909.8	30.86	4.1	40	-73.74	-0.0386
810	1909.8	30.56	4.1	50	23.83	0.0125
810	1909.8	30.27	4.1	60	-41.97	-0.0220

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited

Appendix 4 Page 1 of 5

Test Date: Test Date: May 26 to June 10, 2003

Radiated Emissions Test Data Results

Test distance is 3.0 metres

Report No. RIM-0041-0305-03

									Substitu	ıtion	Metho	b	
	_	EUT	1	Rx Ant	enna	Spectr	um Anal	yzer	Tracking	Generator	ı	,	
Туре	e Ch	Frequency (MHz)	Band	Туре	Pol.	Reading (dBuV)	Corrected Reading (dBuV)	11/12/	Reading (dBm)	Corrected Reading (relative to dipole)	Pol	. Limit	Diff to Limit (dB)
GS	M850 I	Band (ERP)											
На	ndheld	Standalone											
F0	128	824.20	850	Dipole	V	81.1	81.1	81.1	5.8	21.75	VV	27.78	-6.03
F0	128	824.20	850	Dipole	Н	73.5	73.5		4.2		нн		
F0	195	837.60	850	Dipole	V	81.7	81.7	81.7	7.5	23.45	VV	27.78	-4.33
F0	195	837.60	850	Dipole	Н	73.3	73.3		6.1		нн		
F0	251	848.80	850	Dipole	V	82.0	82.0	82.0	7.8	23.75	VV	27.78	-4.03
F0	251	848.80	850	Dipole	Н	75.3	75.3		6.2		НН		
W	/ith He	adset				1	ı			I			
F0	128	824.20	850	Dipole	V	79.6	79.6	79.6	4.3	20.25	VV	27.78	-7.53
F0	128	824.20	850	Dipole	Н	77.7	77.7		2.7		НН		
F0	195	837.60	850	Dipole	V	80.4	80.4	80.4	6.2	22.15	VV	27.78	-5.63
F0	195	837.60	850	Dipole	Н	78.2	78.2		4.9		НН		
F0	251	848.80	850	Dipole	V	82.2	82.2	82.2	8.1	24.05	VV	27.78	-3.73
F0	251	848.80	850	Dipole	Н	79.6	79.6		6.5		НН		
Wit	h Trav	el Charger and	d Heads	et									
F0	128	824.20	850	Dipole	V	80.4	80.4	80.4	5.1	21.05	VV	27.78	-6.73
F0	128	824.20	850	Dipole	Н	78.6	78.6		3.5		нн		
F0	195	837.60	850	Dipole	V	81.3	81.3	81.3	7.1	23.05	VV	27.78	-4.73
F0	195	837.60	850	Dipole	Н	77.7	77.7		5.8		нн		
F0	251	848.80	850	Dipole	V	82.0	82.0	82.0	7.8	23.75	VV	27.78	-4.03
F0	251	848.80	850	Dipole	Н	79.1	79.1		6.2		НН		

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited

Appendix 4 Page 2 of 5

Test Date: Test Date: May 26 to June 10, 2003

Radiated Emissions Test Data Results con't

Test distance is 3.0 metres

Report No. RIM-0041-0305-03

							Substitution Method						
	EUT				Rx Antenna		Spectrum Analyzer		Tracking Generator				
Туре	Ch	Frequency (MHz)	Band	Type	Pol.	Reading (dBuV)	Corrected Reading (dBuV)	Max (V,H)	Reading (dBm)	Corrected Reading (relative to dipole)	Pol	Limit	Diff to Limit (dB)

GSM850 Band (Harmonics)

Handheld Standalone, upright position

Low Channel

2 nd	128	1648.4	850	Horn	V	47.0	47.0	47.0	-34.5	-31.7	VV	-13	-18.7
2 nd	128	1648.4	850	Horn	Н	44.5	44.5		-39.5		НН		

The harmonics were investigated up to the 10th harmonic.

No emissions above the 2nd harmonic could be seen.

Middle Channel

2 nd	195	1675.2	850	Horn	V	45.9	45.9	45.9	-34.3	-31.5	VV	-13	-18.5
2^{nd}	195	1675.2	850	Horn	Н	41.7	41.7		-41.6		НН		

The harmonics were investigated up to the 10th harmonic.

No emissions above the 2nd harmonic could be seen.

High Channel

2 nd	251	1697.6	850	2 nd	2 nd	45.2	45.2	45.2	-35.3	-32.5	VV	-13	-19.5
2 nd	251	1697.6	850	2 nd	2 nd	40.4	40.4		-42.8		НН		

The harmonics were investigated up to the 10th harmonic.

No emissions above the 2nd harmonic could be seen.

Appendix 4 Page 3 of 5

Test Date: Test Date: May 26 to June 10, 2003

Radiated Emissions Test Data Results con't

Test distance is 3.0 metres

Report No. RIM-0041-0305-03

										Substitut	ion M	1ethod	
		EUT		Rece		Spectru	um Analyz	zer	Trac	•			
				Antei	nna	,			Gene	Corrected			
Туре	Ch	Frequency (MHz)	Band	Туре	Pol.	Reading (dBuV)	Corrected Reading (dBuV)	Max (V,H)	Reading (dBm)	Reading (relative to dipole)	Pol.	Limit	Diff to Limit (dB)
PC	S Ban	d (EIRP)											
Hai	ndheld	Standalone,	upright բ	oosition									
FO	512	1850.2	1900	Horn	٧	92.9	92.9	92.9	9.6	28.88	VV	33	-4.12
FO	512	1850.2	1900	Horn	Н	87.5	87.5		10.6		НН		
FO	661	1880.0	1900	Horn	٧	92.1	92.1	92.1	10.8	29.88	VV	33	-3.12
FO	661	1880.0	1900	Horn	Н	85.5	85.5		11.6		НН		
FO	810	1909.8	1900	Horn	٧	90.8	90.8	90.8	8.6	27.78	VV	33	-5.22
FO	810	1909.8	1900	Horn	Н	86.6	86.6		9.5		НН		
Hai	ndheld	in upright po	sition wit	th Heads	set								
FO	512	1850.2	1900	Horn	V	92.9	92.9	92.9	9.6	28.88	VV	33	-4.12
FO	512	1850.2	1900	Horn	Н	87.7	87.7		10.6		НН		
FO	661	1880.0	1900	Horn	V	92.1	92.1	92.1	10.8	29.88	VV	33	-3.12
FO	661	1880.0	1900	Horn	Н	86.1	86.1		11.6		НН		
FO	810	1909.8	1900	Horn	V	91.2	91.2	91.2	9.0	28.18	VV	33	-4.82
FO	810	1909.8	1900	Horn	Н	86.8	86.8		9.9		НН		
Hai	ndheld	in upright pos	sition wit	h Travel	Chai	ger and	Headset						
FO	512	1850.2	1900	Horn	V	92.1	92.1	92.1	8.8	28.08	VV	33	-4.92
FO	512	1850.2	1900	Horn	Н	87.4	87.4		9.8		НН		
FO	661	1880.0	1900	Horn	V	92.8	92.8	92.8	11.5	30.58	VV	33	-2.42
FO	661	1880.0	1900	Horn	Н	86.6	86.6		12.3		НН		
FO	810	1909.8	1900	Horn	V	91.9	91.9	91.9	9.7	28.88	VV	33	-4.12
FO	810	1909.8	1900	Horn	Н	84.5	84.5		10.6		НН		

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited

Appendix 4 Page 4 of 5

Test Date: Test Date: May 26 to June 10, 2003

Radiated Emissions Test Data Results con't

Test distance is 3.0 metres

Report No. RIM-0041-0305-03

										Substitut	ion M	1ethod	
	EUT				Receive Antenna		Spectrum Analyzer		Tracking Generator				
Туре	Ch	Frequency (MHz)	Band	Туре	Pol.	Reading (dBuV)	Corrected Reading (dBuV)	Max (V,H)	Reading (dBm)	Corrected Reading (relative to dipole)	Pol.	Limit	Diff to Limit (dB)
Hai	PCS Band (Harmonics) Handheld in upright position connected to Travel Charger and Headset. Low Channel												

VV 512 3700.4 1900 Horn 35.5 35.5 37.4 -49.4 -45.8 -13 -32.8512 3700.4 1900 Horn Н 37.4 37.4 -49.5 HH

The harmonics were investigated up to the 10th harmonic.

No emissions above the 2nd harmonic could be seen.

Middle Channel

	2 nd	661	3760.0	1900	Horn	٧	34.9	34.9	36.4	-48.2	-44.6	VV	-13	-31.6
ſ	2 nd	661	3760.0	1900	Horn	Н	36.4	36.4		-49.2		НН	·	

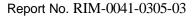
The harmonics were investigated up to the 10th harmonic.

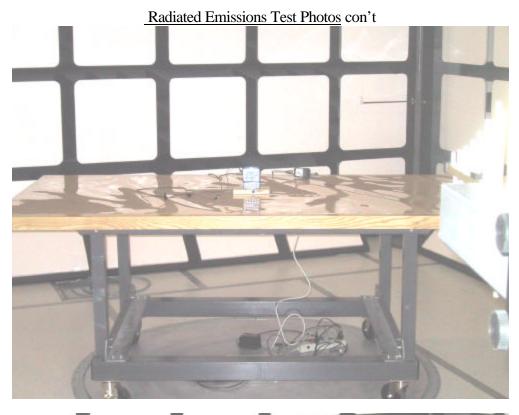
No emissions above the 2nd harmonic could be seen.

High Channel

2 nd	881	3819.6	1900	Horn	٧	34.8	34.8	36.6	-48.8	-45.2	VV	-13	-32.2
2 nd	881	3819.6	1900	Horn	Н	36.6	36.6		-51.8		H		

The harmonics were investigated up to the 10th harmonic.


No emissions above the 2nd harmonic could be seen.


This report shall \underline{NOT} be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited

Appendix 4 Page 5 of 5

Test Date: Test Date: May 26 to June 10, 2003

Radiated Emissions at 3.0 metres