

SAR Compliance Test Report

Page 1(26)

10 Jan 2003

Dates of Test Test Report No Author Data Daoud Attayi Nov. 27 - Dec. 06, 2002 RIM-0001-0301-04 FCC ID: Jan. 06 - 07, 2003L6AR6120CN

SAR Compliance Test Report

Testing Lab: Research In Motion Limited Applicant: Research In Motion Limited

> 305 Phillip Street 295 Phillip Street Waterloo, Ontario Waterloo, Ontario Canada N2L 3W8 Canada N2L 3W8 Phone: 519-888-7465 Phone: 519-888-7465 Fax: 519-880-8173 Fax: 519-888-6906 Web site: www.rim.net Web site: www.rim.net

Statement of **Compliance:**

Research In Motion Limited, declares under its sole responsibility that the product to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(none)

Device Category: This wireless handheld is a portable device, designed to be used in direct contact with

the user's head, hand and to be carried in an approved holster when carried on the

user's body.

RF exposure This wireless portable device has been shown to be in compliance for environment: localized specific absorption rate (SAR) for uncontrolled environment/general

population exposure limits specified in OET Bulletin 65 Supplement C (Edition 01-01), FCC 96-326 and IEEE Std. C95.1-1999 and had been tested in accordance with the measurement procedures specified in OET Bulletin 65 Supplement C (Edition 01-

01) and ANSI/IEEE Std. C95.3-1991.

Approved by: **Signatures** Date

Paul & Cardinal Danid Attais Paul G. Cardinal, Ph.D. Manager, Compliance & Certification

Tested and documented by:

Daoud Attayi

Compliance Specialist 09 Jan. 2003

Document		Page
SAR Compliance Test Report		2(26)
Dates of Test	Test Report No	•
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
3an. 00 - 07, 2003	I 6 A D 6 1 2 O C N	

CONTENTS

GENERAL INFORMATION	1
1.0 OPERATING CONFIGURATIONS AND TEST CONDITIONS	4
1.1 PICTURE OF HANDHELD	4
1.2 ANTENNA DESCRIPTION	4
1.3 HANDHELD DESCRIPTION	4
1.4 BODY WORN ACCESSORIES	5
1.5 HEADSETS	6
1.6 PROCEDURE USED TO ESTABLISHING THE TEST SIGNAL	6
2.0 DESCRIPTION OF THE TEST EQUIPMENT	6
2.1 SAR MEASUREMENT SYSTEM	6
2.2 DESCRIPTION OF THE TEST SETUP	8
2.2.1 HANDHELD AND BASE STATION SIMULATOR	8
2.2.2 DASY SETUP	8
3.0 ELECTRIC FIELD PROBE CALIBRATION	8
3.1 PROBE SPECIFICATION	8
3.2 PROBE CALIBRATION AND MEASUREMENT ERROR	9
4.0 SAR MEASUREMENT SYSTEM VERIFICATION	9
4.1 SYSTEM ACCURACY VERIFICATION	10
5.0 PHANTOM DESCRIPTION	10
6.0 TISSUE DIELECTRIC PROPERTY	11
6.1 COMPOSITION OF TISSUE SIMULANT	11
6.1.1 EQUIPMENT	12
6.1.2 PREPARATION PROCEDURE	12
6.2 ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID	13
6.2.1 EQUIPMENT	13
6.2.2 TEST CONFIGURATION	14
6.2.3 TEST PROCEDURE	14
7.0 SAR SAFETY LIMITS	15
8.0 DEVICE POSITIONING	18
8.1 DEVICE HOLDER	18
8.2 DESCRIPTION OF TEST POSITION	19
8.2.1 TEST POSITION OF DEVICE RELATIVE TO HEAD	19
8.2.1.1 DEFINITION OF THE "CHEEK" POSITION	20
8.2.1.2 DEFINITION OF THE "TILTED" POSITION	21
8.2.2 BODY-WORN TEST CONFIGURATION	21

Document		Page
SAR Compliance Test Report		3(26)
Dates of Test	Test Report No	
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

9.0 HIGH LEVEL EVALUATION	22
9.1 MAXIMUM SEARCH	22
9.2 EXTRAPOLATION	
9.3 BOUNDARY CORRECTION	22
9.4 PEAK SEARCH FOR 1G AND 10G AVERAGED SAR	22
10.0 MEASUREMENT UNCERTAINTIES	23
11.0 SAR TEST RESULTS	24
11.1 HEAD CONFIGURATION	24
11.2 BODY-WORN CONFIGURATION USING HOLSTER	24
11.3 SAR MEASUREMENT RESULTS FOR HAND	25
	·
12.0 REFERENCES	26

APPENDIX A: SAR DISTRIBUTION COMPARISON FOR THE ACCURACY VERIFICATION

APPENDIX B: SAR DISTRIBUTION PLOTS FOR HEAD CONFIGURATION

APPENDIX C: SAR DISTRIBUTION PLOTS FOR BODY-WORN AND HAND SAR

CONFIGURATION

APPENDIX D: PROBE CALIBRATION

APPENDIX E: SAR TEST SETUP PHOTOGRAPHS

Document		Page
SAR Compliance Test Report		4(26)
Dates of Test	Test Report No	•
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

1.0 OPERATING CONFIGURATIONS AND TEST CONDITIONS

1.1 Picture of Handheld

Figure 1. BlackBerry Wireless Handheld

1.2 Antenna description

Type	Internal fixed antenna
Location	Left Side (facing keyboard)
Configuration	Internal fixed antenna

Table 1. Antenna description

1.3 Handheld description

Handheld Model	R6120CN	
FCC ID	L6AR6120CN	
Serial Number	E2 SAR #1	
Prototype or Production Unit	Pre-production	
Mode(s) of Operation	CDMA Cellular	CDMA PCS
Maximum conducted RF Output		
Power	23.50 dBm	22.50 dBm
Tolerance in Power Setting	± 0.25 dB	± 0.25 dB
Duty Cycle	1:1	1:1
Transmitting Frequency Range (s)	824.70-848.31 MHz	1851.25-1908.75 MHz

Table 2. Test device description

Document		Page
SAR Compliance Test Report		5(26)
Dates of Test	Test Report No	
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

1.4 Body worn accessories

Holster

The holster, with integral belt-clip, is designed to allow the BlackBerry handheld to slide in only one way, and that is with the keyboard side facing the user (facing the belt-clip) while in the holster. This positioning has the benefit of protecting the keypad and the large LCD from damage.

The middle portion of Figure 2 shows the holster with the handheld keyboard side facing the user and with the keyboard side facing away from user. Photo to the right shows that the device with keyboard away from the user does not fit into the holster.

Figure 2. Body-Worn Holster ASY-03991-001

The device-to-phantom spacing in holster is 15 mm as shown on figure above.

Document		Page
SAR Compliance Test Report		6(26)
Dates of Test	Test Report No	
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

1.5 Headsets

The RIM Blackberry Wireless handheld was also tested with headset model number HDW-03458-001.

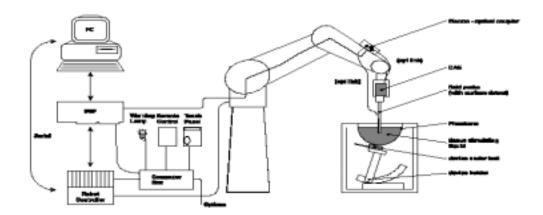
It was found that the SAR values were lower while the headset was attached.

1.6 Procedure used to establish the test signal

The Handheld was put into test mode for the SAR measurements by enabling a call via the Agilent E5515C, CDMA Wireless Communication Test Set 8960 Series 10. Rvs Power Control was set to the "All bits up" option for sending out a command to the Handheld to transmit at full power at the specified frequency.

2.0 DESCRIPTION OF THE TEST EQUIPMENT

2.1 SAR measurement system


SAR measurements were performed using a Dosimetric Assessment System (DASY3), an automated SAR measurement system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich, Switzerland.

The DASY3 system for performing compliance tests consists of the following items:

- · A standard high precision 6-axis robot (Stäubli RX family) with controller and software.
- · An arm extension for accommodating the data acquisition electronics (DAE).
- · A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- · A DAE module which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the Electro-optical coupler (EOC).
- · A unit to operate the optical surface detector which is connected to the EOC.
- \cdot The EOC performs the conversion from an optical signal into the digital electric signal of the DAE. The EOC is connected to the PC plug-in card.
- · The functions of the PC plug-in card based on a DSP is to perform the time critical tasks such as signal filtering, surveillance of the robot operation fast movement interrupts.
- · A computer operating Windows NT.
- · DASY3 software version 3.1C.
- \cdot Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- · The generic twin phantom enabling testing left-hand and right-hand usage.
- · The device holder for handheld mobile phones.
- · Tissue simulating liquid mixed according to the given recipes (see Application Note).
- · System validation dipoles allowing for the validation of proper functioning of the system.

Document		Page
SAR Compliance Test Report		7(26)
Dates of Test	Test Report No	•
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

Figure 3: System Description

2.1.1 Equipment List

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date
SCHMID & Partner Engineering AG	E-field probe	ET3DV6	1644	21/10/2003
SCHMID & Partner Engineering AG	Data Acquisition Electronics (DAE3)	DAE3 V1	473	23/10/2003
SCHMID & Partner Engineering AG	Dipole Validation Kit	D835V2	446	12/11/2003
SCHMID & Partner Engineering AG	Dipole Validation Kit	D1900V2	545	12/11/2003
Agilent Technologies	Signal generator	HP 8648C	4037U03155	20/03/2003
Agilent Technologies	Power meter	E4419B	GB40202821	20/03/2003
Agilent Technologies	Power sensor	8482A	US37295126	21/03/2003
Amplifier Research	Amplifier	5S1G4M3	300986	CNR
Agilent Technologies	Network analyzer	8753ES	US39174857	21/03/2003
Amplifier Research	Directional Coupler	DC7144	300997	CNR
Agilent Technologies	CDMA Wireless Communication Test Set	8960 Series 10 E55115C	US41070110	06/11/2003

Table 3. Equipment list

Document		Page
SAR Compliance Test Report		8(26)
Dates of Test	Test Report No	
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

2.2 Description of the test setup

Before a SAR test is conducted the Handheld and the DASY equipment are setup as follows:

2.2.1 Handheld and base station simulator setup

- Power up the Handheld.
- Turn on Wireless Communication Test Set 8960 and set the carrier frequency and power to the appropriate values.
- Connect an antenna to the RF IN/OUT of the communication test set and place it close to the Handheld.

2.2.2 DASY setup

- Turn the computer on and log on to Windows NT.
- Start DASY3 software by clicking on the icon located on the Windows desktop. Once the software loads, click on the Change to Robot toolbar button to open the State and Robot Monitoring Windows.
- Once the DASY State dialog opens you can ignore all errors and click OK to open the Robot Monitoring window.
- Mount the DAE unit and the probe. Turn on the DAE unit.
- Turn the Robot Controller on by turning the main power switch to the horizontal position
- Align the probe and click the align probe in the light beam button to correct the probe offset.
- Open a program and configure it to the proper parameters
- Establish a connection between the Handheld and the communications test instrument. Place the Handheld on the stand and adjust it under the phantom.
- · Start SAR measurements.

3.0 ELECTRIC FIELD PROBE CALIBRATION

3.1 Probe Specification

SAR measurements were conducted using the dosimetric probe ET3DV6, designed by Schmid & Partner Engineering AG for the measurement of SAR. The probe is constructed using the thin film technique, with printed resistive lines on ceramic substrates. It has a symmetrical design with triangular core, built-in optical fiber for the surface detection system and built-in shielding against static discharge. The probe is sensitive to E-fields and thus incorporates three small dipoles arranged so that the overall response is close to isotropic. The table below summarizes the technical data for the probe.

Document		Page
SAR Compliance Test Report		9(26)
Dates of Test	Test Report No	
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

Property	Data
Frequency range	30 MHz – 3 GHz
Linearity	±0.1 dB
Directivity (rotation around probe axis)	≤ ±0.2 dB
Directivity (rotation normal to probe axis)	±0.4 dB
Dynamic Range	5 mW/kg – 100 W/kg
Probe positioning repeatability	±0.2 mm
Spatial resolution	< 0.125 mm ³

Table 4. Probe specification

3.2 Probe calibration and measurement errors

The probe was calibrated on 21/10/2002 with an accuracy better than $\pm 10\%$. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe were tested. The probe calibration parameters are shown on Appendix D.

4.0 SAR MEASUREMENT SYSTEM VERIFICATION

Prior to conducting SAR evaluation, the measurements were validated using the dipole validation kit and a flat phantom. A power level of 1.0 W was applied to the dipole antenna. The verification results are in the table below with a comparison to reference values. Printouts are shown in Appendix A. All the measured parameters are satisfactory.

SAR Compliance Test Report		Page 10(26)
Nov. 27 - Dec. 06, 2002	Test Report No RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID: L6AR6120CN	

4.1 System accuracy verification

f (MHz)	Limits / Measured	SAR (W/kg)	Dielectric l	Liquid Temp	
f (MHz)	Limits / Measureu	1 g/ 10 g	$\epsilon_{\rm r}$	σ [S/m]	(° C)
CDMA Cellular 835	Measured (11/27/02) Added water & measured (12/06/02) Measured on (01/06/03) Recommended Limits	10.60 / 6.71 11.00 / 6.94 11.20 / 7.02	40.6 42.2 41.4	0.89 0.91 0.90	23.3 23.5 22.8
		10.707 0.01	12.0	0.51	1 1/11
CDMA PCS 1000	Measured	42.8 / 21.50	38.2	1.44	23.0
PCS 1900	Recommended Limits	43.20 / 22.00	40.0	1.45	N/A

Table 5. System accuracy verification

5.0 PHANTOM DESCRIPTION

The SAM Twin Phantom, manufactured by SPEAG, was used during the SAR measurements. The phantom is made of a fiberglass shell integrated with a wooden table.

The SAM twin phantom is a fiberglass shell phantom with 2 mm shell thickness. It has three measurement areas:

Left hand

Right hand

Flat phantom

The phantom table dimensions are: 100x50x85 cm (LxWxH). The table is intended for use with free standing robots.

The bottom shelf contains three pair of bolts for locking the device holder in place. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different solutions).

A white cover is provided to top the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible; however the optical surface detector does not work properly at the cover surface. Place a sheet of white paper on the cover when using optical surface detection.

Document		Page
SAR Compliance Test Report		11(26)
Dates of Test	Test Report No	
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

Figure 4 SAM Twin Phantom

6.0 TISSUE DIELECTRIC PROPERTY

6.1 Composition of tissue simulant

The composition of the brain and muscle simulating liquids for 800-900 MHz and 1800-1900 MHz are shown in the table below.

INGREDIENT	MIXTURE 800-900MHz		MIXTURE 1800–1900MHz	
MGREDIENT	Brain %	Muscle %	Brain %	Muscle %
Water	51.07	65.45	54.88	69.91
Sugar	47.31	34.31	0	0
Salt	1.15	0.62	0.21	0.13
HEC	0.23	0	0	0
Bactericide	0.24	0.10	0	0
DGBE	0	0	44.91	29.96

Table 6. Tissue simulant recipe

Document		Page
SAR Compliance Test Report		12(26)
Dates of Test	Test Report No	•
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

6.1.1 Equipment

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date
Pyrex, England	Graduated Cylinder	N/A	N/A	N/A
Pyrex, USA	Beaker	N/A	N/A	N/A
Acculab	Weight Scale	V1-1200	018WB2003	N/A
Hart Scientific	Digital Thermometer	61161-302	21352860	10/09/2003
IKA Works Inc.	Hot Plate	RC Basic	3.107433	N/A

Table 7. Tissue simulant preparation equipment

6.1.2 Preparation procedure

800-900 MHz liquids

- Fill the container with water. Begin heating and stirring.
- Add the **Cellulose**, the **preservative substance** and the **salt**. After several hours, the liquid will become more transparent again. The container must be covered to prevent evaporation.
- Add Sugar. Stir it well until the sugar is sufficiently dissolved.
- Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation.
- Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

1800-1900 MHz liquid

- Fill the container with water. Begin heating and stirring.
- Add the **salt** and **Glycol**. The container must be covered to prevent evaporation.
- Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation.
- Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

Document		Page
SAR Compliance Test Report		13(26)
Dates of Test	Test Report No	•
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID: 1.6 A D 6120 C N	

6.2 Electrical parameters of the tissue simulating liquid

The tissue dielectric parameters shall be measured before a batch can be used for SAR measurements to ensure that the simulated tissue was properly made and will simulate the desired human characteristic. Limits and measured electrical parameters are show in the table below.

Recommended limits are adopted from IEEE Std 1528-200X, Draft CBD 1.0 – April 4, 2002 "*DRAFT* Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques" and from FCC Tissue Dielectric Properties web page at http://www.fcc.gov/fcc-bin/dielec.sh

f (MHz)	Tissue	Limits / Measured		arameters	Liquid Temp (°C)
	Type		$\epsilon_{\rm r}$	σ [S/m]	
CDMA	Head	Measured (11/27/02) Added water & measured (12/06/02) Measured (01/06/03)	40.6 42.2 41.4	0.89 0.91 0.90	23.3 23.5 22.8
Cellular 835		Recommended Limits	41.5	0.90	N/A
	Muscle	Measured (11/28/02) Measure (01/06/03)	56.6 56.1	0.98 0.99	23.2 22.4
		Recommended Limits	56.1	0.95	N/A
	Head	Measured	38.2	1.44	23.1
CDMA PCS 1900	пеац	Recommended Limits	40.0	1.40	N/A
1900	Muscle	Measured	52.0	1.50	23.0
		Recommended Limits	54.0	1.45	N/A

Table 8. Electrical parameters of tissue simulating liquid

6.2.1 Equipment

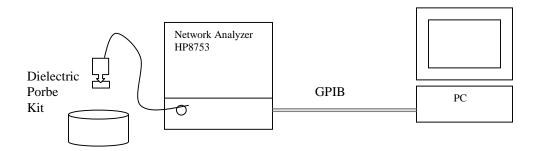

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date
Agilent Technologies	Network Analyzer	8753ES	US39174857	21/03/2003
Agilent Technologies	Dielectric probe kit	HP 85070C	US9936135	CNR
Dell	PC using GPIB card	GX110	347	N/A
Hart Scientific	Digital Thermometer	61161-302	21352860	10/09/2003

Table 9. Equipment required for electrical parameter measurements

Document		Page
SAR Compliance Test Report		14(26)
Dates of Test	Test Report No	•
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

6.2.2 Test Configuration

Figure 5: Test configuration

6.2.3 Procedure

- 1. Turn NWA on and allow at least 30 minutes for warm up.
- 2. Mount dielectric probe kit so that interconnecting cable to NWA will not be moved during measurements or calibration.
- 3. Pour de-ionized water and measure water temperature $(\pm 1^{\circ})$.
- 4. Set water temperature in HP-Software (Calibration Setup).
- 5. Perform calibration.
- 6. Validate calibration with dielectric material of known properties (e.g. polished ceramic slab with >8mm thickness $\mathbb{E}'=10.0$, $\mathbb{E}'=0.0$). If measured parameters do not fit within tolerance, repeat calibration (± 0.2 for \mathbb{E}' : ± 0.1 for \mathbb{E}').
- 7. Relative permittivity $\mathfrak{E}\mathbf{r} = \mathfrak{E}'$ and conductivity can be calculated from \mathfrak{E}'' $\sigma = \omega \, \varepsilon_0 \, \varepsilon^*$
- 8. Measure liquid shortly after calibration.
- 9. Stir the liquid to be measured. Take a sample (~50ml) with a syringe from the center of the liquid container.
- 10. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
- 11. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
- 12. Perform measurements.
- 13. Adjust medium parameters in DASY3 for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Brain 900 MHz) and press 'Option'-button.
- 14. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 900 MHz).

Sample calculation for 835 MHz head tissue dielectric parameters using data from Table 11.

Relative permittivity $\mathbf{Er} = \mathbf{E}' = 40.5963$ Conductivity $\mathbf{G} = \mathbf{G} \mathbf{E}_0 \mathbf{E}'' = 2 \text{ x } 3.1416 \text{ x } 835 \text{ e+6 x } 8.854 \text{e-} 12 \text{ x } 19.0939 = 0.8870 \text{ S/m}$

Document		Page
SAR Compliance Test Report		15(26)
Dates of Test	Test Report No	
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

-	Title			Title			Title		
	Title			SubTitle			SubTitle		
	SubTitle			November 26, 2002 09:29 AW			December 16, 2062 18:42 AM		
				Eronuoneu	e'	e"	-		
F	requency	e'	e"	Frequency 800.000000 MHz		21.3450	Frequency	e'	e"
		41.0011	19.2190	805.000000 MHz		21.3235	800.000000 MHz		19.7592
		40.9717	19.2173	810.000000 MHz		21.2836	805.000000 MHz		19.7682 19.7330
		40.8801	19.2215	815.000000 MHz		21.2786	810.000000 MHz		
	15.000000 MHz		19.1623	820.000000 MHz		21,2372	815.000000 MHz 820.000000 MHz		19.6839 19.6755
	20.000000 MHz		19.1657	825.000000 MHz		21.2342	825.000000 MHz		19.6954
	25.000000 MHz		19.1658	830.000000 MHz		21.2073	830,000000 MHz		19,6677
	30.000000 MHz		19.1569	835.000000 MHz		21.1609	835,000000 MHz		19.6335
	35.000000 MHz		19.0939	840.000000 MHz		21.1390	840,000000 MHz		19.6299
	40.000000 MHz		19.0879	845.000000 MHz		21.1288	845.000000 MHz		19.5986
	45.000000 MHz		19.0915	850.000000 MHz		21.0917	850.000000 MHz		19.5949
	50.000000 MHz 55.000000 MHz		19.0870	855.000000 MHz		21.0582	855,000000 MHz		19.6076
	60.000000 MHz		19.0510	860.000000 MHz		21.0463	860.000000 MHz		19.5771
	65.000000 MHz		19.0183 19.0614	865.000000 MHz		21.0378	865,000000 MHz		19.5454
	70.000000 MHz		19.0592	870.000000 MHz		21.0207	870.000000 MHz		19.5552
	75.000000 MHz		19.0169	875.000000 MHz	56.2696	20.9941	875.000000 MHz		19.5550
	80.000000 MHz		19.0093	880.000000 MHz	56.2407	20.9600	880.000000 MHz		19.5296
	85.000000 MHz		19.0308	885.000000 MHz		20.9865	885.000000 MHz		19.5402
	90.000000 MHz		19.0105	890.000000 MHz		20.9509	890.000000 MHz		19.5360
	95.000000 MHz		18.9943	895.000000 MHz	56.1443	20.9264	895.000000 MHz		19,5175
	00.000000 MHz		18.9787	900.000000 MHz	56.1185	20.8916	900.000000 MHz		19,5186
	05.000000 MHz		18.9555	905.000000 MHz	56.0756	20.8903	905.000000 MHz		19,4760
	10.000000 MHz		18.9503	910.000000 MHz	56.0631	20.8712	910.000000 MHz	41,4829	19,4662
	15.000000 MHz		18.9491	915.000000 MHz		20.8482	915.000000 MHz		19.4502
	_								
	Ti	tle			Title				
	Su	tle bTitle			SubT	e Title			
	Su	tle	32 PM		SubT	e			
	Su	tle bTitle ary 06, 2003 83:			SubT January	C F itle 06, 2003 03:39 PM	e' e	ş"	
	Su	tle bTitle ary 04, 2003 63:		e' e'' 1.6736 19.3767	SubT January Freq	e Title		e" 1.4429	
	Fro 80	tle bTitle ary 04, 2003 63: equency 0.0000000	MHz 4	1.6736 19.3767	SubT January Freq 800.0	e Fitle 06, 2003 03:39 PM uency	56.3960 21		
	Fr. 80 80	tle bTitle ary 04, 2003 63:	MHz 4	1.6736 19.3767 1.6394 19.3682	Freq 800.0	E Fitle 06, 2003 03:39 PM uency 000000 MHz	56.3960 21 56.3478 21	.4429	
	Fr 80 80 81	tle bTitle ary 06, 2003 61: equency 0.000000 5.000000	MHz 4 MHz 4 MHz 4	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445	Freq 800.0 805.0 810.0	E Fitle 06, 2003 03:39 PM uency 000000 MHz 000000 MHz	56.3960 21 56.3478 21 56.3484 21	l.4429 l.4029	
	Fro 80 81 81	tle bTitle bry 06, 2003 82: equency 0.000000 5.000000 0.000000	MHz 4 MHz 4 MHz 4 MHz 4	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969	Freq 800.0 805.0 810.0 815.0	Citle 06, 2003 03:39 PM uency 000000 MHz 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.3044 21	1.4429 1.4029 1.3849	
	Fn 80 81 81 82	tle bTitle bry 06, 2003 82: equency 0.000000 5.000000 5.000000	MHz 4 MHz 4 MHz 4 MHz 4 MHz 4	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4782 19.3060	Freq 800.0 805.0 810.0 815.0 820.0	e Fitle 06, 2003 03:39 PM Uency 000000 MHz 000000 MHz 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.3044 21 56.2755 21	1.4429 1.4029 1.3849 1.3665	
	Fn 80 81 81 82 82	tle bTitle wy 06, 2003 82 equency 0.000000 5.000000 5.000000 0.000000	MHz 4 MHz 4 MHz 4 MHz 4 MHz 4 MHz 4	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4782 19.3060 1.4464 19.3135	Freq 800.0 805.0 810.0 815.0 820.0 830.0	Citle 06, 2003 03:39 PM Uency 000000 MHz 000000 MHz 000000 MHz 000000 MHz 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.3044 21 56.2755 21 56.2525 21 56.2065 21	1.4429 1.4029 1.3849 1.3665 1.3707 1.3278	
	Fn 80 80 81 81 82 82 83 83	tle bTitle 0.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000	MHz 4 MHz 4 MHz 4 MHz 4 MHz 4 MHz 4 MHz 4 MHz 4 MHz 4	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4782 19.3060 1.4464 19.3135 1.3671 19.3183	Freq 800.0 805.0 815.0 820.0 825.0 835.0	Citle 06, 2003 03:39 PM Uency 000000 MHz 000000 MHz 000000 MHz 000000 MHz 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.3044 21 56.2755 21 56.2525 21 56.2065 21 56.1321 21	1.4429 1.4029 1.3849 1.3665 1.3707 1.3278 1.3551 1.3042	
	Fr 80 80 81 81 82 82 83 83	tle bTitle 0.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000	MHz 4 MHz 4 MHz 4 MHz 4 MHz 4 MHz 4 MHz 4 MHz 4 MHz 4 MHz 4	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4782 19.3060 1.4644 19.3135 1.3671 19.3183 1.3476 19.3066 1.2693 19.2696	Freq 800.0 805.0 810.0 815.0 820.0 825.0 835.0 835.0	Citle 05, 2003 03:39 PM Uency 000000 MHz 000000 MHz 000000 MHz 000000 MHz 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.2755 21 56.2525 21 56.2525 21 56.2065 21 56.1321 21 56.1101 21	1.4429 1.4029 1.3849 1.3665 1.3707 1.3278 1.3551 1.3042 1.3002	
	Frn 80 81 81 82 82 83 83 84 84	tle bTitle 0.000000 5.000000 5.000000 5.000000 0.000000 5.000000 5.000000 5.000000 5.000000 5.000000	MHz 4 MHz 4	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4782 19.3060 1.4464 19.3135 1.3671 19.3183 1.3476 19.3066 1.2693 19.2696 1.1933 19.2741	SubT January Freq 800.0 805.0 815.0 825.0 825.0 835.0 840.0 845.0	Citle 06, 2003 03:39 PM Uency 000000 MHz 000000 MHz 000000 MHz 000000 MHz 000000 MHz 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.3044 21 56.2755 21 56.2525 21 56.265 21 56.1321 21 56.1101 21 56.0911 21	.4429 .4029 .3849 .3665 .3707 .3278 .3551 .3042 .3002	
	Frn 80 81 81 81 82 82 83 83 84 84	tle bTitle equency 0.00000 5.00000 5.00000 5.00000 0.00000 5.00000 5.00000 5.00000 0.00000 5.00000 0.00000	MHz 4 MHz 4	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4782 19.3060 1.4464 19.3135 1.3671 19.3183 1.3476 19.3066 1.2693 19.2696 1.1933 19.2741 1.1254 19.2663	SubT January Freq 800.0 805.0 810.0 825.0 825.0 830.0 845.0 845.0	Citle 06, 2003 03:39 PM Uency 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.3044 21 56.2755 21 56.2525 21 56.265 21 56.1321 21 56.1101 21 56.0911 21 56.0155 21	.4429 .4029 .3849 .3665 .3707 .3278 .3551 .3042 .3002 .2730	
	Fro 800 81 81 82 82 83 83 84 84 85	tle bTitle equency 0.000000 5.000000 5.000000 0.000000 5.000000 0.000000 0.000000 0.000000 0.000000	MHZ 4 MHZ 4	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4782 19.3060 1.4464 19.3135 1.3671 19.3183 1.3676 19.3066 1.2693 19.2696 1.1933 19.2741 1.1254 19.2663 1.0898 19.2598	SubT January Freq 800.0 805.0 810.0 825.0 835.0 835.0 845.0 855.0	Citle 05, 2003 03:39 PM Uency 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.2755 21 56.2525 21 56.265 21 56.1321 21 56.1101 21 56.0911 21 56.0155 21 55.9754 21	.4429 .4029 .3849 .3665 .3707 .3278 .3551 .3551 .3042 .3002 .2730 .2678	
	Frn 800 80 81 81 82 82 83 83 84 84 85 85	equency 0.000000 5.000000 5.000000 0.000000 5.000000 0.000000 5.000000 0.000000 0.000000 0.000000 0.000000	MHZ 4 MHZ 4	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4782 19.3060 1.4464 19.3135 1.3671 19.3183 1.3476 19.3066 1.12693 19.2696 1.1933 19.2741 1.1254 19.2663 1.0898 19.2598 1.0082 19.2153	SubT January Freq 800.0 805.0 810.0 825.0 835.0 840.0 845.0 855.0 860.0	Citle 05, 2003 03:39 PM Uency 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.2755 21 56.2525 21 56.265 21 56.1321 21 56.1101 21 56.0911 21 56.0155 21 55.9774 21	.4429 .4029 .3849 .3665 .3707 .3278 .3551 .3042 .3002 .2730 .2678 .2380 .2279	
	Frn 800 801 81 81 82 82 83 83 84 84 85 85	equency 0.000000 5.000000 5.000000 0.000000 0.000000 5.000000 0.000000 5.000000 0.000000 5.000000 5.000000 5.000000 5.000000 5.000000	MHz 4 MHz 4	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4464 19.3135 1.3671 19.3183 1.3476 19.3066 1.2693 19.2696 1.1933 19.2741 1.1254 19.2663 1.0898 19.2598 1.0082 19.2133 0.9223 19.2237	SubT January Freq 800.0 805.0 810.0 825.0 835.0 845.0 845.0 855.0 860.0	Citle 05, 2003 03:39 PM Uency 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.3044 21 56.2525 21 56.2525 21 56.265 21 56.1321 21 56.101 21 56.0911 21 56.0155 21 55.9754 21 55.9277 21 55.8850 21	.4429 .4029 .3849 .3665 .3707 .3278 .3551 .3042 .3002 .2730 .2678 .2380 .2279	
	Fr 80 80 81 81 82 82 83 83 84 84 85 86 86 87	equency 0.000000 5.000000 5.000000 5.000000 0.000000 5.000000 5.000000 5.000000 0.000000 5.000000 0.000000 0.000000 0.000000	MHz 4 MHz 4	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4782 19.3060 1.4464 19.3135 1.3671 19.3183 1.3476 19.3066 1.2693 19.2696 1.1933 19.2741 1.1254 19.2663 1.0898 19.2598 1.0082 19.2153 0.9223 19.2237 0.8718 19.1917	SubT January Freq 800.0 805.0 815.0 820.0 825.0 835.0 840.0 855.0 860.0 865.0	Citle 05, 2003 03:39 PM Uency 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.3044 21 56.2755 21 56.2525 21 56.2065 21 56.1321 21 56.1101 21 56.0155 21 56.0155 21 55.9754 21 55.9277 21 55.8850 21 55.8233 21	.4429 .4029 .3849 .3665 .3707 .3278 .3551 .3042 .3002 .2730 .2678 .2380 .2279 .1726	
	Frn 80 81 81 81 82 82 83 83 84 84 85 86 86 87 87	tle bTitle 0,000000 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000	MHz 4 MHz 4	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4782 19.3060 1.4782 19.3183 1.3671 19.3183 1.3476 19.3066 1.2693 19.2696 1.1933 19.2741 1.1254 19.2663 1.0082 19.2598 1.0082 19.2593 0.8718 19.1917 0.8302 19.1879	SubT January Freq 800.0 815.0 825.0 825.0 835.0 845.0 850.0 856.0 865.0 870.0	Citle 05, 2003 03:39 PM Uency 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.2755 21 56.2755 21 56.2525 21 56.2065 21 56.1321 21 56.101 21 56.0155 21 56.0155 21 55.9754 21 55.9277 21 55.8850 21 55.8233 21 55.7572 21	.4429 .4029 .3849 .3665 .3707 .3278 .3551 .3042 .3002 .2730 .2678 .2380 .2380 .1726 .1630 .1662	
	80 80 81 81 82 82 83 83 84 84 85 85 86 86 87 87	tle bTitle 0,000000 5,000000 5,000000 0,000000 5,000000 0,000000 5,000000 0,000000 5,000000 0,000000 5,000000 0,000000 5,000000 0,000000 0,000000 0,000000	MHz 4 MHz 4	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4782 19.3060 1.4782 19.3135 1.3671 19.3183 1.3476 19.3066 1.2693 19.2696 1.1933 19.2741 1.1254 19.2663 1.0898 19.2598 1.082 19.2153 0.9223 19.2237 0.8718 19.1917 0.8302 19.1879 0.7747 19.1681	SubT January Freq 800.0 815.0 815.0 825.0 835.0 845.0 855.0 860.0 875.0 875.0	Citle 05, 2003 03:39 PM Uency 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.3044 21 56.2755 21 56.2525 21 56.2065 21 56.1321 21 56.101 21 56.0155 21 55.9754 21 55.9277 21 55.8850 21 55.7572 21 55.7572 21	.4429 .4029 .3849 .3665 .3707 .3278 .3551 .3042 .3002 .2730 .2678 .2380 .2380 .2279 .1726 .1630 .1662	
	Su 80 81 81 82 82 83 83 84 84 85 85 86 86 86 87 87	tle bTitle 0,000000 5,000000	MHZ 41 MHZ 42 MHZ 43 MHZ 44	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4782 19.3060 1.4782 19.3135 1.3671 19.3183 1.3476 19.3066 1.2693 19.2696 1.1933 19.2741 1.1254 19.2663 1.0898 19.2598 1.082 19.2153 0.9223 19.2237 0.8718 19.1917 0.8302 19.1879 0.7747 19.1681 0.7747 19.1681	SubT January Freq 800.0 815.0 825.0 825.0 835.0 845.0 855.0 865.0 875.0 875.0 885.0	Citle 05, 2003 03:39 PM Uency 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.3044 21 56.2755 21 56.2065 21 56.1321 21 56.101 21 56.0155 21 55.9754 21 55.9277 21 55.8850 21 55.7572 21 55.7199 21 55.6808 21	.4429 .4029 .3849 .3665 .3707 .3278 .3551 .3042 .3002 .2730 .2678 .2380 .2279 .1726 .1630 .1662 .1581 .1027	
	From 800 811 811 822 822 833 834 844 855 866 866 877 878 888 889	tle bTitle cquency 0.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 6.000000 6.000000 6.000000 6.000000	MHZ 41 MHZ 42 MHZ 43 MHZ 44	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4782 19.3060 1.4464 19.3135 1.3671 19.3183 1.3476 19.3066 1.2693 19.2696 1.1933 19.2741 1.1254 19.2663 1.0898 19.2598 1.0898 19.2598 1.0898 19.2598 1.0898 19.2153 0.9223 19.2237 0.8718 19.1917 0.8718 19.1879 0.7747 19.1681 0.7747 19.1681 0.77173 19.1392 0.6504 19.1434	SubT January Freq 800.0 815.0 815.0 825.0 835.0 845.0 855.0 865.0 870.0 875.0 885.0 885.0	Citle 05, 2003 03:39 PM Uency 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.3044 21 56.2755 21 56.2525 21 56.2525 21 56.2065 21 56.101 21 56.0155 21 55.9774 21 55.9277 21 55.8850 21 55.7572 21 55.7199 21 55.6808 21 55.6288 21	.4429 .4029 .3849 .3665 .3707 .3278 .3551 .3042 .3002 .2730 .2678 .2380 .2279 .1726 .1630 .1662 .1581 .1027	
	From 800 801 811 812 822 833 834 844 845 85 866 866 877 877 888 889 89	tle bTitle 0,000000 5,000000	MHZ 41 MHZ 42 MHZ 43 MHZ 44	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4782 19.3060 1.4464 19.3135 1.3671 19.3183 1.3671 19.3066 1.2693 19.2696 1.1254 19.2663 1.0898 19.2598 1.0082 19.2153 0.9223 19.2237 0.8718 19.1917 0.8302 19.1879 0.7747 19.1681 0.7747 19.1681 0.7747 19.1681 0.7747 19.1681 0.7747 19.1681 0.6504 19.1119	SubT January Freq 800.0 815.0 815.0 825.0 835.0 845.0 855.0 865.0 875.0 875.0 885.0 885.0 885.0 885.0 885.0	Citle 05, 2003 03:39 PM Uency 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.3044 21 56.2755 21 56.2525 21 56.2525 21 56.1321 21 56.1101 21 56.0911 21 56.0155 21 55.9754 21 55.9277 21 55.8850 21 55.8233 21 55.7199 21 55.6808 21 55.6289 21	.4429 .4029 .3849 .3665 .3707 .3278 .3551 .3042 .3002 .2730 .2678 .2380 .2279 .1726 .1630 .1662 .1581 .1027	
	Frn 800 801 81 81 82 82 83 83 84 84 85 86 86 86 87 87 88 88 89 90	equency 0.000000 5.000000 5.000000 0.000000 5.000000 0.000000 5.000000 0.000000 5.000000 0.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000	MHZ 41 MHZ 42 MHZ 43 MHZ 44	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4464 19.3135 1.3671 19.3183 1.3476 19.3066 1.2693 19.2696 1.1933 19.2741 1.1254 19.2663 1.10898 19.2598 1.0082 19.2153 0.9223 19.2237 0.8718 19.1917 0.8302 19.1879 0.7777 19.1681 0.67173 19.1392 0.6504 19.1434 0.6040 19.1119	SubT January Freq 800.0 805.0 810.0 825.0 835.0 840.0 845.0 855.0 860.0 875.0 880.0 885.0 885.0 895.0	Citle 05, 2003 03:39 PM Uency 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.3044 21 56.2755 21 56.2755 21 56.2065 21 56.1321 21 56.1101 21 56.0115 21 56.0155 21 55.9754 21 55.9277 21 55.8233 21 55.7572 21 55.7199 21 55.6288 21 55.6288 21 55.6289 21 55.5886 21	.4429 .4029 .3849 .3665 .3707 .3278 .3551 .3042 .3002 .2730 .2678 .2380 .2279 .1726 .1630 .1662 .1581 .1581 .1027	
	Frn 80 80 81 81 82 82 83 84 84 85 86 86 87 87 88 88 89 90	equency 0.000000 5.000000 0.000000 5.000000 0.000000 5.000000 0.000000 5.000000 5.000000 5.000000 0.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000	MHZ 41 MHZ 42 MHZ 43 MHZ 44	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4464 19.3135 1.3671 19.3183 1.3476 19.3066 1.2693 19.2696 1.1933 19.2741 1.1254 19.2663 1.10898 19.2598 1.0082 19.2153 0.9223 19.2237 0.8718 19.1917 0.8302 19.1879 0.7777 19.1681 0.67173 19.1392 0.6504 19.1434 0.6040 19.1119	SubT January Freq 800.0 815.0 820.0 825.0 835.0 845.0 855.0 865.0 870.0 875.0 885.0 890.0 990.0	Citle 05,2003 03:39 PM Uency 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.3044 21 56.2755 21 56.2525 21 56.2525 21 56.1321 21 56.1101 21 56.0155 21 55.9754 21 55.9277 21 55.8850 21 55.8233 21 55.7572 21 55.6808 21 55.6289 21 55.5886 21 55.5886 21 55.5886 21	.4429 .4029 .3849 .3665 .3707 .3278 .3551 .3042 .3002 .2730 .2678 .2380 .2279 .1726 .1630 .1662 .1581 .1027 .0796 .0780	
	Su 80 80 81 81 82 82 83 84 84 85 86 86 86 87 87 88 88 89 90 90	tle bTitle 0,000000 5,000000	MHZ 41	1.6736 19.3767 1.6394 19.3682 1.6019 19.3445 1.5157 19.2969 1.4464 19.3183 1.3671 19.3183 1.3476 19.3666 1.2693 19.2696 1.1933 19.2741 1.1254 19.2663 1.0898 19.2598 1.0982 19.2153 0.9223 19.2237 0.8718 19.1917 0.8302 19.1879 0.7173 19.1681 0.7173 19.1681 0.7173 19.1392 0.6504 19.1434 0.6504 19.1419 0.5497 19.06845	SubT January Freq 800.0 815.0 825.0 835.0 840.0 855.0 860.0 875.0 885.0 885.0 895.0 900.0	Citle 05,2003 03:39 PM Uency 000000 MHz	56.3960 21 56.3478 21 56.3484 21 56.2755 21 56.2755 21 56.2525 21 56.2525 21 56.1321 21 56.101 21 56.0155 21 55.9754 21 55.9754 21 55.8233 21 55.8233 21 55.7572 21 55.6288 21 55.6288 21 55.6288 21 55.5886 21 55.5438 21 55.5438 21 55.5561 21	.4429 .4029 .3849 .3665 .3707 .3278 .3551 .3042 .3002 .2730 .2678 .2380 .2279 .1726 .1630 .1662 .1581 .1027 .0796 .0780 .0663	

Table 10. 835 MHz head and muscle tissue dielectric parameters

Document		Page
SAR Compliance Test Report		16(26)
The same of the sa	T D N	

Nov. 27 - Dec. 06, 2002 Jan. 06 – 07, 2003

RIM-0001-0301-04 FCC ID: L6AR6120CN

Title	Title
SubTitle	SubTitle
November 28, 2002 05:11 PM	December 02, 2002 09:44 AM

Frequency	e'	e"	Frequency	e'	e"
1.700000000 GHz	38.9843	13.1180	1.700000000 GHz	52.6771	13.5466
1.710000000 GHz	38.9597	13.1587	1.710000000 GHz	52.6324	13.5803
1.720000000 GHz	38.9074	13.1749	1.720000000 GHz	52.6118	13.6054
1.730000000 GHz	38.8842	13.1809	1.730000000 GHz	52.5724	13.6494
1.740000000 GHz	38.8394	13.2114	1.740000000 GHz	52.5443	13.6735
1.750000000 GHz	38.8019	13.2469	1.750000000 GHz	52.5009	13.7248
1.760000000 GHz	38.7562	13.2871	1.760000000 GHz	52.5044	13.7517
1.770000000 GHz	38.7151	13.3065	1.770000000 GHz	52.4566	13.7924
1.780000000 GHz	38.6806	13.3402	1.780000000 GHz	52.4230	13.8431
1.790000000 GHz	38.6286	13.3781	1.790000000 GHz	52.3749	13.8954
1.800000000 GHz	38.5979	13.4037	1.800000000 GHz	52.3340	13.9239
1.810000000 GHz	38.5429	13.4165	1.810000000 GHz	52.2823	13.9835
1.820000000 GHz	38.5012	13.4397	1.820000000 GHz	52.2459	14.0123
1.830000000 GHz	38.4415	13.4707	1.830000000 GHz	52.2185	14.0659
1.840000000 GHz	38.4136	13.4829	1.840000000 GHz	52.1803	14.1004
1.850000000 GHz	38.3551	13.5017	1.850000000 GHz	52.1551	14.1309
1.860000000 GHz	38.3159	13.5209	1.860000000 GHz	52.1169	14.1731
1.870000000 GHz	38.2763	13.5376	1.870000000 GHz	52.0981	14.1984
1.880000000 GHz	38.2509	13.5517	1.880000000 GHz	52.0676	14.2163
1.890000000 GHz	38.2112	13.5745	1.890000000 GHz	52.0357	14.2429
1.900000000 GHz	38.1926	13.5963	1.900000000 GHz	51.9942	14.2963
1.910000000 GHz	38.1614	13.6053	1.910000000 GHz	51.9594	14.3154

Table 11. 1900 MHz head and muscle tissue dielectric parameters

Document		Page
SAR Compliance Test Report		17(26)
Dates of Test	Test Report No	•
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

7.0 SAR SAFETY LIMITS

Standards/Guideline	Localized SAR Limit (W/kg) General public (uncontrolled)	Localized SAR Limits (W/kg) Workers (controlled)
ICNIRP (1998) Standard	2.0 (10g)	10.0 (10g)
IEEE C95.1 (1999) Standard	1.6 (1g)	8.0 (1g)

Table 12. SAR safety limits for Controlled / Uncontrolled environment

Human Exposure	Localized SAR Limits (W/kg) 10g, ICNIRP (1998) Standard	Localized SAR Limits (W/kg) 1g, IEEE C95.1 (1999) Standard
Spatial Average (averaged over the whole		
body)	0.08	0.08
Spatial Peak (averaged over any X g of		
tissue)	2.00	1.60
Spatial Peak (hands/wrists/feet/ankles		
averaged over 10 g)	4.00	4.00 (10g)

Table 13. SAR safety limits

Uncontrolled Environments are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

Document		Page
SAR Compliance Test Report		18(26)
Dates of Test	Test Report No	•
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

8.0 DEVICE POSITIONING

8.1 Device holder for generic twin phantom

The Handheld was positioned for all test configurations using the DASY3 holder. The device holder facilitates the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately and with repeatability positioned according to FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 6 Device Holder

- 1. Put the phone in the clamp mechanism (1) and hold it straight while tightening. (Curved phones or phones with asymmetrical ear pieces should be positioned so that the ear piece is in the symmetry plane of the clamp).
- 2. Adjust the sliding carriage (2) to 90° . Then adjust the phone holder angle (3) until the reference line of the phone is horizontal (parallel to the flat phantom bottom). The phone reference line is defined as the front tangential line between the ear piece and the center of the device bottom (or the center of the flip hinge). For devices with parallel front and back sides, the phone holder angle (3) is 0° .
- 3. Place the device holder at the desired phantom section and move it securely against the positioning pins (4). The screw in front of the turning plate can be applied for correct positioning (5). (Do not tighten it too strongly).
- 4. Shift the phone clamp (6) so that the ear piece is exactly below the ear marking of the phantom. The phone is now correctly positioned in the holder for all standard phantom measurements, even after changing the phantom or phantom section.

Document		Page
SAR Compliance Test Report		19(26)
Dates of Test	Test Report No	
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

- 5. Adjust the device position angles to the desired measurement position.
- 6. After fixing the device angles, move the phone fixture up until the phone touches the ear marking. (The point of contact depends on the design of the device and the positioning angle).

8.2 Description of the test positioning

8.2.1 Test Positions of Device Relative to Head

The handset was tested in two test positions against the head phantom, the "cheek" position and the "tilted" position, on both left and right sides of the phantom.

The handset was tested in the above positions according to IEEE 1528-Draft 6.1 "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques".

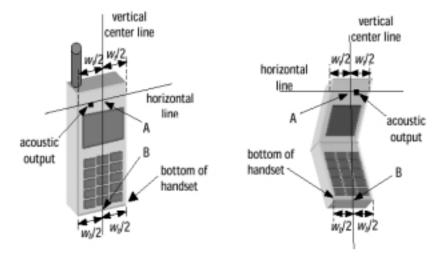


Figure 7a – Handset vertical and horizontal reference lines – fixed case

Figure 7b – Handset vertical and horizontal reference lines – "clam-shell"

Document		Page
SAR Compliance Test Report		20(26)
Dates of Test	Test Report No	•
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 01, 2003	I 6A D 6120 C N	

8.2.1.1 Definition of the "cheek" position

- 1) Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover.
- 2) Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width *wt* of the handset at the level of the acoustic output (point A on Figures 7a and 7b), and the midpoint of the width *wb* of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 7a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 7b), especially for clamshell handsets, handsets with flip pieces, and other irregularly shaped handsets.
- **3)** Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7), such that the plane defined by the vertical center line and the horizontal center line is in a plane approximately parallel to the sagittal plane of the phantom.
- **4**) Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear.
- **5**) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is the plane normal to MB ("*mouth-back*") NF ("*neck-front*") including the line MB (reference plane).
- **6)** Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF.
- 7) While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the ear (cheek).

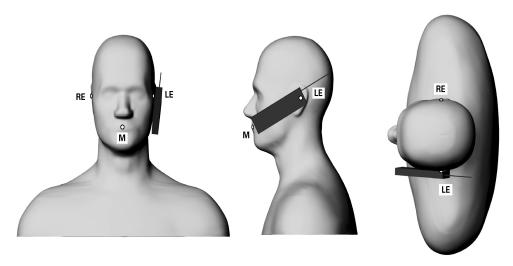


Figure 8 – Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

Document		Page
SAR Compliance Test Report		21(26)
Dates of Test	Test Report No	•
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

8.2.1.2 Definition of the "Tilted" Position

- 1) Repeat steps 1 to 7 of 5.4.1 (in this report 8.2.1.1) to replace the device in the "cheek position."
- 2) While maintaining the device in the reference plane (described above) and pivoting against the ear, move the device outward away from the mouth by an angle of 15 degrees, or until the antenna touches the phantom.

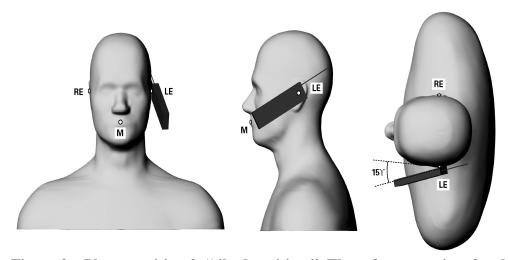


Figure 9 – Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

8.2.2 Body Holster Configuration

A body worn holster, as shown on Figure 2, was tested with the Wireless Handheld for FCC RF exposure compliance. The EUT was positioned in the holster case and the belt clip was placed against the flat section of the phantom. A headset was then connected to the handheld to simulate hands-free operation in a body worn holster configuration.

Document		Page
SAR Compliance Test Report		22(26)
Dates of Test	Test Report No	
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

9.0 High Level Evaluation

9.1 Maximum search

The maximum search is automatically performed after each coarse scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations.

9.2 Extrapolation

The extrapolation can be used in z-axis scans with automatic surface detection. The SAR values can be extrapolated to the inner phantom surface. The extrapolation distance is the sum of the probe sensor offset, the surface detection distance and the grid offset. The extrapolation is based on fourth order polynomial functions. The extrapolation is only available for SAR values.

9.3 Boundary correction

The correction of the probe boundary effect in the vicinity of the phantom surface is done in the standard (worst case) evaluation; the boundary effect is reduced by different weights for the lowest measured points in the extrapolation routine. The result is a slight overestimation of the extrapolated SAR values (2% to 8%) depending on the SAR distribution and gradient. The advanced evaluation makes a full compensation of the boundary effect before doing the extrapolation. This is only possible for probes with specifications on the boundary effect.

9.4 Peak search for 1g and 10g cube averaged SAR

The 1g and 10g peak evaluations are only available for the predefined cube 5x5x7 scan. The routines are verified and optimized for the grid dimensions used in these cube measurements.

The measure volume of 32x32x35mm mm contains about 35g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid (35000 points). In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is then moved around until the highest averaged SAR is found. This last procedure is repeated for a 10 g cube. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

SAR Compliance Test Report		Page 23(26)
Nov. 27 - Dec. 06, 2002	Test Report No RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID: L6AR6120CN	

10.0 MEASUREMENT UNCERTAINTIES

Uncertainty Component	Tolerance (± %)	Probability Distribution	Sensitivity coefficient (1-g)	Sensitivity coefficient (10-g)	1-g Standard Uncertainty (±%)	10-g Standard Uncertainty (±%)
Measurement System						
Probe Calibration (k=1)	3.3	Normal	1	1	3.3	3.3
Axial Isotropy	4.7	Rectangle	0.7	0.7	1.9	1.9
Hemispherical Isotropy	9.6	Rectangle	0.7	0.7	3.9	3.9
Boundary Effect	11.0	Rectangle	1	1	6.4	6.4
Linearity	4.7	Rectangle	1	1	2.7	2.7
System Detection Limits	1.0	Rectangle	1	1	0.6	0.6
Readout Electronics	1.0	Normal	1	1	1.0	1.0
Response Time	0.8	Rectangle	1	1	0.5	0.5
Integration Time	1.8	Rectangle	1	1	1.1	1.1
RF Ambient Conditions	3.0	Rectangle	1	1	1.7	1.7
Probe Positioner Mechanical Tolerance	0.4	Rectangle	1	1	0.2	0.2
Probe Positioning with respect to Phantom Shell	2.9	Rectangle	1	1	1.7	1.7
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	3.9	Rectangle	1	1	2.3	2.3
Test sample Related						
Test Sample Positioning		Normal	1	1	6.7	6.7
Device Holder Uncertainty		Normal	1	1	5.9	5.9
Output Power Variation - SAR drift measurement	5	Rectangle	1	1	2.9	2.9
Phantom and Tissue Parameters						
Phantom Uncertainty (shape and thickness tolerances)	4.0	Rectangle	1	1	2.3	2.3
Liquid Conductivity - deviation from target values	5.0	Rectangle	0.7	0.5	2.0	1.4
Liquid Conductivity - measurement uncertainty	10.0	Rectangle	0.7	0.5	4.0	2.9
Liquid Permittivity - deviation from target values	5.0	Rectangle	0.6	0.5	1.7	1.4
Liquid Permittivity - measurement uncertainty	5.0	Rectangle	0.6	0.5	1.7	1.4
Combined Standard Uncertainty		RSS			14.5	14.1
Expanded Uncertainty (95% CONFIDENCE LEVEL)					29.0	28.2

Table 14. Measurement uncertainty

Document		Page
SAR Compliance Test Report		24(26)
Dates of Test	Test Report No	•
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	

11.0 TEST RESULTS

11.1 SAR Measurement results at highest power measured against the head

		Conducted	SAR, averaged over 1 g (W/Kg)		SAR, averaged over 1 g (W/Kg)				
	f Output		Le	Left-hand			Right-hand		
Mode	(MHz)	MHz) Power (dBm)	Liquid Temp(°C)	Cheek	Tilted	Liquid Temp(°C)	Cheek	Tilted	
	824.70	23.20	23.0	0.82	-	23.7	0.99	-	
CDMA	836.52	23.10	23.0	1.17	-	23.6	1.37	-	
Cellular 835	848.31	23.10	22.9	1.19	0.54	23.4	1.46	0.53	
	1851.25	22.20	22.9	0.47	-	23.4	0.37	-	
CDMA PCS 1900	1880.00	22.60	22.8	0.71	0.25	23.2	0.37	-	
	1908.75	22.30	22.7	0.70	-	23.1	0.44	0.22	

Table 15. SAR results for head configuration

11.2 SAR Measurement results at highest power measured against the body using Holster

Mode	f (MHz)	Conducted Output Power (dBm)	Liquid Temp (°C)	SAR, averaged over 1 g (W/kg)	SAR, averaged over 1 g (W/kg) with headset
	824.70	23.43	22.8	0.61	0.45
CDMA	836.52	23.20	22.9	0.59	-
Cellular 835	848.31	23.15	22.9	0.56	-
	1851.25	22.20	22.8	0.16	-
CDMA PCS 1900	1880.00	22.60	22.7	0.23	0.23
	1908.75	22.30	22.7	0.22	-

Table 16. SAR results with holster for body configuration

Document		Page
SAR Compliance Test Report		25(26)
Dates of Test	Test Report No	
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
Jan. 00 – 07, 2003	L6AR6120CN	

11.3 SAR Measurement results at highest power measured for the hand

Mode	Device Configuration touching flat phantom	f (MHz)	Conducted Output Power (dBm)	Liquid Temp. (C)	SAR, averaged over 10 g (W/kg)
	Back side	824.70	23.20	22.8	0.68
CDMA	Back side	836.52	23.10	22.6	0.85
Cellular 835	Back side	848.31	23.10	22.5	0.90
	Back side	1851.25	22.20	22.7	-
	Back side	1880.00	22.60	22.7	1.58
CDMA PCS 1900	Back side	1908.75	22.30	22.6	-
	Left edge	1851.25	22.20	22.6	3.15
	Left edge	1880.00	22.60	22.6	3.17
	Left edge	1908.75	22.30	22.5	2.55

Table 17. SAR results for hand configuration

Document		Page
SAR Compliance Test Report		26(26)
Dates of Test	Test Report No	•
Nov. 27 - Dec. 06, 2002	RIM-0001-0301-04	
Jan. 06 – 07, 2003	FCC ID:	
5an. 00 - 07, 2003	I 6A D 6120 C N	

12.0 REFERENCES

- [1] EN 50360: 2001, Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)
- [2] EN 50361: 2001, Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz)
- [3] ICNIRP, International Commission on Non-Ionizing Radiation Protection (1998), Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz).
- [4] Council Recommendation 1999/519/EC of July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)
- [5] IEEE C95.3-1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave.
- [6] IEEE C95.1-1999, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.
- [7] OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.
- [8] FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation.
- [9] DASY 3 DOSIMETRIC ASSESSMENT SYSTEM SOFTWARE MANUAL Schmid & Partner Engineering AG, August 99.
- [10] IEEE Std 1528-200X, Draft CBD 1.0 April 4, 2002 "DRAFT Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"