EMI Test Report

Tested in accordance with Federal Communications Commission (FCC) Personal Communications Services CFR 47. Parts 2. 22 and 24 and Industry Canada, RSS-133 and RSS-128

Research In Motion Limited

REPORT NO.: RIM-0054-0307-06

PRODUCT MODEL NO: R6030GN TYPE NAME: BlackBerry Wireless Handheld L6AR6030GN FCC ID: IC: 2503A-R6030GN

Date: _____18 July 2003______

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited

Declaration

Statement of Performance:

The BlackBerry Wireless Handheld, model R6030GN ASY-06030-001 version 003 when configured and operated per RIM's operation instructions, performs within the requirements of the test standards.

Declaration:

We hereby certify that:

The test data reported herein is an accurate record of the performance of the sample(s) tested. The test equipment used was suitable for the tests performed and within the manufacturers published specifications and operating parameters.

The test methods were consistent with the methods described in the relevant standards.

Tested by

Maurine Battler

Maurice Battler Compliance Specialist

Date: <u>17 July 2003</u>

M. Atlay

Masud S. Attayi, P.Eng. Senior Compliance Engineer

Date: 18 July 2003

Reviewed and Approved by:

& Landinal

Paul G. Cardinal, Ph.D. Manager, Compliance and Certification

Date: 18 July 2003

Test Date: July 08 to 14, 2003

Table of Contents

A) Scope	Pg. 3
B) Product Identification	Pg. 3
C) Support Equipment Used for Testing of the EUT	Pg. 4
D) Test Voltage	Pg. 4
E) Test Results Chart	Pg. 4
F) Modifications to EUT	Pg. 4
G) Summary of Results	Pg. 5
H) Compliance Test Equipment Used	Pg. 8
Appendix 1 Conducted Emissions Test Data/Plots	
Appendix 2 Conducted RF Output Power Test Data	
Appendix 3 Frequency Stability Test Data	
Appendix 4 Radiated Emissions Test Data	

A) Scope

This report details the results of compliance tests which were performed in accordance to the requirements of:

FCC CFR 47 Part 2, Oct. 1, 2000
FCC CFR 47 Part 22, Subpart H, Cellular Radiotelephone Services, Oct. 1, 2000
FCC CFR 47 Part 24 Subpart E, Broadband PCS, Oct 1. 2000
Industry Canada, RSS-128 Issue 2, Rev 1, Nov. 6/99, 800 MHz Dual-Mode TDMA Cellular Telephones
Industry Canada, RSS-133 Issue 2, Rev. 1 Nov. 6/1999, 2.0 GHz Personal Communications Services

B) **Product Identification**

The equipment under test (EUT) was tested at the Research In Motion (RIM) EMI test facility, located at:

305 Phillip Street Waterloo, Ontario Canada, N2L 3W8 Phone: 519 888 7465 Fax: 519 888 6906 Web Site: www.rim.net

The testing began on July 08, 2003 and completed on July 14, 2003. The sample equipment under test (EUT) included:

- 1a BlackBerry Wireless Handheld, model number R6030GN, ASY-06030-001 version 003, PIN 2004A983, IMEI 001020.00.053040.0, FCC ID L6AR6030GN, IC: 2503A-R6030GN.
- 1b BlackBerry Wireless Handheld, model number R6030GN, ASY-06030-001 version 003, PIN 2004A97F, IMEI 001020.00.053036.0, FCC ID L6AR6030GN, IC: 2503A-R6030GN.

The transmit frequency bands for the Handheld are: GSM 824 to 849 MHz, DCS 1710 to 1785 MHz and PCS 1850 to 1910 MHz. Only the GSM band and PCS band emission results are presented here.

C) Support Equipment Used for the Testing of the EUT

- 1) Rohde & Schwarz, Universal Radio Communication Tester, model number CMU 200, serial number 100249
- 2) Rohde & Schwarz, Universal Radio Communication Tester, model number CMU 200, serial number 837493/073
- 3) DC Power Supply, H/P, model 6632B, serial number US37472179

D) Test Voltage

The ac input voltage was 120 volts, 60 Hz where applicable. This configuration was per RIM's specifications.

E) Test Results Chart

SPECIFICATION	Test Type	MEETS REQUIREMENTS	Performed By
FCC CFR 47 Part 22, Subpart H IC RSS-128	Radiated Spurious/harmonic Emissions, ERP, LO	Yes	Masud Attayi
FCC CFR 47 Part 22, Subpart H IC RSS-128	Conducted Emissions, Occupied Bandwidth, Frequency Stability	Yes	Maurice Battler
FCC CFR 47 Part 24, Subpart E IC RSS-133	Radiated Spurious/harmonic Emissions, EIRP, LO	Yes	Masud Attayi
FCC CFR 47 Part 24, Subpart E IC RSS-133	Conducted Emissions, Occupied Bandwidth, Frequency Stability	Yes	Maurice Battler

F) Modifications to EUT

No modifications were required to the EUT.

G) Summary of Results

- The EUT passed the Conducted Spurious Emissions requirements in the GSM850 band as per 47 CFR 22.917, CFR 22.901(d). The EUT was measured on the low, middle and high channels. The frequency range investigated was from 10 MHz to 10 GHz. See APPENDIX 1 for the test data.
- The EUT passed the Conducted Spurious Emissions requirements in the PCS band as per 47 CFR 2.1057, CFR 24.238 and RSS-133. The EUT was measured on the low, middle and high channels. The frequency range investigated was from 10 MHz to 20 GHz. See APPENDIX 1 for the test data.
- 3) The EUT passed the Occupied Bandwidth and channel mask requirements in the GSM band as per 47 CFR 2.202, CFR 22.917 and RSS-128. The channels measured were low, middle and high.
 See A PRENDIX 1 for the test date

See APPENDIX 1 for the test data.

- 4) The EUT passed the Occupied Bandwidth and channel mask requirements in the PCS band as per 47 CFR 2.202, CFR 24.238 and RSS-133. The channels measured were low, middle and high. See APPENDIX 1 for the test data.
- 5) The EUT passed the Conducted RF Output Power requirements for both the GSM850 and PCS bands. The channels measured were low, middle and high. See APPENDIX 2 for the test data.
- 6) The EUT passed the Frequency Stability w. Temperature and Voltage requirements for GSM850 band as per 22.917 and RSS-128.
 The maximum frequency error measured was less than 0.1 ppm.
 The temperature range was from -30°C to +60°C in 10° temperature steps. The EUT was measured on low, middle and high channels at each temperature step. The EUT was measured at low (3.5 volts), nominal (3.8 volts) and high (4.1 volts) dc input voltage at each temperature step and channel at maximum output power.

See APPENDIX 3 for the test data.

7) The EUT passed the Frequency Stability vs. Temperature and Voltage requirements for the PCS band as per 24.235 and RSS-133. The maximum frequency error measured was less than 0.1 ppm.

The temperature range was from -30° C to $+60^{\circ}$ C in 10 degree temperature steps. The EUT was measured on low, middle and high channels at each temperature step. The EUT was measured at low (3.5 volts), nominal (3.8 volts) and high (4.1 volts) dc input voltage at each temperature step and channel at maximum output power.

See APPENDIX 3 for the test data.

8) The radiated spurious emissions/harmonics and ERP/EIRP were measured for both GSM850 and PCS bands. The results are within the limits. The EUT was placed on a nonconductive wooden table, 80 cm high plus 20 cm high styrofoam on top of the table which was positioned on a remotely rotatable turntable. The EUT height of one metre was set in order to align it with the lowest height of the receiving antenna. The test distance used between the EUT and the receiving antenna was three metres. At this point the emissions were maximized by elevating the antenna in the range of 1 to 4 metres. The turntable was rotated to determine the azimuth of the peak emissions. The maximum emissions level was recorded. The measurements were performed in a semi-anechoic chamber. The semi-anechoic chamber FCC registration number is **778487** and the Industry Canada file number is **IC4240**. The EUT was measured on the low, middle and high channels.

The highest ERP in the GSM850 band measured was 24.5 dBm at 848.8 MHz (channel 251). The highest EIRP in the PCS band measured was 30.1 dBm at 1850.2 MHz (channel 512). To view the test data see APPENDIX 4.

The radiated carrier harmonics were measured up to the 10^{th} harmonic for low, middle and high channels in the GSM850 and PCS bands.

The worst test margin for GSM850 measured was 19.9 dB below the limit at 1675.2 MHz. The worst test margin for PCS measured was 28.7 dB below the limit at 3700.4 MHz. To view the test data see APPENDIX 4.

The EUT's RF local oscillator 1 emissions were measured in the GSM850 band on the low and high channels (128 and 251) in the standalone upright position. Both the horizontal and vertical polarizations were measured. The GSM850 RF local oscillator 1 emissions were in the noise floor (NF).

The EUT's RF local oscillator 1 emissions were measured in the PCS band on the low and high channels (512 and 810) in the standalone upright position. Both the horizontal and vertical polarizations were measured. The PCS RF local oscillator 1 emissions were in the NF.

The EUT's RF local oscillator 2 emissions were measured in the GSM850 band on the low and high channels in the standalone upright position. Both the horizontal and vertical polarizations were measured. The GSM850 RF local oscillator 2 emissions were in the NF.

The EUT's RF local oscillator emissions were measured in the PCS band on the low and high channels in the standalone upright position. Both the horizontal and vertical polarizations were measured. The PCS RF local oscillator 2 emissions were in the NF.

The EUT's IF local oscillator emissions in the GSM850 band were measured in the middle channel for both the horizontal and vertical polarizations. The lowest emission test margin was 8.65 dB at 896.0 MHz.

The EUT's IF local oscillator emissions in the PCS band were measured in the middle channel for both the horizontal and vertical polarizations. The PCS IF local oscillator emissions were in the NF.

Sample Calculation:

Field Strength ($dB\mu V/M$) is calculated as follows: FS = Measured Level ($dB\mu V$) + A.F. (dB/m) + Cable Loss (dB) - Preamp (dB) + Filter Loss (dB)

Measurement Uncertainty ±4.0 dB

Test Date: July 08 to 14, 2003

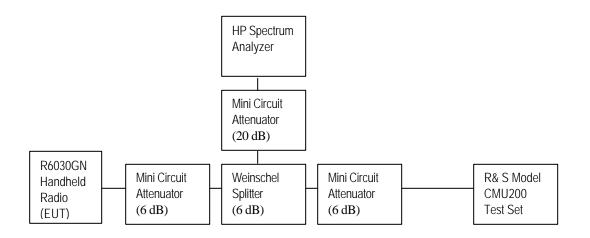
H) Compliance Test Equipment Used

UNIT	MANUFACTURER	<u>MODEL</u> / <u>SE</u>	<u>RIAL NUMBER</u>	CALDUE DATE (YY MO DD)	<u>USE</u>
Preamplifier system	TDK RF Solutions	PA-02	080010	03-10-02	Radiated Emissions
Preamplifier	Sonoma	310N/11909A	185831	03-10-02	Radiated Emissions
EMC Analyzer	Agilent	E7405A	US40240226	03-09-21	Radiated Emissions
Universal Radio Communication Tester	Rohde & Schwarz	CMU 200	837493/073	04-04-05	Radiated Emissions
Horn Antenna	TDK	HRN-0118	130092	03-08-14	Radiated Emissions
Horn Antenna	TDK	HRN-0118	030201	03-12-11	Radiated Emissions
Hybrid Log Antenna	TDK	HLP-3003C	017301	03-12-11	Radiated Emissions
Dipole Antenna	Schwarzbeck	VHAP	1006	03-09-12	Radiated Emissions
Dipole Antenna	Schwarzbeck	VHAP	1007	03-09-12	Radiated Emissions
Synthesized Sweeper	Agilent	83630B	3844A00927	04-04-30	Radiated Emissions
Universal Radio Communication Tester	Rohde & Schwarz	CMU 200	100249	04-04-05	Conducted Emissions
Spectrum Analyzer	HP	8563E	3745A08112	03-07-31	Conducted Emissions
DC Power Supply	HP	6632B	US37472170	03-07-31	Conducted Emissions
Temperature Probe	Hart Scientific	61161-302	21352860	03-09-10	Conducted Emissions
Environmental Chamber	ESPEC Corp.	SH-240S1	91005607	N/R	Conducted Emissions

APPENDIX 1

CONDUCTED EMISSIONS TEST DATA/PLOTS

Appendix 1


Report No. RIM-0054-0307-06

Test Date: Test Date: July 08 to 14, 2003

Conducted Emission Test Results

This appendix contains measurement data pertaining to conducted spurious emissions, -26 dBc bandwidth, 99% power bandwidth and the channel mask.

Test Setup Diagram

Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer	HP	8563E	374A08112	30 Hz – 26.5 GHz
Splitter	Weinschel	1515	ME092	DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S20W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Universal Radio Communication Tester	Rohde & Schwarz	CMU200	100249	

Appendix 1

Report No. RIM-0054-0307-06

Conducted Emission Test Data Con't

The conducted spurious emissions – As per 47 CFR 2.202, 47 CFR 2.1057, 47 CFR 24.238, RSS-133, CFR 22 Subpart H and RSS-128 were measured from 10 MHz to 20 GHz. The EUT has a test margin of greater than 20 dB.

See figures 1 to 12 for the plots of the conducted spurious emissions.

-26 dBc Bandwidth and Occupied Bandwidth (99%)

For each carrier frequency of low, middle and high, the modulation spectrum were measured by both methods of 99% power bandwidth and -26 dBc bandwidth.

The resolution bandwidth required for out-of-band emissions in the 1 MHz bands immediately outside and adjacent to the frequency block, was determined to be at least 1% of the emission bandwidth.

The worst case emission bandwidth for the three GSM850 channels was measured to be 278.0 kHz, and for the three PCS channels was measured to be 273 kHz as shown below, which results in 3.0 kHz resolution bandwidth.

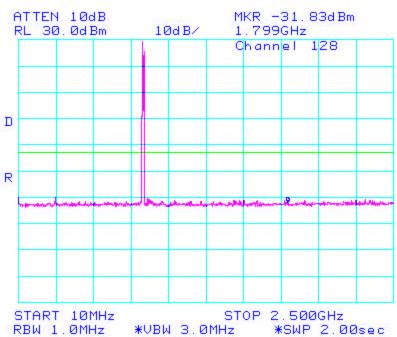
On any frequency outside the frequency block and outside the adjacent 1 MHz bands, a resolution bandwidth of at least 1 MHz was employed.

Test Data for GSM850 and PCS selected Frequencies

GSM Frequency (MHz)	-26dBc Bandwidth (kHz)	-99% Occupied Bandwidth (kHz)
824.2	283	248
837.6	278	250
848.8	272	248

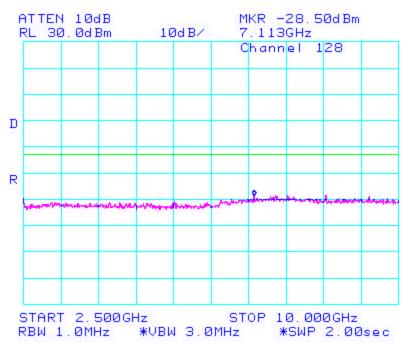
PCS Frequency (MHz)	-26dBc Bandwidth (kHz)	99% Occupied Bandwidth (kHz)
1850.2	270	248
1880.0	265	247
1909.8	273	245

Measurement Plots for GSM850 and PCS


Refer to the following measurement plots for more detail.

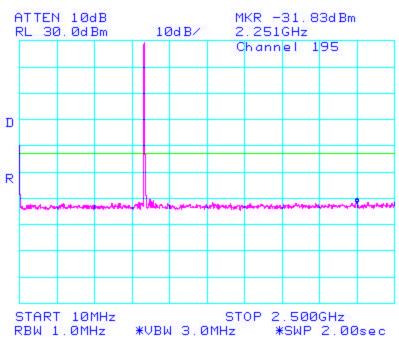
See Figures 1 to 12 for plots of the Spurious Emission results See Figures 13 to 24 for the plots of the –26dBc Bandwidth and 99% Occupied Bandwidth. See Figures 25 to 28 for plots of the channel mask results.

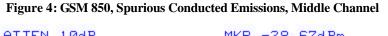
The RF power output was at maximum for all the recorded measurements shown below.

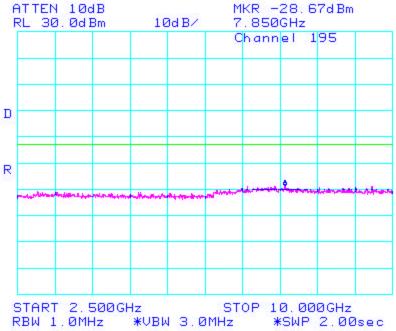


Conducted Emission Test Results con't

Figure 1: GSM 850, Spurious Conducted Emissions, Low channel


This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited


Appendix 1

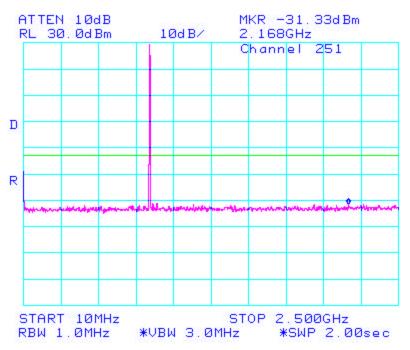
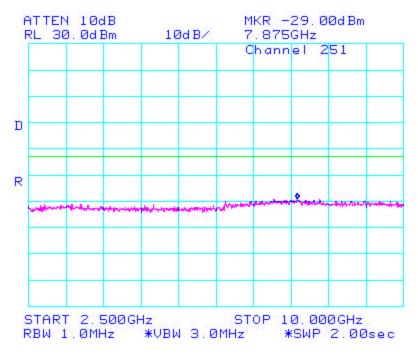
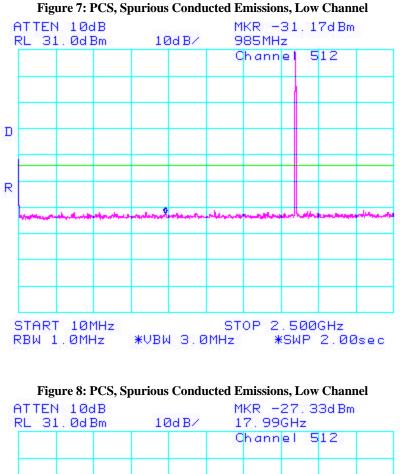

Report No. RIM-0054-0307-06

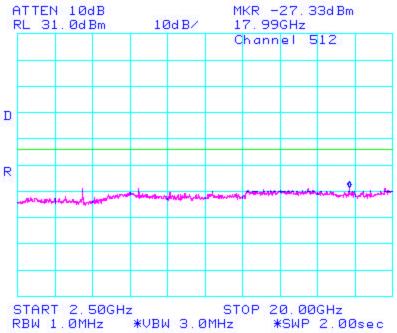
Conducted Emission Test Results Con't

Figure 3: GSM 850, Spurious Conducted Emissions, Middle Channel

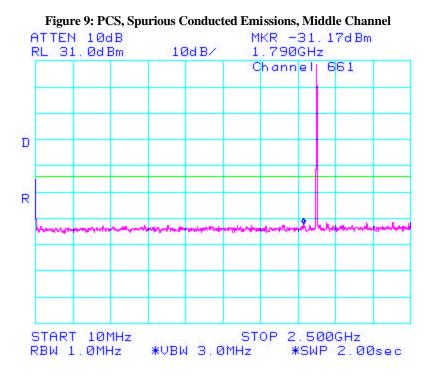
Conducted Emission Test Results Con't

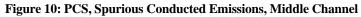
Figure 5: GSM 850, Spurious Conducted Emissions, High Channel

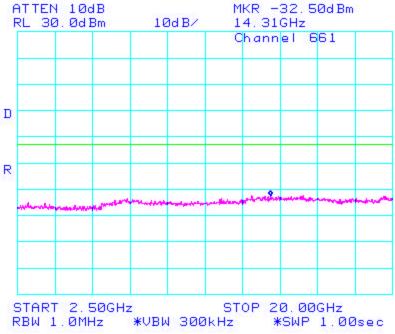





Figure 6: GSM 850, Spurious Conducted Emissions, High Channel

Conducted Emission Test Results Con't






This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited

Conducted Emission Test Results Con't

Conducted Emission Test Results Con't

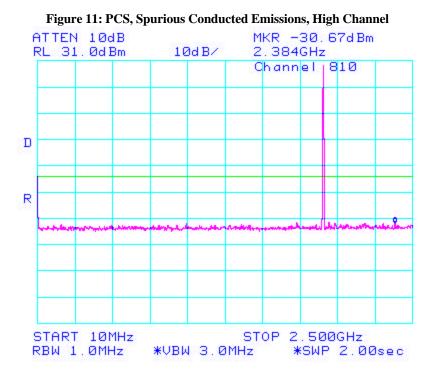
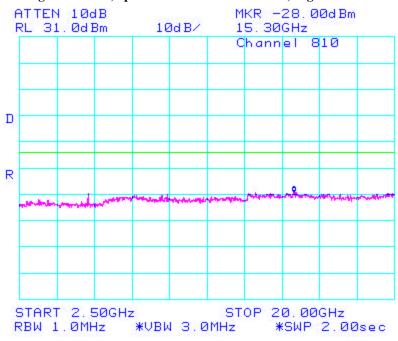
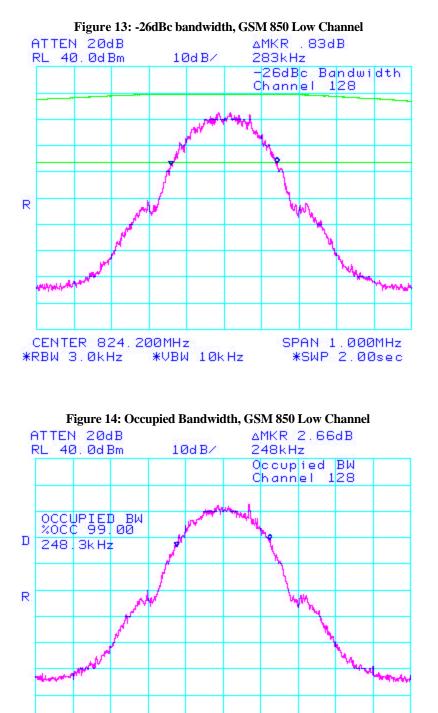
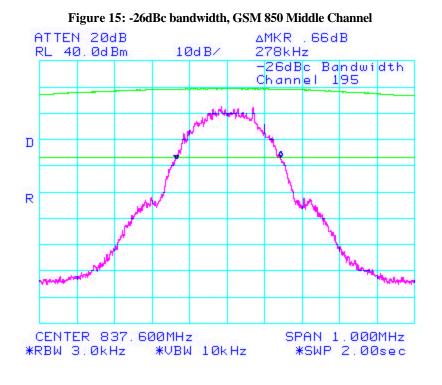
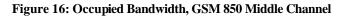
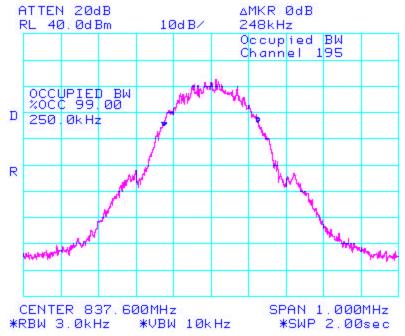




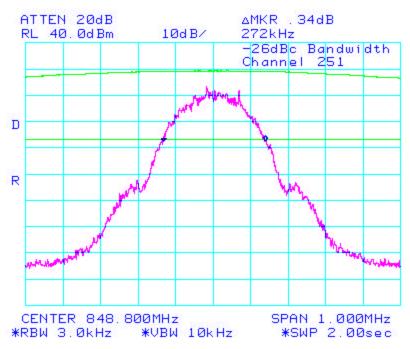
Figure 12: PCS, Spurious Conducted Emissions, High Channel

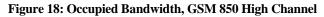


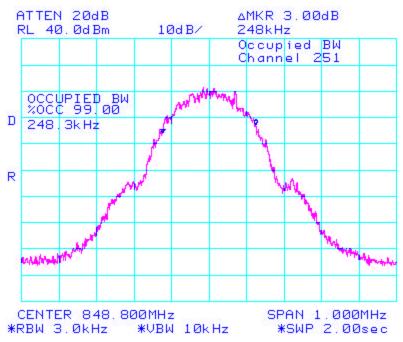




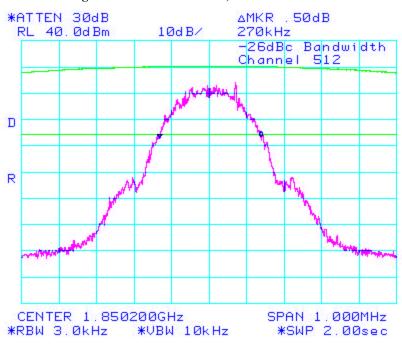
Conducted Emission Test Results Con't





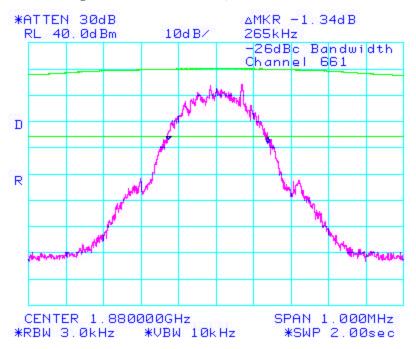


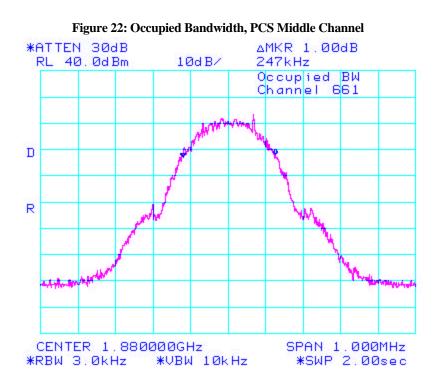
Conducted Emission Test Results Con't


Figure 17: -26dBc bandwidth, GSM 850 High Channel

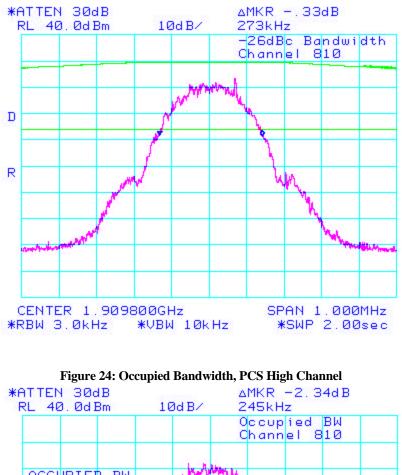


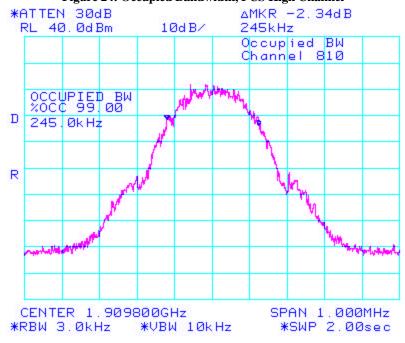
Conducted Emission Test Results Con't

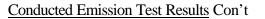

Figure 19: -26dBc bandwidth, PCS Low Channel


This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited

Conducted Emission Test Results Con't


Figure 21: -26dBc bandwidth, PCS Middle Channel


This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited


Conducted Emission Test Results Con't

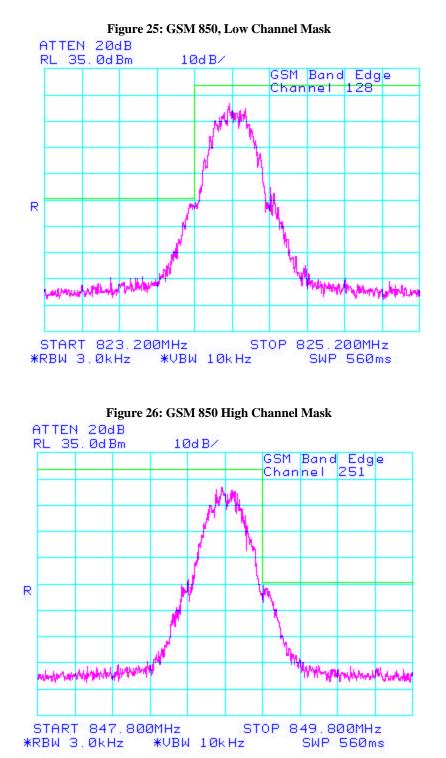
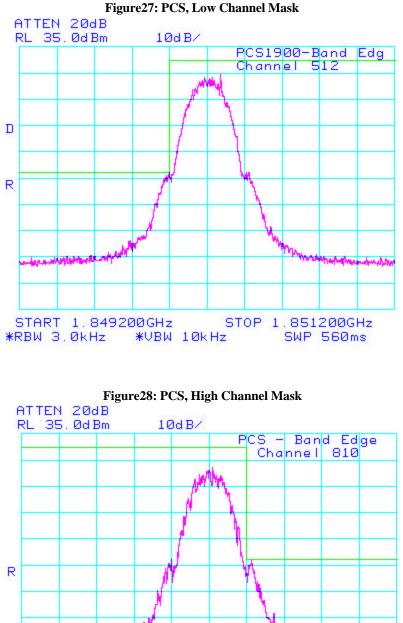


Figure 23: -26dBc bandwidth, PCS High Channel



Mar Marken and

SWP 560ms

STOP 1.910800GHz

Conducted Emission Test Results Con't

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited

₩VBW 10kHz

ALINA MILIA

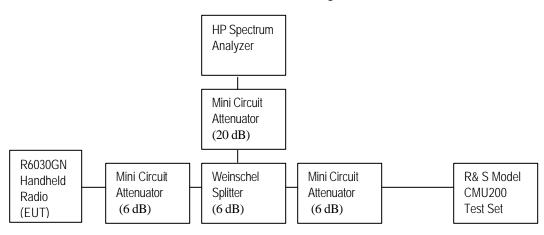
*RBW 3.0kHz

START 1.908800GHz

Test Date: Test Date: July 08 to 14, 2003

Conducted Emission Test-Setup Photo

FCC CFR 47 Part 24, Subpart E, RSS-133



APPENDIX 2

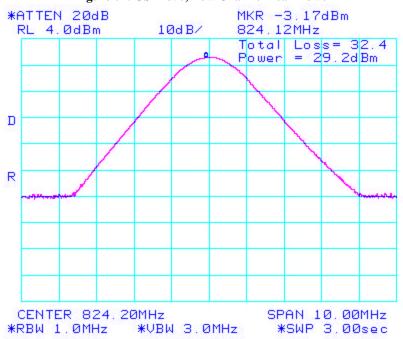
CONDUCTED RF OUTPUT POWER TEST DATA

Conducted RF Output Power Test Data

Test Equipment List

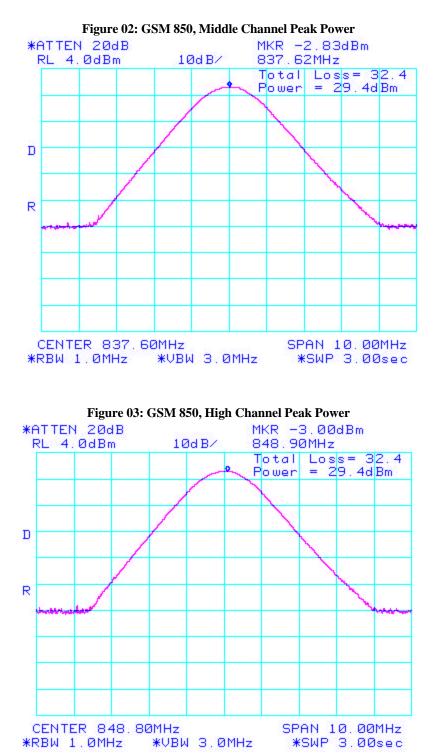
Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer	HP	8563E	374A08112	30 Hz – 26.5 GHz
Splitter	Weinschel	1515	ME092	DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S20W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Universal Radio	Rohde &	CMU200	100249	
Communication Tester	Schwarz	CIVIO 200	100247	

Power Output for GSM850 and PCS

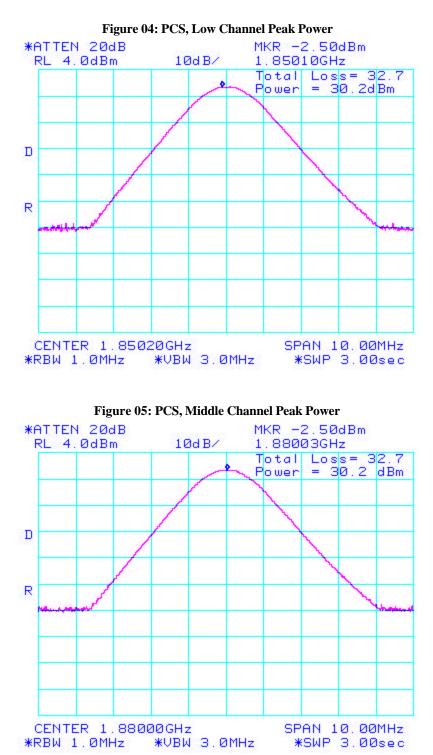

At three transmit frequencies the maximum radio output power level was measured using the Spectrum Analyzer. The calibrated insertion loss measured for the attenuator and cable assembly was added to the power measurements which produced the following results.

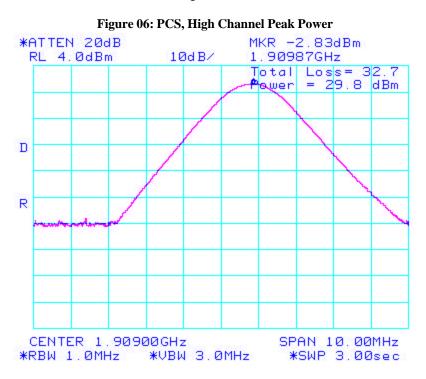
Test Data

Peak nominal output power is 29 dBm for GSM850 and 30 dBm for PCS.

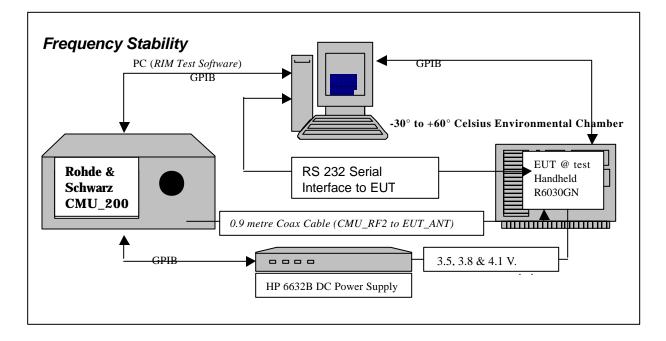

Channel	GSM850 Frequency (MHz)	Measured Peak Conducted Power (dBm)	Total Correction Factor (dB)	Corrected Peak Conducted Power (dBm)
128	824.2	-3.2	32.4	29.2
195	837.6	-2.9	32.4	29.5
251	848.8	-3.0	32.4	29.4

Channel	PCS Frequency (MHz)	Measured Peak Conducted Power (dBm)	Total Correction Factor (dB)	Corrected Peak Conducted Power (dBm)
512	1850.2	-2.5	32.7	30.2
661	1880.0	-2.5	32.7	30.2
810	1909.8	-2.8	32.7	29.8


Figure 01: GSM 850, Low Channel Peak Power


Conducted RF Output Power Test Data con't

Conducted RF Output Power Test Data con't


Conducted RF Output Power Test Data con't

APPENDIX 3

FREQUENCY STABILITY TEST DATA

Frequency Stability Test Data

SYSTEM	Model	Serial Number	Calibration Due Date.
R & S Universal Radio Communication Test Set	CMU200	100249	04-April-2004
HP System DC Power Supply	6632B	US37472170	31-July-2003
Network Analyzer	HP 8753D	20A80400806	12-Aug-2003
Calibration Kit	HP85033D	3423A02787	28-Sept-2003
Espec Environmental Chamber	SH240S1	91005607	N/A
Hart Temperature Probe	61161-302	21352860	10-Sept-2003

CFR 47 Chapter 1 - Federal Communications Commission Rules

Part 2 Required Measurements

- 2.995 Frequency Stability Procedures
- (a,b) Frequency Stability Temperature Variation
- (d) Frequency Stability Voltage Variation

24.235 Frequency Stability.

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Appendix 3

Page 2 of 10

Report No. RIM-0054-0307-06

The R6030GN handheld, (referred as EUT herein and after) transmitted frequencies are less than 0.1 ppm of the received frequency from the Rhode & Schwarz CMU 200 Universal Radio Communication Test Set. *The EUT meets the requirements as stated in CFR 47 chapter 1, Section 24.235, RSS-133, CFR 47 chapter 1, Section 22.917 and RSS-128 Frequency Stability.*

Frequency Stability measurement devices were configured as presented in the block diagram recording frequency, power, data, temperatures, and stepped voltages controlled via a GPIB interface linked to the Environmental chamber, a DC power supply, and the Communications Test Set. A 1.9-meter coax cable was calibrated to characterize the insertion loss for the transmitted frequencies between the RF input/output of the CMU 200 and the EUT antenna port; located inside the environmental chamber.

Calibration for the Cable Loss was performed in the RF Laboratory on July 14 2003.

Procedure:

Full_Two port Calibration of 8720D using the 85033D was completed.

The cable assembly from the RF input to the RF output was measured at the following Frequencies:

PCS Frequency (MHz)	Cable loss (dB)	GSM 850 Frequency (MHz)	Cable loss (dB)
1850.2	2.67	824.2	1.80
1880.0	2.67	836.4	1.80
1909.8	2.67	848.6	1.80

Procedure:

The EUT was placed in the Temperature chamber and connected to CMU 200 outside as shown in the figure above. Dry air was pumped inside the temperature chamber to maintain a backpressure during the test. The EUT was kept in the off condition at all times except when the measurements were to be made.

The chamber was switched on and the temperature was set to -30° C.

After the chamber stabilized at -30 °C there was a soak period of one hour to alleviate moisture in the chamber, the EUT voltage was enabled.

The system software recorded the frequency, power, and associated measurements.

A Computer system controlled the automated software. This application was given the command of activating all machines intrinsic to the temperature and voltage tests controlling the CMU 200 via the GPIB Bus. The Environmental Chamber was instructed through an RS-232 serial line. The EUT dialogue was passed through a serial connection.

Appendix 3

The EUT repetitively transmitted 100 bursts for each set of programmed parameters recording temperature, voltage settings, and systematically selected frequencies. The power supply was cycled from minimum voltage 3.5 volts, to 3.8 volts to 4.1 volts nominal voltage.

The frequency error was measured at a maximum output power and recorded by the automated system test software.

The EUT output power and frequency was measured at 3.5 volts, 3.8 volts and 4.1 volts. The transmit frequency was varied in 3 steps consisting of 824.2, 836.4, and 848.6 MHz for the GSM850 band and 1850.2, 1880.0 and 1909.8 MHz for the PCS band. This frequency was recorded in MHz and deviation from nominal, in Parts Per Million.

After the initial one-hour soak at the beginning of the start of the measurement tests, a period of thirty minutes soak was initialized between each ascending temperature step, before proceeding to the next measurement test cycle.

PROCEDURE:

The test system software for commencing the Frequency Stability Tests carried through the following cycle.

- 1. Switch on the HP 6632B power supply; CMU 200 Communications test Set, and Environmental Chamber.
- 2. Start test program
- 3. Set the Temperature to -30 degrees Celsius and maintain a period of one- hour soak time, with the EUT supply voltage disabled.
- 4. Set power supply voltage to 3.5 Volts.
- 5. Set up CMU 200 Radio Communication Tester.
- 6. Command the CMU 200 to switch to the low channel.
- 7. Enable the voltage to the EUT, and connect a link to the CMU 200 test set.
- 8. EUT is commanded to Transmit 100 Bursts.
- 9. Software logs the following data from the CMU 200, power supply and temperature chamber: Traffic Channel Number, Traffic Channel Frequency, Power Level, Chamber Temperature, Supply Voltage, Power, Frequency Error.
- 10. The CMU 200 commands the EUT to change frequency to the middle channel and high channel and repeats steps 7 to 9.
- 11. Repeat steps 5 to 10 changing the supply voltage to 3.8 Volts
- 12. Increase temperature by 10?C and soak for 1/2 hour.
- 13. Repeat steps 4 12 for temperatures -30 degrees to 60 degrees Celsius.
- 14. Repeat steps 5 to 10 changing the supply voltage to 4.1 Volts

Procedure 5 to 10 was repeated at room temperature (20?C) with the power supply voltage set to 3.5, 3.8 and 4.1 Volts.

128

189

250

824.2

836.4

848.6

29

29

29

Report No. RIM-0054-0307-06

Test Date: July 08 to 14, 2003

Traffic Channel Number	GSM 850 Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
128	824.2	29	3.5	20	-31.90	-0.0387
189	836.4	29	3.5	20	-27.25	-0.0326
250	848.6	29	3.5	20	-26.80	-0.0316
Traffic Channel Number	GSM 850 Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
128	824.2	29	3.8	20	-32.8	-0.0398
189	836.4	29	3.8	20	-20.6	-0.0246
250	848.6	29	3.8	20	-15.69	-0.0185
	GSM 850	_	-			

GSM 850 Channel results: channels 128, 189 and 250 @ 20°C maximum transmitted power

PCS Channel results: channels 512, 661, & 810 @ 20°C maximum transmitted power

4.1

4.1

4.1

20

20

20

-26.47

-18.66

-25.76

-0.0321

-0.0223

-0.0304

Traffic Channel Number	PCS Frequency (MHz	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
512	1850.2	30	3.5	20	32.74	0.0177
661	1880.0	30	3.5	20	27.83	0.0148
810	1909.8	30	3.5	20	39.26	0.0206

Traffic Channel Number	PCS Frequency (MHz	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
512	1850.2	30	3.8	20	30.09	0.0163
661	1880.0	30	3.8	20	33.90	0.0180
810	1909.8	30	3.8	20	38.81	0.0203

Traffic Channel Number	PCS Frequency (MHz	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
512	1850.2	30	4.1	20	30.03	0.0162
661	1880.0	30	4.1	20	30.61	0.0163
810	1909.8	30	4.1	20	46.10	0.0241

Test Date: July 08 to 14, 2003

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
128	824.2	29	3.5	-30	-59.34	-0.0720
128	824.2	29	3.5	-20	-28.15	-0.0342
128	824.2	29	3.5	-10	-55.47	-0.0673
128	824.2	29	3.5	0	-32.93	-0.0400
128	824.2	29	3.5	10	-62.25	-0.0755
128	824.2	29	3.5	20	-31.90	-0.0387
128	824.2	29	3.5	30	-34.55	-0.0419
128	824.2	29	3.5	40	-45.98	-0.0558
128	824.2	29	3.5	50	-24.54	-0.0298
128	824.2	29	3.5	60	-19.44	-0.0236

GSM850 Results: channel 128 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
128	824.2	29	3.8	-30	-52.17	-0.0633
128	824.2	29	3.8	-20	-29.32	-0.0356
128	824.2	29	3.8	-10	-46.81	-0.0568
128	824.2	29	3.8	0	-35.26	-0.0428
128	824.2	29	3.8	10	-68.19	-0.0827
128	824.2	29	3.8	20	-32.80	-0.0398
128	824.2	29	3.8	30	-28.99	-0.0352
128	824.2	29	3.8	40	-35.26	-0.0428
128	824.2	29	3.8	50	-18.66	-0.0226
128	824.2	29	3.8	60	-23.05	-0.0280

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
128	824.2	29	4.1	-30	-35.51	-0.0431
128	824.2	29	4.1	-20	-33.06	-0.0401
128	824.2	29	4.1	-10	-51.98	-0.0631
128	824.2	29	4.1	0	-28.35	-0.0344
128	824.2	29	4.1	10	-36.29	-0.0440
128	824.2	29	4.1	20	-26.47	-0.0321
128	824.2	29	4.1	30	-33.00	-0.0400
128	824.2	29	4.1	40	-39.91	-0.0484
128	824.2	29	4.1	50	-22.86	-0.0277
128	824.2	29	4.1	60	-14.27	-0.0173

Test Date: July 08 to 14, 2003

Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
189	836.4	29	3.5	-30	-48.36	-0.0578
189	836.4	29	3.5	-20	-18.73	-0.0224
189	836.4	29	3.5	-10	-26.22	-0.0313
189	836.4	29	3.5	0	-21.63	-0.0259
189	836.4	29	3.5	10	-53.59	-0.0641
189	836.4	29	3.5	20	-27.25	-0.0326
189	836.4	29	3.5	30	-16.98	-0.0203
189	836.4	29	3.5	40	-48.95	-0.0585
189	836.4	29	3.5	50	16.59	0.0198
189	836.4	29	3.5	60	-15.56	-0.0186
	1	1	1	1		

GSM850 Results: channel 189 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
189	836.4	29	3.8	-30	-49.46	-0.0591
189	836.4	29	3.8	-20	-22.54	-0.0269
189	836.4	29	3.8	-10	-39.91	-0.0477
189	836.4	29	3.8	0	-13.43	-0.0161
189	836.4	29	3.8	10	-34.74	-0.0415
189	836.4	29	3.8	20	-20.60	-0.0246
189	836.4	29	3.8	30	-17.24	-0.0206
189	836.4	29	3.8	40	-48.95	-0.0585
189	836.4	29	3.8	50	-18.21	-0.0218
189	836.4	29	3.8	60	-16.08	-0.0192

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
189	836.4	29	4.1	-30	-53.72	-0.0642
189	836.4	29	4.1	-20	-24.60	-0.0294
189	836.4	29	4.1	-10	-35.90	-0.0429
189	836.4	29	4.1	0	12.53	0.0150
189	836.4	29	4.1	10	-24.21	-0.0289
189	836.4	29	4.1	20	-18.66	-0.0223
189	836.4	29	4.1	30	-24.09	-0.0288
189	836.4	29	4.1	40	-43.33	-0.0518
189	836.4	29	4.1	50	-20.40	-0.0244
189	836.4	29	4.1	60	-18.79	-0.0225

250

250

0.0160

-0.0181

Report No. RIM-0054-0307-06

848.6

848.6

29

29

Test Date: July 08 to 14, 2003

13.56

-15.37

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ				
250	848.6	29	3.5	-30	-28.02	-0.0330				
250	848.6	29	3.5	-20	-32.16	-0.0379				
250	848.6	29	3.5	-10	-17.69	-0.0208				
250	848.6	29	3.5	0	-26.99	-0.0318				
250	848.6	29	3.5	10	-49.72	-0.0586				
250	848.6	29	3.5	20	-26.80	-0.0316				
250	848.6	29	3.5	30	-13.69	-0.0161				
250	848.6	29	3.5	40	-39.84	-0.0469				

3.5

3.5

50

60

GSM850 Results: channel 250 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
250	848.6	29	3.8	-30	-28.73	-0.0339
250	848.6	29	3.8	-20	-44.49	-0.0524
250	848.6	29	3.8	-10	-15.82	-0.0186
250	848.6	29	3.8	0	-32.03	-0.0377
250	848.6	29	3.8	10	-36.61	-0.0431
250	848.6	29	3.8	20	-15.69	-0.0185
250	848.6	29	3.8	30	-16.08	-0.0189
250	848.6	29	3.8	40	-40.16	-0.0473
250	848.6	29	3.8	50	-15.82	-0.0186
250	848.6	29	3.8	60	12.66	0.0149

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
250	848.6	29	4.1	-30	-23.44	-0.0276
250	848.6	29	4.1	-20	-46.75	-0.0551
250	848.6	29	4.1	-10	-12.79	-0.0151
250	848.6	29	4.1	0	-20.47	-0.0241
250	848.6	29	4.1	10	-25.57	-0.0301
250	848.6	29	4.1	20	-25.76	-0.0304
250	848.6	29	4.1	30	-16.53	-0.0195
250	848.6	29	4.1	40	-33.71	-0.0397
250	848.6	29	4.1	50	-17.18	-0.0202
250	848.6	29	4.1	60	-16.72	-0.0197

Test Date: July 08 to 14, 2003

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
512	1850.2	30	3.5	-30	27.51	0.0149
512	1850.2	30	3.5	-20	39.13	0.0211
512	1850.2	30	3.5	-10	64.77	0.0350
512	1850.2	30	3.5	0	30.41	0.0164
512	1850.2	30	3.5	10	24.86	0.0134
512	1850.2	30	3.5	20	32.74	0.0177
512	1850.2	30	3.5	30	18.21	0.0098
512	1850.2	30	3.5	40	-74.90	-0.0405
512	1850.2	30	3.5	50	31.77	0.0172
512	1850.2	30	3.5	60	20.15	0.0109

PCS 1900 Results: channel 512 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	PCL Voltage (dBm) (Volts)		Temperature (Celsius)	1 1 2	
512	1850.2	30	3.8	-30	23.31	0.0126
512	1850.2	30	3.8	-20	32.80	0.0177
512	1850.2	30	3.8	-10	85.17	0.0460
512	1850.2	30	3.8	0	16.79	0.0091
512	1850.2	30	3.8	10	26.93	0.0146
512	1850.2	30	3.8	20	30.09	0.0163
512	1850.2	30	3.8	30	28.41	0.0154
512	1850.2	30	3.8	40	-59.73	-0.0323
512	1850.2	30	3.8	50	34.80	0.0188
512	1850.2	30	3.8	60	28.35	0.0153

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
512	1850.2	30	4.1	-30	29.96	0.0162
512	1850.2	30	4.1	-20	38.16	0.0206
512	1850.2	30	4.1	-10	60.44	0.0327
512	1850.2	30	4.1	0	25.05	0.0135
512	1850.2	30	4.1	10	35.84	0.0194
512	1850.2	30	4.1	20	30.03	0.0162
512	1850.2	30	4.1	30	29.77	0.0161
512	1850.2	30	4.1	40	-65.22	-0.0353
512	1850.2	30	4.1	50	30.99	0.0167
512	2 1850.2 30		4.1	60	22.92	0.0124

Test Date: July 08 to 14, 2003

Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
1880.0	30	3.5	-30	38.74	0.0206
1880.0	30	3.5	-20	45.39	0.0241
1880.0	30	3.5	-10	66.32	0.0353
1880.0	30	3.5	0	29.44	0.0157
1880.0	30	3.5	10	41.07	0.0218
1880.0	30	3.5	20	27.83	0.0148
1880.0	30	3.5	30	26.22	0.0139
1880.0	30	3.5	40	-80.07	-0.0426
1880.0	30	3.5	50	35.13	0.0187
1880.0	30	3.5	60	20.53	0.0109
Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
1880.0	30	3.8	-30	44.68	0.0238
1880.0	30	3.8	-20	34.29	0.0182
1880.0	30	3.8	-10	89.50	0.0476
	(MHz) 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0 1880.0	(MHz) (dBm) 1880.0 30	(MHz)(dBm)(Volts)1880.0303.51880.0303.51880.0303.51880.0303.51880.0303.51880.0303.51880.0303.51880.0303.51880.0303.51880.0303.51880.0303.51880.0303.51880.0303.51880.0303.51880.0303.51880.0303.51880.0303.51880.0303.81880.0303.81880.0303.8	(MHz)(dBm)(Volts)(Celsius)1880.0303.5-301880.0303.5-201880.0303.5-101880.0303.501880.0303.5101880.0303.5101880.0303.5201880.0303.5301880.0303.5501880.0303.5501880.0303.560Frequency (MHz)PCL (dBm)Voltage (Volts)Temperature (Celsius)1880.0303.8-301880.0303.8-20	(MHz) (dBm) $(Volts)$ $(Celsius)$ (Hz) 1880.0303.5-3038.741880.0303.5-2045.391880.0303.5-1066.321880.0303.5029.441880.0303.51041.071880.0303.52027.831880.0303.53026.221880.0303.540-80.071880.0303.55035.131880.0303.56020.53Frequency (MHz)PCL (dBm)Voltage (Volts)Temperature (Celsius)Frequency Error (Hz)1880.0303.8-3044.681880.0303.8-2034.29

PCS 1900 Results: channel 661 @ maximum transmitted power

			(()	(
661	1880.0	30	3.8	-30	44.68	0.0238
661	1880.0	30	3.8	-20	34.29	0.0182
661	1880.0	30	3.8	-10	89.50	0.0476
661	1880.0	30	3.8	0	47.01	0.0250
661	1880.0	30	3.8	10	40.10	0.0213
661	1880.0	30	3.8	20	33.90	0.0180
661	1880.0	30	3.8	30	41.00	0.0218
661	1880.0	30	3.8	40	-41.71	-0.0222
661	1880.0	30	3.8	50	36.10	0.0192
661	1880.0	30	3.8	60	25.96	0.0138

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
661	1880.0	30	4.1	-30	40.03	0.0213
661	1880.0	30	4.1	-20	42.29	0.0225
661	1880.0	30	4.1	-10	74.26	0.0395
661	1880.0	30	4.1	0	35.51	0.0189
661	1880.0	30	4.1	10	49.59	0.0264
661	1880.0	30	4.1	20	30.61	0.0163
661	1880.0	30	4.1	30	32.48	0.0173
661	1880.0	30	4.1	40	-51.40	-0.0273
661	1880.0	30	4.1	50	36.29	0.0193
661	61 1880.0 30		4.1	60	19.05	0.0101

Test Date: July 08 to 14, 2003

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
810	1909.8	30	3.5	-30	26.86	0.0141
810	1909.8	30	3.5	-20	48.43	0.0254
810	1909.8	30	3.5	-10	52.24	0.0274
810	1909.8	30	3.5	0	31.19	0.0163
810	1909.8	30	3.5	10	37.90	0.0198
810	1909.8	30	3.5	20	39.26	0.0206
810	1909.8	30	3.5	30	28.80	0.0151
810	1909.8	30	3.5	40	-53.66	-0.0281
810	1909.8	30	3.5	50	34.68	0.0182
810	1909.8	30	3.5	60	22.86	0.0120

PCS 1900 Results: channel 810 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
810	1909.8	30	3.8	-30	40.49	0.0212
810	1909.8	30	3.8	-20	47.98	0.0251
810	1909.8	30	3.8	-10	93.82	0.0491
810	1909.8	30	3.8	0	39.52	0.0207
810	1909.8	30	3.8	10	41.46	0.0217
810	1909.8	30	3.8	20	38.81	0.0203
810	1909.8	30	3.8	30	37.71	0.0197
810	1909.8	30	3.8	40	-66.90	-0.0350
810	1909.8	30	3.8	50	41.84	0.0219
810	1909.8	30	3.8	60	26.41	0.0138

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
810	1909.8	30	4.1	-30	47.59	0.0249
810	1909.8	30	4.1	-20	43.20	0.0226
810	1909.8	30	4.1	-10	89.82	0.0470
810	1909.8	30	4.1	0	54.95	0.0288
810	1909.8	30	4.1	10	52.04	0.0272
810	1909.8	30	4.1	20	46.10	0.0241
810	1909.8	30	4.1	30	31.96	0.0167
810	1909.8	30	4.1	40	-60.44	-0.0316
810	1909.8	30	4.1	50	27.25	0.0143
810	1909.8 30		4.1	60	21.44	0.0112

APPENDIX 4

RADIATED EMISSIONS TEST DATA

F0

F0

F0

195

251

251

837.60

848.80

848.80

Report No. RIM-0054-0307-06

Test Date: Test Date: July 08 to 14, 2003

ΗH

VV

ΗH

27.78

-4.63

23.15

Radiated Emissions Test Data Results

Test distance is 3.0 metres

[Substitut	ion N	/lethod	
		EUT		Rx Ant	tenna	Spectr	um Analy	zer	Tracking	Generator	1	, , , , , , , , , , , , , , , , , , , 	
Туре	e Ch	Frequency (MHz)	Band	Туре	Pol.	Reading (dBuV)	Corrected Reading (dBuV)	Max (V,H)	Reading (dBm)	Corrected Reading (relative to dipole)	Pol.	Limit	Diff to Limit (dB)
	GSM850 Band (ERP) Handheld Standalone, upright position												
Ha				ht posit	tion								
F0	128	824.20	850	Dipole	V	82.4	82.4	82.4	7.6	23.55	VV	27.78	-4.23
F0	128	824.20	850	Dipole	н	76.5	76.5		6.2		ΗH		
F0	195	837.60	850	Dipole	V	81.8	81.8	81.8	7.1	23.05	VV	27.78	-7.73
F0	195	837.60	850	Dipole	Н	75.7	75.7		5.9		ΗH		
F0	251	848.80	850	Dipole	V	81.3	81.3	81.3	6.7	22.65	VV	27.78	-5.13
F0	251	848.80	850	Dipole	н	75.8	75.8		5.1		ΗН		
На	ndhelo	l standalone	, on its	side									
F0	128	824.20	850	Dipole	V	76.9	76.9	82.6	7.8	23.75	VV	27.78	-4.03
F0	128	824.20	850	Dipole	Н	82.6	82.6		6.4		ΗН		
F0	195	837.60	850	Dipole	V	75.0	75.0	82.4	7.7	23.65	VV	27.78	-4.13
F0	195	837.60	850	Dipole	н	82.4	82.4		6.5		ΗН		
F0	251	848.80	850	Dipole	V	76.0	76.0	83.1	8.5		VV	27.78	-3.33
F0	251	848.80	850	Dipole	Н	83.1	83.1		6.9	24.45	ΗН		
На	ndhel	d standalor	ne, on	its bac	k								
F0	128	824.20	850	Dipole	V	74.3	74.3	80.8	6.0	21.95	VV	27.78	-5.83
F0	128	824.20	850	Dipole	н	80.8	80.8		4.6		ΗН		
F0	195	837.60	850	Dipole	V	73.2	73.2	81.3	6.6	22.55	VV	27.78	-5.23
					1								

81.3

74.0

81.8

850

850

850

Dipole

Dipole

Dipole

Н

V

Н

81.3

74.0

81.8

81.8

5.4

7.2

5.6

Report No. RIM-0054-0307-06

Test Date: Test Date: July 08 to 14, 2003

Radiated Emissions Test Data Results con't

Test distance is 3.0 metres

								Substitution Method					
		EUT		Rx Ante	enna	Spec	trum Analy	/zer	Tracking	Generator	1		
Туре	Ch	Frequency (MHz)	Band	Туре	Pol.	Reading (dBuV)	Corrected Reading (dBuV)	Max (V,H)	Reading (dBm)	Corrected Reading (relative to dipole)	Pol.	Limit	Diff to Limit (dB)
GS	M850	Band (Harmo	onics)	·		·			•				
Har	ndheld	Standalone,	on its ba	ack									
		nnel – 824.5	MHz		1								
2 nd	128	1648.40	850	Horn	V	50.4	50.4	60.6	-36.9	-34.0	VV	-13	-21.0
2 nd	128	1648.40	850	Horn	Н	60.6	60.6		-36.8		ΗH		
3 rd	128	2472.60	850	251	251	40.0	40.0	44.7	-50.9	-46.4	VV	-13	-33.4
3^{rd}	128	2472.60	850	251	251	44.7	44.7		-52.1				
Mic 2 nd	idle C 195	s above the 4 : hannel – 83 1675.2			V	51.8	51.8	61.7	-36.0	-32.9	VV	-13	-19.9
2 nd	195	1675.2	850	Horn	Н	61.7	61.7		-35.7		ΗH		
3 rd	195	2512.80	850	Horn	V	42.4	42.4	47.0	-46.9	-42.4	VV	-13	-29.4
3 rd	195	2512.80	850	Horn	Н	47.0	47.0		-47.7				
Em	ission	onics were in s above the 4 annel – 848.8	t th harmo	•			onic.						
2 nd	251	1697.60	850	Horn	V	51.1	51.1	61.1	-36.2	-33.3	VV	-13	-20.3
2 2 nd	251	1697.60	850	Horn	v H	61.1	61.1	42.6	47.3	-46.1	нн	15	20.0
2 3 rd	251	2546.40	850	Horn	V	42.6	42.6	47.3	77.5	-46.6	VV	-13	-28.6
3rd	251	2546.40	850	Horn	H	47.3	47.3						
		nics were invertion above the 4 th	•	•			nic.						

Test Date: Test Date: July 08 to 14, 2003

Radiated Emissions Test Results con't

Test Distance was 3.0 metres. July 09, 2003 GSM850 Band The measurements were performed with the handheld in standalone upright position. Substitution Method EUT Rx Antenna Spectrum Analyzer Tracking Generator Corrected Diff to Corrected Frequency Reading Мах Reading Reading Pol. Limit Type Ch Band Type Pol. Reading Limit (dBuV) (V,H) (dBm) (relative to (MHz) (dBuV) (dB) dipole) GSM850 BAND (Local Oscillator) Transmit RF Local Oscillator 1, (LO) Tx/Rx mode Low Channel F0 128 1272.20 850 V NF Horn NF -13 F0 128 1272.20 850 н NF Horn **High Channel** Horn V NF FO 251 1296.80 850 NF NF н Horn FO 251 850 1296.80 GSM850 BAND (Local Oscillator) RF Local Oscillator 2, (LO) Tx/Rx mode Low Channel 1738.20 F0 128 V NF 850 Horn NF -13 F0 128 1738.20 850 н NF Horn **High Channel** V NF Horn 850 NF FO 251 1787.40 -13 Horn Н NF FO 251 1787.40 850

Test Date: Test Date: July 08 to 14, 2003

Radiated Emissions Test Data con't

Test Distance was 3.0 metres.

GSM850 Band

July 09, 2003

The measurements were performed with the handheld in standalone upright position.

										Substituti	on M	ethod		
		EUT		Rx Ant	enna	Spectr	um Analy	/zer	Tracking	Generator				
Туре											Pol.	Limit	Diff to Limit (dB)	
	GSM850 BAND IF Local Oscillator IF LO Channel 195, (837.6 MHz)													
FO	195	896.00	850	HLP	V	52.1	51.56	51.26	-37.1	-21.65	vv	-13	-8.65	
FO	195	896.00	850	HLP	Н	47.8	47.26				ΗΗ			

Test Date: Test Date: July 08 to 14, 2003

Radiated Emissions Test Data Results con't

Test Distance is 3.0 metres

									Substitutio	on M	ethod			
		EUT		Rec		Tracking	Generator							
Туре	Ch	Freq (MHz)	Band	Pol.	Туре	Pol.	Reading (dBuV)	Corrected Reading (dBuV)	Max (V,H) dBuV	Reading (dBm)	Corrected Reading (relative to Isotropic Radiator) (dBm)	Pol.	Limit dBm	Diff to Limit (dB)
PCS	BAN	ID (EIRP) -	Hand	held	standa	alone	e, uprigh	t position						
F0	512	1850.2	1900	V	Horn	V	92.3	92.3	92.2	-3.6	28.09	VV	33	-4.91
F0	512	1850.2	1900	V	Horn	Н	77.0	77.0		-2.8		ΗН		
F0	661	1880.0	1900	V	Horn	V	91.4	91.4	91.4	-3.7	28.09	vv	33	-4.91
F0	661	1880.0	1900	V	Horn	Н	78.3	78.3		-2.8		ΗΗ		
F0	810	1909.8	1900	V	Horn	V	91.0	91.0	91.0	-4.6	27.19	VV	33	-5.81
F0	810	1909.8	1900	V	Horn	Н	79.8	79.8		-3.7		ΗH		
PCS	BAN	ID (EIRP) -	Hand	held	standa	alone	e, on its	side						
F0	512	1850.2	1900	V	Horn	V	84.4	84.4	85.3	-10.2	21.09	vv	33	-11.91
F0	512	1850.2	1900	V	Horn	н	85.3	85.3		-9.8		ΗΗ		
F0	661	1880.0	1900	V	Horn	V	84.8	84.8	84.8	-10.3	21.39	VV	33	-11.61
F0	661	1880.0	1900	V	Horn	Н	84.2	84.2		-9.5		ΗH		
F0	810	1909.8	1900	V	Horn	V	78.9	78.9	89.1	-6.5	25.29	VV	33	-7.71
F0	810	1909.8	1900	V	Horn	Н	89.1	89.1		-5.6		ΗH		
PCS	BAN	ID (EIRP) -	Hand	held	stand	alon	e, on its	back						
F0	512	1850.2	1900	V	Horn	V	81.5	81.5	94.2	-1.6	30.09	VV	33	-2.91
F0	512	1850.2	1900	V	Horn	Н	94.2	94.2		-0.8		нн		
F0	661	1880.0	1900	V	Horn	V	81.6	81.6	93.4	-1.7	30.09	VV	33	-2.91
F0	661	1880.0	1900	V	Horn	н	93.4	93.4		-0.8		нн		
F0	810	1909.8	1900	V	Horn	V	80.6	80.6	93.4	-2.1	29.59	VV	33	-3.41
F0	810	1909.8	1900	V	Horn	Н	93.4	93.4		-1.3		ΗН		

Test Date: Test Date: July 08 to 14, 2003

Radiated Emissions Test Data Results con't

Test distance is 3.0 metres.

Type Ch Freq (MHz) Band Pol. Type Pol. Reading (V,H) Reading (relative to Pol. Limit dBm Lim												Substitutio	on M	lethod	
Type Ch Freq (MHz) Band Pol. Type Pol. Reading (dBuV) Corrected Max Reading (V,H) Reading (relative to Pol. Limit dBm Limit			EUT		Rec	eive Ante	enna	Spect	rum Analyzer		Tracking	Generator			
(dBm)	Туре	Ch	Freq (MHz)	Band	Pol.	Туре	Pol.		Reading	(V,H)		Reading (relative to dipole)	Pol.		Diff to Limit (dB)

PCS BAND (Harmonics) - handheld standalone, on its back

Low Channel

2nd	512	3700.4	1900	۷	Horn	V	NF	NF	41.8	-46.4	-41.7	VV	-13	-28.7
2nd	512	3700.4	1900	V	Horn	Н	41.8	41.8		-45.3		ΗН		

The harmonics were investigated up to the 10th harmonic.

Emissions above the 2^{th} harmonic were in the NF

Middle Channel

2nd	661	3760.0	1900	V	Horn	V	NF	NF	40.8	-45.4	-41.8	VV	-13	-28.8
2nd	661	3760.0	1900	V	Horn	Η	40.8	40.8		-46.1		ΗН		

The harmonics were investigated up to the 10th harmonic.

Emissions above the 2th harmonic were in the NF

<u>High Channel</u>

2nd	810	3819.6	1900	V	Horn	V	NF	NF	40.1	-46.6	-43.0	VV	-13	-30.0
2nd	810	3819.6	1900	V	Horn	Н	40.1	40.1		-48.6		ΗН		

The harmonics were investigated up to the 10th harmonic.

Emissions above the 2^{th} harmonic were in the NF

Appendix 4

Page 7 of 9

Report No. RIM-0054-0307-06

Test Date: Test Date: July 08 to 14, 2003

Radiated Emissions Test Results con't

Test Distance was 3.0 metres.PCS BandJuly 09, 2003The measurements were performed with the handheld in standalone upright position.

										Substitut	ion N	lethod	
		EUT		Rx Ant	enna	Spectr	um Analy	zer	Tracking	Generator			
Туре	Ch	Frequency (MHz)	Band	Туре	Pol.	Reading (dBuV)	Corrected Reading (dBuV)	Max (V,H)	Reading (dBm)	Corrected Reading (relative to dipole) (dBm))	Pol.	Limit	Diff to Limit (dB)
	Local	D (Local O Dscillator 1 nel			mod	le							
F0	512	1930.10	1900	Horn	V	NF	NF					-13	
F0	512	1930.10	1900	Horn	Н	NF							
High	h Cha	nnel											
F0	810	1989.70	1900	Horn	V	NF	NF					-13	
F0	810	1989.70	1900	Horn	Н	NF							

PCS BAND (Local Oscillator)

RF Local Oscillator 2 (LO) Tx/Rx mode

Low Channel

LUN		IIIICI									
FO	512	1423.20	1900	Horn	V	NF	NF			-13	
FO	512	1423.20	1900	Horn	Н	NF					
		_									
Hig	h Cha	annel									
FO	810	1482.80	1900	Horn	V	NF	NF			-13	
FO	810	1482.80	1900	Horn	Н	NF					

Appendix 4

Report No. RIM-0054-0307-06

Test Date: Test Date: July 08 to 14, 2003

Radiated Emissions Test Data con't

Test Distance was 3.0 metres.

PCS Band

July 09, 2003

The measurements were performed with the handheld in standalone upright position.

									Substitution Method					
		EUT		Rx Ant	enna	Spectr	um Analy	zer	Tracking	Generator	_			
Туре	Ch	Frequency (MHz)	Band	Туре	Pol.	Reading (dBuV)	Corrected Reading (dBuV)	Max (V,H)	Reading (dBm)	Corrected Reading (relative to dipole)	Pol.	Limit	Diff to Limit (dB)	
		IF Local Os 661, (1880		or										
FO	661	854.00	1900	HLP	V	NF	NF				VV	-13		
FO	661	854.00	1900	HLP	Н	NF					НН			

Radiated Emissions Test Photo con't

Radiated Emissions at 3.0 metres