EMI Test Report

Tested in accordance with
Federal Communications Commission (FCC)
Personal Communications Services
CFR 47, Parts 2 and 24
and
Industry Canada, RSS-133

Research In Motion Limited

REPORT NO.: RIM-0025-0307-03

PRODUCT MODEL NO: R6030GE

TYPE NAME: BlackBerry Wireless Handheld

FCC ID: L6AR6030GE **IC**: 2503A-R6030GE

Date: _____21 July 2003_____

Report No. RIM-0025-0307-03

Declaration

Statement of Performance:

The BlackBerry Wireless Handheld, model R6030GE ASY-06048-001 version 003 when configured and operated per RIM's operation instructions, performs within the requirements of the test standards.

Declaration:

We hereby certify that:

The test data reported herein is an accurate record of the performance of the sample(s) tested.

The test equipment used was suitable for the tests performed and within the manufacturers published specifications and operating parameters.

The test methods were consistent with the methods described in the relevant standards.

Tested by

Maurice Battler

Maurine Battler

Compliance Specialist Date: 21 July 2003

Masud S. Attayi, P.Eng.

M. Stray

Senior Compliance Engineer Date: 22 July 2003

Reviewed and Approved by:

Paul G. Cardinal, Ph.D.

Manager, Compliance and Certification Date: 23 July 2003

Test Date: July 03 to 14, 2003

Table of Contents

A) Scope	Pg. 3
B) Product Identification	Pg. 3
C) Support Equipment Used for Testing of the EUT	Pg. 4
D) Test Voltage	Pg. 4
E) Test Results Chart	Pg. 4
F) Modifications to EUT	Pg. 4
G) Summary of Results	Pg. 5
H) Compliance Test Equipment Used	Pg. 7
Appendix 1 Conducted Emissions Test Data/Plots	
Appendix 2 Conducted RF Output Power Test Data	
Appendix 3 Frequency Stability Test Data	
Appendix 4 Radiated Emissions Test Data	

Report No. RIM-0025-0307-03

A) Scope

This report details the results of compliance tests which were performed in accordance to the requirements of:

FCC CFR 47 Part 2, Oct. 1, 2000

FCC CFR 47 Part 24 Subpart E, Broadband PCS, Oct 1. 2000

Industry Canada, RSS-133 Issue 2, Rev. 1 Nov. 6/1999, 2.0 GHz Personal Communications Services

B) Product Identification

The equipment under test (EUT) was tested at the Research In Motion (RIM) EMI test facility, located at:

305 Phillip Street

Waterloo, Ontario

Canada, N2L 3W8

Phone: 519 888 7465 Fax: 519 888 6906 Web Site: <u>www.rim.net</u>

The testing began on July 03, 2003 and completed on July 14, 2003. The sample equipment under test (EUT) included:

- 1a BlackBerry Wireless Handheld, model number R6030GE, ASY-06048-001 version 003, PIN 20046AC5, IMEI 001020.00.032365.0, FCC ID L6AR6030GE, IC: 2503A-R6030GE.
- 1b BlackBerry Wireless Handheld, model number R6030GE, ASY-06048-001 version 003, PIN 20046C25, IMEI 001020.00.032367.0, FCC ID L6AR6030GE, IC: 2503A-R6030GE.

The transmit frequency bands for the BlackBerry Wireless Handheld are: GSM 880 to 915 MHz, DCS 1710 to 1785 MHz and PCS 1850 to 1910 MHz. Only the PCS band emission results are presented here.

Report No. RIM-0025-0307-03 Test Date: July 03 to 14, 2003

C) Support Equipment Used for the Testing of the EUT

- 1) Rohde & Schwarz, Universal Radio Communication Tester, model number CMU 200, serial number 100249
- 2) Rohde & Schwarz, Universal Radio Communication Tester, model number CMU 200, serial number 837493/073
- 3) DC Power Supply, H/P, model 6632B, serial number US37472179

D) Test Voltage

The ac input voltage was 120 volts, 60 Hz. This configuration was per RIM's specifications.

E) Test Results Chart

Specifications	Test Type	Meets Requirements	Performed By
FCC CFR 47 Part 24, Subpart E IC RSS-133	Radiated Spurious and harmonic Emissions EIRP, LO	Yes	Masud Attayi
FCC CFR 47 Part 24, Subpart E IC RSS-133	Conducted Emissions, Occupied Bandwidth, Frequency Stability	Yes	Maurice Battler

F) Modifications to EUT

No modifications were required to the EUT.

Report No. RIM-0025-0307-03

G) Summary of Results

- The EUT passed the Conducted Spurious Emission requirements as per 47 CFR 2.1057, 47 CFR 24.238 and RSS-133. The EUT was measured on the low, middle and high channels. The frequency range measured was from 10 MHz to 20 GHz.
 See APPENDIX 1 for the test data.
- 2) The EUT passed the Occupied Bandwidth and channel mask requirements as per 47 CFR 2.202, 47 CFR 24.238 and RSS-133. The channels measured were low, middle and high. See APPENDIX 1 for the test data.
- 3) The EUT passed the Conducted RF Output Power requirements. The channels measured were low, middle and high.
 See APPENDIX 2 for the test data.
- 4) The EUT passed the Frequency Stability vs. Temperature and Voltage requirements as per 47 CFR 24.135 and RSS-133. The maximum frequency error measured was less than 0.1 ppm. The temperature range was from -30°C to +60°C in 10 degree temperature steps. The EUT was measured on low, middle and high channels at each temperature step. The EUT was measured at low (3.5 volts), nominal (3.8 volts) and high (4.1 volts) dc input voltage at each temperature step and channel at maximum output power.

Note: 4.1 volts is the instantaneous turn-on voltage for a fully charged battery. When the device transmits, this voltage drops to the nominal voltage within a few minutes. See APPENDIX 3 for the test data.

5) The radiated spurious harmonic emissions and EIRP passed the limits. The EUT was placed on a nonconductive wooden table, 80 cm high plus 20 cm high styrofoam on top of the table which was positioned on a remotely rotatable turntable. The EUT height of one metre was set in order to align it with the lowest height of the receiving antenna. The test distance used between the EUT and the receiving antenna was three metres. At this point the emissions were maximized by elevating the antenna in the range of 1 to 4 metres. The turntable was rotated to determine the azimuth of the peak emissions. The maximum emissions level was recorded. The measurements were performed in a semi-anechoic chamber. The semi-anechoic chamber FCC registration number is 778487 and the Industry Canada file number is IC4240. The EUT was measured on the low, middle and high channels.

The highest EIRP in the PCS band measured was 29.6 dBm at 1850.2 MHz (channel 512). To view the test data see APPENDIX 4.

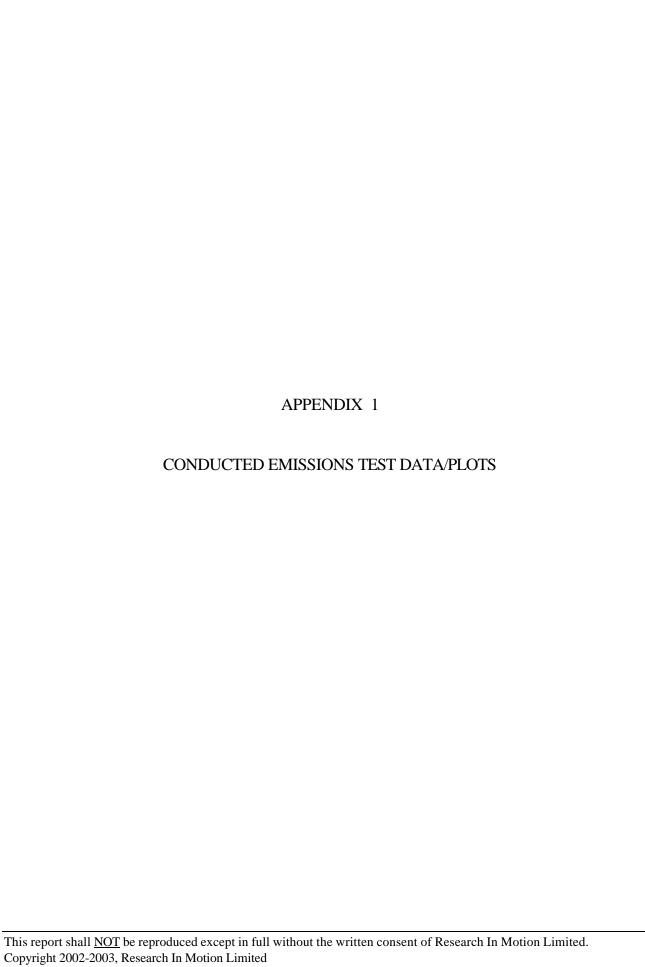
The radiated carrier harmonics were measured up to the 10th harmonic for low, middle and high channels. The lowest test margin measured was 29.5 dB below the limit at 3819.6 MHz (channel 810).

The EUT's RF local oscillator 1 emissions were measured on the low and high channels (512 and 810) in the standalone upright position. Both the horizontal and vertical polarizations were measured. The RF local oscillator 1 emissions were in the noise floor (NF).

The EUT's RF local oscillator 2 emissions were measured on the low and high channels in the standalone upright position. Both the horizontal and vertical polarizations were measured. The RF local oscillator 2 emissions were in the NF.

The EUT's IF local oscillator emissions were measured in the middle channel. Both the horizontal and vertical polarizations of the emissions were measured. The IF local oscillator emission was in the NF.

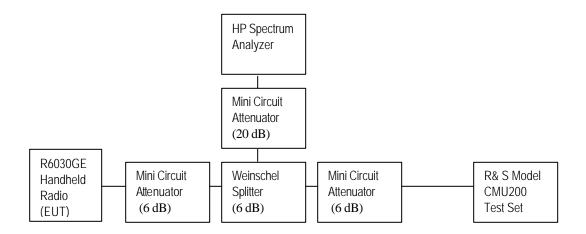
Sample Calculation:


Field Strength ($dB\mu V/M$) is calculated as follows: FS = Measured Level ($dB\mu V$) + A.F. (dB/m) + Cable Loss (dB) - Preamp (dB) + Filter Loss (dB)

Measurement Uncertainty ±4.0 dB

H) Compliance Test Equipment Used

<u>UNIT</u>	<u>MANUFACTURER</u>	MODEL / SE	RIAL NUMBER	CAL DUE DATE (YY MO DD)	<u>USE</u>
Preamplifier system	TDK RF Solutions	PA-02	080010	03-10-02	Radiated Emissions
Preamplifier	Sonoma	310N/11909A	185831	03-10-02	Radiated Emissions
EMC Analyzer	Agilent	E7405A	US40240226	03-09-21	Radiated Emissions
Universal Radio Communication Tester	Rohde & Schwarz	CMU 200	837493/073	04-04-05	Radiated Emissions
Horn Antenna	TDK	HRN-0118	130092	03-08-14	Radiated Emissions
Horn Antenna	TDK	HRN-0118	030201	03-12-11	Radiated Emissions
Hybrid Log Antenna	TDK	HLP-3003C	17301	03-12-11	Radiated Emissions
Dipole Antenna	Schwarzbeck	VHAP	1006	03-09-12	Radiated Emissions
Dipole Antenna	Schwarzbeck	VHAP	1007	03-09-12	Radiated Emissions
Signal Generator	НР	83630B	3844A00927	04-04-30	Radiated Emissions
Universal Radio Communication Tester	Rohde & Schwarz	CMU 200	100249	04-04-05	Conducted Emissions
Spectrum Analyzer	HP	8563E	3745A08112	03-07-31	Conducted Emissions
DC Power Supply	HP	6632B	US37472170	03-07-31	Conducted Emissions
Temperature Probe	Hart Scientific	61161-302	21352860	03-09-10	Conducted Emissions
Environmental Chamber	ESPEC Corp.	SH-240S1	91005607	N/R	Conducted Emissions


Appendix 1 Page 1 of 10

Test Date: Test Date: July 03 to 14, 2003

Conducted Emission Test Results

This appendix contains measurement data pertaining to conducted spurious emissions, –26 dBc bandwidth, 99% power bandwidth and the channel mask.

Test Setup Diagram

Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer	HP	8563E	374A08112	30 Hz – 26.5 GHz
Splitter	Weinschel	1515	ME092	DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S20W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Universal Radio Communication Tester	Rohde & Schwarz	CMU200	100249	

Appendix 1 Page 2 of 10

Report No. RIM-0025-0307-03 Test Date: Test Date: July 03 to 14, 2003

Conducted Emission Test Data Con't

The conducted spurious emissions – As per 47 CFR 2.202, 47 CFR 2.1057, 47 CFR 24.238 and RSS-133 were measured from 10 MHz to 20 GHz. No emissions could be seen above the noise floor of the spectrum analyzer.

Occupied Bandwidth (99%) and -26 dBc Bandwidth

For the low, middle and high channels, the modulation spectrum was measured by both methods of 99% power bandwidth and -26 dBc bandwidth.

The resolution bandwidth required for out-of-band emissions in the 1 MHz bands immediately outside and adjacent to the frequency block, was determined to be at least 1% of the emission bandwidth.

The worst case -26dBc emission bandwidth for the three channels was measured to be 273 KHz which results in 3.0 kHz resolution bandwidth.

On any frequency outside the frequency block and outside the adjacent 1 MHz bands, a resolution bandwidth of at least 1 MHz was employed.

Test Data for selected Frequencies

PCS Frequency (MHz)	99% Occupied Bandwidth (KHz)	-26dBc Bandwidth (KHz)
1850.2	248	270
1880.0	247	265
1909.8	245	273

Measurement Plots for PCS

Refer to the following measurement plots for more detail.

See Figures 1 to 6 for plots of the Spurious Emission results

See Figures 7 to 12 for the plots of the 99% Occupied Bandwidth and –26 dBc

See Figures 13 to 14 for plots of the channel mask results.

The RF power output was at maximum for all the recorded measurements shown below.

Appendix 1 Page 3 of 10

Test Date: Test Date: July 03 to 14, 2003

Figure 1: Spurious Conducted Emissions, Low channel

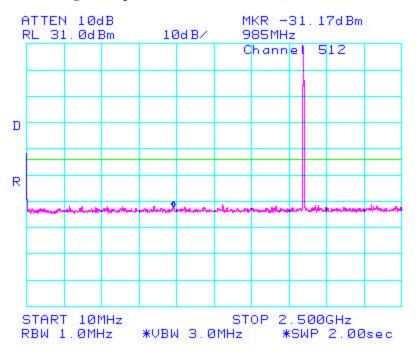
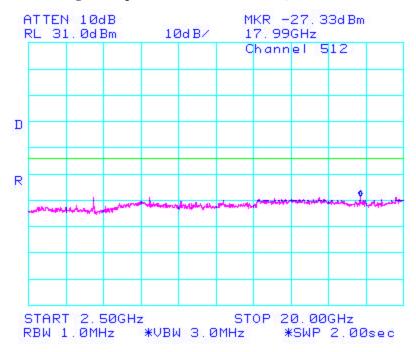



Figure 2: Spurious Conducted Emissions, Low channel

Appendix 1 Page 4 of 10

Test Date: Test Date: July 03 to 14, 2003

Figure 3: Spurious Conducted Emissions, Middle Channel

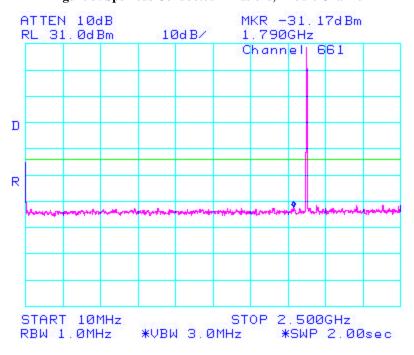
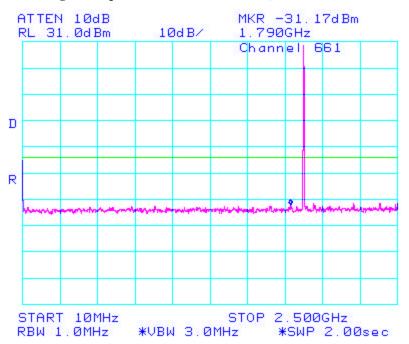



Figure 4: Spurious Conducted Emissions, Middle Channel

Appendix 1 Page 5 of 10

Test Date: Test Date: July 03 to 14, 2003

Figure 5: Spurious Conducted Emissions, High Channel

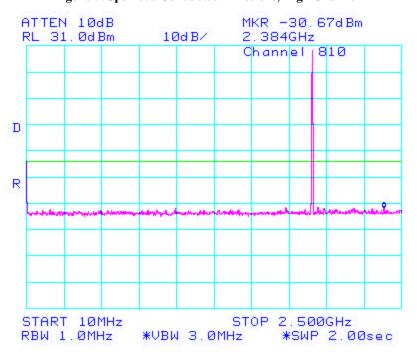
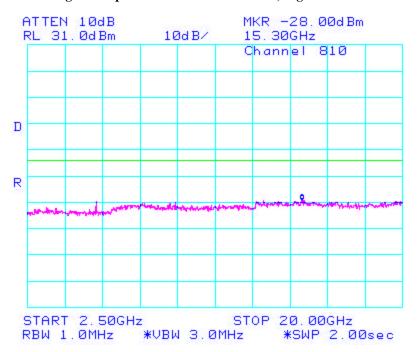



Figure 6: Spurious Conducted Emissions, High Channel

Appendix 1 Page 6 of 10

Test Date: Test Date: July 03 to 14, 2003

Figure 7: -26dBc bandwidth, Low Channel

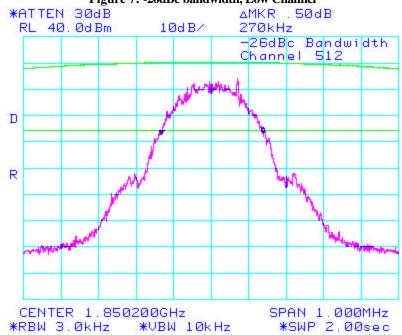
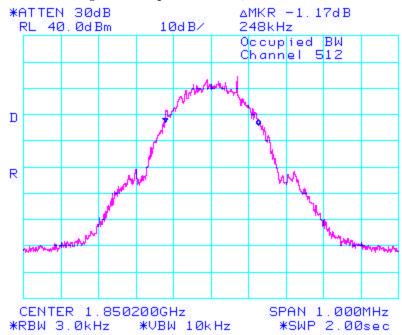



Figure 8: Occupied Bandwidth, Low Channel

Appendix 1 Page 7 of 10

Test Date: Test Date: July 03 to 14, 2003

Figure 9: -26dBc bandwidth, Middle Channel

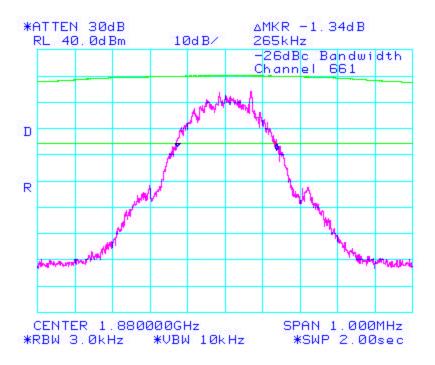
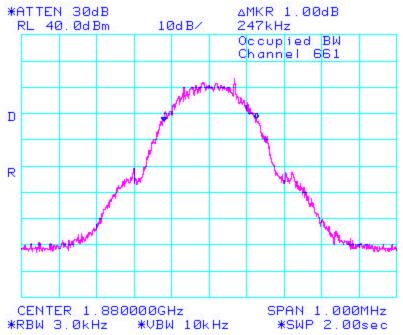



Figure 10: Occupied Bandwidth, Middle Channel

Appendix 1 Page 8 of 10

Test Date: Test Date: July 03 to 14, 2003

Figure 11: -26dBc bandwidth, High Channel

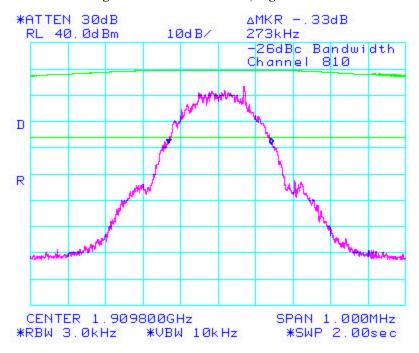
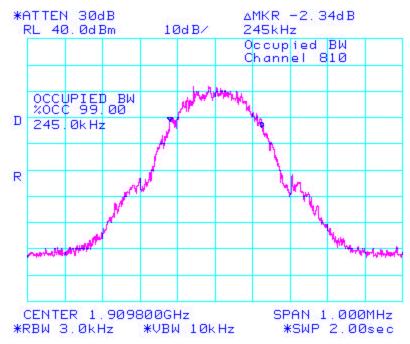
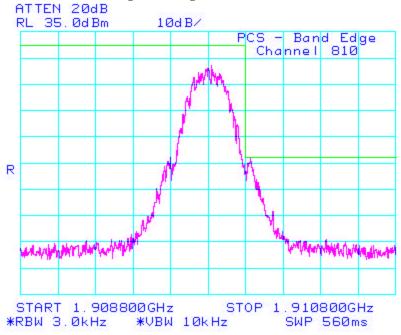



Figure 12: Occupied Bandwidth, High Channel

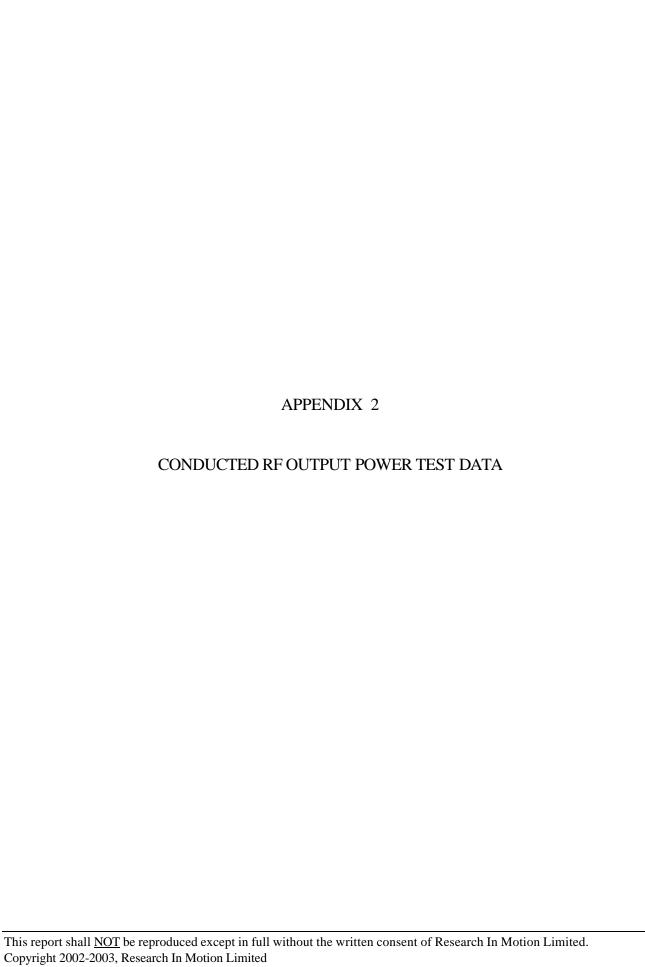

Appendix 1 Page 9 of 10

Test Date: Test Date: July 03 to 14, 2003

Figure 13: Low Channel Mask

Figure 14: High Channel Mask

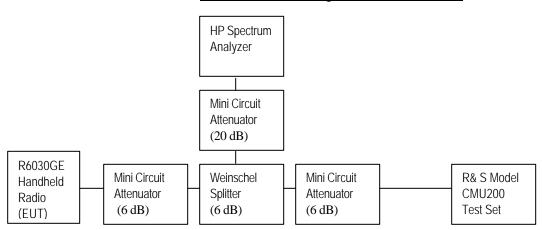
Appendix 1 Page 10 of 10


Report No. RIM-0025-0307-03

Test Date: Test Date: July 03 to 14, 2003

Conducted Emission Test-Setup Photo

FCC CFR 47 Part 24, Subpart E, RSS-133



Appendix 2 Page 1 of 3

Report No. RIM-0025-0307-03 Test Date: Test Date: July 03 to 14, 2003

Conducted RF Output Power Test Data

Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer	HP	8563E	374A08112	30 Hz – 26.5 GHz
Splitter	Weinschel	1515	ME092	DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S20W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Universal Radio Communication Tester	Rohde & Schwarz	CMU200	100249	

Power Output for PCS

At three transmit frequencies the maximum radio output power level was measured using the Spectrum Analyzer. The calibrated insertion loss measured for the attenuator and cable assembly was added to the power measurements which produced the following results.

Test Data Peak nominal output power is 30 dBm for PCS.

	Eraguanay	Measured Peak	Total Correction	Corrected Peak
Channel	Frequency (MHz)	Conducted Power	Factor	Conducted Power
	(MHZ) (dBm)		(dB)	(dBm)
512	1850.2	-2.5	32.7	30.2
661	1880.0	-2.5	32.7	30.2
810	1909.8	-2.8	32.7	29.8

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited

Appendix 2 Page 2 of 3

Test Date: Test Date: July 03 to 14, 2003

Conducted RF Output Power Test Data con't

Figure 01: Channel 512 Peak Power

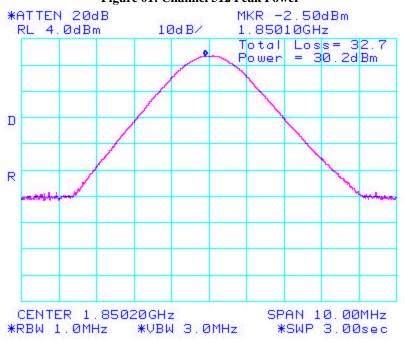
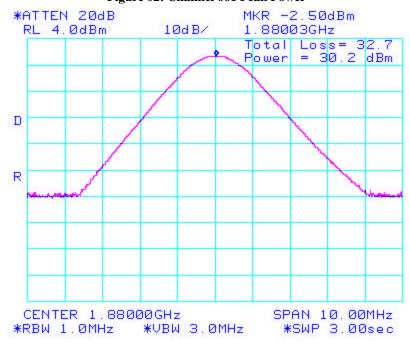
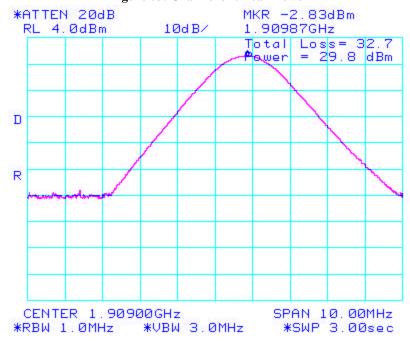
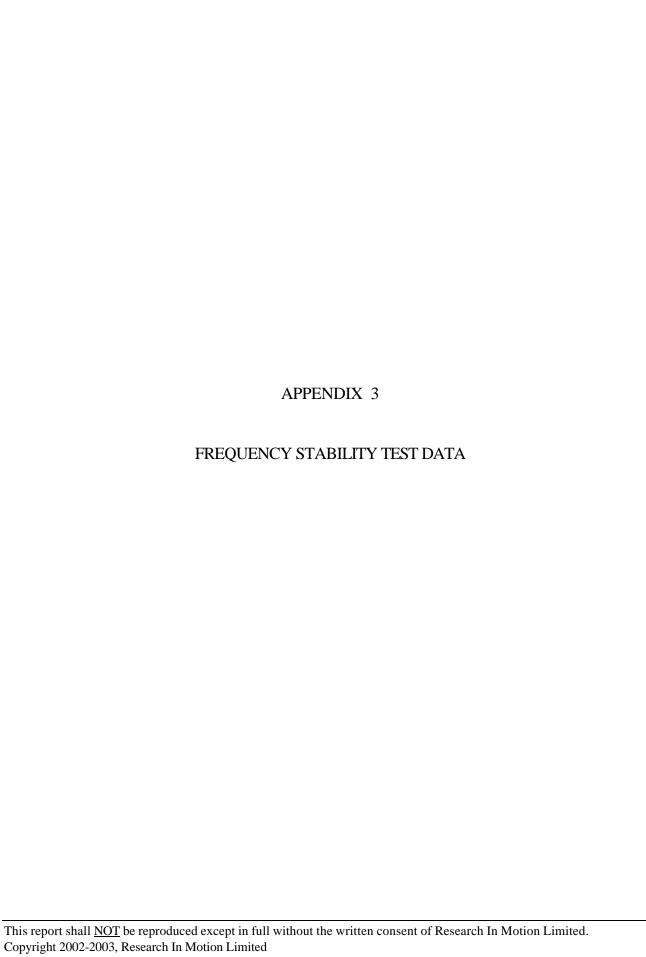



Figure 02: Channel 661 Peak Power

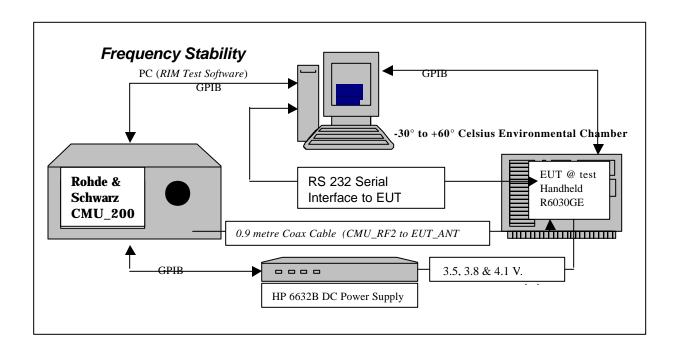

Appendix 2 Page 3 of 3


Test Date: Test Date: July 03 to 14, 2003

Report No. RIM-0025-0307-03

Conducted RF Output Power Test Data con't

Figure 03: Channel 810 Peak Power



Appendix 3 Page 1 of 7

Test Date: July 03 to 14, 2003

Frequency Stability Test Data

SYSTEM	Model	Serial Number	Calibration Due Date.
R & S Universal Radio Communication Test Set	CMU200	100249	05-April-2004
HP System DC Power Supply	6632B	US37472170	31-July-2003
Network Analyzer	HP 8753D	20A80400806	12-Aug-2003
Calibration Kit	HP85033D	3423A02787	28-Sept-2003
Espec Environmental Chamber	SH240S1	91005607	N/A
Hart Temperature Probe	61161-302	21352860	10-Sept-2003

CFR 47 Chapter 1 - Fede ral Communications Commission Rules

24.235 Frequency Stability.

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Appendix 3 Page 2 of 7

Report No. RIM-0025-0307-03 Test Date: July 03 to 14, 2003

The R6030GE handheld, (referred as EUT hereafter) transmitted frequencies are less than 0.1 ppm off the received frequency from the Rhode & Schwarz CMU 200 Universal Radio Communication Test Set. *The R6030GE handheld meets the requirements as stated in CFR 47 chapter 1, Section 24.235 and RSS-133 Frequency Stability.*

Frequency Stability measurement devices were configured as presented in the block diagram recording frequency, power, data, temperatures, and stepped voltages controlled via a GPIB interface linked to the Environmental chamber, a DC power supply, and the Communications Test Set. A 1.9 metre coax cable was calibrated to characterize the insertion loss for the transmitted frequencies between the RF input/output of the CMU 200 and the EUT antenna port; located inside the environmental chamber.

Calibration for the Cable Loss was performed in the RF Laboratory on July 14, 2003.

Procedure:

Full_Two port Calibration of 8720D using the 85033D was completed.

The cable assembly from the RF input to the RF output was measured at the following Frequencies:

PCS Frequency (MHz)	Cable loss (dB)
1850.2	2.67
1880.0	2.67
1909.8	2.67

Procedure:

The EUT was placed in the Temperature chamber and connected to the CMU 200 outside as shown in the figure above. Dry air was pumped inside the temperature chamber to maintain a backpressure during the test. The EUT was kept in the off condition at all times except when the measurements were to be made.

The chamber was switched on and the temperature was set to -30°C.

After the chamber stabilized at -30 °C there was a soak period of one hour to alleviate moisture in the chamber, then the EUT voltage was enabled.

The system software recorded the frequency, power, and associated measurements.

Report No. RIM-0025-0307-03

A Computer system controlled the automated software. This application was given the command of activating all machines intrinsic to the temperature and voltage tests controlling the CMU 200 via the GPIB Bus set to the 1900 PCS band. The Environmental Chamber was instructed through an RS-232 serial line. The EUT dialogue was passed through a serial connection.

The EUT repetitively transmitted 100 bursts for each set of programmed parameters recording temperature, voltage settings, and systematically selected frequencies of 1850.2, 1880.0 & 1909.8 MHz. The power supply was cycled from the minimum voltage of 3.5 volts, to 3.8 volts, and then to 4.1 volts nominal voltage.

The frequency error was measured at a maximum output power of 30 dBm and recorded by the automated system test software.

The EUT output power and frequency was measured at 3.5V, 3.8V, and 4.1VDC. The transmit frequency was varied in 3 steps consisting of 1850.2 MHz, 1880.0 MHz and 1909.8 MHz. This frequency was recorded in MHz and deviation from nominal, in Parts Per Million.

After the initial one-hour soak at the beginning of the test, a period of thirty minutes soak was initialized between each ascending temperature step, before proceeding to the next measurement test cycle.

Procedure:

The test system software for commencing the Frequency Stability Tests carried through the following cycle.

- 1. Switch on the HP 6632B power supply; CMU 200 Communications Test Set, and Environmental Chamber.
- 2. Start test program
- 3. Set the Temperature to –30 degrees Celsius and maintain a period of one- hour soak time, with the EUT supply voltage disabled.
- 4. Set power supply voltage to 3.5 Volts
- 5. Set up CMU 200 Radio Communication Tester
- 6. Command the CMU 200 to switch to 1850.2 MHz
- 7. Enable the voltage to the EUT, and connect a link to the CMU 200 test set
- 8. EUT is commanded to Transmit 100 Bursts
- 9. Software logs the following data from the CMU 200, power supply and temperature chamber: Traffic Channel Number, Traffic Channel Frequency, Power Level, Chamber Temperature, Supply Voltage, Power, Frequency Error.
- 10. The CMU 200 commands the EUT to change frequency to 1880.0 and 1909.8 MHz and repeats steps 7 to 9.
- 11. Repeat steps 5 to 10 changing the supply voltage to 3.8 Volts
- 12. Increase temperature by 10?C and soak for 1/2 hour.
- 13. Repeat steps 4 to 12 for temperatures –30 degrees to 60 degrees Celsius.
- 14. Repeat steps 5 to 10 changing the supply voltage to 4.1 Volts

Procedure 5 to 10 was repeated at room temperature (20?C) with the power supply voltage set to 3.5V, 3.8V, and 4.1 Volts.

Appendix 3 Page 4 of 7

Report No. RIM-0025-0307-03 Test Date: July 03 to 14, 2003

PCS Channel results: 512, 661, & 810 @ 20°C maximum transmitted power

Traffic Channel Number	PCS Frequency (MHz	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	30	3.5	20	32.74	0.0177
661	1880.0	30	3.5	20	27.83	0.0148
810	1909.8	30	3.5	20	39.26	0.0206

Traffic Channel Number	PCS Frequency (MHz	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	30	3.8	20	30.09	0.0163
661	1880.0	30	3.8	20	33.90	0.0180
810	1909.8	30	3.8	20	38.81	0.0203

Traffic Channel Number	PCS Frequency (MHz	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	30	4.1	20	30.03	0.0162
661	1880.0	30	4.1	20	30.61	0.0163
810	1909.8	30	4.1	20	46.10	0.0241

Appendix 3 Page 5 of 7

Report No. RIM-0025-0307-03 Test Date: July 03 to 14, 2003

Channel Results: 512 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	30	3.5	-30	27.51	0.0149
512	1850.2	30	3.5	-20	39.13	0.0211
512	1850.2	30	3.5	-10	64.77	0.0350
512	1850.2	30	3.5	0	30.41	0.0164
512	1850.2	30	3.5	10	24.86	0.0134
512	1850.2	30	3.5	20	32.74	0.0177
512	1850.2	30	3.5	30	18.21	0.0098
512	1850.2	30	3.5	40	-74.90	-0.0405
512	1850.2	30	3.5	50	31.77	0.0172
512	1850.2	30	3.5	60	20.15	0.0109

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	30	3.8	-30	23.31	0.0126
512	1850.2	30	3.8	-20	32.80	0.0177
512	1850.2	30	3.8	-10	85.17	0.0460
512	1850.2	30	3.8	0	16.79	0.0091
512	1850.2	30	3.8	10	26.93	0.0146
512	1850.2	30	3.8	20	30.09	0.0163
512	1850.2	30	3.8	30	28.41	0.0154
512	1850.2	30	3.8	40	-59.73	-0.0323
512	1850.2	30	3.8	50	34.80	0.0188
512	1850.2	30	3.8	60	28.35	0.0153

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
512	1850.2	30	4.1	-30	29.96	0.0162
512	1850.2	30	4.1	-20	38.16	0.0206
512	1850.2	30	4.1	-10	60.44	0.0327
512	1850.2	30	4.1	0	25.05	0.0135
512	1850.2	30	4.1	10	35.84	0.0194
512	1850.2	30	4.1	20	30.03	0.0162
512	1850.2	30	4.1	30	29.77	0.0161
512	1850.2	30	4.1	40	-65.22	-0.0353
512	1850.2	30	4.1	50	30.99	0.0167
512	1850.2	30	4.1	60	22.92	0.0124

Appendix 3 Page 6 of 7

Report No. RIM-0025-0307-03 Test Date: July 03 to 14, 2003

Channel Results: 661 @ maximum transmitted power

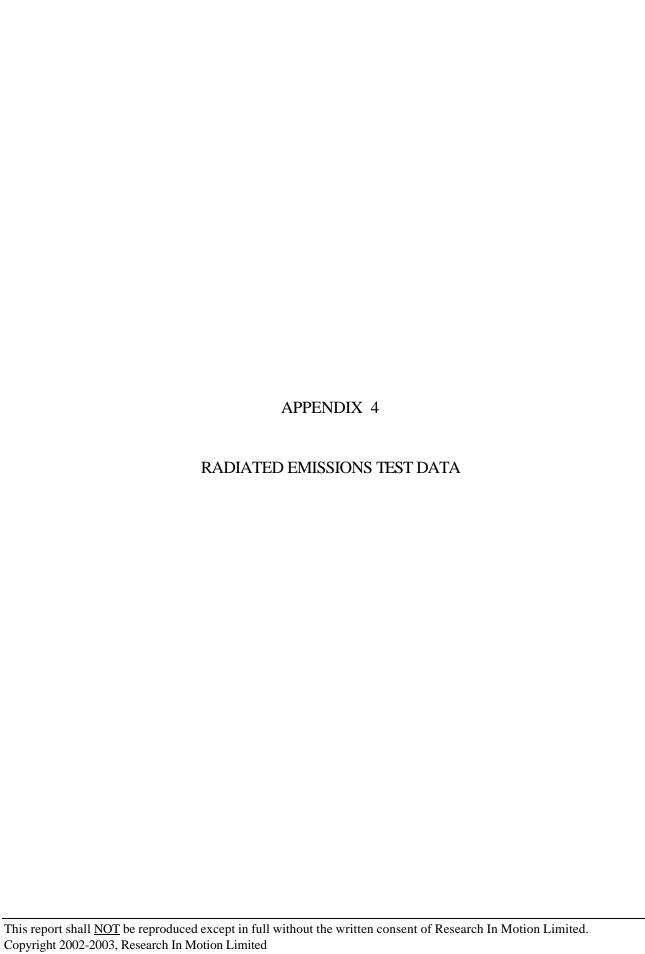
Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
661	1880.0	30	3.5	-30	38.74	0.0206
661	1880.0	30	3.5	-20	45.39	0.0241
661	1880.0	30	3.5	-10	66.32	0.0353
661	1880.0	30	3.5	0	29.44	0.0157
661	1880.0	30	3.5	10	41.07	0.0218
661	1880.0	30	3.5	20	27.83	0.0148
661	1880.0	30	3.5	30	26.22	0.0139
661	1880.0	30	3.5	40	-80.07	-0.0426
661	1880.0	30	3.5	50	35.13	0.0187
661	1880.0	30	3.5	60	20.53	0.0109

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
661	1880.0	30	3.8	-30	44.68	0.0238
661	1880.0	30	3.8	-20	34.29	0.0182
661	1880.0	30	3.8	-10	89.50	0.0476
661	1880.0	30	3.8	0	47.01	0.0250
661	1880.0	30	3.8	10	40.10	0.0213
661	1880.0	30	3.8	20	33.90	0.0180
661	1880.0	30	3.8	30	41.00	0.0218
661	1880.0	30	3.8	40	-41.71	-0.0222
661	1880.0	30	3.8	50	36.10	0.0192
661	1880.0	30	3.8	60	25.96	0.0138

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
661	1880.0	30	4.1	-30	40.03	0.0213
661	1880.0	30	4.1	-20	42.29	0.0225
661	1880.0	30	4.1	-10	74.26	0.0395
661	1880.0	30	4.1	0	35.51	0.0189
661	1880.0	30	4.1	10	49.59	0.0264
661	1880.0	30	4.1	20	30.61	0.0163
661	1880.0	30	4.1	30	32.48	0.0173
661	1880.0	30	4.1	40	-51.40	-0.0273
661	1880.0	30	4.1	50	36.29	0.0193
661	1880.0	30	4.1	60	19.05	0.0101

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited

Appendix 3 Page 7 of 7


Report No. RIM-0025-0307-03 Test Date: July 03 to 14, 2003

Channel Results: 810 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
810	1909.8	30	3.5	-30	26.86	0.0141
810	1909.8	30	3.5	-20	48.43	0.0254
810	1909.8	30	3.5	-10	52.24	0.0274
810	1909.8	30	3.5	0	31.19	0.0163
810	1909.8	30	3.5	10	37.90	0.0198
810	1909.8	30	3.5	20	39.26	0.0206
810	1909.8	30	3.5	30	28.80	0.0151
810	1909.8	30	3.5	40	-53.66	-0.0281
810	1909.8	30	3.5	50	34.68	0.0182
810	1909.8	30	3.5	60	22.86	0.0120

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
810	1909.8	30	3.8	-30	40.49	0.0212
810	1909.8	30	3.8	-20	47.98	0.0251
810	1909.8	30	3.8	-10	93.82	0.0491
810	1909.8	30	3.8	0	39.52	0.0207
810	1909.8	30	3.8	10	41.46	0.0217
810	1909.8	30	3.8	20	38.81	0.0203
810	1909.8	30	3.8	30	37.71	0.0197
810	1909.8	30	3.8	40	-66.90	-0.0350
810	1909.8	30	3.8	50	41.84	0.0219
810	1909.8	30	3.8	60	26.41	0.0138

Traffic Channel Number	Frequency (MHz)	PCL (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
810	1909.8	30	4.1	-30	47.59	0.0249
810	1909.8	30	4.1	-20	43.20	0.0226
810	1909.8	30	4.1	-10	89.82	0.0470
810	1909.8	30	4.1	0	54.95	0.0288
810	1909.8	30	4.1	10	52.04	0.0272
810	1909.8	30	4.1	20	46.10	0.0241
810	1909.8	30	4.1	30	31.96	0.0167
810	1909.8	30	4.1	40	-60.44	-0.0316
810	1909.8	30	4.1	50	27.25	0.0143
810	1909.8	30	4.1	60	21.44	0.0112

Appendix 4 Page 1 of 5

Report No. RIM-0025-0307-03 Test Date: Test Date: July 03 to 14, 2003

Radiated Emissions Test Data Results

Test Distance is 3.0 metres

Substitution Method													
		FUT		D	- h A - 1 -		Ct	A l	T1:				
		EUT	ı	Rec	eive Ante	enna	Spectrum	Analyzer	Trackii	ng Generator			Π
Туре	Ch	Freq (MHz)	Band	Pol.	Туре	Pol.	Reading (dBuV)	Max (V,H) dBuV	Reading (dBm)	Corrected Reading (relative to Isotropic Radiator) (dBm)	Pol.	Limit dBm	Diff to Limit (dB)
PCS	BAN	ID (EIRP) -	Hand	held	, in upi	right	position						
F0	512	1850.2	1900	٧	Horn	V	92.3	92.3	-3.4	28.19	VV	33	-4.81
F0	512	1850.2	1900	V	Horn	Н	78.0		-2.7		НН		
F0	661	1880.0	1900	V	Horn	V	91.3	91.3	-3.8	27.79	VV	33	-5.21
F0	661	1880.0	1900	V	Horn	Н	78.8		-3.1		НН		
F0	810	1909.8	1900	V	Horn	V	91.2	91.2	-4.4	27.39	VV	33	-5.61
F0	810	1909.8	1900	V	Horn	Н	80.6		-3.5		НН		
PCS	BAN	ID (EIRP) -	Hand	held	, on its	s side	Э						
F0	512	1850.2	1900	V	Horn	V	77.8	86.7	-9.0	22.89	VV	33	-10.11
F0	512	1850.2	1900	V	Horn	Н	86.7		-8.0		НН		
F0	661	1880.0	1900	V	Horn	V	78.2	86.6	-8.5	22.99	VV	33	-10.01
F0	661	1880.0	1900	V	Horn	Н	86.6		-7.9		НН		
F0	810	1909.8	1900	V	Horn	V	81.3	87.3	-8.3	23.39	VV	33	-9.61
F0	810	1909.8	1900	V	Horn	Н	87.3		-7.5		НН		
PCS	BAN	ID (EIRP) -	Hand	held	, on its	s bac	:k						
F0	512	1850.2	1900	V	Horn	V	82.0	93.3	-2.4	29.59	VV	33	-3.41
F0	512	1850.2	1900	٧	Horn	Н	93.3		-1.3		НН		
F0	661	1880.0	1900	٧	Horn	V	82.3	92.1	-3.0	28.59	VV	33	-4.41
F0	661	1880.0	1900	٧	Horn	Н	92.1		-2.3		НН		
F0	810	1909.8	1900	V	Horn	٧	83.2	91.2	-4.4	27.39	VV	33	-5.61
F0	810	1909.8	1900	V	Horn	Н	91.2		-3.5		НН		

Appendix 4 Page 2 of 5

Report No. RIM-0025-0307-03

Radiated Emissions Test Data Results con't

Test Date: Test Date: July 03 to 14, 2003

Test distance is 3.0 metres.

										Substitution Met	hod		
EUT				Rec	eive Ante	enna	Spectrum Analyzer		Tracking Generator				
Туре	Ch	Freq (MHz)	Band	Pol.	Туре	Pol.	Reading (dBuV)	Max (V,H) dBuV	Reading (dBm)	Corrected Reading (relative to dipole) (dBm)	Pol.	Limit dBm	Diff to Limit (dB)

PCS BAND (Harmonics) - handheld, in upright position

Low Channel

2nd	512	3700.4	1900	٧	Horn	>	NF		VV	-13	
2nd	512	3700.4	1900	<	Horn	Н	NF		НН		

The harmonics were investigated up to the 10th harmonic.

The harmonic emissions were in the NF

Middle Channel

2nd	661	3760.0	1900	٧	Horn	٧	NF		VV	-13	
2nd	661	3760.0	1900	<	Horn	Η	NF		НН		

The harmonics were investigated up to the 10th harmonic.

The harmonic emissions were in the NF.

High Channel

2nd	810	3819.6	1900	٧	Horn	<	NF	42.3	-47.3	42.5	VV	-13	-29.5
2nd	810	3819.6	1900	٧	Horn	Н	42.3		-46.1		НН		

The harmonics were investigated up to the 10th harmonic.

The harmonic emissions were in the NF

Appendix 4 Page 3 of 5

Report No. RIM-0025-0307-03 Test Date: Test Date: July 03 to 14, 2003

Radiated Emissions Test Results con't

Test Distance was 3.0 metres.

July 09, 2003

The measurements were performed with the handheld in standalone upright position.

									Substitution Method						
		EUT	1	Rx An	tenna	Spectr	um Analy	zer	Tracking Generator						
Туре	Ch	Frequency (MHz)	Band	Туре	Pol.	Reading (dBuV)	Corrected Reading (dBuV)	Max (V,H)	Reading (dBm)	Corrected Reading (relative to dipole)	Pol.	Limit	Diff to Limit (dB)		
PCS	BANI	D (Local O	scillat	or)											
		Oscillator 1		•	mod	e									
Lov	/ Cha	nnal													
F0	512	1930.10	1900	Horn	V	NF	NF					-13			
F0	512	1930.10	1900	Horn	Н	NF	INI					-10			
	L (C)	1													
Hig	n Cna	nnei													
Hig F0	810	1989.70	1900	Horn	V	NF	NF					-13			
			1900 1900	Horn Horn	V H	NF NF	NF					-13			
F0	810	1989.70				+	NF					-13			
F0 F0	810 810	1989.70	1900	Horn		+	NF					-13			
F0 F0	810 810 8 BAN	1989.70 1989.70	1900 Oscillat	Horn	Н	NF						-13			
F0 F0 PCS Trai	810 810 8 BAN	1989.70 1989.70 D (Local C RF Local O	1900 Oscillat	Horn	Н	NF						-13			
F0 F0 PCS Trai	810 810 6 BAN nsmit	1989.70 1989.70 D (Local C RF Local O	1900 Oscillat	Horn	Н	NF						-13			
F0 F0 PCS Trai	810 810 8 BAN nsmit	1989.70 1989.70 D (Local C RF Local O	1900 Oscillat	Horn tor) or 2 (L	Н О) Т	NF	ode								
FO FO	810 810 8 BAN asmit v Cha 512	1989.70 1989.70 D (Local C RF Local O nnel 1423.20	1900 Oscillato Scillato	Horn tor) or 2 (L	Н О) Т V	NF NF	ode								
FO FO	810 810 8 BAN asmit v Cha 512	1989.70 1989.70 D (Local C RF Local O nnel 1423.20	1900 Oscillato Scillato	Horn tor) or 2 (L	Н О) Т V	NF NF	ode								
FO FO	810 810 8 BAN nsmit v Cha 512 512	1989.70 1989.70 D (Local C RF Local O nnel 1423.20 1423.20	1900 Oscillato Scillato	Horn tor) or 2 (L	Н О) Т V	NF NF	ode								
FO FO	810 810 8 BAN asmit v Cha 512	1989.70 1989.70 D (Local C RF Local O nnel 1423.20 1423.20	1900 Oscillato Scillato	Horn tor) or 2 (L	Н О) Т V	NF NF	ode								

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2003, Research In Motion Limited

Appendix 4 Page 4 of 5

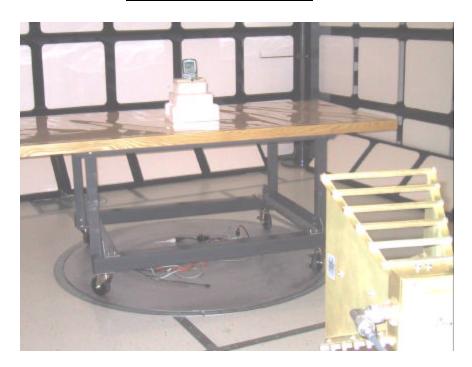
Report No. RIM-0025-0307-03 Test Date: Test Date: July 03 to 14, 2003

Radiated Emissions Test Data con't

Test Distance was 3.0 metres.

July 09, 2003

The measurements were performed with the handheld in standalone upright position.


						Substitution Method							
	EUT					Spectrum Analyzer			Tracking Generator				
Туре	Type Ch Frequency (MHz) Band		Type	Pol.	Reading (dBuV)	Corrected Reading (dBuV)	Max (V,H)	Reading (dBm)	Corrected Reading (relative to dipole)	Pol.	Limit	Diff to Limit (dB)	
	PCS BAND IF Local Oscillator												
LO Cha	annel	661, (1880	MHz)										
TX													
FO	661	854.00	1900	HLP	V	NF	NF				VV	-13	
FO	661	854.00	1900	HLP	Н	NF					НН		

Appendix 4 Page 5 of 5

Test Date: Test Date: July 03 to 14, 2003

Radiated Emissions Test Photo con't

Radiated Emissions at 3.0 metres