2.10 Field Strength of Spurious Radiation (FCC Section 2.1053)

Spurious emissions were evaluated from 30 MHz to 16.2 GHz at an EUT to antenna distance of 1 or 3 meters. The EUT was tested with an external power source and modulated by its own internal sources. Both a low and high channel were tested. The EUT was placed on an open area test site and the spurious emissions tested as stipulated by EIT/TIA-603: 1992 section 2.2.12. Measurements for 30 to 1000 MHz were made with the analyzer's bandwidth set to 120 kHz. Measurements above 1 GHz were made with the analyzer's bandwidth set to 120 kHz. The worse case results are shown in Table 4.

FCC Minimum Standard (FCC Section 25.202(f))

For out-of-band emissions for frequencies removed from the midpoint of the assigned frequency segment by more than 250% of the authorized bandwidth (2.5 MHz), at least

43 + 10 log (P_{Watts}) attenuation below the mean power of the transmitter.

For Lowest Channel = $43 + 10 \log (0.153) = 34.8 \text{ dB}$ For Highest Channel = $43 + 10 \log (0.159) = 35.0 \text{ dB}$

FCC Part 25, Certification

TABLE 4aFIELD STRENGTH OF SPURIOUS RADIATIONAntenna with +4 dBi gain

Limit: $43 + 10 \log (P_{Watts}) = 43 + 10 \log (0.1462) = 34.6 dB$

Worse Case Mode = High Channel			
Frequency (MHz)	Polarity (H or V)	Corrected Substitution Level Relative to Dipole (dBm)	Attenuated Level Below Carrier Power (dB)
3223	V	-34.9	56.5

SAMPLE CALCULATION:

Attenuated Level Below Carrier Power =

10 log (TX Power in mW) – Corrected Substitution Level (dBm) 10 log (146.2) - -34.9 = 56.5

Test Date: June 26, 2003

Tester Name: David Blethen Signature:

FCC Part 25, Certification

TABLE 4b

FIELD STRENGTH OF SPURIOUS RADIATION Antenna with +5.5 dBi gain

Limit: $43 + 10 \log (P_{Watts}) = 43 + 10 \log (0.153) = 34.8 dB$

Channel	Frequency (MHz)	Polarity (H or V)	Corrected Substitution Level Relative to Dipole (dBm)	Attenuated Level Below Carrier Power (dB)
Low	4.83368	V	-53.11	75.0
High	4.85618	Н	-51.86	73.9

All other Harmonic frequencies were below 20 dB of the FCC Limits.

SAMPLE CALCULATION:

Attenuated Level Below Carrier Power = 10 log (TX Power in mW) – Corrected Substitution Level (dBm) 10 log (0.153) –53.11 = 75.0

Test Date: October 1, 2004

Tester Signature: <u>David P. D. Littur</u> Name: <u>David Blethen</u>

FCC Part 25, Certification

2.11 Frequency Stability (FCC Section 2.1055 and 25.202(d))

The frequency tolerance of the carrier signal was measured by while ambient temperature was varied from -30 to 50 degrees centigrade. The frequency tolerance was verified at 10 degree increments. Additionally, the supply voltage was varied from 85% to 115% of the nominal value (except for hand carried, battery powered equipment which was additionally measured at battery endpoint).

FCC Minimum Standard

None

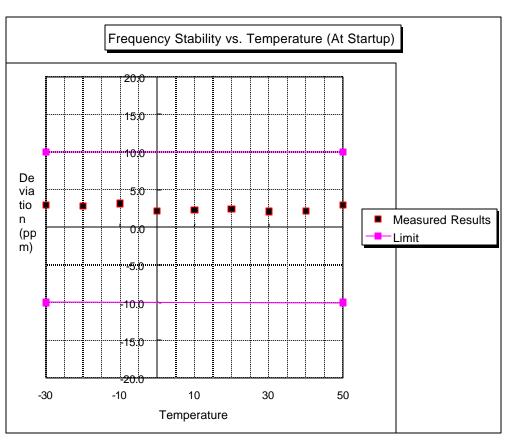
FCC Part 25, Certification

Report Number:04-0017Customer:Axonn, L.L.C.Model:STU

FCC Verification Axonn Model G-SENS STU Frequency Stability vs. Temperature (At Startup)

Temperature (degrees C)	Measured Frequency (MHz)	Deviation (ppm)
-30	1611.254800	3.0
-20	1611.254605	2.9
-10	1611.255092	3.2
0	1611.253494	2.2
10	1611.253762	2.3
20	1611.253917	2.4
30	1611.253370	2.1
40	1611.253438	2.1
50	1611.254805	3.0

Actual TX Frequency was:


1611.250 MHz

Maximum Deviation = 0.001% or 10 ppm

Test Results Reviewed By:

with al

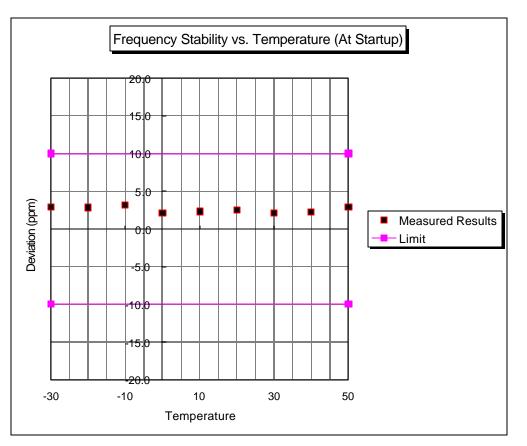
Timothy R. Johnson NARTE Certified Engineer

FCC Part 25, Certification

Report Number:04-0017Customer:Axonn, L.L.C.Model:STU

FCC Verification Axonn Model G-SENS STU Frequency Stability vs. Temperature (2 minutes after startup)

Temperature (degrees C)	Measured Frequency (MHz)	Deviation (ppm)
-30	1611.254700	2.9
-20	1611.254561	2.8
-10	1611.255036	3.1
0	1611.253346	2.1
10	1611.253730	2.3
20	1611.253989	2.5
30	1611.253366	2.1
40	1611.253609	2.2
50	1611.254733	2.9


Actual TX Frequency was: 1611.250 MHz

Maximum Deviation = 0.001% or 10 ppm

Test Results Reviewed By:

with

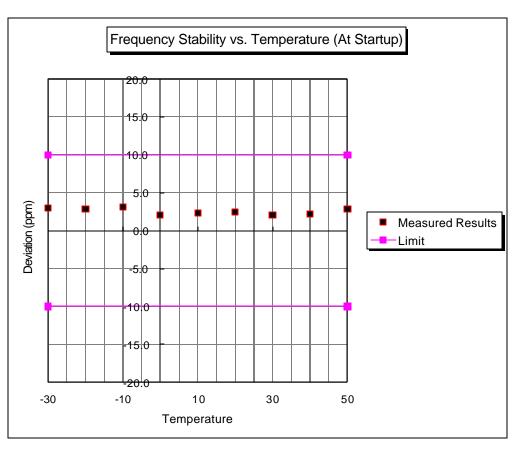
Timothy R. Johnson NARTE Certified Engineer

FCC Part 25, Certification

Report Number:04-0017Customer:Axonn, L.L.C.Model:STU

FCC Verification Axonn Model G-SENS STU Frequency Stability vs. Temperature (5 minutes after startup)

Temperature (degrees C)	Measured Frequency (MHz)	Deviation (ppm)
-30	1611.254900	3.0
-20	1611.254613	2.9
-10	1611.255040	3.1
0	1611.253374	2.1
10	1611.253757	2.3
20	1611.253953	2.5
30	1611.253318	2.1
40	1611.253554	2.2
50	1611.254673	2.9


Actual TX Frequency was: 1611.250 MHz

Maximum Deviation = 0.001% or 10 ppm

Test Results Reviewed By:

with

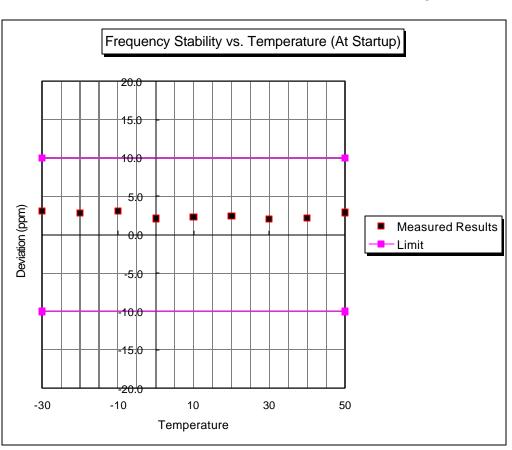
Timothy R. Johnson NARTE Certified Engineer

FCC Part 25, Certification

Report Number:04-0017Customer:Axonn, L.L.C.Model:STU

FCC Verification Axonn Model G-SENS STU Frequency Stability vs. Temperature (10 minutes after startup)

Test Results Reviewed By:


with

Timothy R. Johnson NARTE Certified Engineer

	Measured	
Temperature	Frequency	Deviation
(degrees C)	(MHz)	(ppm)
-30	1611.255050	3.1
-20	1611.254581	2.8
-10	1611.255036	3.1
0	1611.253398	2.1
10	1611.253773	2.3
20	1611.253973	2.5
30	1611.253346	2.1
40	1611.253562	2.2
50	1611.254661	2.9

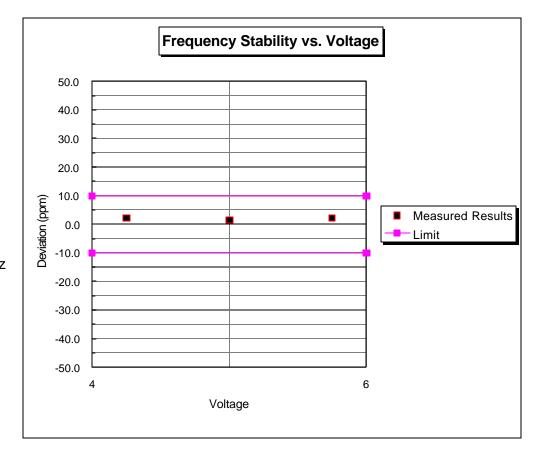
Actual TX Frequency was: 1611.250 MHz

Maximum Deviation = 0.001% or 10 ppm

FCC Part 25, Certification

Report Number:04-0017Customer:Axonn, L.L.C.Model:STU

FCC Verification Axonn Model G-SENS STU Frequency Stability vs. Voltage


Voltage (V DC)	Measured Frequency (MHz)	Deviation (ppm)
4.25	1611.253554	2.2
5	1611.252602	1.6
5.75	1611.253689	2.3

Actual TX Frequency was: 1611.250 MHz

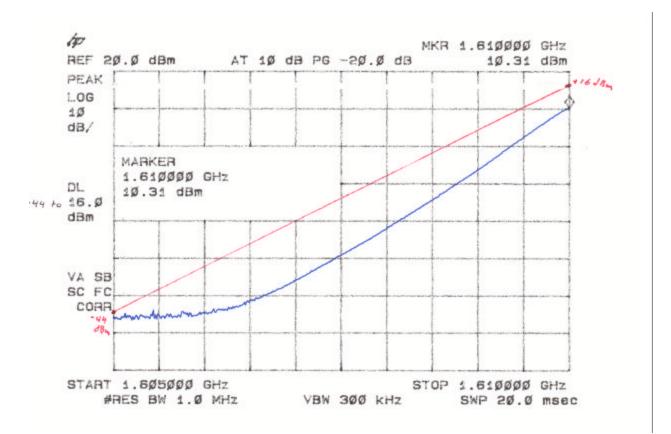
Maximum Deviation = N/A

Test Results Reviewed By: / with Ryl

Timothy R. Johnson NARTE Certified Engineer

2.12 Emissions from Mobile Earth Stations for Protection of Aeronautical Radio Navigation-Satellite Service. (FCC Section 25.216)

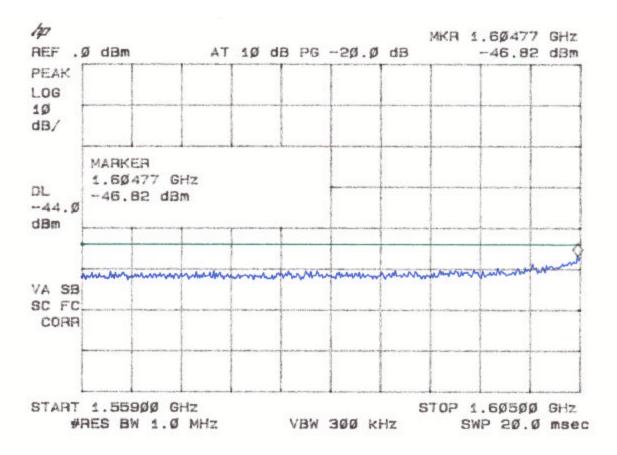
Emissions from the EUT were evaluated from 1559 MHz – 1605 MHz and did not exceed the limit at -70dBW/MHz, averaged over 20 milliseconds.


Emissions from the EUT were evaluated from 1605 MHz – 1610 MHz and did not exceed the limits ranging from –70 dBW/MHz at 1605 MHz to –10 dBW/MHz at 1610 MHz, averaged over 20 milliseconds.

Emissions were measured with a spectrum analyzer by connecting the spectrum analyzer directly via a short cable to the antenna output terminal with the Resolution Bandwidth set to 1 MHz. Results are shown on figures 7a -7c.

Report Number:	04-0017	FCC Part 25, Certification
Customer:	Axonn, L.L.C.	
Model:	STU	

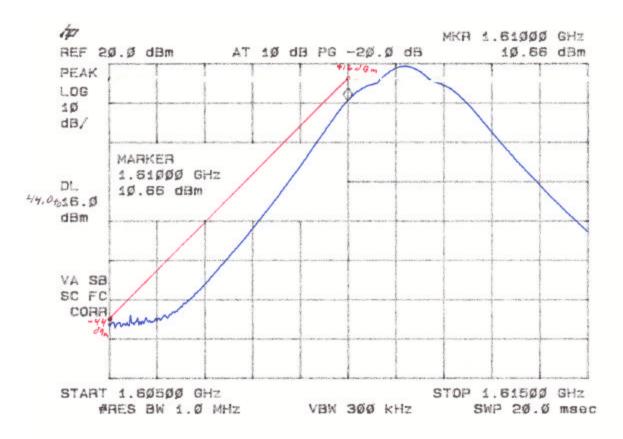
Figure 7a. Emissions from Mobile Earth Stations for Protection of Aeronautical Radio-navigation-Satellite Service


Limit = -70 dBW/ MHz to -10 dBW/MHz + 4 dBi (-44 dBm to +16 dBm)

Part 25, Certification

Report Number:	04-0017	FCC
Customer:	Axonn, L.L.C.	
Model:	STU	

Figure 7b. Emissions from Mobile Earth Stations for Protection of Aeronautical Radio-navigation-Satellite Service



$Limit = -70 \, dBW/MHz + 4 \, dBi \, (-44 \, dBm)$

Report Number:	04-0017	FCC Part 25, Certification
Customer:	Axonn, L.L.C.	
Model:	STU	

Figure 7c. Emissions from Mobile Earth Stations for Protection of Aeronautical Radio-navigation-Satellite Service

Report Number:04-0017Customer:Axonn, L.L.C.Model:STU

FCC Part 25, Certification

SECTION 3

PHOTOGRAPHS

FCC Part 25, Certification

PHOTOS OF THE TESTED EUT

The following photos are attached:

- Photo 1. Front View Test Unit
- Photo 2. Back View Test Unit
- Photo 3. Top View Motherboard and Transmitter
- Photo 4. Motherboard, Bottom Test Unit
- Photo 5. Transmitter, Bottom
- Photo 6. Transmitter, Top

Report Number:04-0017Customer:Axonn, L.L.C.Model:STU

FCC Part 25, Certification

Photo 1.

Front View – Test Unit

Report Number:04-0017Customer:Axonn, L.L.C.Model:STU

FCC Part 25, Certification

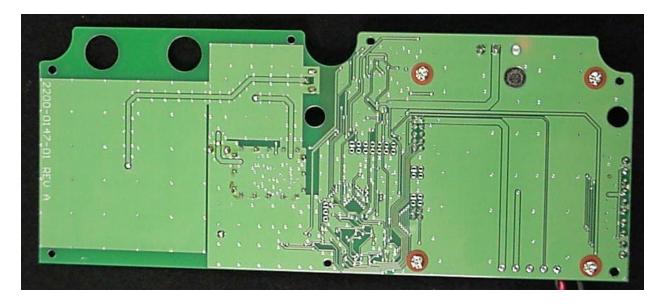
Photo 2.


Back View – Test Unit

Report Number:04-0017Customer:Axonn, L.L.C.Model:STU

FCC Part 25, Certification

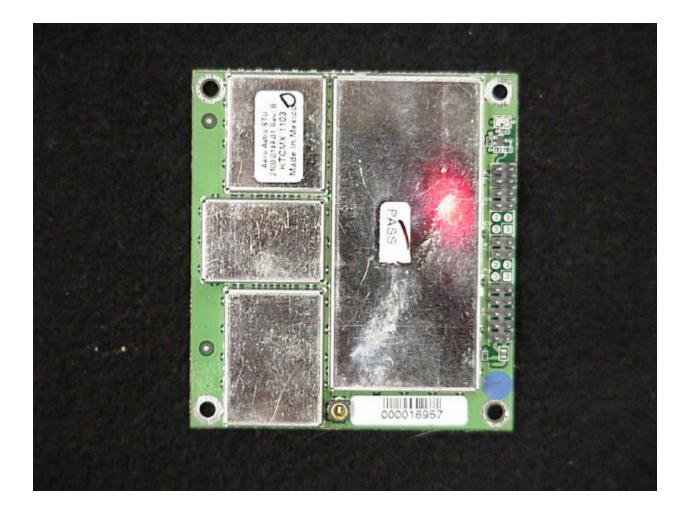
Photo 3. Top View Motherboard and Transmitter



Report Number:04-0017Customer:Axonn, L.L.C.Model:STU

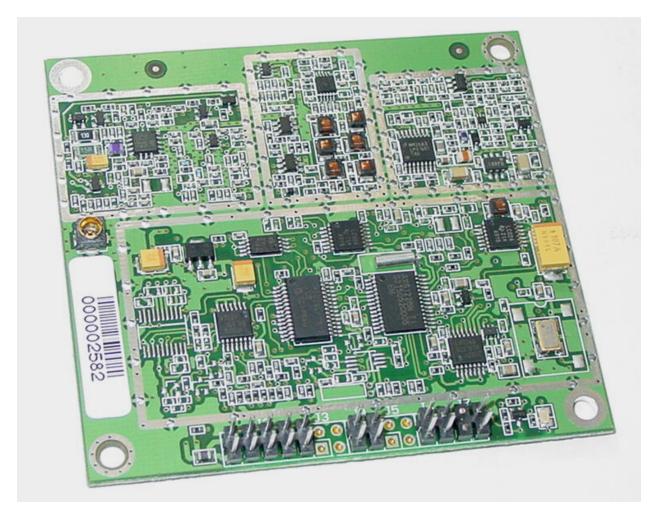
Motherboard, Bottom – Test Unit

FCC Part 25, Certification



Report Number:04-0017Customer:Axonn, L.L.C.Model:STU

Photo 5.


Transmitter, Bottom

FCC Part 25, Certification

Report Number:	04-0017	FCC Part 25, Certification
Customer:	Axonn, L.L.C.	
Model:	STU	

Photo 6. Transmitter, Top

Report Number:04-0017Customer:Axonn, L.L.C.Model:STU

FCC Part 25, Certification

SECTION 4

RF EXPOSURE INFORMATION

4.1 RF Safety Requirements to 2.1091 for Mobile Transmitters

Power Output

The EUT's maximum expected output power as shown in section 2.6 is

Frequency of Fundamental (MHz)	Measurement (dBm)	Measurement (Watt)
1618.60	22.01	0.159

Calculating +5.5 dBi gain antenna (worst case – vs – 4 dBi gain antenna)

0.159 * 5.5 = 0.875 W

Source Based Time Averaging

This information has not been included and the MPE calculations specified below do not take into consideration any duty cycle correction.

MPE Calculations

The limits for this unit (uncontrolled exposure) is 1.0 mW/cm². Taking the RF Density Field Equation:

S = (EIRP in mW)/($4\pi R^2$) and solving for Field Density S

Solving the above equation yields

 $S = (875(mW)/(4*_{\pi}*(20 cm)^2) = 0.174 mW/cm^2$

The device should be installed to maintain 20 cm from humans during use. Information regarding installation and use should be contained in the users manual.