

<u>Test Report Issue Date</u> October 26, 2007 <u>Test Report Serial No.</u> 092707L2V-T855-S25S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.1

RF Exposure Category

General Population

SAR TEST REPORT

	SAR TES	IRE	PORI					
RF EXPOSURE EVALU	JATION		SPECIFIC	ABSOR	PTIC	ON RATE		
APPLICANT			AXON	N, LLC				
PRODUCT	BOD	Y-WOF	RN PERSON	AL TRACKI	NG D	EVICE		
MODEL NAME		SATELLITE PERSONAL TRACKER						
MODELNUMBER		SPT						
IDENTIFIER(S)	FCC ID:	L2V-PT1 IC:			3	3989A-PT1		
APPLICATION TYPE			Certifi	cation				
STANDARD(S) APPLIED			FCC 47 CF	R §2.1093				
OTANDARD(O) AT LIED		He	alth Canada	Safety Coo	le 6			
	FC	COET	Bulletin 65,	Supplemen	t C (0	1-01)		
PROCEDURE(S) APPLIED						n and System MHz-3GHz (01-07)		
			stry Canada		sue 2	_		
FCC DEVICE CLASSIFICATION		-	Broadcast T on Body (TN			47 CFR §25		
IC DEVICE CLASSIFICATION	Hand-Held Sa	tellite	Mobile Earth	n Station (M	IES)	RSS-170		
RF EXPOSURE CATEGORY		General Population / Uncontrolled						
RF EXPOSURE EVALUATION(S)			Body-	-Worn				
TEST REPORT SERIAL NO.		_	092707L2V	-T855-S25S				
TEST REPORT REVISION NO.S	Revision 1.1		rrected Dat		(October 26, 2007		
	Revision 1.0	2. 00	Initial Re			October 23, 2007		
TEST REPORT ISSUE DATE			October					
	Testing By	/	Test Re	· · · · · · · · · · · · · · · · · · ·	ı	Reviewed By		
TEST REPORT SIGNATORIES	Sean Johnsto Celltech Labs		Cheri Fra			nathan Hughes Iltech Labs Inc.		
TEST LAB AND LOCATION	Celltec	h Com	pliance Tes	ting and En	ginee	ring Lab		
TEST LAB AND LOCATION	21-364 Lo	ughee	d Road, Kel	owna, B.C.	V1X 7	R8 Canada		
TEST LAD CONTACT INFO	Tel.: 250	-765-7	650	Fax	x: 250	-765-7645		
TEST LAB CONTACT INFO.	info@cellte	echlab	s.com	www	.cellte	chlabs.com		
TEST LAB ACCREDITATION(S)	ACCREDITED Certificate No. 2470.01							

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	AXONN
Model(s):	Sate	ellite Per	sonal Trac	ker (SPT)	DUT:	Body-worn Po	rsonal Tracking Device	AXONIN	
2007 Celltech Labs Inc. This document is not to be reproduce					d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 1 of 36

Date(s) of	Evaluation
October	10, 2007

<u>Test Report Issue Date</u> October 26, 2007 <u>Test Report Serial No.</u> 092707L2V-T855-S25S

<u>Description of Test(s)</u>

Specific Absorption Rate

RF Exposure Categor

General Population

Test Report Revision No.
Revision 1.1
RF Exposure Category

			COMPLIA E EVALUA						
Test Lab Information	Name	CELLTECH LA	ABS INC.						
Test Lab illiorination	Address	21-364 Loughe	eed Road, Kelow	na, B.C. V1X 7R8 Canad	a				
Analisant Information	Name	AXONN, LLC	AXONN, LLC						
Applicant Information	Address	19349 North 1	2 th Street, Coving	ton, LA 70433 United Sta	ites				
Ctondord(a) Applied	FCC	47 CFR §2.109	47 CFR §2.1093						
Standard(s) Applied	IC	Health Canada Safety Code 6							
Procedure(s) Applied	FCC	OET Application		(01-01) obe Calibration and Systents at 150 MHz - 3 GHz (0					
	IC	RSS-102 Issue	2						
Device Classification(s)	FCC	Licensed Non-	Broadcast Trans	mitter Worn on Body (TN	T) 47 CFR §25				
Device Classification(s)	IC	Satellite Mobile	e Earth Stations (MES)	RSS-170 Issue 1				
Device RF Exposure Category	Portable	General Population / Uncontrolled Environment							
	FCC ID:	L2V-PT1							
	IC:	3989A-PT1							
Device Identifier(s)	Model Name	Satellite Personal Tracker							
	Model No.	SPT							
	Serial No.	007340046 (Pi	roduction Unit)						
Device Description	Body-worn Pers	onal Tracking De	evice						
Modulation Type(s)	CDMA (DSSS)								
Transmit Frequency Range(s)	1611.25 - 1618.	75 MHz (Globals	star Satellite Ban	d)					
Max. RF Output Power Tested	12.2 dBm	16.6 mW	EIRP	Channel B	1613.75 MHz				
Antenna Type(s) Tested	Integral								
Battery Type(s) Tested	Energizer Lithiu	m-ion	1.5V, 3000mAl	า	AA (x2)				
Body-Worn Accessories Tested	Belt-Clip		Plastic with Me	tal Screw	P/N: None				
Audio Accessories Tested	None		Device does no	ot support audio operation	IS				
Max. SAR Level(s) Evaluated	Body-worn	0.016 W/kg	1g average	Front Side of DUT wit	h Lanyard Accessory				
ANSI/IEEE Safety Limit (C95.1)	Body-worn	1.6 W/kg	1g average	General Population / U	Incontrolled Exposure				

Celltech Labs Inc. declares under its sole responsibility that this wireless device was compliant with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6 for the General Population / Uncontrolled Exposure environment. The device was tested in accordance with the measurement procedures specified in FCC OET Bulletin 65, Supplement C (01-01), FCC OET Application Note - SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz (01-07) and Industry Canada RSS-102 Issue 2. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Test Report Approved By

Sean Johnston

Celltech Labs Inc.

Company:	Axonn, L	LC FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz		
Model(s):	Satellite	e Personal Trad	ker (SPT)	DUT:	Body-worn Po	ersonal Tracking Device	<		
2007 Celltech La	1007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								

Test Report Issue Date October 26, 2007

Test Report Serial No. 092707L2V-T855-S25S

Description of Test(s) Specific Absorption Rate Test Report Revision No. Revision 1.1 RF Exposure Category

General Population

ilac-MRA Certificate No. 2470.01

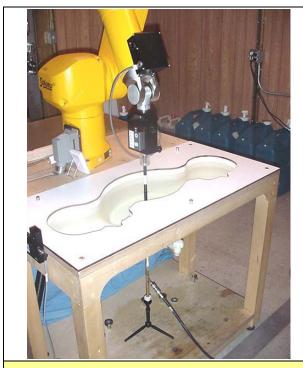
TABLE OF CONTENTS	
1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	4
3.0 MEASUREMENT SUMMARY	5
4.0 DETAILS OF SAR EVALUATION	6
5.0 EVALUATION PROCEDURES	6
6.0 SYSTEM PERFORMANCE CHECK	7
7.0 SIMULATED EQUIVALENT TISSUES	8
8.0 SAR SAFETY LIMITS	8
9.0 ROBOT SYSTEM SPECIFICATIONS	
10.0 PROBE SPECIFICATIONS	10
11.0 SAM PHANTOM V4.0C	10
12.0 DEVICE HOLDER	10
13.0 TEST EQUIPMENT LIST	11
14.0 MEASUREMENT UNCERTAINTIES	12
MEASUREMENT UNCERTAINTIES (Cont.)	13
15.0 REFERENCES	14
APPENDIX A - SAR MEASUREMENT DATA	15
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	20
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	25
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	27
APPENDIX E - SYSTEM VALIDATION	34
APPENDIX F - PROBE CALIBRATION	35
ADDENDIVIC CAM DUANTOM CEDTIFICATE OF CONFORMITY	26

Company:	Axon	onn, LLC FCC ID: L2V-PT1		IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN				
Model(s):	Sate	ellite Per	sonal Tracl	ker (SPT)	DUT:	Body-worn Po	Body-worn Portable Personal Tracking Device					
2007 Celltech Labs Inc. This document is not to be reproduce					d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 3 of 36			

<u>Test Report Issue Date</u> October 26, 2007 Test Report Serial No. 092707L2V-T855-S25S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.1

RF Exposure Category
General Population



1.0 INTRODUCTION

This measurement report demonstrates that the AXONN, LLC Body-worn Satellite Personal Tracker complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]) and IC RSS-102 Issue 2 (see reference [4]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 System with SAM Phantom and validation dipole

DASY4 System with SAM Phantom and device holder

Company:	Axonr	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	AXONN		
Model(s):	Sate	llite Per	sonal Trac	ker (SPT)	DUT:	Body-worn Po	Body-worn Portable Personal Tracking Device				
2007 Celltech La	abs Inc.	This doc	ument is not to	o be reproduced	d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 4 of 36		

October 26, 2007

092707L2V-T855-S25S Test Report Issue Date Description of Test(s)

Test Report Serial No.

Specific Absorption Rate

Test Report Revision No. Revision 1.1

RF Exposure Category **General Population**

3.0 MEASUREMENT SUMMARY

				BODY-W	ORN S	AR EVALU	JA	TION F	RESULTS						
Freq.	Chan.	Test Mode	Antenna Position	Batt Tyj		Access	ori	es	DUT Position to Planar Phantom	Refer Out Pov (Elf	put ver	put Drift ver During		Measured SAR	
MHz						Body-Worn	S	Spacing	Phantom	dBm	mW	dB	W/	/kg	
1613.75	Mid (B)	DSSS	Internal	Energizer	Lithium	Lanyard		0.0 cm	Front Side	12.2	16.6	-0.018 ⁴	0.016	1g	
1613.75	Mid (B)	DSSS	Internal	Energizer	Lithium	Lanyard		0.0 cm	Back Side	12.2	16.6	_5 	0.005	Peak ³	
1613.75	Mid (B)	DSSS	Internal	Energizer	Lithium	Belt-Clip		0.5 cm	Back Side	12.2	16.6	5	0.004	Peak ³	
ANSI / IEE	EE C95.1: 2	2005 - SAF	ETY LIMIT	BODY:	1.6 W/kg (averaged ove	r 1	gram)	Uncon	trolled E	Spatia xposur	l Peak e / Genera	l Populati	ion	
Te	est Date(s)			Octobe	r 10, 2007			Rel	lative Humidi	ty		41		%	
				1610 N	IHz Body	_		Atmo	spheric Pres	sure		102.5		kPa	
Diele	ctric Const ε _r	tant	Interpolate	d Target ⁹	Measure	d Deviatio	n	Ambi	ient Tempera	ture		24.5		°C	
			53.8	± 5%	51.8	-3.7%		Flui	id Temperatu	re		22.9		°C	
	onductivity	,	Interpolate	d Target ⁹	Measure	d Deviatio	n		Fluid Depth			≥ 15		cm	
	s (mho/m)		1.40	± 5% 1.34 -4.3% ρ (Kg/m³) 1000											
			1.	The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low								orted in			
			2.			as optional (pe									
	Note(s)			the area s evaluation value at the surface ass the surface level, the z extrapolation area scan in the average	can. The is less that is less that is surface sumes a city. When the community of the community reported is reported in limit. The	ured and report and a second and a second and a second a	SAR y av m s .e. f of a s le ately s 1g s u	R is not moverage limited and SAR the SAR was device is eading away estimated averaged uncertainties.	neasured whe it. The mathe values meas values gradua s so low that the ay from the si e the 1g avera d SAR value w	en the permatical formatical form	eak SAF formula 5 mm s ease as bise leve e no lor There the pea	R value froused to extend the probe relation to compete a curvifore the peak values ar	m the are rapolate to g away for a away for a away for a away and a away for	ea scan he SAR rom the ay from he SAR and the rom the n 1% of	
			4.	The power start power		DUT measure	ed I	by the DA	SY4 system o	during the	e SAR e	valuation w	/as <5% f	rom the	
			5.	with low S	AR. The r	DUT during the casulting drift was ment noise floor	/alu	ies were i	naccurate du	e to the					
			6.			fully charged p									
			7.	remained v	vithin +/-2°	e was measur C of the fluid to	emp	erature re	eported during	the diele	ectric pa	rameter me	asuremer	nts.	
			8.		•	ters of the sim and a Network					ed prior t	to the SAR	evaluatior	ns using	
				The dielectric properties listed in FCC OET Bulletin 65, Supplement C are specified within the frequency range of 150 MHz and 5800 MHz at certain frequencies. In the dielectric property measurement software program (Aprel) the dielectric properties specified were derived by interpolation method using linear model.							oftware				
			10.	The SAR e	valuations	were performe	ed v	vithin 24 h	ours of the sy	stem per	formand	e check.			

Company:	Axon	onn, LLC FCC ID: L2V-PT1		IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN	
Model(s):	Sate	ellite Per	sonal Tracl	ker (SPT)	DUT:	Body-worn Po	AXONIN		
2007 Celltech Labs Inc. This document is not to be reproduce					d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 5 of 36

Test Report Issue Date October 26, 2007

Test Report Serial No. 092707L2V-T855-S25S

Description of Test(s)

Specific Absorption Rate

RF Exposure Category **General Population**

Test Report Revision No.

Revision 1.1

4.0 DETAILS OF SAR EVALUATION

The AXONN, LLC Body-worn Satellite Personal Tracker (SPT) was compliant for localized Specific Absorption Rate (Uncontrolled Exposure) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix D.

Test Configuration(s)

- The DUT was tested for body-worn SAR with the front side of the device placed parallel to, and touching, the outer surface of the SAM phantom (planar section) utilizing the lanyard accessory attached to the DUT.
- The DUT was tested for body-worn SAR with the back side of the device placed parallel to, and touching, the outer surface of the SAM phantom (planar section) utilizing the lanyard accessory attached to the DUT (belt-clip removed).
- The DUT was tested for body-worn SAR with the back side of the device placed parallel to, and touching, the outer surface of the SAM phantom (planar section). The attached belt-clip accessory provided a 0.5 cm spacing from the back of the DUT to the SAM phantom (planar section).

Power Setting(s) & Test Mode(s)

- The conducted power level(s) of the DUT could not be measured for the SAR evaluation due to integral antenna. The DUT was evaluated for SAR at the maximum conducted output power level preset by the manufacturer.
- The output power levels (EIRP) referenced in this report were measured by US Technologies prior to the SAR 5.
- 6. The DUT was tested with a modulated DSSS signal in continuous transmit operation at 100% duty cycle.
- The DUT was set to the channel tested by adjusting the DIP switch settings on the internal transmitter module.
- The power drift of the DUT during the SAR evaluations was measured by the DASY4 system.

Test Conditions

- The fluid temperature was measured prior to and after the SAR evaluations to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.
- The dielectric parameters of the simulated tissue mixture were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).

5.0 EVALUATION PROCEDURES

- (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans. A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Company:	Axon	nn, LLC FCC ID: L2V-PT1		IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN				
Model(s):	Sate	Ilite Per	sonal Trac	ker (SPT)	DUT:	Body-worn Po	Body-worn Portable Personal Tracking Device					
2007 Celltech Labs Inc. This document is not to be reproduce					d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 6 of 36			

Note(s)

Date(s) of Evaluation October 10, 2007

Test Report Issue Date
October 26, 2007

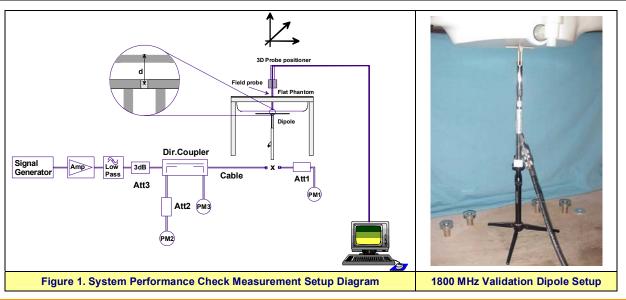
Test Report Serial No. 092707L2V-T855-S25S Description of Test(s)

Specific Absorption Rate

RF Exposure Category
General Population

Test Report Revision No.

Revision 1.1


6.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations of the test device, five measurements were made using the SAM phantom (planar section) with an 1800 MHz dipole using 1640 MHz calibrated probe conversion factor in order to establish a mean SAR value as reported in the table below (see Appendix B for evaluation results and test plots). The dielectric parameters of the simulated tissue mixture were measured prior to the five measurements using a Dielectric Probe Kit and a Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of ±15% from the system validation target SAR value (see Appendix E for system validation procedures).

				SYSTEM	PERF	DRMANCE (CHECK EV	ALUATIO	NS				
Toet	Tissue	Dipole	System Validation	SAR 1 (W/kg	Dropo		Probe Conversion	Dielectr	ic Consta ε _r	ant	Conductivity σ (mho/m)		
Test Date	Freq.	Freq.	Target SAR	Mean Value	Dev. Frequency MHz	Factor	1610 MHz Body			1610 MHz Body			
	MHz	MHz	W/kg (1g)	Measured		MHz	Body	Target	Meas.	Dev.	Target	Meas.	Dev.
Oct-10	1610 1800	1800	10.5 ±15%	9.47	-9.8%	9.8% 1640 ±50MHz	4.7	53.8 ±10%	51.8	-3.7%	1.40 ±10%	1.34	-4.3%
	Body	1000	10.0 11376		5.570			Interpolated ³			Interpolated ³		

- 1. The system performance check evaluations were performed according to the procedure referred to as <u>alternative system verification method B</u> of FCC OET Application Note SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz 3 GHz (see reference [7]). The measured mean SAR value reported is the mean SAR value of the five measurements performed (see Appendix B).
- 2. The target SAR value reported is established from the System Validation procedure performed by Celltech Labs Inc. (see Appendix E).
- 3. The target dielectric parameters reported are the tissue dielectric parameters required at the frequency of the test device (1610 MHz). The dielectric properties listed in FCC OET Bulletin 65, Supplement C are specified within the frequency range of 150 MHz and 5800 MHz at specific frequencies. In the dielectric property measurement software program (Aprel) used by Celltech Labs the dielectric properties specified were derived by interpolation method using linear model.
- 4. The tissue dielectric parameters measured at the dipole frequency (1800 MHz) were within ±10% required at that frequency (see Appendix C).
- 5. The fluid temperature was measured prior to and after the SAR evaluations to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.
- 6. The SAR evaluations of the test device were performed within 24 hours of the system performance check.

Measurement Conditions								
Ambient Temperature Fluid Temperature Barometric Pressure Humidity ρ (Kg/m³) Fluid Depth								
24.5°C	22.9°C	102.5 kPa	41%	1000	≥ 15 cm			

Company:	Axon	nn, LLC FCC ID: L2V-PT1		IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	AYONIN
Model(s):	Satellite Personal Tracker (SPT)			DUT:	Body-worn Portable Personal Tracking Device			
2007 Celltech Labs Inc. This document is not to be reproduced				d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 7 of 36

Date(s) of	Evaluation
October	10, 2007

<u>Test Report Issue Date</u> October 26, 2007 Test Report Serial No. 092707L2V-T855-S25S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.1

RF Exposure Category

General Population

7.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue mixture consisted of Glycol-monobutyl, water, and salt. The fluid was prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

SIMULATED TISSUE MIXTURE								
INGREDIENT	1610/1800 MHz Body							
Water	70.17 %							
Glycol Monobutyl	29.43 %							
Salt	0.40 %							

8.0 SAR SAFETY LIMITS

	SAR (R (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	XONN
Model(s):	Sate	tellite Personal Tracker (SPT)			DUT:	Body-worn Po	rsonal Tracking Device		
2007 Celltech Labs Inc. This document is not to be reproduced				d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 8 of 36	

<u>Test Report Issue Date</u> October 26, 2007 <u>Test Report Serial No.</u> 092707L2V-T855-S25S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.1

RF Exposure Category

General Population

9.0 ROBOT SYSTEM SPECIFICATIONS

<u>Specifications</u>						
Positioner	Stäubli Unimation Corp. Robot Model: RX60L					
Repeatability	0.02 mm					
No. of axis	6					
Data Acquisition Electronic (DAE) System					
Cell Controller						
Processor	AMD Athlon XP 2400+					
Clock Speed	2.0 GHz					
Operating System	Windows XP Professional					
<u>Data Converter</u>						
Features	Signal Amplifier, multiplexer, A/D converter, and control logic					
Software	Measurement Software: DASY4, V4.7 Build 44					
Contware	Postprocessing Software: SEMCAD, V1.8 Build 171					
Connecting Lines	Optical downlink for data and status info.; Optical uplink for commands and clock					
DASY4 Measurement Server						
Function	Real-time data evaluation for field measurements and surface detection					
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM					
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface					
E-Field Probe						
Model	ET3DV6					
Serial No.	1387					
Construction	Triangular core fiber optic detection system					
Frequency	10 MHz to 6 GHz					
Linearity	±0.2 dB (30 MHz to 3 GHz)					
Phantom(s)						
Туре	SAM V4.0C					
Shell Material	Fiberglass					
Thickness	2.0 ±0.1 mm					
Volume	Approx. 25 liters					

Company:	Axon	nn, LLC FCC ID: L2V-PT1		IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN	
Model(s):	Sate	Satellite Personal Tracker (SPT)			DUT:	Body-worn Portable Personal Tracking Device			AXONIN
2007 Celltech Labs Inc. This document is not to be reproduced				d in whole or	in part without the pr	rior written p	ermission of Celltech Labs Inc.	Page 9 of 36	

October 26, 2007

Test Report Issue Date Description of Test(s)

Test Report Serial No. 092707L2V-T855-S25S

Specific Absorption Rate

RF Exposure Category **General Population**

Test Report Revision No.

Revision 1.1

Certificate No. 2470.01

10.0 PROBE SPECIFICATIONS

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy \pm 8%)

10 MHz to > 6 GHz; Linearity: ± 0.2 dB Frequency:

(30 MHz to 3 GHz)

Directivity: \pm 0.2 dB in brain tissue (rotation around probe axis)

 \pm 0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range: $5 \mu W/g$ to > 100 mW/g; Linearity: \pm 0.2 dB

 \pm 0.2 mm repeatability in air and clear liquids over Surface Detect:

diffuse reflecting surfaces

Dimensions: Overall length: 330 mm

> Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

General dosimetry up to 3 GHz Application:

Compliance tests of mobile phone

ET3DV6 E-Field Probe

11.0 SAM PHANTOM V4.0C

The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix G for specifications of the SAM phantom V4.0C).

SAM Phantom V4.0C

12.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	XONN
Model(s):	Sate	atellite Personal Tracker (SPT)			DUT:	Body-worn Po	Body-worn Portable Personal Tracking Device		
2007 Celltech Labs Inc. This document is not to be reproduced					d in whole or	in part without the n	rior written n	ermission of Celltech Labs Inc	Page 10 of 36

<u>Test Report Issue Date</u> October 26, 2007 Test Report Serial No. 092707L2V-T855-S25S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.1

RF Exposure Category

General Population

13.0 TEST EQUIPMENT LIST

	TEST EC	QUIPMENT	ASSET NO.	SERIAL NO.		ATE	CALIBRATION
USED	DI	ESCRIPTION	ACCET NO.	OLIVIAL NO.	CALII	BRATED	DUE DATE
х	Schmid & I	Partner DASY4 System	-	-		-	-
х	-DASY4	Measurement Server	00158	1078		N/A	N/A
х		-Robot	00046	599396-01	N/A		N/A
х		-DAE4	00019	353	10Jul07		10Jul08
		-DAE3	00018	370	13	Mar07	13Mar08
Х	-ET3I	DV6 E-Field Probe	00016	1387	16	Mar07	16Mar08
	-EX3I	DV4 E-Field Probe	00213	3600	24	Jan07	24Jan08
	-300 MI	Hz Validation Dipole	00023	135	08	Jun07	08Jun08
	-450 MI	Hz Validation Dipole	00024	136	30	Jul07	30Jul08
	925 M	Hz Validation Dinala	00022	411	Brain	07Jun07	07Jun08
	-033 1011	Hz Validation Dipole		411	Body	07Jun07	07Jun08
	000 MI	Hz Validation Dipole	00020	054	Brain	07Jun07	07Jun08
	-900 1011	nz validation Dipole	00020		Body	07Jun07	07Jun08
	1900 M	IHz Validation Dipole	00021	247	Brain	06Jun07	06Jun08
Х	- 1000 10	Inz validation Dipole	00021	247	Body	10Oct07	-
	-1900 M	IHz Validation Dipole	00032	151	Brain	06Jun07	06Jun08
	-1900 10	ii iz validation Dipole	00032	151	Body	06Jun07	06Jun08
	-2450 M	IHz Validation Dipole	00025	150	Brain	16Jul07	16Jul08
	-2430 IV	ii iz validation Dipole	00023	150	Body	08Jun07	08Jun08
		-5200 MHz			Body	18May07	18May08
	5GHz Validation	-5500 MHz	00126	1031	Body	22May07	22May08
	Dipole	-5800 MHz	00120	1031	Brain	09May07	09May08
		-3000 WII 12			Body	10May07	10May08
х	-SAN	/I Phantom V4.0C	00154	1033	N/A		N/A
	-Bars	ki Planar Phantom	00155	03-01	N/A		N/A
	-Plexiglas	Side Planar Phantom	00156	161		N/A	N/A
	-Plexiglas V	alidation Planar Phantom	00157	137		N/A	N/A
	ALS-PR-D	IEL Dielectric Probe Kit	00160	260-00953		N/A	N/A
х	HP 85070	OC Dielectric Probe Kit	00033	US39240170		N/A	N/A
Х	Gigatronio	cs 8652A Power Meter	00007	1835272	26	Mar07	26Mar08
	Gigatronio	cs 8652A Power Meter	80000	1835267	22	Jan07	22Jan08
х	Gigatronics	80701A Power Sensor	00012	1834350	22	Jan07	22Jan08
х	Gigatronics	8 80701A Power Sensor	00014	1833699	22	Jan07	22Jan08
	Gigatronics	80701A Power Sensor	00109	1834366	26	Mar07	26Mar08
х	HP 8753	ET Network Analyzer	00134	US39170292	20	Apr07	20Apr08
	HP 864	8D Signal Generator	00005	3847A00611	١	NCR	NCR
х	Rohde & Schwa	arz SMR20 Signal Generator	00006	100104	1	NCR	NCR
x	Amplifier Resea	arch 5S1G4 Power Amplifier	00106	26235	1	NCR	NCR
	Amplifier Researc	ch 10W1000C Power Amplifier	00041	27887	1	NCR	NCR
	Nextec NB00	383 Microwave Amplifier	00151	0535	1	NCR	NCR
	HP E4408	BB Spectrum Analyzer	00015	US39240170	05	Feb07	05Feb08

Company:	Axon	nn, LLC FCC ID: L2V-PT1		IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	AXONN	
Model(s):	Sate	Satellite Personal Tracker (SPT)			DUT:	Body-worn Portable Personal Tracking Device			
2007 Celltech Labs Inc. This document is not to be reproduced				d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 11 of 36	

<u>Test Report Issue Date</u> October 26, 2007 <u>Test Report Serial No.</u> 092707L2V-T855-S25S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.1

RF Exposure Category
General Population

14.0 MEASUREMENT UNCERTAINTIES

U	NCERTAINT	Y BUDGET FOR	DEVICE EVAL	UATION		
Error Description	Uncertainty Value ±%	Value Propability		ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (1640 MHz)	7.0	Normal	1	1	7.0	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	0.7	1.9	∞
Spherical isotropy of the probe	9.6	Rectangular	1.732050808	0.7	3.9	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	∞
Boundary effects	8.2	Rectangular	1.732050808	1	4.7	∞
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞
Detection limit	1	Rectangular	1.732050808	1	0.6	∞
Readout electronics	0.3	Normal	1	1	0.3	∞
Response time	0.8	Rectangular	1.732050808	1	0.5	∞
Integration time	2.6	Rectangular	1.732050808	1	1.5	∞
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Test Sample Related						
Device positioning	2.9	Normal	1	1	2.9	12
Device holder uncertainty	3.6	Normal	1	1	3.6	8
Power drift	5	Rectangular	1.732050808	1	2.9	∞
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid conductivity (measured)	4.3	Normal	1	0.64	2.8	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	3.7	Normal	1	0.6	2.2	∞
Combined Standard Uncertain	ıtv				12.67	
Expanded Uncertainty (k=2)	.,				25.34	
	Incertainty Tabl	e in accordance with	IEEE Standard 152	8-2003 (see		

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Model(s):	Sate	Satellite Personal Tracker (SPT)				Body-worn Po	AAONIN		
2007 Celltech La	abs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 12 of 36

<u>Test Report Issue Date</u> October 26, 2007 <u>Test Report Serial No.</u> 092707L2V-T855-S25S

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Revision 1.1

RF Exposure Category
General Population

Certificate No. 2470.01

MEASUREMENT UNCERTAINTIES (Cont.)

UNCERTAINTY BUDGET FOR SYSTEM VALIDATION												
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}						
Measurement System												
Probe calibration (1640 MHz)	7.0	Normal	1	1	7.0	∞						
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	œ						
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	8						
Spatial resolution	0	Rectangular	1.732050808	1	0.0	8						
Boundary effects	8.2	Rectangular	1.732050808	1	4.7	∞						
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	8						
Detection limit	1	Rectangular	1.732050808	1	0.6	8						
Readout electronics	0.3	Normal	1	1	0.3	8						
Response time	0	Rectangular	1.732050808	1	0.0	8						
Integration time	0	Rectangular	1.732050808	1	0.0	∞						
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞						
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	8						
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	8						
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	8						
Dipole												
Dipole Positioning	2	Normal	1.732050808	1	1.2	∞						
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	∞						
Phantom and Setup												
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	8						
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞						
Liquid conductivity (measured)	4.3	Normal	1	0.64	2.8	8						
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	8						
Liquid permittivity (measured)	3.7	Normal	1	0.6	2.2	8						
Combined Standard Uncertain	-				11.21							
Expanded Uncertainty (k=2)	.,				22.42							
	ncertainty Table i	in accordance with IE	FF Standard 1528-	2003 (see r								

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Model(s):	Sate	Satellite Personal Tracker (SPT)			DUT:	Body-worn Po	AXONIN		
2007 Celltech La	2007 Celltech Labs Inc. This document is not to be reproduced in whole or						rior written p	ermission of Celltech Labs Inc.	Page 13 of 36

Test Report Issue Date
October 26, 2007

<u>Test Report Serial No.</u> 092707L2V-T855-S25S

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Revision 1.1

RF Exposure Category

General Population

Certificate No. 2470.01

15.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Health Canada "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada "Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 2: November 2005.
- [5] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] ANSI/IEEE C95.1-2005 "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz", New York: IEEE, April 2006.
- [7] Federal Communications Commission, OET "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz 3 GHz": January 2007 (Rev. 1.1).

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Model(s):	Sate	tellite Personal Tracker (SPT)			DUT:	Body-worn Po	AXONIN		
2007 Celltech Labs Inc. This document is not to be reproduced in					d in whole or	in part without the pr	rior written p	ermission of Celltech Labs Inc.	Page 14 of 36

<u>Test Report Issue Date</u> October 26, 2007 <u>Test Report Serial No.</u> 092707L2V-T855-S25S

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Revision 1.1

RF Exposure Category
General Population

APPENDIX A - SAR MEASUREMENT DATA

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Model(s):	Sate	Satellite Personal Tracker (SPT)			DUT:	Body-worn Po	AXONIN		
2007 Celltech Labs Inc. This document is not to be reproduced in whole						in part without the pr	rior written p	ermission of Celltech Labs Inc.	Page 15 of 36

Date(s) of	Evaluation
October	10, 2007

Test Report Issue Date
October 26, 2007

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Revision 1.1

RF Exposure Category
General Population

Date Tested: 10/10/2007

Body-Worn SAR - Front Side of DUT - 1613.75 MHz - Channel B

DUT: Axonn Model: Satellite Personal Tracker (SPT); Type: Personal Tracking Device; Serial: 007340046

<u>Test Report Serial No.</u> 092707L2V-T855-S25S

Body-Worn Accessory: Lanyard; Audio Accessory: n/a

Ambient Temp: 24.5°C; Fluid Temp: 22.9°C; Barometric Pressure: 102.5 kPa; Humidity: 41%

Communication System: DSSS RF Output Power: 12.2 dBm (EIRP) Frequency: 1613.75 MHz; Duty Cycle: 1:1 1.5V 3000mAh Energizer Lithium AA Battery (x2)

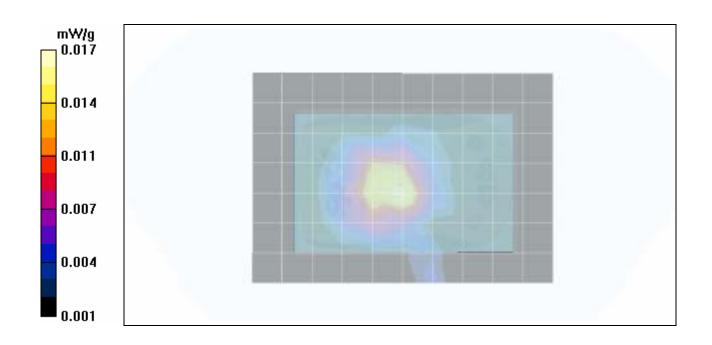
Medium: M1610 Medium parameters used: f = 1613.75 MHz; σ = 1.34 mho/m; ε_r = 51.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1387; ConvF(4.7, 4.7, 4.7); Calibrated: 16/03/2007
- Sensor-Surface: 4 mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 10/07/2007 - Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - Front Side of DUT Touching SAM Phantom (Planar Section) - Channel B

Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.016 mW/g


Body-Worn SAR - Front Side of DUT Touching SAM Phantom (Planar Section) - Channel B

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.60 V/m; Power Drift = -0.018 dB

Peak SAR (extrapolated) = 0.026 W/kg

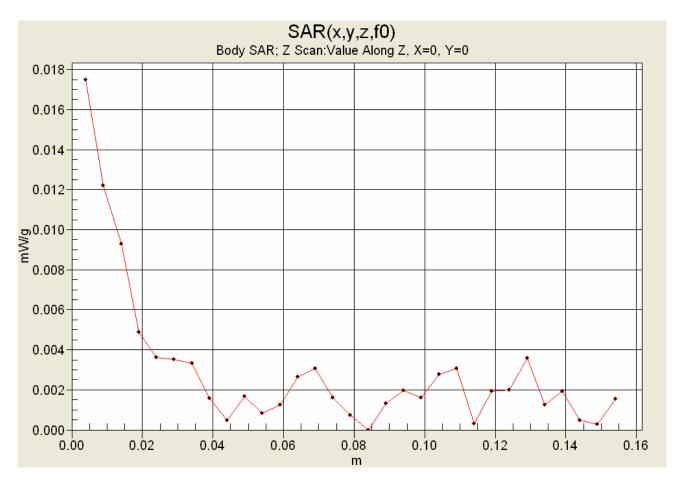
SAR(1 g) = 0.016 mW/g; SAR(10 g) = 0.010 mW/g Maximum value of SAR (measured) = 0.017 mW/g

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Model(s):	Sate	Satellite Personal Tracker (SPT)				Body-worn Po	AAONIN		
2007 Celltech Labs Inc. This document is not to be reproduced in					d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 16 of 36

<u>Test Report Issue Date</u> October 26, 2007 <u>Test Report Serial No.</u> 092707L2V-T855-S25S

Description of Test(s)

Specific Absorption Rate


RF Exposure Category

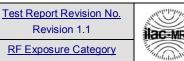
General Population

Test Report Revision No.
Revision 1.1

Z-Axis Scan

Due to the very low SAR level measured in this configuration the Z-axis scan is only reporting noise. The DASY4 software adjusts the scale according to the measured SAR level, which for this evaluation is close to the measurement noise floor.

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Model(s):	Sate	Satellite Personal Tracker (SPT)			DUT:	Body-worn Po	AAONN		
2007 Celltech Labs Inc. This document is not to be reproduced i					d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 17 of 36



Date(s) of	Evaluation
October	10, 2007

Test Report Issue Date October 26, 2007

Test Report Serial No. 092707L2V-T855-S25S

Description of Test(s) RF Exposure Category Specific Absorption Rate **General Population**

Revision 1.1

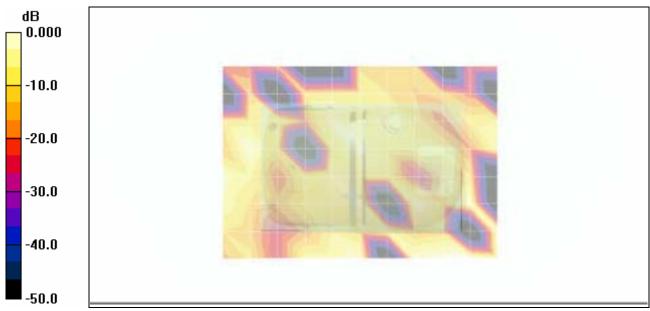
Date Tested: 10/10/2007

Body-Worn SAR - Back Side of DUT - 1613.75 MHz - Channel B

DUT: Axonn Model: Satellite Personal Tracker (SPT); Type: Personal Tracking Device; Serial: 007340046

Body-Worn Accessory: Lanyard; Audio Accessory: n/a

Ambient Temp: 24.5°C; Fluid Temp: 22.9°C; Barometric Pressure: 102.5 kPa; Humidity: 41%


Communication System: DSSS RF Output Power: 12.2 dBm (EIRP) Frequency: 1613.75 MHz; Duty Cycle: 1:1 1.5V 3000mAh Energizer Lithium AA Battery (x2)

Medium: M1610 Medium parameters used: f = 1613.75 MHz; $\sigma = 1.34$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1387; ConvF(4.7, 4.7, 4.7); Calibrated: 16/03/2007
- Sensor-Surface: 4 mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 10/07/2007 - Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - Back Side of DUT Touching SAM Phantom (Planar Section) - Channel B

Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm Maximum Peak Value of SAR (measured) = 0.005 mW/g

0 dB = 0.005 mW/q

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Model(s):	Sate	Satellite Personal Tracker (SPT)				Body-worn Po	AAONIN		
2007 Celltech Labs Inc. This document is not to be reproduced in					d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 18 of 36

Date(s) of	Evaluation
October	10, 2007

<u>Test Report Issue Date</u> October 26, 2007 Test Report Serial No. 092707L2V-T855-S25S

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
General Population

Test Report Revision No.

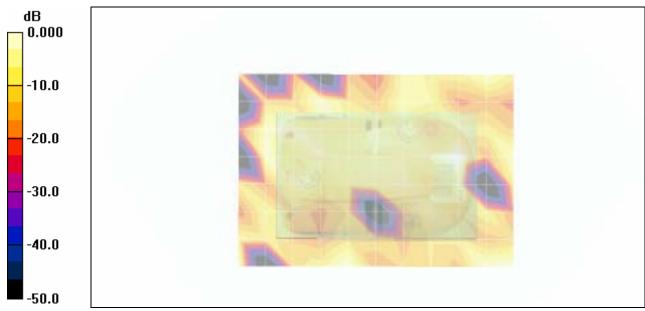
Revision 1.1

Date Tested: 10/10/2007

Body-Worn SAR - Back Side of DUT - 1613.75 MHz - Channel B

DUT: Axonn Model: Satellite Personal Tracker (SPT); Type: Personal Tracking Device; Serial: 007340046

Body-Worn Accessory: Belt-Clip; Audio Accessory: n/a


Ambient Temp: 24.5°C; Fluid Temp: 22.9°C; Barometric Pressure: 102.5 kPa; Humidity: 41%

Communication System: DSSS RF Output Power: 12.2 dBm (EIRP) Frequency: 1613.75 MHz; Duty Cycle: 1:1 1.5V 3000mAh Energizer Lithium AA Battery (x2)

Medium: M1610 Medium parameters used: f = 1613.75 MHz; $\sigma = 1.34$ mho/m; $\varepsilon_r = 51.8$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1387; ConvF(4.7, 4.7, 4.7); Calibrated: 16/03/2007
- Sensor-Surface: 4 mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 10/07/2007Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - 0.5 cm Belt-Clip Spacing from Back Side of DUT to SAM Phantom (Planar Section) - Channel B Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm Maximum Peak Value of SAR (measured) = 0.004 mW/g

0 dB = 0.004 mW/q

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Model(s):	Sate	Satellite Personal Tracker (SPT)				Body-worn Po	AAONIN		
2007 Celltech Labs Inc. This document is not to be reproduced in					d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 19 of 36

<u>Test Report Issue Date</u> October 26, 2007 <u>Test Report Serial No.</u> 092707L2V-T855-S25S

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
General Population

Test Report Revision No.

Revision 1.1

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Model(s):	Sate	Satellite Personal Tracker (SPT)				Body-worn Po	ortable Pe	rsonal Tracking Device	AXONIN
2007 Celltech Labs Inc. This document is not to be reproduced					d in whole or	in part without the pr	rior written p	ermission of Celltech Labs Inc.	Page 20 of 36

Test Report Serial No. 092707L2V-T855-S25S

Test Report Revision No.
Revision 1.1

Certificate No. 2470.01

Test Report Issue Date
October 26, 2007

<u>Description of Test(s)</u> Specific Absorption Rate RF Exposure Category
General Population

Date Tested: 10/10/2007

System Validation - 1610 MHz (1800 MHz Dipole) - MSL

DUT: Dipole 1800 MHz; Asset: 00021; Serial: 247

Ambient Temp: 24.5°C; Fluid Temp: 22.9°C; Barometric Pressure: 102.5 kPa; Humidity: 41%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 1610 MHz; Duty Cycle: 1:1

Medium: M1610 Medium parameters used: f = 1610 MHz; $\sigma = 1.34 \text{ mho/m}$; $\epsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

- Probe: ET3DV6 - SN1387; ConvF(4.7, 4.7, 4.7); Calibrated: 16/03/2007
 - Sensor-Surface: 4 mm (Mechanical And Optical Surface Detection)

Electronics: DAE4 Sn353; Calibrated: 10/07/2007
 Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171 **1610 MHz System Validation/Area Scan (5x8x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 9.74 mW/g

1610 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 85.5 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 20.8 W/kg

SAR(1 g) = 9.41 mW/g; SAR(10 g) = 4.77 mW/g Maximum value of SAR (measured) = 10.2 mW/g

1610 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 85.4 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 20.8 W/kg

SAR(1 g) = 9.40 mW/g; SAR(10 g) = 4.76 mW/g Maximum value of SAR (measured) = 10.2 mW/g

1610 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.7 V/m; Power Drift = -0.021 dB

Peak SAR (extrapolated) = 21.1 W/kg

SAR(1 g) = 9.53 mW/g; SAR(10 g) = 4.84 mW/g Maximum value of SAR (measured) = 10.4 mW/g

1610 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.7 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 21.1 W/kg

SAR(1 g) = 9.55 mW/g; SAR(10 g) = 4.85 mW/g Maximum value of SAR (measured) = 10.4 mW/g

1610 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.2 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 20.9 W/kg

SAR(1 g) = 9.46 mW/g; SAR(10 g) = 4.81 mW/g Maximum value of SAR (measured) = 10.2 mW/g

Validation Dipole Freq.	Dielectric Parameter Frequency	Probe Calibration Frequency	Probe Calibration Conversion Factor	Measured SAR (1g)		1800 MHz System Validation Target (1g)		Deviation from Target	om Extrapol		_		Deviation from Target
MHz	MHz	MHz	Body	mV	//g	mW/g	Dev.	%	mV	l/g	mW/g	Dev.	%
	1610	1640 ±50MHz	4.7	Test 1	9.41	10.5	< 15%	-10.38	Test 1	20.8	23.3	< 15%	-10.6
	1610	1640 ±50MHz	4.7	Test 2	9.40	10.5	< 15%	-10.48	Test 2	20.8	23.3	< 15%	-10.6
1800	1610	1640 ±50MHz	4.7	Test 3	9.53	10.5	< 15%	-9.24	Test 3	21.1	23.3	< 15%	-9.4
	1610	1640 ±50MHz	4.7	Test 4	9.55	10.5	< 15%	-9.05	Test 4	21.1	23.3	< 15%	-9.4
	1610	1640 ±50MHz	4.7	Test 5	9.46	10.5	< 15%	-9.90	Test 5	20.9	23.3	< 15%	-10.2
Standard	Deviation	0.0	068			10.5	< 15%	-9.80			23.3	< 15%	-10.2
Coef	Coefficient		0.7 %		9.47	SPEAG	Target	Deviation	Mean	20.9	SPEAG	Target	Deviation
of Variation		Limit = < 2 %				9.63	< 15%	-1.66%			16.88	< 15%	+23.9%

Notes (per FCC OET Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150MHz-3GHz; see reference 7):

1. <u>alternate system verification method A</u> procedure does not apply to this evaluation because the return loss of the 1800 MHz dipole does not meet the -

15 dB requirement at the 1610 MHz test device frequency.

2. The dipole return loss meets the -15 dB spec required for alternate system verification method B.

3. Analysis of probe conversion factors at dipole and device frequencies shows a SAR variation of 0.58%.

4. The tissue dielectric parameters measured at the dipole frequency (1800 MHz) are within ±10% of those required at that frequency.

5. The extrapolated peak SAR for 1610 MHz was 20.9 mW/g (mean). The target for extrapolated peak SAR at 1800 MHz is 16.88 (SPEAG) for a 250 mW dipole feedpoint power. Subsequently, the extrapolated peak SAR for the 1610 MHz validations is 23.9% above the target. The probe conversion factor for 1610 MHz was calculated numerically and does not have the boundary effect correction factors allow for the SAR values for measurements close to the surface of the phantom with reduced boundary effect. This lack of boundary effect compensation provides a more conservative SAR estimate and will not cause a compliance issue in this case.

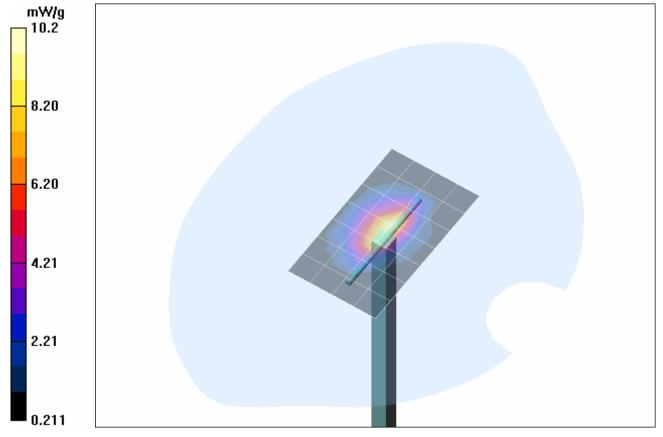
	Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Ī	Model(s):	Sate	itellite Personal Tracker (SPT)			DUT:	Body-worn Po	ortable Pe	rsonal Tracking Device	
Ī	2007 Celltech Labs Inc. This document is not to be reproduced					d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 21 of 36

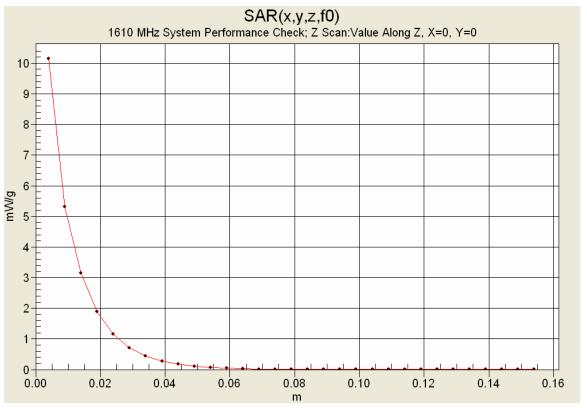
Test Report Issue Date
October 26, 2007

Test Report Serial No. 092707L2V-T855-S25S

Description of Test(s)

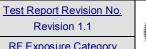
Specific Absorption Rate


RF Exposure Category


General Population

Test Report Revision No.

Revision 1.1


Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	AVORIN	
Model(s):	Sate	Satellite Personal Tracker (SPT)				Body-worn Po	Body-worn Portable Personal Tracking Device			
2007 Celltech Labs Inc. This document is not to be reproduced					d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 22 of 36	

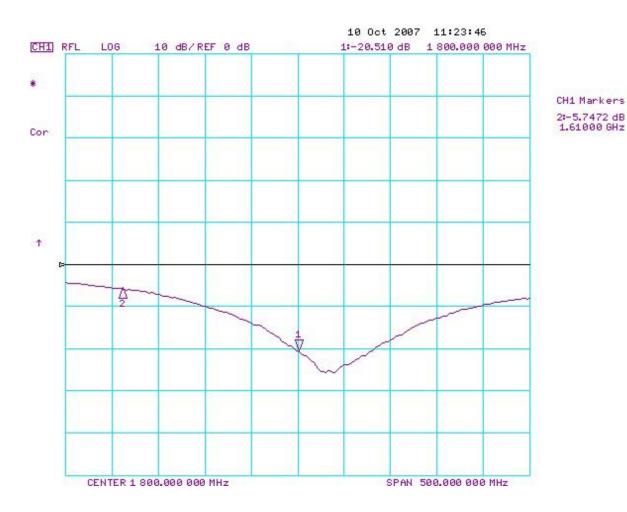
Test Report Issue Date October 26, 2007

Test Report Serial No. 092707L2V-T855-S25S

RF Exposure Category Description of Test(s) Specific Absorption Rate **General Population**

Revision 1.1

Dipole Return Loss


Company:

Model(s):

2007 Celltech Labs Inc.

Axonn, LLC FCC ID:

Satellite Personal Tracker (SPT)

AVORIN	1611.25 - 1618.75 MHz	Freq.:	3989A-PT1	IC ID:	L2V-PT1	, LLC FCC ID: L2V-PT1				
AAONIN	Ilite Personal Tracker (SPT) DUT: Body-worn Portable Personal Tracking Device									
Page 23 of 36	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.									

Test Report Issue Date October 26, 2007

Test Report Serial No. 092707L2V-T855-S25S

Description of Test(s) Specific Absorption Rate Test Report Revision No. Revision 1.1 RF Exposure Category

General Population

Formulae used for calculating SAR from measured values taken from DASY4 manual. $V = U + U^2(cf/dcp)$

Estimated SAR Changes Due to Probe Conversion Factors

Where:

V = compensated signal of the given channel U = input signal of the given channel Cf = Crest factor of exciting field Dcp = diode compression point

In the conversion factor files for 1610 MHz and 1800 MHz the dcp is the same. Therefore the compensated signal resulting from any one measurement will be the same if calculated from any other set of conversion factors.

E = root(V/(Norm*ConvF))Where:

> V = compensated signal of the given channel Norm = sensor sensitivity of given channel ConvF = sensitivity enhancement in solution

In the conversion factor files for the 1387 the Norm is slightly different and has been used for the respective conversion factor. In the following tables, the calculation of E from V, Norm and ConvF are displayed. The Total is performed by root(Ex^2+Ey^2+Ez^2) and the percent difference is calculated and displayed on the bottom line.

	1640 MHz	1800 MHz
ConvF	4.7	4.8
Vx	18917.50	18917.50
Vy	4929.09	4929.09
Vz	5249.57	5249.57
Ex	6732.25	6784.00
Ey	1728.60	1715.46
Ez	1840.99	1827.00
Total	7190.30	7232.11
% Diff	0	0.58

Where: Normx = 1.62 Normy = 1.72 Normz = 1.72 Dcp = 92mV

Where: Normx = 1.68 Normy = 1.73 Normz = 1.73 Dcp = 92mV

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	XONN
Model(s):	Sate	ellite Per	sonal Trac	ker (SPT)	er (SPT) DUT: Body-worn Portable Personal Tracking Device				AXONIN
2007 Celltech Labs Inc. This document is not to be reproduced					d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 24 of 36

Test Report Issue Date
October 26, 2007

<u>Test Report Serial No.</u> 092707L2V-T855-S25S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.1

RF Exposure Category
General Population

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

	Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN	
Ī	Model(s):	Sate	tellite Personal Tracker (SPT)			DUT:	Body-worn Po	Body-worn Portable Personal Tracking Device			
	2007 Celltech Labs Inc. This document is not to be reproduced					d in whole or	in part without the pr	rior written p	ermission of Celltech Labs Inc.	Page 25 of 36	

Test Report Issue Date October 26, 2007

Test Report Serial No. 092707L2V-T855-S25S

RF Exposure Category Description of Test(s) Specific Absorption Rate **General Population**

Test Report Revision No.

Revision 1.1

1610 MHz System Validation & DUT Evaluation (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Wed 10/Oct/2007

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon
FCC_structure FCC_structure

Test_e Epsilon of UIM Test_s Sigma of UIM

*******	******	******	******	******
Freq	FCC_eB	FCC_sl	3 Test_e	Test_s
1.5000	53.94	1.33	52.31	1.25
1.5100	53.92	1.34	52.30	1.26
1.5200	53.91	1.34	52.22	1.27
1.5300	53.90	1.35	52.24	1.28
1.5400	53.89	1.36	52.13	1.29
1.5500	53.88	1.36	52.13	1.29
1.5600	53.86	1.37	51.97	1.30
1.5700	53.85	1.38	51.99	1.31
1.5800	53.84	1.38	51.89	1.32
1.5900	53.83	1.39	51.95	1.33
1.6000	53.81	1.39	51.94	1.34
1.6100	53.80	1.40	51.80	1.34
1.6200	53.77	1.41	51.84	1.36
1.6300	53.75	1.41	51.81	1.36
1.6400	53.72	1.42	51.83	1.38
1.6500	53.69	1.43	51.78	1.38
1.6600	53.67	1.43	51.72	1.39
1.6700	53.64	1.44	51.68	1.40
1.6800	53.62	1.44	51.62	1.40
1.6900	53.59	1.45	51.64	1.41
1.7000	53.56	1.46	51.67	1.43
1.7100	53.54	1.46	51.60	1.43
1.7200	53.51	1.47	51.61	1.44
1.7300	53.48	1.48	51.58	1.46
1.7400	53.46	1.48	51.62	1.47
1.7500	53.43	1.49	51.50	1.48
1.7600	53.41	1.49	51.52	1.48
1.7700	53.38	1.50	51.44	1.50
1.7800	53.35	1.51	51.44	1.51
1.7900	53.33	1.51	51.39	1.52
1.8000	53.30	1.52	51.25	1.53

	Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Ī	Model(s):	Sate	atellite Personal Tracker (SPT)			DUT:	Body-worn Po	ortable Pe	rsonal Tracking Device	
Ī	2007 Celltech Labs Inc. This document is not to be reproduced					d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 26 of 36

<u>Test Report Issue Date</u> October 26, 2007 <u>Test Report Serial No.</u> 092707L2V-T855-S25S

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
General Population

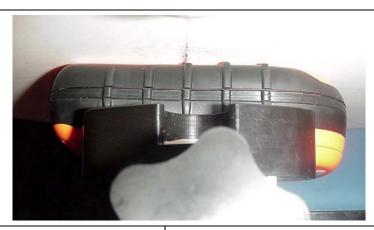
Test Report Revision No.

Revision 1.1

APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN	
Model(s):	Sate	atellite Personal Tracker (SPT)			DUT:	Body-worn Po	Body-worn Portable Personal Tracking Device			
2007 Celltech	2007 Celltech Labs Inc. This document is not to be reproduced					in part without the pr	rior written p	ermission of Celltech Labs Inc.	Page 27 of 36	

<u>Test Report Issue Date</u> October 26, 2007 Test Report Serial No. 092707L2V-T855-S25S


<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.1

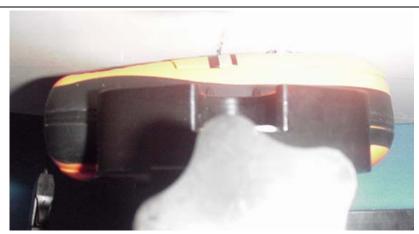
RF Exposure Category
General Population

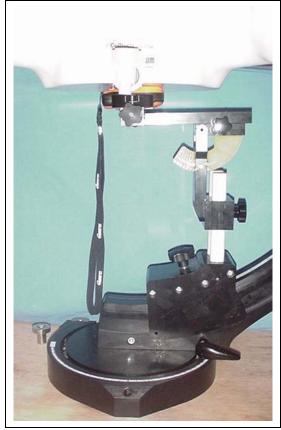

BODY SAR TEST SETUP PHOTOGRAPHS

Front Side of DUT Touching SAM Phantom (Planar Section)
DUT with Lanyard Accessory

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Model(s):	Sate	ellite Per	sonal Trac	ker (SPT)	DUT:	Body-worn Po	ersonal Tracking Device	AXONIN	
2007 Celltech Labs Inc. This document is not to be reproduced					d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 28 of 36

<u>Test Report Issue Date</u> October 26, 2007 Test Report Serial No. 092707L2V-T855-S25S


<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.1

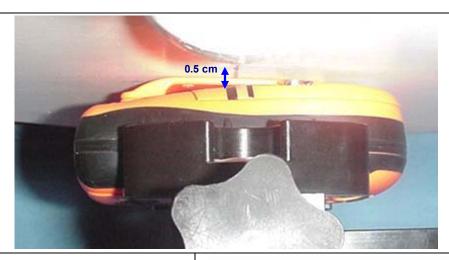

RF Exposure Category
General Population

BODY SAR TEST SETUP PHOTOGRAPHS

Back Side of DUT Touching SAM Phantom (Planar Section)
DUT with Lanyard Accessory (Belt-Clip Removed)

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Model(s):	Satellite Personal Tracker (SPT)			DUT:	Body-worn Portable Personal Tracking Device			AAONIN	
2007 Celltech Labs Inc. This document is not to be reproduced in whole					d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 29 of 36

<u>Test Report Issue Date</u> October 26, 2007 Test Report Serial No. 092707L2V-T855-S25S


<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.1


RF Exposure Category
General Population

BODY SAR TEST SETUP PHOTOGRAPHS

0.5 cm Belt-Clip Spacing from Back of DUT to SAM Phantom (Planar Section)
DUT with Belt-Clip Accessory

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	XONN
Model(s):	Satellite Personal Tracker (SPT)			DUT:	Body-worn Portable Personal Tracking Device				
2007 Celltech Labs Inc. This document is not to be reproduced				d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 30 of 36	

<u>Test Report Issue Date</u> October 26, 2007 <u>Test Report Serial No.</u> 092707L2V-T855-S25S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.1

RF Exposure Category

General Population

DUT PHOTOGRAPHS

Front of DUT

Back of DUT

Back of DUT with Belt-Clip

Bottom end of DUT

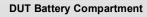
Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	AXONN
Model(s):	Sate	Satellite Personal Tracker (SPT)			DUT:	Body-worn Po	ortable Pe	rsonal Tracking Device	AXONIN
2007 Celltech Labs Inc. This document is not to be reproduced in whether the control of the cont					d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 31 of 36

<u>Test Report Issue Date</u> October 26, 2007 <u>Test Report Serial No.</u> 092707L2V-T855-S25S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.1

RF Exposure Category
General Population

DUT PHOTOGRAPHS



Left Side of DUT with Belt-Clip

Right Side of DUT with Belt-Clip

Energizer	Lithium	AA Batteries	(x2)
-----------	---------	--------------	------

Ī	Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	MNOXV
ĺ	Model(s):	Sate	Satellite Personal Tracker (SPT)			DUT:	Body-worn Po	ortable Pe	rsonal Tracking Device	AXONIN
Ī	2007 Celltech La	2007 Celltech Labs Inc. This document is not to be reproduced				d in whole or	in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 32 of 36

<u>Test Report Issue Date</u> October 26, 2007 Test Report Serial No. 092707L2V-T855-S25S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.1

RF Exposure Category
General Population

DUT PHOTOGRAPHS

DUT with Lanyard Accessory

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Model(s):	Satellite Personal Tracker (SPT)			DUT:	Body-worn Portable Personal Tracking Device			AAONN	
2007 Celltech La	007 Celltech Labs Inc. This document is not to be reproduced in whole					in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 33 of 36

<u>Test Report Issue Date</u> October 26, 2007 Test Report Serial No. 092707L2V-T855-S25S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.1

RF Exposure Category
General Population

APPENDIX E - SYSTEM VALIDATION

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Model(s):	Satellite Personal Tracker (SPT)			DUT:	Body-worn Portable Personal Tracking Device			AAONIN	
2007 Celltech La	2007 Celltech Labs Inc. This document is not to be reproduced in v					in part without the p	rior written p	ermission of Celltech Labs Inc.	Page 34 of 36

1800 MHz SYSTEM VALIDATION

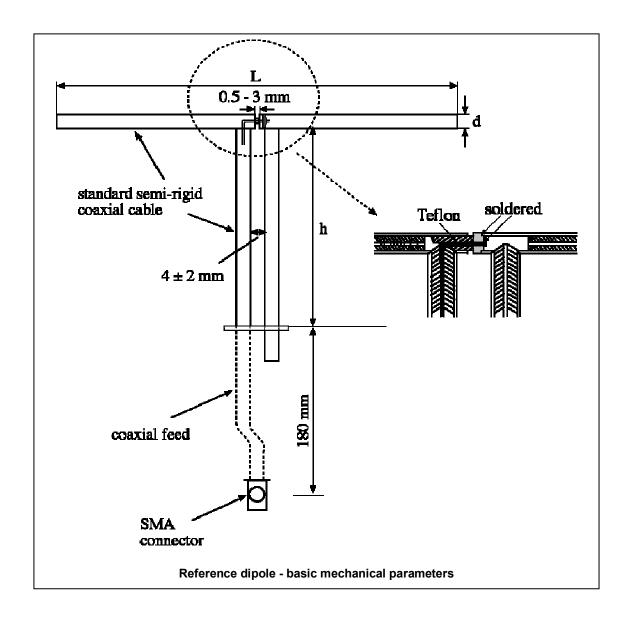
Type:	1800 MHz Validation Dipole
Asset Number:	00021
Serial Number:	247
Place of Validation:	Celltech Labs Inc.
Date of Validation:	October 10, 2007

Celltech Labs Inc. certifies that the 1800 MHz System Validation was performed on the date indicated above.

This system validation document is valid only for the SAR evaluations performed on same date for Celltech Test Report Serial No.: 092707L2V-T855-S25S in accordance with the procedures described in FCC OET Application Note -SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz (01-07 Rev. 1.1).

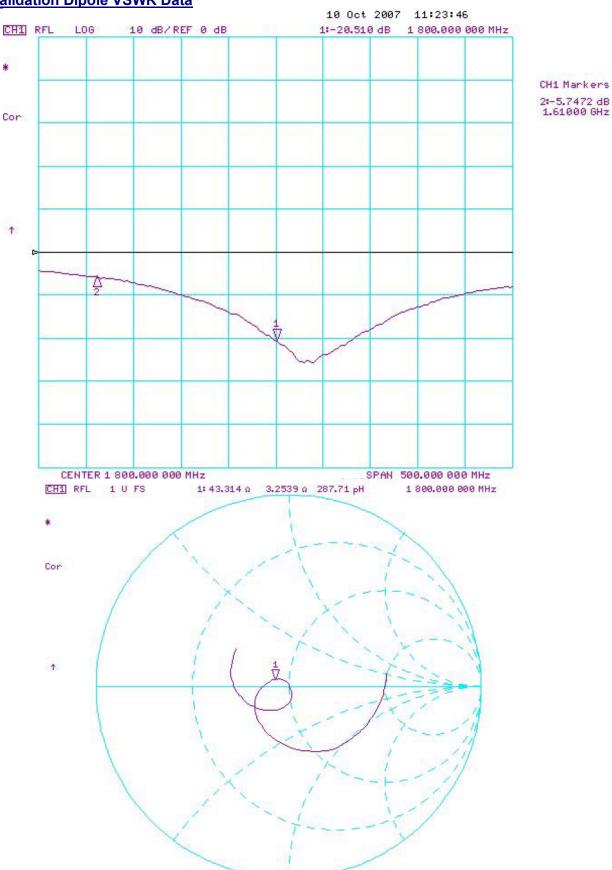
Performed by:	Cheri Frangiadakis
Approved by:	Sean Johnston

Body


1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the requirements specified in IEEE Standard 1528-2003 and International Standard IEC 62209-1:2005. The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 1800 MHz Re{Z} = 43.314 Ω


 $\text{Im}\{\text{Z}\} = 3.2539~\Omega$

Return Loss at 1800 MHz -20.510 dB

	Date of Evaluation:	October 10, 200	7 [Document S	Serial No.:	SV1800M-10	1007-R1.0
Celltech Testro and Engineering Services Lat	Evaluation Type:	System Validation	Validatio	n Dipole:	1800 MHz	Fluid Type:	Body

2. Validation Dipole VSWR Data

SPAN 400.000 000 MHz

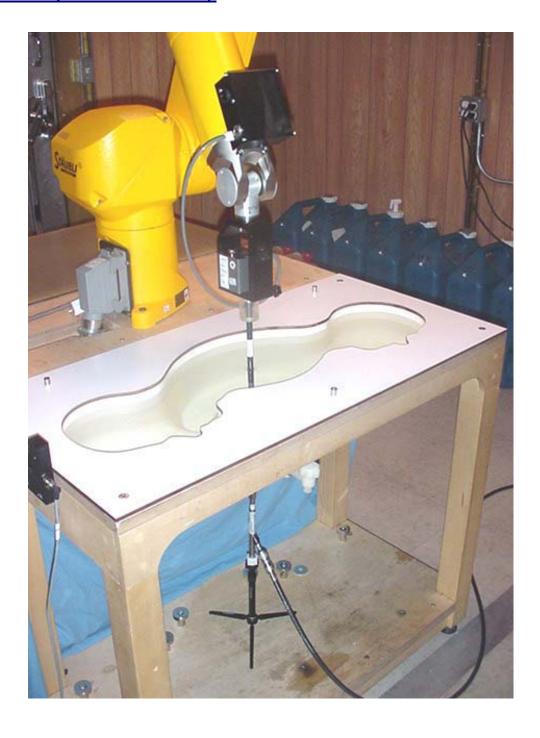
CENTER 1 800.000 000 MHz

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	396.0	250.0	6.0
450	270.0	167.0	6.0
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.5	30.4	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

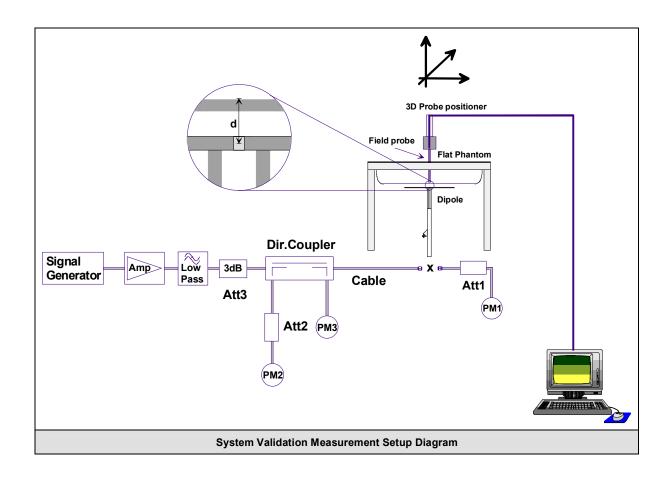

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 25 liters

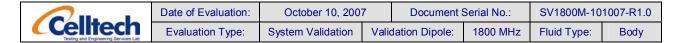
Dimensions: 50 cm (W) x 100 cm (L)

	Date of Evaluation:	October 10, 200	7	Document :	Serial No.:	SV1800M-10	1007-R1.0
Celltech Testing and Engineering Services Lat	Evaluation Type:	System Validation	Valid	dation Dipole:	1800 MHz	Fluid Type:	Body

5. 1800 MHz System Validation Setup

	Date of Evaluation:	October 10, 2007		Document Serial No.:		SV1800M-101007-R1.0	
Celltech Testing and Engineering Services Lab	Evaluation Type:	System Validation	Valid	dation Dipole:	1800 MHz	Fluid Type:	Body


6. 1800 MHz Validation Dipole Setup



7. SAR Measurement

Measurements were made using a dosimetric E-field probe ET3DV6 (S/N: 1387, Conversion Factor 4.8). The SAR measurement was performed with the E-field probe in mechanical and optical detection mode. The setup and determination of the forward power into the dipole was performed using the procedures described below.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 50dB below the forward power.

8. Measurement Conditions

The SAM phantom was filled with 1800 MHz Body tissue simulant.

Relative Permittivity: 51.0 (-4.3% deviation from target)

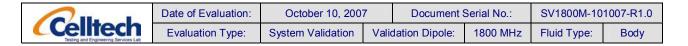
Conductivity: 1.48 mho/m (-2.5% deviation from target)

Fluid Temperature: 23.5 °C Fluid Depth: \geq 15.0 cm

Environmental Conditions:

Ambient Temperature: 24.5 °C
Barometric Pressure: 102.5 kPa
Humidity: 41%

The 1800 MHz Body tissue simulant consisted of the following ingredients:


Ingredient	Percentage by weight			
Water	70.17%			
Glycol	29.43%			
Salt	0.40%			
IEEE Target Dielectric Parameters:	ε _r = 53.3 (+/-5%)	σ = 1.52 S/m (+/-5%)		

9. System Validation SAR Results

SAR @ 0.25W Input averaged over 1g (W/kg)				SAR @ 1W Input averaged over 1g (W/kg)				
SPEAG	Target	Measured	Deviation	SPEAG Target		Measured	Deviation	
9.63	+/- 10%	10.5	+9.1%	38.5	+/- 10%	42.0	+9.1%	
SAR @ 0.2	25W Input av	veraged over	10g (W/kg)	SAR @ 1W Input averaged over 10g (W/kg)				
SPEAG	Target	Measured	Deviation	SPEAG	Target	Measured	Deviation	
5.08	+/- 10%	5.3	+4.5%	20.3	+/- 10%	21.2	+4.5%	

Dipole	Distance	Frequency	SAR (1g)	SAR (10g)	SAR (peak)
Туре	[mm]	[MHz]	[W/kg]	[W/kg]	[W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.

System Validation - 1800 MHz Dipole - Oct. 10, 2007

DUT: Dipole 1800 MHz; Asset: 00021; Serial: 247

Ambient Temp: 24.5 °C; Fluid Temp: 23.5 °C; Barometric Pressure: 102.5 kPa; Humidity: 41%

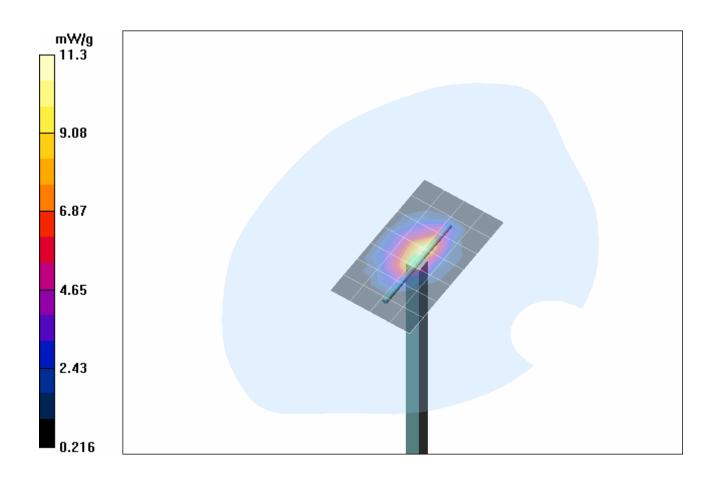
Communication System: CW Forward Conducted Power: 250 mW Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: M1800 Medium parameters used: f = 1800 MHz; σ = 1.48 mho/m; ε_r = 51.0; ρ = 1000 kg/m³

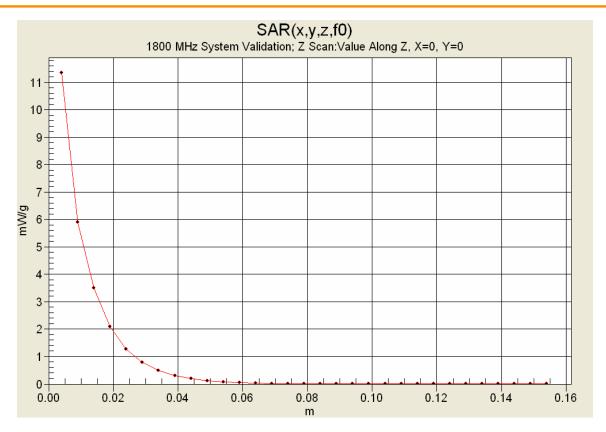
- Probe: ET3DV6 SN1387; ConvF(4.8, 4.8, 4.8); Calibrated: 18/12/2006
- Sensor-Surface: 4 mm (Mechanical and Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 10/07/2007
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

1800 MHz System Performance Check/Area Scan (5x8x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 10.8 mW/g

1800 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.4 V/m; Power Drift = 0.006 dB

Peak SAR (extrapolated) = 23.3 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.3 mW/gMaximum value of SAR (measured) = 11.3 mW/g

Date of Evaluation:October 10, 2007Document Serial No.:SV1800M-101007-R1.0Evaluation Type:System ValidationValidation Dipole:1800 MHzFluid Type:Body

10. Measured Fluid Dielectric Parameters

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Wed 10/Oct/2007

Frequency (GHz)

FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon

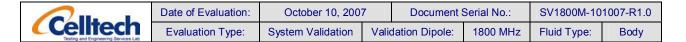
FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM Test_s Sigma of UIM

Freq	FCC_eE	FCC_sE	3 Test_e	Test_s
1.7000	53.56	1.46	51.26	1.36
1.7100	53.54	1.46	51.20	1.37
1.7200	53.51	1.47	51.13	1.38
1.7300	53.48	1.48	51.25	1.40
1.7400	53.46	1.48	51.27	1.40
1.7500	53.43	1.49	51.14	1.42
1.7600	53.41	1.49	51.04	1.43
1.7700	53.38	1.50	51.11	1.45
1.7800	53.35	1.51	51.17	1.46
1.7900	53.33	1.51	51.01	1.46
1.8000	53.30	1.52	51.02	1.48
1.8100	53.30	1.52	51.03	1.49
1.8200	53.30	1.52	50.94	1.49
1.8300	53.30	1.52	50.90	1.51
1.8400	53.30	1.52	50.84	1.52
1.8500	53.30	1.52	50.87	1.53
1.8600	53.30	1.52	50.82	1.55
1.8700	53.30	1.52	50.67	1.55
1.8800	53.30	1.52	50.73	1.56
1.8900	53.30	1.52	50.75	1.57
1.9000	53.30	1.52	50.73	1.59



11. Measurement Uncertainties

	UI OI	ICERTAINT	Y BUDGET FOR	STSTEW VAL	DATION		
Erro	r Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{ef}
Measurem	ent System						
Probe calib	oration (1850 MHz) ²	8	Normal	1	1	8.0	∞
Axial isotro	py of the probe	4.7	Rectangular	1.732050808	1	2.7	∞
Spherical is	sotropy of the probe	0	Rectangular	1.732050808	1	0.0	∞
Spatial res	olution	0	Rectangular	1.732050808	1	0.0	∞
Boundary 6	effects	8.2	Rectangular	1.732050808	1	4.7	∞
Probe linea	arity	4.7	Rectangular	1.732050808	1	2.7	∞
Detection I	imit	1	Rectangular	1.732050808	1	0.6	∞
Readout el	ectronics	0.3	Normal	1	1	0.3	∞
Response	time	0	Rectangular	1.732050808	1	0.0	∞
Integration	time	0	Rectangular	1.732050808	1	0.0	∞
RF ambien	t conditions	3	Rectangular	1.732050808	1	1.7	∞
Mech. cons	straints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe posi	tioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolati	on & integration	1	Rectangular	1.732050808	1	0.6	∞
Dipole							
Dipole Pos	itioning	2	Normal	1.732050808	1	1.2	×
Power & P	ower Drift	4.7	Normal	1.732050808	1	2.7	∞
Phantom a	and Setup						
Phantom u	ncertainty	4	Rectangular	1.732050808	1	2.3	∞
Liquid cond	ductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid cond	ductivity (measured)	2.5	Normal	1	0.64	1.6	∞
Liquid perr	nittivity (target)	5	Rectangular	1.732050808	0.6	1.7	×
Liquid perr	nittivity (measured)	4.3	Normal	1	0.6	2.6	_∞
Combined	Standard Uncertaint	ty				11.72	
Expanded Uncertainty (k=2)						23.44	
	1. Measurement Und	ertainty Table in	accordance with IEE	EE Standard 1528-2	003 and IE	C 62209-1:2005.	
Notes	2. 1850 MHz probe of SN: 1387) has been assumption based or would not change by	conversion factor recalibrated in the conversion	r was assessed num March 2007; howeven factor comparisons	erically in December fer the 1850 MHz f shown below that t	er 2006. Si requency w the probe c	nce then, the provas not reassess onversion factor	ed. Ìt is d at 1850 M

would not change by any more than 1% if numerically reassessed. Based on this assumption the probe calibration uncertainty value was increased by 1% based on changes in conversion factor observed at 835 MHz and 900 MHz for same probe (ET3DV6 SN:1387) within the period of March 2004 - March 2007 as shown below:

835 MHz ConvF - 03/18/04 = 6.24	835 MHz ConvF - 03/16/07 = 6.18	Conversion Factor Change = < 1%
900 MHz ConvF - 03/18/05 = 6.10	900 MHz ConvF - 03/16/06 = 6.04	Conversion Factor Change = < 1%

12. Test Equipment List

TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE OF CAL.	CAL. DUE DATE
SPEAG DASY4 Measurement Server	00158	1078	N/A	N/A
SPEAG Robot	00046	599396-01	N/A	N/A
SPEAG DAE4	00019	353	10Jul07	10Jul08
SPEAG ET3DV6 E-Field Probe	00016	1387	16Mar07	16Mar08
SPEAG SAM Phantom V4.0C	00154	1033	N/A	N/A
HP 85070C Dielectric Probe Kit	00033	US39240170	N/A	N/A
Gigatronics 8652A Power Meter	00007	1835272	26Mar07	26Mar08
Gigatronics 80701A Power Sensor	00014	1833699	22Jan07	22Jan08
Gigatronics 80701A Power Sensor	00109	1834366	26Mar07	26Mar08
HP 8753ET Network Analyzer	00134	US39170292	20Apr07	20Apr08
HP 8648D Signal Generator	00005	3847A00611	NCR	NCR
Amplifier Research 5S1G4 Power Amplifier	00106	26235	NCR	NCR

Date(s) of	Evaluation
October	10, 2007

Test Report Issue Date
October 26, 2007

Test Report Serial No. 092707L2V-T855-S25S

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.1

RF Exposure Category

General Population

Certificate No. 2470.01

APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY

Company:	Axon	n, LLC	FCC ID:	L2V-PT1	IC ID:	3989A-PT1	Freq.:	1611.25 - 1618.75 MHz	<a>AXONN
Model(s):	Satellite Personal Tracker (SPT)			DUT:	Body-worn Portable Personal Tracking Device				
2007 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 36 of 36	

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0			
Type No	QD 000 P40 BA			
Series No	TP-1002 and higher			
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland			

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

18.11.2001

Signature / Stamp

Schmid & Partner
 Engineering AG

Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79

Fin Brubolt