```
APPLICANT: OMEGA RESEARCH & DEVELOPMENT, INC.
    D/B/A EXCALIBUR OF AMERICA
FCC ID: L2MREC-11
TEST REPORT CONTAINING:
    PAGE 1............TEST EQUIPMENT LIST & TEST PROCEDURE
    PAGE 2.............TEST PROCEDURE CONTD.
    PAGE 3............RADIATION INTERFERENCE TEST DATA
    PAGE 4............CALCULATION OF DUTY CYCLE
    PAGE 5A-5C.........DUTY CYCLE PLOTS
    PAGE 6............OCCUPIED BANDWIDTH
    PAGE 7............OCCUPIED BANDWIDTH PLOTS
EXHIBIT ATTACHMENTS:
EXHIBIT 1...........SCHEMATIC
EXHIBIT 2...........INSTRUCTION MANUAL
EXHIBIT 3...........FCC ID LABEL SAMPLE AND LOCATION
EXHIBIT 4A..........FRONT VIEW EXTERNAL PHOTO
EXHIBIT 4B..........REAR VIEW EXTERNAL PHOTO
EXHIBIT 5A..........COMPONENT SIDE INTERNAL PHOTO
EXHIBIT 5B..........COPPER SIDE INTERNAL PHOTO
EXHIBIT 6...........TEST SET UP PHOTO
EXHIBIT 7...........CIRCUIT DESCRIPTION
EXHIBIT 8...........BLOCK DIAGRAM
```

```
APPLICANT: OMEGA RESEARCH & DEVELOPMENT, INC.
            D/B/A EXCALIBUR OF AMERICA
        FCC ID: L2MREC-11
REPORT #: T:\CUS\O\OMEGA\418BZU0\418BZUORPT.DOC
    PAGE: TABLE OF CONTENTS LIST
```

APPLICANT: OMEGA RESEARCH \& DEVELOPMENT, INC. D/B/A EXCALIBUR OF AMERICA

FCC ID: L2MREC-11

TEST EQUIPMENT LIST

```
1._X_Spectrum Analyzer: HP 8566B-Opt 462, S/N 3138A07786, w/
    preselector HP 85685A, S/N 3221A01400, Quasi-Peak Adapter
    HP 85650A, S/N 3303A01690 & Preamplifier HP 8449B-OPT H02,
    S/N 3008A00372 Cal. 10/17/99
2._X_Biconnical Antenna: Eaton Model 94455-1, S/N 1057
3.___Biconnical Antenna: Electro-Metrics Model BIA-25, S/N 1171
4._X_Log-Periodic Antenna: Electro-Metrics Model EM-6950, S/N 632
5.___Log-Periodic Antenna: Electro-Metrics Model LPA-30, S/N 409
6._X_Double-Ridged Horn Antenna: Electro-Metrics Model RGA-180,
        1-18 GHz, S/N 2319
7.___18-26.3GHz Systron Donner Standard Gain Horn #DBE-520-20
8.___Horn 40-60GHz: ATM Part #19-443-6R
9.___Line Impedance Stabilization Network: Electro-Metrics Model
        ANS-25/2, S/N 2604 Cal. 2/9/00
10.___Temperature Chamber: Tenney Engineering Model TTRC, S/N 11717-7
11.___Frequency Counter: HP Model 5385A, S/N 3242A07460 Cal 10/6/99
12.___Peak Power Meter: HP Model 8900C, S/N 2131A00545
13._X_Open Area Test Site #1-3meters Cal. 12/22/99
14.__Signal Generator: HP 8640B, S/N 2308A21464 Cal. 9/23/99
15.__Signal Generator: HP 8614A, S/N 2015A07428
16.___Passive Loop Antenna: EMCO Model 6512, 9KHz to 30MHz, S/N
    9706-1211 Cal. 6/10/00
17.___Dipole Antenna Kit: Electro-Metrics Model TDA-30/1-4, S/N 153
        Cal. 11/24/99
18.___AC Voltmeter: HP Model 400FL, S/N 2213A14499 Cal. 9/21/99
19.___Digital Multimeter: Fluke Model 8012A, S/N 4810047 Cal 9/21/99
20.____Digital Multimeter: Fluke Model 77, S/N 43850817 Cal 9/21/99
21.___Oscilloscope: Tektronix Model 2230, S/N 300572 Cal 9/23/99
TEST PROCEDURE
```

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-1992 using a HEWLETT PACKARD spectrum analyzer with a preselector. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in $d B$ above a microvolt at the output of the antenna. The resolution bandwidth was 100 KHz and the video bandwidth was 300 KHz . The ambient temperature of the UUT was $790 F$ with a humidity of 52%.

REPORT \#: T:\CUS \O\OMEGA\418BZU0\418BZUORPT.DOC
PAGE \#: 1

FORMULA OF CONVERSION FACTORS: The Field Strength at 3 m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of $d B u V$) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of $d B$. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

| Freq (MHz) METER READING $+\mathrm{ACF}=\mathrm{FS}$ |
| :--- | :--- |
| 33 |$\quad 20 \mathrm{dBuV}+10.36 \mathrm{~dB}=30.36 \mathrm{dBuV} / \mathrm{m} @ 3 \mathrm{~m}$

ANSI STANDARD C63.4-1992 10.1.7 MEASUREMENT PROCEDURES: The UUT was placed on a table 80 cm high and with dimensions of 1 m by 1.5 m . The UUT was placed in the center of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to 10 th harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes and the highest readings were converted to average readings based on the duration of "ON" time.

Measurements were made by TIMCO ENGINEERING INC. at the registered open field test site located at 849 N.W. State Road 45, Newberry, Fl 32669.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1 m to 4 m . The antenna was placed in both the horizontal and vertical planes.

```
APPLICANT: OMEGA RESEARCH & DEVELOPMENT, INC.
    D/B/A EXCALIBUR OF AMERICA
    FCC ID: L2MREC-11
REPORT #: T:\CUS\O\OMEGA\418BZU0\418BZU0RPT.DOC
    PAGE #: 2
```

APPLICANT:	OMEGA RESEARCH \& DEVELOPMENT, INC. D/B/A EXCALIBUR OF AMERICA	
FCC ID:	L2MREC-11	
NAME OF TEST:	RADIATION INTERFERENCE	
RULES PART NO.:	15.231	
REQUIREMENTS :		
Fundamental	Field Strength	Field Strength of
Frequency	of Fundamental	Harmonics and Spurious
MHz	dBuV	Emissions (dBuV/m @ 3m)
40.66 to 40.70	67.04	47.04
70 to 130	61.94	41.94
130 to 174	61.94 to 71.48	41.94 to 51.48
174 to 260	71.48	51.48
260 to 470	71.48 to 81.94	51.48 to 61.94
470 and above	81.94	61.94

THE LIMIT FOR AVERAGE FIELD STRENGTH dBuV/m FOR THE FUNDAMENTAL FREQUENCY= $80.83 \mathrm{dBuV} / \mathrm{m} \mathrm{dBuV} / \mathrm{m}$. NO FUNDAMENTAL IS ALLOWED IN THE RESTRICTED BANDS.

THE LIMIT FOR AVERAGE FIELD STRENGTH dBuV/m FOR THE HARMONICS AND SPURIOUS FREQUENCIES $=60.83 \mathrm{dBuV} / \mathrm{m} \mathrm{dBuV} / \mathrm{m}$. SPURIOUS IN THE RESTRICTED BANDS MUST BE LESS THAN $54 \mathrm{dBuV} / \mathrm{m}$ OR 15.209.

TEST DATA:

| | | | | PEAK | AVERAGE | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EMISSION | METER | COAX | | FIELD | FIELD | | |
| FREQ. | READING | LOSS | ACF | STRNGTH | STRNGTH | MARGIN | |
| MHz | @ 3 m dBuV | dB | dB | dBuV/m | dBuV/m | dB | ANT. |
| 434.20 | 63.00 | 1.60 | 17.79 | 82.39 | 75.40 | 5.42 | V |
| 868.40 | 29.40 | 2.90 | 23.82 | 56.12 | 49.13 | 11.69 | V |
| 1302.60 R | 33.30 | 1.00 | 25.21 | 59.51 | 52.52 | 1.48 | V |
| 1736.80 | 30.60 | 1.00 | 26.95 | 58.55 | 51.56 | 9.26 | V |
| 2171.00 | 21.50 | 1.06 | 28.43 | 50.98 | 44.00 | 16.83 | V |
| 2605.20 | 14.50 | 1.12 | 29.51 | 45.13 | 38.15 | 22.68 | V |
| 3039.40 | 1.20 | 1.19 | 30.60 | 32.98 | 26.00 | 34.83 | H |

SAMPLE CALCULATION OF LIMIT @ 303 MHz :
(470-260) Mhz = 210 MHz
($12500-3750$)uV/m $=8750 u V / \mathrm{m}$
$8750 \mathrm{uV} / \mathrm{m} / 210 \mathrm{MHz}=41.67 \mathrm{uV} / \mathrm{m} / \mathrm{MHz}$
(303-260) MHz $=43 \mathrm{MHz}$
$43 \mathrm{MHz} * 41.67 \mathrm{uV} / \mathrm{m} / \mathrm{MHz}=1791.81 \mathrm{uV} / \mathrm{m}$
$(1791.81+3750) u V / m=5541.81 u V / m$ limit @ 303 MHz

The transmitter ceases transmitting when the button is released. TEST RESULTS: The unit DOES meet the FCC requirements.

PERFORMED BY: JOSEPH SCOGLIO DATE TESTED: DECEMBER 17, 2000

```
REPORT #: T:\CUS\O\OMEGA\418BZU0\418BZUORPT.DOC
    PAGE #: 3
```

```
APPLICANT: OMEGA RESEARCH & DEVELOPMENT, INC.
    D/B/A EXCALIBUR OF AMERICA
FCC ID: L2MREC-11
```


CALCULATION OF DUTY CYCLE:

The period of the pulse train is determined by observing it on an oscilloscope or a spectrum analyzer with zero(0) frequency span. A plot is then made of the pulse train with a sweep time of $100 \mathrm{milliseconds}$. sweep determines the duration of the pulse train, which in this case is 80.9 milliseconds. This sweep allows the determination of the number of and type of pulses, i.e. long \& short. Plots are then made showing the duration of each type of pulse and its duration. From the 100 millisecond Plot the number of a given type of pulse is then multiplied by the duration of that type pulse. This allows the calculation of the amount of time the UUT is on within $100 \mathrm{milliseconds}$. train is longer than 100 milliseconds then this number is multiplied by 100 to determine the percentage ON TIME. If the pulse train is less than 100 milliseconds the total on-time is divided by the length of the pulse train and then multiplied by 100 to determine the percentage ON TIME. In this case there were 32 pulses 700 milliseconds long and 46 pulses 300 milliseconds long for a total of 80.9 mSmilliseconds on time within either the 100 milliseconds or the pulse train. The average field strength is determined by multiplying the peak field strength by the percent on time. In this case the percentage ON time was 44.7% percent.

```
APPLICANT: OMEGA RESEARCH & DEVELOPMENT, INC.
    D/B/A EXCALIBUR OF AMERICA
    FCC ID: L2MREC-11
REPORT #: T:\CUS\O\OMEGA\418BZU0\418BZU0RPT.DOC
    PAGE #: 4
```



```
APPLICANT: OMEGA RESEARCH & DEVELOPMENT, INC.
    D/B/A EXCALIBUR OF AMERICA
FCC ID: L2MREC-11
NAME OF TEST: Occupied Bandwidth
RULES PART NO.: 15.231(C)
REQUIREMENTS: The bandwidth of the emission shall be no
wider than . 25% of the center frequency for
devices operating between }70\mathrm{ and }900\textrm{MHz}
Bandwidth is determined at the points 20 dB
down from the modulated carrier.
434.20 MHz * .0025=1.0855 MHz
1.0855 MHz/2 = +/- 542.75 kHz
```

THE GRAPH ON THE NEXT PAGE REPRESENTS THE EMISSIONS TAKEN FOR THE DEVICE.

METHOD OF MEASUREMENT: A small sample of the transmitter output was fed into the spectrum analyzer and the plot in exhibit 9 was generated. The vertical scale is set to 10 dB per division: the horizontal scale is set to 100 kHz per division.

TEST RESULTS: The unit meets the FCC requirements.

```
PERFORMED BY: JOSEPH SCOGLIO DATE: DECEMBER 17, 2000
```

APPLICANT: OMEGA RESEARCH \& DEVELOPMENT, INC.
D/B/A EXCALIBUR OF AMERICA
FCC ID: L2MREC-11
REPORT \#: T:\CUS \O\OMEGA\418BZU0\418BZU0RPT.DOC
PAGE \#: 6

