

FCC Measurement/Technical Report on

AMKC4J-14H092-AA

FCC ID: L2CCT150F IC: 3659A-CT150F

Report Reference: MDE_JABIL_1701_FCCc

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents

1	Арр	lied Standards and Test Summary	3
1	.1 .2 .3	Applied Standards FCC-IC Correlation table Measurement Summary /Signatures	3 4 5
2	Adn	ninistrative Data	6
2 2	.1 .2 .3 .4	Testing Laboratory Project Data Applicant Data Manufacturer Data	6 6 6
3	Tes	t object Data	7
3 3	.1 .2 .3 .4	General EUT Description EUT Main components Operating Modes Product labelling	7 8 9 9
4	Tes	t Results	10
4 4	.1 .2 .3 .4	Duty cycle measurement (based on dwell time measurement) Spurious radiated emissions Maximum radiated field strength at fundamental frequency Occupied bandwidth	10 15 23 25
5	Tes	t Equipment	28
6	Ant	enna Factors, Cable Loss and Sample Calculations	31
6	.1 .2 .3	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz) Antenna R&S HL562 (30 MHz – 1 GHz) Antenna R&S HF907 (1 GHz – 18 GHz)	31 32 33
7	Pho	to Report	34
8	Set	up Drawings	34

- 1 APPLIED STANDARDS AND TEST SUMMARY
- 1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator (Periodic operation in the band above 70 MHz)

Applicable FCC Rules

Edition of FCC Rules: October 1, 2015

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.231 Periodic operation in the band 40.66-40.70 MHz, above 70 MHz

Note: ANSI C63.10 2013 was applied

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for Momentarily (incl. Periodically) Operated Devices and Remote Control from FCC and IC

Radio equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Transmitter spurious radiated emissions	§ 15.231 (b) / (e)	RSS Gen Issue 5: 6.10/6.13/8.9/8.10; RSS-210 Issue 9: A1.1.2, A1.1.5
Duty cycle measurement (based on dwell time measurement)	§ 15.231 (a)	RSS-210 Issue 9: A1.1.1, A1.1.5
Maximum radiated field strength at fundamental frequency	§ 15.231 (b) / (e)	RSS-210 Issue 9: A1.1.2, A1.1.5; RSS Gen Issue 5: 6.12
Occupied bandwidth	§ 15.231 (c)	RSS-210 Issue 9: A1.1.3
Frequency Stability	§ 15.231 (d)	RSS-210 Issue 9: A1.1.4
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	-	RSS-210 Issue 9: 2.3 RSS Gen Issue 5: 5/7 *)

*) Receivers are exempted from certification besides if operating in stand-alone mode in the frequency range 30–960 MHz or if these are scanner receivers.

1.3 MEASUREMENT SUMMARY /SIGNATURES

FCC Part 15, Subpart C§ 15.231Duty cycle measurement (based on dwell time measurement)					
		ording to ANSI C63.10	2013		
OP-Mode	Setup	Port	Final Result		
op-mode 3	Setup_AB01	Enclosure	passed		
op-mode 4	Setup_AB01	Enclosure	passed		
FCC Part 15, St	ubpart C	§ 15.231			
Spurious Radiate	ed Emissions				
The measureme	nt was performed acco	ording to ANSI C63.10	2013		
OP-Mode	Setup	Port	Final Result		
op-mode 1	Setup_AA01	Enclosure	passed		
op-mode 2	Setup_AA01	Enclosure	passed		
FCC Part 15, St	ubpart C	§ 15.231			
Maximum radiat	ed field strength at fu	ndamental frequency			
The measureme	nt was performed acco	ording to ANSI C63.10	2013		
OP-Mode	Setup	Port	Final Result		
op-mode 1	Setup_AA01	Enclosure	passed		
	Setup_AA01	Enclosure	passed		
op-mode 2		Enclosure	passaa		
op-mode 2 FCC Part 15, So		§ 15.231	passea		
	ubpart C				
FCC Part 15, So Occupied Bandw	ubpart C idth		2013		
FCC Part 15, So Occupied Bandw	ubpart C idth	§ 15.231			
FCC Part 15, So Occupied Bandw The measureme	ubpart C idth nt was performed acco	§ 15.231 ording to ANSI C63.10	2013		
FCC Part 15, So Occupied Bandw The measureme OP-Mode	ubpart C idth nt was performed acco Setup	§ 15.231 ording to ANSI C63.10 Port	2013 Final Result		
FCC Part 15, So Occupied Bandw The measureme OP-Mode op-mode 1	ubpart C idth nt was performed acco Setup Setup_AB01	§ 15.231 ording to ANSI C63.10 Port Enclosure	2013 Final Result passed		
FCC Part 15, So Occupied Bandw The measureme OP-Mode op-mode 1	ubpart C idth nt was performed acco Setup Setup_AB01	§ 15.231 ording to ANSI C63.10 Port Enclosure	2013 Final Result passed		

(responsible for accreditation scope) Dipl.-Ing. Marco Kullik

(responsible for testing and report) B.Sc. Jens Dörwald

ayers

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY Company Name:

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

This facility has been fully described in a report submitted to the ISED and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-00
FCC Designation Number:	DE0015
FCC Test Firm Registration:	929146
Responsible for accreditation scope:	DiplIng. Marco Kullik
Report Template Version:	2017-07-14

2.2 PROJECT DATA

Responsible for testing and report:	B.Sc. Jens Dörwald
Date of Report:	2019-02-04
Testing Period:	2018-11-28 to 2019-01-28

2.3 APPLICANT DATA

Company Name: Jabil	Circuit Belgium N.V.
---------------------	----------------------

Address:

Contact Person:

2.4 MANUFACTURER DATA

Company Name:

Address:

Contact Person:

Mr. William Hynes

USA

Aptiv Service US LLC

Allen Park, MI 48101

999 Republic Drive Suite 100

Kempische Steenweg 297 Industriezone Noord 1000/1920

3500 Hasselt Belgium

Mr. Kim Van Gelder

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	OBDII Dongle, operating in 433 MHz frequency band		
Product name	AMKC4J-14H092-AA		
Туре	-		
Declared EUT data by	the supplier		
Voltage Type	DC		
Normal Voltage	13.0 V		
Low Voltage	6.0 V		
High Voltage	16.0 V		
Normal Temperature	23 °C		
Low Temperature	-20 °C		
High Temperature	+55 °C		
Specific product description for the EUT	The EUT is an OBD Dongle including Cellular technologies e.g. LTE, SRD RF-technologies and 2.4GHz WLAN. The operating frequency is 433 MHz.		
The EUT provides the following ports:	Enclosure		
Special software used for testing	The applicant provided a software to set the device in the different operating modes.		

The main components of the EUT are listed and described in Chapter 3.2.

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description	
DE1102006 EUT A	aa01	radiated sample	
Sample Parameter Value		Value	
Serial No.	1PD000MP		
HW Version	B1.6		
SW Version	Modem Firmware: SWI9X07Y_ 2018/07/19 17:40:21 Aurix Firmware: v0.87 Linux kernel : 3.2.6 Jabil tools: 3.2.8	02.18.05.00 000000 jenkins	
Comment	-		

Sample Name	Sample Code	Description	
DE1102006 EUT B	ab01	conducted sample	
Sample Parameter	Value		
Serial No.	1PD000MP		
HW Version B1.6			
SW Version	Modem Firmware: SWI9X07Y_0 2018/07/19 17:40:21 Aurix Firmware: v0.87 Linux kernel : 3.2.6 Jabil_tools: 3.2.8	2.18.05.00 000000 jenkins	
Comment	-		

General description of ancillary equipment

Device	Details (Manufacturer, Type Model, OUT Code)	Reason for using

General description of auxiliary equipment

Device	Details (Manufacturer, HW, SW, S/N)	Description

EUT SETUPS

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
Setup_AA01	EUT A	Setup for radiated measurements
Setup_AB01	EUT B	Setup for conducted measurements

3.3 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	continuous modulated	EUT is transmitting a GFSK signal at 433.4 MHz (special op-mode for test purpose only)
op-mode 2	continuous modulated	EUT is transmitting a GFSK signal at 433.9 MHz (special op-mode for test purpose only)
op-mode 3	single pulse	EUT is transmitting a GFSK signal at 433.4 MHz
op-mode 4	single pulse	EUT is transmitting a GFSK signal at 433.9 MHz

3.4 PRODUCT LABELLING

3.4.1 FCC ID label

Please refer to the documentation of the applicant.

3.4.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 DUTY CYCLE MEASUREMENT (BASED ON DWELL TIME MEASUREMENT)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

4.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was setup in a shielded room to perform the dwell time measurements. For analyzer settings please see measurement plots.

4.1.2 TEST REQUIREMENTS / LIMITS

Depending on the function of the EUT different paragraphs of FCC §15.231 apply:

Either

(a)(1): A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Or

(a)(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

And

(a)(3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

Otherwise

(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation [...]. In addition, [...] the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

4.1.3 TEST PROTOCOL

Temperature:	23 °C
Air Pressure:	1009 hPa
Humidity:	38 %

Op. Mode	Setup	Port
op-mode 3	Setup_AB01	Enclosure

a) Determine the total duration of a transmission within 100 ms:

Duty cycle = ((L1*N1) + (L2*N2) + ... + (Ln*Nn)) / 100 ms or T, whichever is less Correction factor = 20 * LOG (Duty cycle) [dB]

Step 1	Holdover time	Less than 5s
Step 2	Cycle to determine the on/off ratio within a cycle (period T)	100 ms
Step 3	Sweep of a data word to determine the on time within a data word (L1-LN)	L = 1.0624 ms
Step 4	Determine the number of pulses (N).	N = 1
	First range (trigger delay = 0 ms).	

Calculation of Duty Cycle / Correction Factor: If T > 100 ms => T = 100 ms; L = 1.0624 ms; N = 1 In 100 ms T_{on} = (1*1.0624) / 100 = 0.010624

CORRECTION FACTOR = 20 * LOG (0.010624) = -39.47 dB

b) Determine the period of periodic re-transmission, if any, or cease (deactivation) time:

No period of retransmission found

Deactivation after $T_c \approx 1.0624 \text{ ms}$, Limit: $\leq 5 \text{ s}$

c) Determine the total duration of periodic transmissions within 1 hour, if any:

Duration t_d of all pulses/bursts during T_R ("on-time"):

 t_d depends on the number of the button pressing. On each pressing, the $t_d \approx 1.0624$ ms.

d) If the result of c) exceeds 2 seconds/hour then paragraph (e) applies:

Determine the duration of each transmission (one complete pulse train) and silent time: Duration t_{PT}, Limit: ≤ 1 s (Remark: t_{PT} is identical to t_d if T ≤ 100 ms) Silent time between transmissions t_s = N/A, Limit: \leq Maximum (10 s and 30*t_{PT}).

Op. Mode	Setup	Port
op-mode 4	Setup_AB01	Enclosure

a) Determine the total duration of a transmission within 100 ms:

Duty cycle = ((L1*N1) + (L2*N2) + ... + (Ln*Nn)) / 100 ms or T, whichever is less Correction factor = 20 * LOG (Duty cycle) [dB]

Step 1	Holdover time	Less than 5s
Step 2	Cycle to determine the on/off ratio within a cycle (period T)	100 ms
Step 3	Sweep of a data word to determine the on time within a data word (L1-LN)	L = 3.85 ms
Step 4	Determine the number of pulses (N).	N = 1
	First range (trigger delay = 0 ms).	

Calculation of Duty Cycle / Correction Factor: If T > 100 ms => T = 100 ms; L = 3.8477 ms; N = 1 In 100 ms T_{on} = (1*3.85) / 100 = 0.0385

CORRECTION FACTOR = 20 * LOG (0.0385) = -28.3 dB

b) Determine the period of periodic re-transmission, if any, or cease (deactivation) time:

No period of retransmission found

Deactivation after $T_c \approx 3.85 \text{ ms}$, Limit: $\leq 5 \text{ s}$

c) Determine the total duration of periodic transmissions within 1 hour, if any:

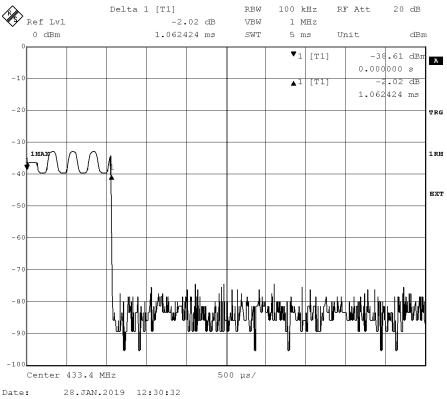
Duration t_d of all pulses/bursts during T_R ("on-time"):

 \mathbf{t}_{d} depends on the number of the button pressing. On each pressing, the $\mathbf{t}_{d} \approx \mathbf{3.85} \text{ ms}.$

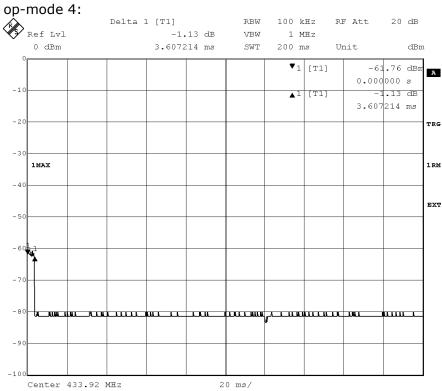
d) If the result of c) exceeds 2 seconds/hour then paragraph (e) applies:

Determine the duration of each transmission (one complete pulse train) and silent time: Duration t_{PT}, Limit: \leq 1 s (Remark: t_{PT} is identical to t_d if T \leq 100 ms) Silent time between transmissions t_s = N/A, Limit: \leq Maximum (10 s and 30*t_{PT}).

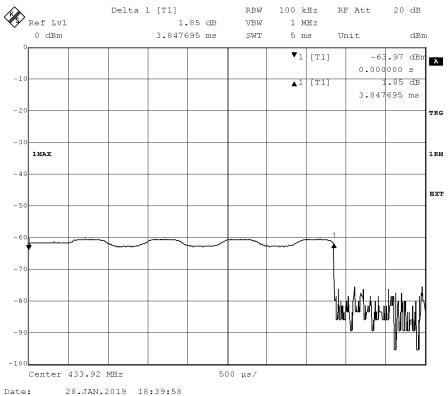
FCC Part 15, Subpart C	Op. Mode	Result		
	op-mode 3	passed		
	op-mode 4	passed		


4.1.4 TEST RESULT: DUTY CYCLE / CORRECTION FACTOR

4.1.5 MEASUREMENT PLOTS DUTY CYCLE



The whole transmission after a single button pressing.



Date: 28.JAN.2019 18:37:30

The whole transmission after a single button pressing.

Single pulse after a single button pressing.

4.2 SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10–2013

4.2.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre-measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF–Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz

- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: \pm 45 ° around the determined value
- Height variation range: \pm 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °. **Step 2:**

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by \pm 45°

EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 1 s

4.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Calculate Limit (dBµV/m @10m)	Limit (dBµV/m) @10m
0.009 - 0.49	2400/F (kHz)	300	(48.5 – 13.8) + 59.1 dB	107.6 - 72.9
0.49 - 1.705	24000/F (kHz)	30	(33.8 – 23.0) + 19.1 dB	52.9 - 42.1
1.705 - 30	30	30	29.5 + 19.1 dB	39.5

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit ...

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

§15.35(c):

[...] when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted [...].

§15.231(b)(3)

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator.

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasipeak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

Interpretation of the test laboratory:

The last subordinate clause of \$15.231(b)(3) is overruled by \$15.205/209, therefore within the restricted bands the limits defined at \$15.205/209 and outside the restricted bands the limits defined at \$15.231(b) resp. \$15.231(e) are applied.

4.2.3 TEST PROTOCOL

4.2.3.1 MEASUREMENT UP TO 30 MHZ

Temperature:	24 °C
Air Pressure:	1009 hPa
Humidity:	35 %

Setup_AA01 op-mode1

Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
[MHz]	[dBµV/m]	Detector	[kHz]	[dBµV/m]	[dB]
-	-	-	-	-	-

Setup_AB01 op-mode1

Spuric	ous	Spurious				Margin to
Freq		Level		RBW	Limit	Limit
[MHz	<u>z]</u>	[dBµV/m]	Detector	[kHz]	[dBµV/m]	[dB]
-		-	-	-	-	-

4.2.3.2 MEASUREMENT ABOVE 30 MHZ TO 6 GHZ

Temperature:	24 °C
Air Pressure:	1006 hPa
Humidity:	32 %

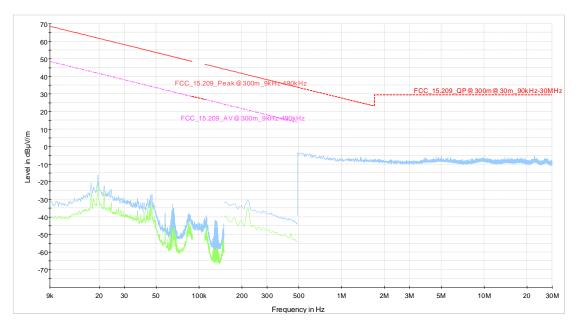
Setup_AA01 op-mode1

Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
192.0	19.22	QP	120	60.8	41.58
240.0	37.83	QP	120	60.8	8.17
867.2	39.77	QP	120	60.8	21.03

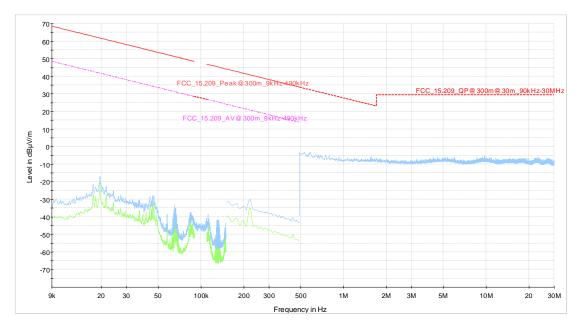
Setup_AA01

Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]					
240.0	21.65	QP	120	46.0	39.15					
867.9	38.36	QP	120	60.8	22.44					

Remarks: - No more spurious emissions in the range 15 dB below the limit were found. The test was performed in the frequency range from 30 MHz to 1 GHz. For this

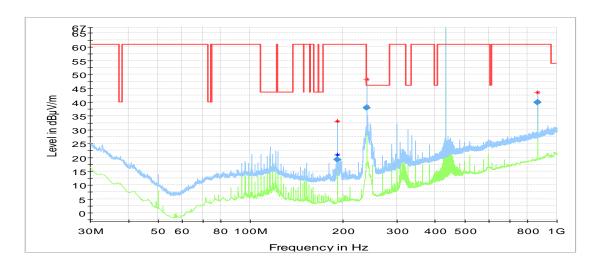

test the EUT was sending a continuously modulated signal.

- No Duty Cycle correction factor was used.
- Please see the measurement plot.
- wanted signal at 433.4 MHz
- wanted signal at 433.9 MHz



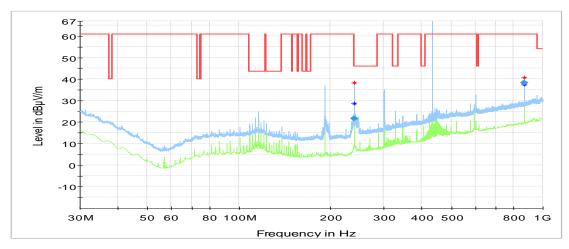
4.2.4 MEASUREMENT PLOTS

4.2.4.1 RADIATED EMISSIONS (f < 30 MHz) op-mode1:



op-mode2:

4.2.4.2 RADIATED EMISSIONS (30 MHz < f < 1GHz)

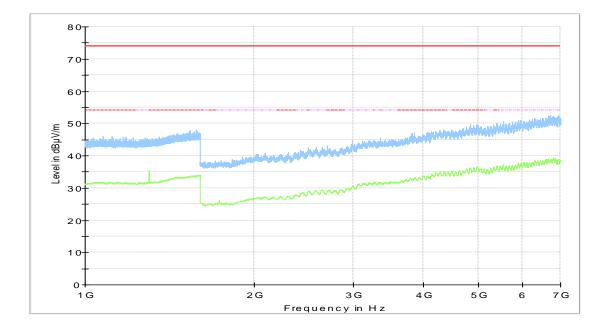


op-mode1

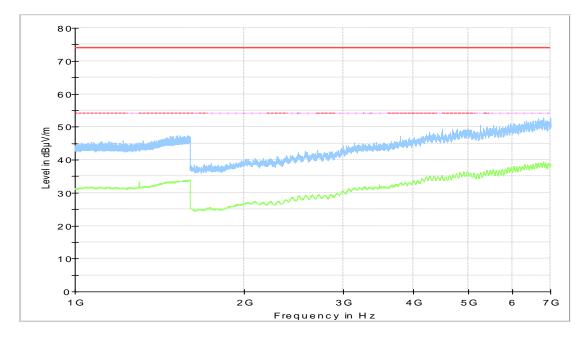
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
192.000000	19.22	60.80	41.58	1000.0	120.000	102.0	V	122.0
240.000000	37.83	60.80	8.17	1000.0	120.000	162.0	Н	-61.0
867.180000	39.77	60.80	21.03	1000.0	120.000	112.0	Н	99.0

Note: The peak value at 433.4 MHz is the modulated carrier

op-mode2



Note: The peak value at 433.9 MHz is the modulated carrier.


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
240.00000	21.65	46.00	39.15	1000.0	120.000	318.0	V	-158.0
867.840000	38.36	60.80	22.44	1000.0	120.000	102.0	Н	4.0

4.2.4.3 RADIATED EMISSIONS (1 GHz < f < 6GHz) op-mode1

op-mode2

4.3 MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.10-2013

4.3.1 TEST DESCRIPTION

Please refer to sub-clause 4.1.1

4.3.2 TEST LIMITS

Please refer to sub-clause 4.1.2

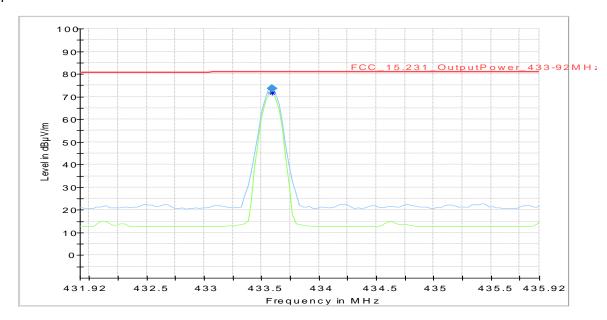
4.3.3 TEST PROTOCOL

Temperature:	23 °C
Air Pressure:	1002 hPa
Humidity:	34 %

Op. Mode	Setup	Port
op-mode 1	Setup_AA01	Enclosure

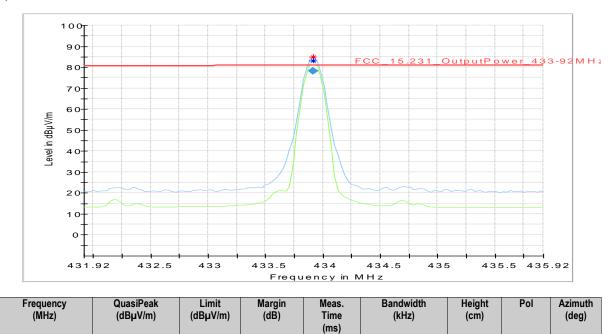
Frequency	Output power	Limit	Remarks
[MHz]	[dBµV/m]	[dBµV/m]	
433.4	73.56	80.83	Maximum radiated field strength at fundamental frequency. No Duty Cycle correction factor was used.

Op. Mode	Setup	Port
op-mode 2	Setup_AA01	Enclosure


Frequency	Output power	Limit	Remarks
[MHz]	[dBµV/m]	[dBµV/m]	
433.9	78.32	80.83	Maximum radiated field strength at fundamental frequency. No Duty Cycle correction factor was used.

4.3.4 TEST RESULT: Maximum radiated field strength at fundamental frequency

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed



4.3.5 MEASUREMENT PLOT MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY op-mode1

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
433.590000	73.56	80.81	7.26	1000.0	120.000	131.0	V	-92.0

op-mode2

2.50

1000.0

120.000

134.0 V

78.32

80.83

433.920000

-64.0

4.4 OCCUPIED BANDWIDTH

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10-2013

4.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

For analyzer settings please see the measurement plots.

4.4.2 TEST LIMITS

FCC Part 15, Subpart C, §15.231(c)The maximum 20 dB bandwidth of a transmitter operating at a frequency range:70 to 900 MHz is0.25% of the centre frequencyabove 900 MHz is0.5% of the centre frequency

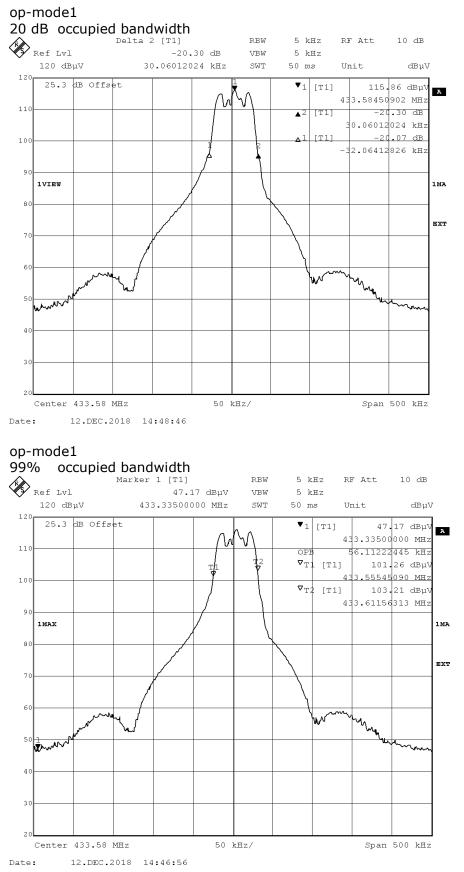
4.4.3 TEST PROTOCOL

Temperature:	23 °C
Air Pressure:	1009 hPa
Humidity:	42 %

Op. Mode	Setup	Port
op-mode 1	Setup_AB01	Enclosure

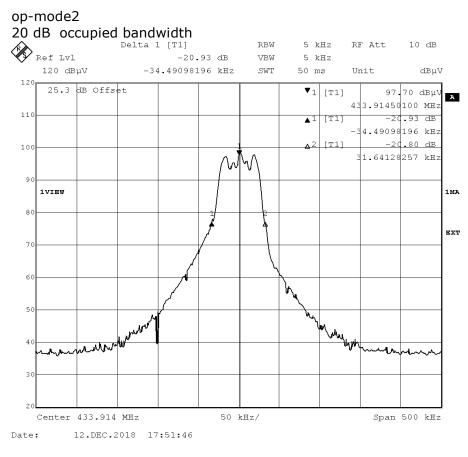
Cannel Frequency [MHz]	20 dB bandwidth [kHz]	99% bandwidth [kHz]	Limit [kHz]
433.4	62.12	56.12	108.25

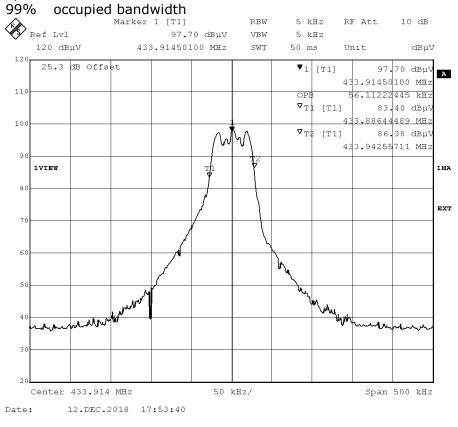
Op. Mode	Setup	Port
op-mode 2	Setup_AB01	Enclosure


Cannel Frequency [MHz]	20 dB bandwidth [kHz]	99% bandwidth [kHz]	Limit [kHz]
433.9	66.13	56.11	108.25

Remark: Please see the measurement plots.

4.4.4 TEST RESULT: OCCUPIED BANDWIDTH


FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed



4.4.5 MEASUREMENT PLOTS OCCUPIED BANDWIDTH

op-mode2

5 TEST EQUIPMENT

Radiated Emissions

Lab to perform radiated emission tests

Ref.No	Device Name	Description	Manufactur er	Serial Number	Last Calibratio n	Calibratio n Due
1.1	NRV-Z1	Sensor Head A	Rohde & Schwarz GmbH & Co. KG	827753/005	2018-07	2019-07
1.2	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2018-10	2020-10
1.3	Opus10 TPR (8253.00)	ThermoAirpressu re Datalogger 13 (Environ)	Lufft Mess- und Regeltechnik GmbH	13936	2017-04	2019-04
1.4	ESW44	EMI Test Receiver	Rohde & Schwarz GmbH & Co. KG	101603	2018-05	2019-05
1.5	Anechoic Chamber	10.58 x 6.38 x 6.00 m³	Frankonia	none	2018-06	2020-06
1.6	FS-Z60	Harmonic Mixer 40 - 60 GHz	Rohde & Schwarz Messgeräteba u GmbH	100178	2016-12	2019-12
1.7	FS-Z220	Harmonic Mixer 140 - 220 GHz		101005	2017-03	2020-03
1.8	SGH-05	Standard Gain / Pyramidal Horn Antenna (140 - 220 GHz)	RPG- Radiometer Physics GmbH	075		
1.9	HL 562	Ultralog new biconicals	Rohde & Schwarz	830547/003	2018-07	2021-07
1.10	0-1.5-KK	5		9942012		
1.11	ASP 1.2/1.8-10 kg		Maturo GmbH	-		
1.12	Fully Anechoic Room	8.80m x 4.60m x 4.05m (l x w x h)		P26971-647-001- PRB	2018-06	2020-06
1.13	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
1.14	NRVD Power Meter		Rohde & Schwarz GmbH & Co. KG	828110/016	2018-07	2019-07
1.15	HF 906	Double-ridged horn	Rohde & Schwarz	357357/002	2018-09	2021-09
1.16	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.17	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2016-12	2018-12
1.18	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		

Radiated Emissions

Lab to perform radiated emission tests

Lab to perform radiated emission tests						
Ref.No	Device Name	Description	Manufactur er	Serial Number	Last Calibratio n	Calibratio n Due
1.19	SGH-19	Standard Gain / Pyramidal Horn Antenna (40 - 60 GHz)	Radiometer	093		
1.20	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
1.21	4HC1600/1275 0-1.5-KK	High Pass Filter	Trilithic	9942011		
1.22	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
1.23	JS4-00102600- 42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
1.24	TT 1.5 WI	Turn Table	Maturo GmbH	-		
1.25	HL 562 Ultralog	Logper. Antenna	Rohde & Schwarz	100609	2016-04	2019-04
1.26	HF 906	Double-ridged horn	Schwarz	357357/001	2018-03	2021-03
1.27	FS-Z325	Harmonic Mixer 220 - 325 GHz	Rohde & Schwarz Messgeräteba u GmbH	101006	2017-03	2020-03
1.28	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
1.29	SGH-08		RPG- Radiometer Physics GmbH	064		
1.30	SGH-12	Standard Gain / Pyramidal HornAntenna (60 - 90 GHz)	RPG- Radiometer Physics GmbH	326		
1.31	5HC3500/1800 0-1.2-KK	High Pass Filter	Trilithic	200035008		
1.32	FS-Z140	Harmonic Mixer 90 -140 GHz	Rohde & Schwarz Messgeräteba u GmbH	101007	2017-02	2020-02
1.33	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2018-01	2021-01
1.34	.34 Opus10 THI ThermoHygro (8152.00) Datalogger 12 (Environ)		Lufft Mess- und Regeltechnik GmbH	12482	2017-03	2019-03
1.35	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2019-01	2020-01
1.36	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz		896037		
1.37	AS 620 P	Antenna mast		620/37		
1.38	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg	Maturo GmbH	TD1.5- 10kg/024/3790709		

Radiated Emissions

Lab to perform radiated emission tests

Ref.No	Device Name	Description	Manufactur	Serial Number	Last Calibratio	Calibratio n Due
•			er		n	ii Due
1.39	SGH-03	Pyramidal Horn Antenna (220 -	RPG- Radiometer Physics GmbH	060		
1.40	FS-Z90	60 - 90 GHz	Rohde & Schwarz Messgeräteba u GmbH	101686	2017-03	2020-03
1.41	ESIB 26		Rohde & Schwarz	830482/004	2018-01	2020-01
1.42	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
1.43	AFS42- 00101800-25- S-42	Broadband Amplifier 25 MHz - 18 GHz	Miteq	2035324		
1.44	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/119205 13		
1.45	HF 907	5	Rohde & Schwarz	102444	2018-07	2021-07

Conducted Emissions

Ref.No		est Lab Description	Manufacturer	Serial Number	Last	Calibration
	Device Name	Description	Manufacturer	Senar Number	Calibration	Due
1.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2017-07	2020-07
1.2	MFS	Rubidium Frequency Standard	Datum- Beverly	5489/001	2018-07	2019-07
1.3	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2018-04	2020-04
1.4	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
1.5	SMP03	Signal Generator 2 GHz - 27 GHz	Rohde & Schwarz	833680/003	2017-09	2020-09
1.6	FSIQ26	Signal Analyser	Rohde & Schwarz	840061/005	2017-05	2019-05
1.7	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
1.8	VT 4002	Climatic Chamber	Vötsch	58566002150010	2018-04	2020-04
1.9	WA1515	Broadband Power Divider SMA	Weinschel Associates	A855		
1.10	A8455-4	4 Way Power Divider (SMA)		-		
1.11	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2016-10	2019-10

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

AF Corr. Cable (nss1 (nss2 (nsulte) Cable (nss2 (nsulte) Cable (nsulte) Cable (nss2 (nsulte) Cable (nsulte) Cable (nsulte)				•		-					
FrequencyAF IFrequency(inside(coutside(switch (teamber)(-40 dR)(distance(distance)MHzdB (1/m)dBdBdBdBdBdBdBdBmm0.00920.050-79.60.10.10.10.1-80300330.01520.35-79.60.10.10.10.1-80300330.02520.38-79.60.10.10.10.1-80300330.0320.32-79.60.10.10.10.1-80300330.0520.35-79.60.10.10.10.1-80300330.0420.12-79.60.10.10.10.1-80300330.1220.17-79.60.10.10.10.1-80300330.4920.12-79.60.10.10.10.1-80300330.4920.12-79.60.10.10.10.1-80300330.4920.12-79.60.10.10.10.1-80300330.4920.12-79.60.10.10.10.1-80300330.520.11-39.60.10.10.10.1-4030330.520.11-39.60.10.10.10.1-403033 </td <td></td>											
Frequency HFH-Z2) Corr. chamber) unit) receiver) decade) (limit) (used) MHz dB (1/m) dB										``	``
MHzdB (1/m)dBdBdBdBdBdBmm0.00920.050-79.60.10.10.10.10.18.003.30.01520.37-79.60.10.10.10.18.003.30.02520.38-79.60.10.10.10.18.003.30.03520.32-79.60.10.10.10.18.003.30.0320.32-79.60.10.10.10.18.003.30.04920.12-79.60.10.10.10.18.003.30.120.14-79.60.10.10.10.18.003.30.4920.12-79.60.10.10.10.18.003.30.4920.12-79.60.10.10.10.18.003.30.4920.12-79.60.10.10.10.18.003.30.4920.12-79.60.10.10.11.014.003.30.520.11-39.60.10.10.11.014.003.30.520.11-39.60.10.10.11.014.003.3120.09-39.50.20.10.10.11.403.03.3120.02-39.50.20.10.10.11.403.03.3119.54-					``						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.1	0.1	0.1	0.1	-80		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.05	20.35	-79.6		0.1	0.1	0.1	0.1	-80	300	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.08	20.30	-79.6		0.1	0.1		0.1	-80	300	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1	20.20	-79.6		0.1	0.1	0.1	0.1	-80	300	3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.2	20.17	-79.6		0.1	0.1	0.1	0.1	-80	300	3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.3	20.14	-79.6		0.1	0.1	0.1	0.1	-80	300	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.49	20.12			0.1	0.1	0.1	0.1	-80	300	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.490001	20.12	-39.6		0.1	0.1	0.1	0.1	-40	30	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5	20.11	-39.6		0.1	0.1	0.1	0.1	-40	30	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.8						0.1	0.1	-40		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1				0.1	0.1			-40	30	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2					0.1			-40		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3					0.1			-40		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									-40		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
14 19.54 39.4 16 19.53 39.3 18 19.50 39.3 0.1 0.2 0.1 0.2 0.1 -40 30 3 18 19.50 39.3 0.3 0.1 0.2 0.1 -40 30 3 20 19.57 39.3 0.3 0.1 0.2 0.1 -40 30 3 22 19.61 39.3 0.3 0.1 0.2 0.1 -40 30 3 24 19.61 39.3 0.3 0.1 0.2 0.1 -40 30 3 26 19.54 39.3 0.3 0.1 0.2 0.1 -40 30 3 28 19.46 -39.2 0.3 0.1 0.3 0.1 -40 30 3											
16 19.53 39.3 18 19.50 39.3 20 19.57 39.3 0.2 19.61 39.3 0.2 19.61 39.3 0.2 19.61 39.3 0.3 0.1 0.2 0.1 40 30 3 0.2 19.61 39.3 0.3 0.1 0.2 0.1 40 30 3 0.2 19.61 39.3 0.3 0.1 0.2 0.1 40 30 3 0.4 19.61 39.3 0.3 0.1 0.2 0.1 40 30 3 0.2 19.54 39.3 0.3 0.1 0.2 0.1 40 30 3 0.3 0.1 0.2 0.1 40 30 3 0.2 19.54 39.3 0.3 0.1 0.2 0.1 40 30 3 0.8 19.46 39.2 0.3 0.1 0.3 0.1 40 30	-										
18 19.50 39.3 20 19.57 39.3 22 19.61 39.3 0.2 19.61 39.3 0.3 0.1 0.2 0.1 -40 30 3 0.4 19.61 39.3 0.3 0.1 0.2 0.1 -40 30 3 0.4 19.61 39.3 0.3 0.1 0.2 0.1 -40 30 3 0.4 19.64 39.3 0.3 0.1 0.2 0.1 -40 30 3 0.5 19.54 39.3 0.3 0.1 0.2 0.1 -40 30 3 0.8 19.46 39.2 0.3 0.1 0.3 0.1 -40 30 3											
20 19.57 -39.3 0.3 0.1 0.2 0.1 -40 30 3 22 19.61 -39.3 0.3 0.1 0.2 0.1 -40 30 3 24 19.61 -39.3 0.3 0.1 0.2 0.1 -40 30 3 26 19.54 -39.3 0.3 0.1 0.2 0.1 -40 30 3 28 19.46 -39.2 0.3 0.1 0.3 0.1 -40 30 3									-		
22 19.61 -39.3 0.3 0.1 0.2 0.1 -40 30 3 24 19.61 -39.3 0.3 0.1 0.2 0.1 -40 30 3 26 19.54 -39.3 0.3 0.1 0.2 0.1 -40 30 3 28 19.46 -39.2 0.3 0.1 0.3 0.1 -40 30 3									-		3
24 19.61 -39.3 0.3 0.1 0.2 0.1 -40 30 3 26 19.54 -39.3 0.3 0.1 0.2 0.1 -40 30 3 28 19.46 -39.2 0.3 0.1 0.3 0.1 -40 30 3											3
26 19.54 -39.3 0.3 0.1 0.2 0.1 -40 30 3 28 19.46 -39.2 0.3 0.1 0.3 0.1 -40 30 3											3
28 19.46 -39.2 0.3 0.1 0.3 0.1 -40 30 3											
<u> </u>											
		19.73	-39.1		0.4	0.1	0.3	0.1	-40	30	3

6.1 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.2 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

(<u>d_{Limit} = 3 m)</u>

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable loss 1	cable loss 2	cable loss 3	cable loss 4	distance corr.	d _{Limit} (meas.	d _{used} (meas.	
(inside	(outside	(switch	(to	(-20 dB/	distance	distance	
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)	
dB	dB	dB	dB	dB	m	m	
0.29	0.04	0.23	0.02	0.0	3	3	
0.39	0.09	0.32	0.08	0.0	3	3	
0.56	0.14	0.47	0.08	0.0	3	3	
0.73	0.20	0.59	0.12	0.0	3	3	
0.84	0.21	0.70	0.11	0.0	3	3	
0.98	0.24	0.80	0.13	0.0	3	3	
1.04	0.26	0.89	0.15	0.0	3	3	
1.18	0.31	0.96	0.13	0.0	3	3	
1.28	0.35	1.03	0.19	0.0	3	3	
1.39	0.38	1.11	0.22	0.0	3	3	
1.44	0.39	1.20	0.19	0.0	3	3	
1.55	0.46	1.24	0.23	0.0	3	3	
1.59	0.43	1.29	0.23	0.0	3		
1.67	0.34	1.35	0.22	0.0	3	3	
1.67	0.42	1.41	0.15	0.0	3	3	
1.87	0.54	1.46	0.25	0.0	3	3	
1.90	0.46	1.51	0.25	0.0	3	3	
1.99	0.60	1.56	0.27	0.0	3	3	
2.14	0.60	1.63	0.29	0.0	3	3	
2.22	0.60	1.66	0.33	0.0	3	3	
2.23	0.61	1.71	0.30	0.0	3	3	

$(d_{\text{Limit}} = 10 \text{ m})$

₩ LIIIIIL										
	30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
	50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
	100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
	150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
	200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
	250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
	300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
	350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
	400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
	450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
	500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
	550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
	600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
	650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
	700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
	750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
	800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
	850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
	900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
	950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1	1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG ($d_{\text{Limit}}/d_{\text{used}}$) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.3 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

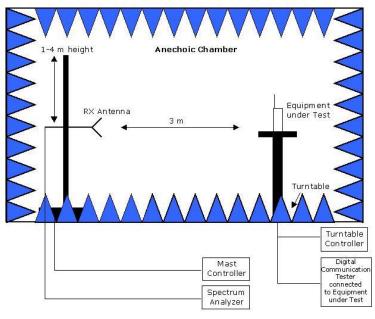
					cable			
			cable		loss 3			
			loss 1		(switch			
			(relay +	cable	unit,			
	AF		cable	loss 2	atten-	cable		
	R&S		inside	(outside	uator &	loss 4 (to		
Frequency	HF907	Corr.	chamber)	chamber)	pre-amp)	receiver)		
MHz	dB (1/m)	dB	dB	dB	dB	dB		
1000	24.4	-19.4	0.99	0.31	-21.51	0.79		
2000	28.5	-17.4	1.44	0.44	-20.63	1.38		
3000	31.0	-16.1	1.87	0.53	-19.85	1.33		
4000	33.1	-14.7	2.41	0.67	-19.13	1.31		
5000	34.4	-13.7	2.78	0.86	-18.71	1.40		
6000	34.7	-12.7	2.74	0.90	-17.83	1.40		
7000	35.6					1.47		
7000	35.0	-11.0	2.82	0.86	-16.19	1.40		
	I					aphla		1
						cable		
			cable			loss 4		
			loss 1	cable	cable	(switch		used
	AF		(relay	loss 2	loss 3	unit, atten-	cable	for
	R&S		inside	(inside	outside	uator &		FCC
Frequency	HF907	Corr.	chamber)	chamber)	chamber)	pre-amp)	loss 5 (to receiver)	15.247
		dB	dB	dB	dB	dB	dB	13.247
	dB (1/m)	-		-	-	-	-	
3000 4000	31.0 33.1	-23.4	0.47	1.87	0.53	-27.58	1.33	
		-23.3	0.56	2.41	0.67	-28.23	1.31	
5000	34.4	-21.7	0.61	2.78	0.86	-27.35	1.40	
6000	34.7	-21.2	0.58	2.74	0.90	-26.89	1.47	
7000	35.6	-19.8	0.66	2.82	0.86	-25.58	1.46	
			cable loss 1	cable	cable	cable	cable	cable
	AF		(relay	loss 2	loss 3	loss 4	loss 5	loss 6
	R&S		inside	(High	(pre-	(inside	outside	(to
Frequency	HF907	Corr.	chamber)	Pass)	amp)	chamber)	chamber)	receiver)
	dB (1/m)	dB	dB	dB	dB	dB	dB	dB
7000	35.6	-					-	
8000	35.0	-57.3 -56.3	0.56	<u>1.28</u> 0.71	-62.72 -61.49	2.66 2.84	0.94	1.46 1.53
	37.1	-55.3	0.68	0.65	-60.80	3.06	1.09	1.60
9000	37.5	-56.2	0.70	0.54	-61.91	3.28	1.20	1.67
9000 10000	27 5		0.80	0.61	-61.40	3.43	1.27	1.70 1.73
9000 10000 11000	37.5	-55.3				2 5 2		1 /2
9000 10000 11000 12000	37.6	-53.7	0.84	0.42	-59.70	3.53	1.26	
9000 10000 11000 12000 13000	37.6 38.2	-53.7 -53.5	0.84 0.83	0.42 0.44	-59.81	3.75	1.32	1.83
9000 10000 11000 12000 13000 14000	37.6 38.2 39.9	-53.7 -53.5 -56.3	0.84 0.83 0.91	0.42 0.44 0.53	-59.81 -63.03	3.75 3.91	1.32 1.40	1.83 1.77
9000 10000 11000 12000 13000 14000 15000	37.6 38.2 39.9 40.9	-53.7 -53.5 -56.3 -54.1	0.84 0.83 0.91 0.98	0.42 0.44 0.53 0.54	-59.81 -63.03 -61.05	3.75 3.91 4.02	1.32 1.40 1.44	1.83 1.77 1.83
9000 10000 12000 13000 14000 15000 16000	37.6 38.2 39.9 40.9 41.3	-53.7 -53.5 -56.3 -54.1 -54.1	0.84 0.83 0.91 0.98 1.23	0.42 0.44 0.53 0.54 0.49	-59.81 -63.03 -61.05 -61.51	3.75 3.91 4.02 4.17	1.32 1.40 1.44 1.51	1.83 1.77 1.83 1.85
9000 10000 11000 12000 13000 14000 15000	37.6 38.2 39.9 40.9	-53.7 -53.5 -56.3 -54.1	0.84 0.83 0.91 0.98	0.42 0.44 0.53 0.54	-59.81 -63.03 -61.05	3.75 3.91 4.02	1.32 1.40 1.44	1.83 1.77 1.83

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor


Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

7 PHOTO REPORT

Photos are included in an external report.

8 SETUP DRAWINGS

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.