

Test report No: 3192ERM.002

Assessment report **RF EXPOSURE REPORT ACCORDING TO** FCC 47 CFR Part 2.1093

ISED RSS-102 Issue 5:2015

(*) Identification of item tested	Wireless Power Consortium (Qi) compliant Baseline Profile (5W) power
(*) Trademark	Aptiv
(*) Model and /or type reference tested	WPC
Other identification of the product	FCC ID: L2C0085TR IC ID: 3432A-0085TR
(*) Features	Qi BPP 5W wireless power transfer
Manufacturer	Aptiv Services US LLC,
	5725 Innovation Drive, Troy, Michigan 48098 USA.
Test method requested, standard	FCC 47 CFR Part 2.1093. Radiofrequency radiation exposure evaluation: portable devices. ISED RSS-102 Issue 5 (2015-03) – Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
Summary	IN COMPLIANCE
Approved by (name / position & signature)	Domingo Galvez EMC&RF Lab Manager
Date of issue	09-24-2021
Report template No	FERMUSA_199 (*) "Data provided by the client"

Index

Competences and guarantees
General conditions
Uncertainties
Data provided by the client3
Document history4
General description of the device under evaluation5
Testing verdicts
List of equipment used during the test6
Appendix A: FCC RF Exposure Evaluation7
RF Exposure Assessment result and verdict8
Appendix B:17
ISED RSS RF Exposure Information17
RF Exposure Assessment result and verdict18
Appendix C : FCC RF Exposure information26
FCC RF Exposure evaluation27
FCC MPE Evaluation
Appendix D: ISED RF Exposure information
ISED RF Exposure evaluation for mobile devices
ISED MDE Evoluction 21
ISED MPE Evaluation

Competences and guarantees

In order to assure the traceability to other national and international laboratories, DEKRA Certification Inc. has a calibration and maintenance program for its measurement equipment.

DEKRA Certification Inc. guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at DEKRA Certification Inc. at the time of performance of the test.

DEKRA Certification Inc. is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Assessment Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA Certification Inc..

General conditions

- 1. This report is only referred to the item that has undergone the assessment.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA Certification Inc..
- 4. This assessment report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA Certification Inc. and the Accreditation Bodies.

Uncertainties

Uncertainty (factor k=2) was calculated according to the DEKRA Certification internal document PODT000.

Frequency (MHz)	Uncertainty (dB)	Uncertainty	Field
0.03 - 0.09	3.87	1.56	Electric (V/m)
0.03 - 0.09	2.60	1.34	Magnetic (A/m)
0.09 - 10	0.85	1.10	Electric (V/m)
0.09 - 10	0.71	1.09	Magnetic (A/m)

Data provided by the client

The following data has been provided by the client:

WPC (Qi) BPP (5W) wireless power transmitter for charging consumer electronics devices compliant to the Qi wireless technology.

DEKRA declines any responsibility with respect to the information provided by the client and that may affect the validity of results.

Usage of samples

Samples undergoing test have been selected by the client

Sample S/01 is composed of the following elements:

Control Nº	Description	Model	Serial Nº	Date of reception
3192/03	Wireless charger	P32247782	S210630000060	08/30/2021
3192/05	Thermal Pad			08/30/2021
3192/10	DC Harness			08/30/2021

Sample S/01 is composed of the following accessories

Control Nº	Description	Model	Serial N ^o	Date of reception
3192/15	Load			08/30/2021
3176/11	WACM Charger stand 1			04/26/2021

1. Sample S/01 has undergone the test(s) specified in subclause "Test method requested".

Identification of the client

Aptiv Services US LLC,

5725 Innovation Drive, Troy, Michigan 48098 USA.

Testing period and place

Test Location	DEKRA Certification Inc.
Date (start)	09-01-2021
Date (finish)	09-02-2021

Document history

Report number	Date	Description
3192ERM.002	09-23-2021	First release

General description of the device under evaluation

WPC (Qi) BPP (5W) wireless power transmitter for charging consumer electronics devices compliant to the Qi wireless technology.

In order to perform the assessment a conservative evaluation distance <=10cm has been used.

Environmental conditions

In the control chamber, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C		
Relative humidity	Min. = 30 % Max. = 75 %		
Air pressure	Min. = 860 mbar Max. = 1060 mbar		

Remarks and comments

The tests have been performed by the technical personnel: Lakshmi Gollamudi, Victor Albrecht and Nasir Khan.

Based on the TCB Workshop released in November 2019, that states: "For low-power, in-vehicle applications perform H-field measurements for each edge/top surface of the host/client pair at every 2 cm, starting from as close as possible out to 10cm. May not be possible if probe has very large measurement head". The minimum distance considered for the RF exposure measurements has been 4 cm because the measurement head is large (92mm x 92mm dimensions).

Testing verdicts

Not applicable :	N/A
Pass :	Ρ
Fail :	F
Not measured :	N/M

FCC 47 CFR § 2.1093 &	VERDICT			
ISED RSS 102 ISSUE 5 & ISED RSS 102-SPR-002 ISSUE 1				
		Ρ	F	NM
Qi Wireless Charger		Ρ		

1: Technology not subject to testing. Verdict has been determined through RF Exposure assessment (see Appendix A).

List of equipment used during the test

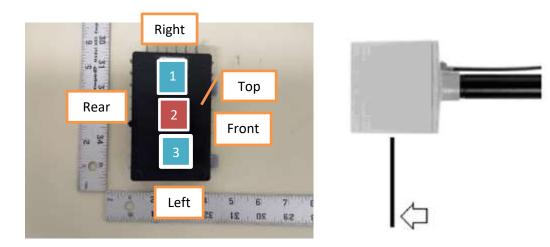
CONTROL NUMBER	DESCRIPTION	MANUFACTURER	MODEL	LAST CALIBRATION	NEXT CALIBRATION
1324	Narda EHP-200A E and H Field Analyzer	NARDA	EHP-200A	2020/09	2022/09
1107	ETHERNET SNMP THERMOMETER	HW GROUP	HWg-STE Plain	2020/08	2022/08

Appendix A: FCC RF Exposure Evaluation

RF Exposure Assessment result and verdict

RF Exposure evaluation for the Qi wireless technology has been conducted through field measurements (see Qi Wireless Charger Evaluation section below).

Technology	Frequency (MHz)	Max. H-field (A/m)	Max. E-field (V/m)	Max Power Density (W/m ²)	H-Field Limit (A/m)	E-Field Limit (V/m)	Power Density Limit (W/m ²)	Verdict
Qi Charger	0.109	0.93	4.56	-	1.63	614	-	PASS


Table 1: Assessment result and Verdict

Qi Wireless Charger Evaluation

For low-power (<15W), in-vehicle applications perform H-field measurements for each edge/top surface of the host/client pair at every 2 cm, starting from as close as possible out to 10 cm. E and H field strength measurements or numerical modeling may be used to demonstrate compliance. Measurements should be made from all sides and the top of the primary/client pair, with the <=10 cm measured from the center of the probe(s) to the edge of the device. Emissions between 100 kHz to 300 kHz should be assessed versus the limits at 300 kHz in Table 1 of Section 1.1310: 614 V/m and 1.63 A/m

According to "FCC 47 CFR Part 2.1093", portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in §1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

Limits for Maximum Permissible Exposure (MPE) to comply with FCC 47 CFR § 2.1091 are defined in "FCC 47 CFR Part 1.1310 Radiation Exposure limits, paragraph (e)":

E Field = 4cm to 10 cm H Field = 4cm to 10 cm

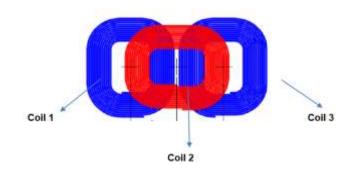


Figure 1: WPT measurement setup

The test sample Primary Coil is one from a linear array of partially overlapping Primary Coils, as appropriate for the position of the Power Receiver relative to the Primary Coils. Selection of the Primary Coil proceeds by the Power Transmitter attempting to establish communication with a Power Receiver using any of the Primary Coils. The array may consist of a single Primary Coil only.

The WPT device consists of different coils but only one coil will transmit based on the placement of load on charger.

The below testing setup has been measured in order to assess compliance for the device.

- Setup 1 – Charging setup with a Load

For the normal charging setup, measurements at every 2 cm starting from 4cm to 10 cm distance have been performed for all device sides, at different battery charge levels. With the customer provided load, measurements were performed on the 3 different coils by placing the load on each coil at different charging levels.

Test Side	Distance to DUT (cm)	Frequency (kHz)	H- Field (A/m)	Limit (A/m)	% Limit	Verdict
	4		0.17		10.43	Pass
Erent 1	6		0.22		13.50	Pass
Front 1	8		0.14		8.59	Pass
	10		0.08		4.91	Pass
	4		0.64		39.26	Pass
Front 2	6		0.32		19.63	Pass
Front 2	8		0.15		9.20	Pass
	10		0.07	1.63	4.29	Pass
	4	109	0.31		19.02	Pass
Front 3	6	109	0.25		15.34	Pass
FION 3	8		0.08		4.91	Pass
	10		0.12		7.36	Pass
	4		0.57		34.97	Pass
Rear 1	6		0.32		19.63	Pass
Rear	8	-	0.17		10.43	Pass
	10		0.11		6.75	Pass
Rear 2	4		0.93		57.06	Pass
Redi Z	6		0.47		28.83	Pass

	8	0.27	16.56	Pass
	10	0.13	7.98	Pass
	4	0.85	52.15	Pass
Deero	6	0.43	26.38	Pass
Rear 3	8	0.21	12.88	Pass
	10	0.11	6.75	Pass
	4	0.58	35.58	Pass
l off	6	0.30	18.40	Pass
Left	8	0.17	10.43	Pass
	10	0.11	6.75	Pass
	4	0.10	6.13	Pass
Diabt	6	0.05	3.07	Pass
Right	8	0.03	1.84	Pass
	10	0.02	1.23	Pass
	4	0.70	42.94	Pass
Top 1	6	0.25	15.34	Pass
Top 1	8	0.13	7.98	Pass
	10	0.20	12.27	Pass
	4	0.82	50.31	Pass
Top 2	6	0.39	23.93	Pass
TOP 2	8	0.19	11.66	Pass
	10	0.10	6.13	Pass
	4	0.76	46.63	Pass
Top 2	6	0.35	21.47	Pass
Тор З	8	0.15	9.20	Pass
	10	0.11	6.75	Pass

Table 2: H-field measurement values

Test Side	Distance to DUT (cm)	Frequency (kHz)	E- Field (V/m)	Limit (V/m)	% Limit	Verdict
	4		3.27		0.53	Pass
Front 1	6		2.65		0.43	Pass
	8		2.05		0.33	Pass
	10		1.50		0.24	Pass
	4		3.71	1	0.60	Pass
Front 2	6		2.89		0.47	Pass
FION 2	8	100	2.20	614	0.36	Pass
	10	109	1.67		0.27	Pass
	4		3.56		0.58	Pass
Front 3	6		2.53		0.41	Pass
	8		2.10		0.34	Pass
	10		1.32		0.21	Pass
Deer 1	4		4.17		0.68	Pass
Rear 1	6		3.03		0.49	Pass

	8	2.19	0.36	Pass
	10	1.77	0.29	Pass
	4	4.45	0.72	Pass
Deer	6	3.39	0.55	Pass
Rear 2	8	2.46	0.40	Pass
	10	1.92	0.31	Pass
	4	4.17	0.68	Pass
Rear 3	6	3.21	0.52	Pass
Real 3	8	2.16	0.35	Pass
	10	1.76	0.29	Pass
	4	2.79	0.45	Pass
l off	6	1.96	0.32	Pass
Left	8	1.42	0.23	Pass
	10	1.14	0.19	Pass
	4	4.56	0.74	Pass
Diaht	6	3.18	0.52	Pass
Right	8	2.29	0.37	Pass
	10	1.68	0.27	Pass
	4	4.10	0.67	Pass
Top 1	6	3.20	0.52	Pass
Top 1	8	4.00	0.65	Pass
	10	2.19	0.36	Pass
	4	4.30	0.70	Pass
Top 2	6	3.50	0.57	Pass
Top 2	8	4.07	0.66	Pass
	10	2.68	0.44	Pass
	4	4.20	0.68	Pass
Top 2	6	3.00	0.49	Pass
Тор З	8	3.89	0.63	Pass
	10	2.19	0.36	Pass

Table 3: E-field measurement values

Test Side	Distance to DUT	Frequency (kHz)	H- Field (A/m)	Limit	% Limit	Verdict
	(cm)	()		(A/m)		
	4		0.010		0.61	Pass
Front 1	6		0.012		0.74	Pass
	8		0.009		0.55	Pass
	10		0.006		0.37	Pass
	4		0.050		3.07	Pass
Front 2	6		0.018		1.10	Pass
1 10111 2	8		0.009		0.55	Pass
	10		0.009		0.55	Pass
	4		0.020		1.23	Pass
Front 3	6		0.010		0.61	Pass
TIONES	8		0.003		0.18	Pass
	10		0.007		0.43	Pass
	4		0.120		7.36	Pass
Rear 1	6		0.050		3.07	Pass
Rear	8		0.030	1.63	1.84	Pass
	10		0.020		1.23	Pass
	4		0.140		8.59	Pass
DeerO	6		0.070		4.29	Pass
Rear 2	2 8		0.040		2.45	Pass
	10	109	0.020		1.23	Pass
	4		0.130		7.98	Pass
DeerO	6		0.020		1.23	Pass
Rear 3	8		0.030	1	1.84	Pass
	10		0.010		0.61	Pass
	4		0.050		3.07	Pass
	6		0.020		1.23	Pass
Left	8		0.010		0.61	Pass
	10		0.010		0.61	Pass
	4		0.010		0.61	Pass
	6		0.009	1	0.55	Pass
Right	8		0.006	1	0.37	Pass
	10		0.010	1	0.61	Pass
	4		0.110	1	6.75	Pass
	6	5 3	0.030		1.84	Pass
Top 1	8		0.020	1	1.23	Pass
	10		0.020	1	1.23	Pass
	4		0.120	1	7.36	Pass
Top 2	6		0.060		3.68	Pass
	8		0.030	1	1.84	Pass

	10	0.020	1.23	Pass
	4	0.090	5.52	Pass
Top 2	6	0.050	3.07	Pass
Top 3	8	0.010	0.61	Pass
	10	0.020	1.23	Pass

_				
Ta	able 4: H-field	measuremen	t values	

Test Side	Distance to DUT (cm)	Frequency (kHz)	E- Field (V/m)	Limit (V/m)	% Limit	Verdict
	4		1.90		0.31	Pass
Frank	6		1.50		0.24	Pass
Front 1	8		1.20		0.20	Pass
	10		0.98		0.16	Pass
	4		2.10		0.34	Pass
Front 2	6		1.62		0.26	Pass
Front 2	8		1.31		0.21	Pass
	10		1.01		0.16	Pass
	4		2.00		0.33	Pass
Erent 0	6		1.34		0.22	Pass
Front 3	8		1.29		0.21	Pass
	10		1.00		0.16	Pass
	4		2.20		0.36	Pass
Rear 1	6		1.68		0.27	Pass
Rear	8		1.15		0.19	Pass
	10		1.01		0.16	Pass
	4		2.40		0.39	Pass
Deer 0	6	109	1.81	614	0.29	Pass
Rear 2	8		1.39		0.23	Pass
	10		1.03		0.17	Pass
	4		2.13		0.35	Pass
Deer 2	6		1.58		0.26	Pass
Rear 3	8		1.29		0.21	Pass
	10		1.01		0.16	Pass
	4		1.64		0.27	Pass
l off	6		1.28		0.21	Pass
Left	8		0.96		0.16	Pass
	10		0.68		0.11	Pass
	4		2.23		0.36	Pass
Diaht	6		1.60		0.26	Pass
Right	8		1.20		0.20	Pass
	10		0.89		0.14	Pass
	4		4.00		0.65	Pass
Top 1	6		3.31		0.54	Pass
	8		2.32		0.38	Pass

	10	1.28	0.21	Pass
	4	4.10	0.67	Pass
Top 0	6	3.34	0.54	Pass
Top 2	8	2.34	0.38	Pass
	10	1.40	0.23	Pass
	4	3.70	0.60	Pass
Top 2	6	3.17	0.52	Pass
Тор 3	8	2.23	0.36	Pass
	10	1.35	0.22	Pass

Table 5: E-field measurement values

Test Side	Distance to DUT (cm)	Frequency (kHz)	H- Field (A/m)	Limit (A/m)	% Limit	Verdict
	4		0.20		12.27	Pass
Front 1	6		0.17		10.43	Pass
Front	8		0.10		6.13	Pass
	10		0.03		1.84	Pass
	4		0.21		12.88	Pass
Front 2	6		0.19		11.66	Pass
FION 2	8		0.11		6.75	Pass
	10		0.06		3.68	Pass
	4		0.17		10.43	Pass
Front 3	6		0.09		5.52	Pass
FIONUS	8		0.16		9.82	Pass
	10		0.09		5.52	Pass
	4		0.03		1.84	Pass
Rear 1	6	100	0.1		6.13	Pass
Rear	8	109	0.05	1.63	3.07	Pass
	10		0.03		1.84	Pass
	4		0.09		5.52	Pass
Deer 2	6		0.12		7.36	Pass
Rear 2	8		0.07		4.29	Pass
	10		0.05		3.07	Pass
	4		0.07		4.29	Pass
Rear 3	6		0.10		6.13	Pass
Rears	8		0.05		3.07	Pass
	10		0.03		1.84	Pass
	4		0.14		8.59	Pass
Left	6		0.06		3.68	Pass
Leit	8		0.03		1.84	Pass
	10		0.01		0.61	Pass

	4	0.05	3.07	Pass
Diaht	6	0.03	1.84	Pass
Right	8	0.01	0.61	Pass
	10	0.01	0.55	Pass
	4	0.61	37.42	Pass
Top 1	6	0.23	14.11	Pass
Top 1	8	0.12	7.36	Pass
	10	0.10	6.13	Pass
	4	0.68	41.72	Pass
Top 2	6	0.31	19.02	Pass
Top 2	8	0.16	9.82	Pass
	10	0.20	12.27	Pass
	4	0.58	35.58	Pass
Top 3	6	0.19	11.66	Pass
TOP 3	8	0.13	7.98	Pass
	10	0.22	13.50	Pass

Test Side	Distance to DUT (cm)	Frequency (kHz)	E- Field (V/m)	Limit (V/m)	% Limit	Verdict
	4		2.36		0.38	Pass
Front 1	6		1.70		0.28	Pass
FIOLU	8		1.30		0.21	Pass
	10		1.17		0.19	Pass
	4		2.64		0.43	Pass
Front 2	6		1.90		0.31	Pass
FION 2	8		1.60		0.26	Pass
	10		1.29		0.21	Pass
	4	-	2.37	614	0.39	Pass
Front 3	6		1.70		0.28	Pass
FIONUS	8		1.40		0.23	Pass
	10	109	1.12		0.18	Pass
	4		2.53		0.41	Pass
Rear 1	6		1.98		0.32	Pass
Rear	8		1.26		0.21	Pass
	10		1.14		0.19	Pass
	4		2.75		0.45	Pass
Rear 2	6		2.03		0.33	Pass
Real Z	8		1.56		0.25	Pass
	10		1.20		0.20	Pass
	4		2.69		0.44	Pass
Rear 3	6		1.69		0.28	Pass
	8		1.32		0.21	Pass

	10	1.10		0.18	Pass
	4	1.12		0.18	Pass
1	6	1.01		0.16	Pass
Left	8	0.84		0.14	Pass
	10	0.73] [0.12	Pass
	4	1.60		0.26	Pass
Diabt	6	1.25		0.20	Pass
Right	8	1.03		0.17	Pass
	10	0.84		0.14	Pass
	4	3.00		0.49	Pass
Top 1	6	2.50		0.41	Pass
төрт	8	3.91		0.64	Pass
	10	2.58		0.42	Pass
	4	3.20		0.52	Pass
Top 2	6	2.90] [0.47	Pass
Top 2	8	3.95		0.64	Pass
	10	2.62		0.43	Pass
	4	2.90		0.47	Pass
Top 2	6	2.30		0.37	Pass
Тор 3	8	3.65] [0.59	Pass
	10	2.57		0.42	Pass

Table 7: E-field measurement values

All values are in compliance to 1999/519/EC Council Recommendation on the limitation of exposure of the general public to electromagnetic fields reference levels for the frequency range used by the device.

Appendix B: ISED RSS RF Exposure Information

RF Exposure Assessment result and verdict

RF Exposure evaluation for the Qi wireless technology has been conducted through field measurements (see Qi Wireless Charger Evaluation section below).

Technology	Frequency (MHz)	Max. H-field (A/m)	Max. E-field (V/m)	Max Power Density (W/m ²)	H-Field Limit (A/m)	E-Field Limit (V/m)	Power Density Limit (W/m ²)	Verdict
Qi Charger	0.109	0.93	4.56	-	90	83	-	PASS

 Table 8: Assessment result and Verdict

Qi Wireless Charger Evaluation

Measurements at 10 cm test distance were performed using the equipment listed in the "Used Instrumentation" paragraph of this document to compare the measured E&H-Field values with the limits shown on table 4 of RSS-102 Issue 5, Paragraph "4.Exposure Limits", Industry of Canada.

Measurements have been performed at a compliance distance of 10 cm from the probe edge to the device edge, placing the device in the edge of the table, using the equipment listed in the "Used Instrumentation" paragraph of this document:

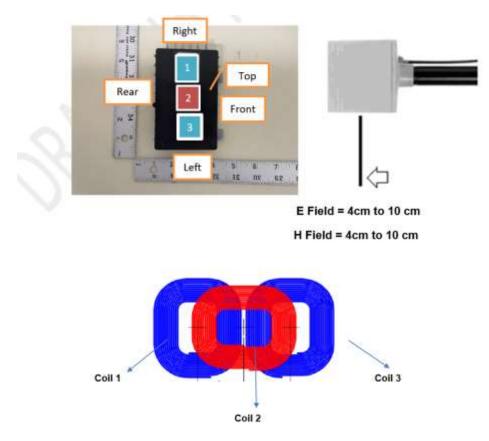


Figure 1: WPT measurement setup

The test sample Primary Coil is one from a linear array of partially overlapping Primary Coils, as appropriate for the position of the Power Receiver relative to the Primary Coils. Selection of the Primary Coil proceeds by the Power Transmitter attempting to establish communication with a Power Receiver using any of the Primary Coils. The array may consist of a single Primary Coil only.

The WPT device consists of different coils but only one coil will transmit based on the placement of load on charger.

The below testing setup has been measured in order to assess compliance for the device.

- Setup 1 – Charging setup with a Load

For the normal charging setup, measurements at every 2 cm starting from 4cm to 10 cm distance have been performed for all device sides, at different battery charge levels. With the customer provided load, measurements were performed on the 3 different coils by placing the load on each coil at different charging levels.

Test	Distance	Frequency	H- Field	Limit		
Side	to DUT (cm)	(kHz)	(A/m)	(A/m)	% Limit	Verdict
	4		0.17		0.19	Pass
Front 1	6		0.22		0.24	Pass
	8		0.14		0.16	Pass
	10		0.08		0.09	Pass
	4		0.64		0.71	Pass
Front 2	6		0.32		0.36	Pass
Front 2	8		0.15		0.17	Pass
	10		0.07		0.08	Pass
	4		0.31		0.34	Pass
Front 2	6		0.25	1	0.28	Pass
Front 3	8		0.08	1	0.09	Pass
	10		0.12	1	0.13	Pass
	4		0.57		0.63	Pass
Durit	6		0.32	90	0.36	Pass
Rear 1	8		0.17		0.19	Pass
	10	100	0.11		0.12	Pass
	4	109	0.93		1.03	Pass
Deero	6		0.47		0.52	Pass
Rear 2	8		0.27		0.30	Pass
	10		0.13		0.14	Pass
	4		0.85		0.94	Pass
Deero	6		0.43		0.48	Pass
Rear 3	8		0.21		0.23	Pass
	10		0.11		0.12	Pass
	4		0.58		0.64	Pass
1	6		0.30		0.33	Pass
Left	8		0.17		0.19	Pass
	10		0.11		0.12	Pass
	4		0.10		0.11	Pass
Dialet	6		0.05		0.06	Pass
Right	8		0.03		0.03	Pass
	10		0.02		0.02	Pass

	4	0.70	0.78	Pass
Tap 1	6	0.25	0.28	Pass
Top 1	8	0.13	0.14	Pass
	10	0.20	0.22	Pass
	4	0.82	0.91	Pass
Top 2	6	0.39	0.43	Pass
Top 2	8	0.19	0.21	Pass
	10	0.10	0.11	Pass
	4	0.76	0.84	Pass
Тор 3	6	0.35	0.39	Pass
100 3	8	0.15	0.17	Pass
	10	0.11	0.12	Pass

Table 9: H-field measurement values

Test Side	Distance to DUT (cm)	Frequency (kHz)	E- Field (V/m)	Limit (V/m)	% Limit	Verdict
	4		3.27		3.94	Pass
Erent 1	6		2.65		3.19	Pass
Front 1	8		2.05		2.47	Pass
	10		1.50		1.81	Pass
	4		3.71		4.47	Pass
Encret 0	6		2.89		3.48	Pass
Front 2	8		2.20		2.65	Pass
	10		1.67		2.01	Pass
	4		3.56		4.29	Pass
Erent 2	6		2.53		3.05	Pass
Front 3	8		2.10		2.53	Pass
	10		1.32	83	1.59	Pass
	4		4.17		5.02	Pass
Deerd	6		3.03		3.65	Pass
Rear 1	8	109	2.19		2.64	Pass
	10		1.77		2.13	Pass
	4		4.45		5.36	Pass
Rear 2	6		3.39		4.08	Pass
Real 2	8		2.46		2.96	Pass
	10		1.92		2.31	Pass
	4		4.17		5.02	Pass
Rear 3	6		3.21		3.87	Pass
Real 3	8		2.16		2.60	Pass
	10		1.76		2.12	Pass
	4		2.79		3.36	Pass
l off	6		1.96	-	2.36	Pass
Left	8		1.42		1.71	Pass
	10		1.14		1.37	Pass
Right	4		4.56		5.49	Pass

	6		3.18		3.83	Pass
	8		2.29		2.76	Pass
	10		1.68		2.02	Pass
	4		4.10		4.94	Pass
Top 1	6		3.20		3.86	Pass
торт	8		4.00		4.82	Pass
	10		2.19		2.64	Pass
	4		4.30		5.18	Pass
Top 0	6		3.50		4.22	Pass
Top 2	8		4.07		4.90	Pass
	10		2.68		3.23	Pass
	4		4.20		5.06	Pass
Tan 2	6		3.00		3.61	Pass
Тор З	8		3.89		4.69	Pass
	10		2.19		2.64	Pass
	Ta	able 10: E-field	measureme	nt values		

Test Side	Distance to DUT	Frequency	H- Field (A/m)	Limit	% Limit	Verdict
Side	(cm)	(kHz)	(A/III)	(A/m)		
	4		0.010		0.01	Pass
Front	6		0.012		0.01	Pass
FION	8		0.009		0.01	Pass
	10		0.006		0.01	Pass
	4		0.050		0.06	Pass
Front	6		0.018		0.02	Pass
Front	8		0.009		0.01	Pass
	10		0.009		0.01	Pass
	4		0.020		0.02	Pass
Front	6		0.010	90	0.01	Pass
Front	8	400	0.003		0.00	Pass
	10		0.007		0.01	Pass
	4	109	0.120		0.13	Pass
Deer	6		0.050		0.06	Pass
Rear	8		0.030		0.03	Pass
	10		0.020		0.02	Pass
	4		0.140		0.16	Pass
Deer	6		0.070		0.08	Pass
Rear	8		0.040		0.04	Pass
	10		0.020		0.02	Pass
	4		0.130		0.14	Pass
Deer	6		0.020		0.02	Pass
Rear	8		0.030		0.03	Pass
	10		0.010		0.01	Pass

	4	0.050	0.06	Pass
1.044	6	0.020	0.02	Pass
Left	8	0.010	0.01	Pass
	10	0.010	0.01	Pass
	4	0.010	0.01	Pass
Diaht	6	0.009	0.01	Pass
Right	8	0.006	0.01	Pass
	10	0.010	0.01	Pass
	4	0.110	0.12	Pass
Tan	6	0.030	0.03	Pass
Тор	8	0.020	0.02	Pass
	10	0.020	0.02	Pass
	4	0.120	0.13	Pass
Tan	6	0.060	0.07	Pass
Тор	8	0.030	0.03	Pass
	10	0.020	0.02	Pass
	4	0.090	0.10	Pass
Top	6	0.050	0.06	Pass
Тор	8	0.010	0.01	Pass
	10	0.020	0.02	Pass

Table 11: H-field measurement values

Test Side	Distance to DUT (cm)	Frequency (kHz)	E- Field (V/m)	Limit (V/m)	% Limit	Verdict
	4		1.90		2.29	Pass
Front 1	6		1.50		1.81	Pass
	8		1.20		1.45	Pass
	10		0.98		1.18	Pass
	4		2.10		2.53	Pass
Front 2	6		1.62		1.95	Pass
FIONL 2	8		1.31		1.58	Pass
	10		1.01	83	1.22	Pass
	4		2.00		2.41	Pass
Front 3	6		1.34		1.61	Pass
FIONUS	8	109	1.29		1.55	Pass
	10		1.00		1.20	Pass
	4		2.20		2.65	Pass
Rear 1	6		1.68		2.02	Pass
Real I	8		1.15		1.39	Pass
	10		1.01		1.22	Pass
	4		2.40		2.89	Pass
Boor 2	6		1.81		2.18	Pass
Rear 2	8		1.39		1.67	Pass
	10		1.03		1.24	Pass
Rear 3	4		2.13		2.57	Pass

	6	1.58	1.90	Pass
	8	1.29	1.55	Pass
	10	1.01	1.22	Pass
	4	1.64	1.98	Pass
Left	6	1.28	1.54	Pass
Len	8	0.96	1.16	Pass
	10	0.68	0.82	Pass
	4	2.23	2.69	Pass
Right	6	1.60	1.93	Pass
Right	8	1.20	1.45	Pass
	10	0.89	1.07	Pass
	4	4.00	4.82	Pass
Top 1	6	3.31	3.99	Pass
төрт	8	2.32	2.80	Pass
	10	1.28	1.54	Pass
	4	4.10	4.94	Pass
Top 2	6	3.34	4.02	Pass
TOP 2	8	2.34	2.82	Pass
	10	1.40	1.69	Pass
	4	3.70	4.46	Pass
Тор 3	6	3.17	3.82	Pass
100 3	8	2.23	2.69	Pass
	10	1.35	1.63	Pass

Table 12: E-field measurement values

Test Side	Distance to DUT (cm)	Frequency (kHz)	H- Field (A/m)	Limit (A/m)	% Limit	Verdict
	4		0.20		0.22	Pass
Front	6		0.17		0.19	Pass
Front	8		0.10		0.11	Pass
	10		0.03		0.03	Pass
	4		0.21		0.23	Pass
Front	6	109	0.19		0.21	Pass
FION	8		0.11	90	0.12	Pass
	10		0.06		0.07	Pass
	4		0.17		0.19	Pass
Front	6		0.09		0.10	Pass
Front	8		0.16		0.18	Pass
	10		0.09		0.10	Pass
	4		0.03		0.03	Pass
Rear	6		0.1		0.11	Pass
	8		0.05		0.06	Pass

	10	0.03		0.03	Pass
	4	0.09	1	0.10	Pass
Deer	6	0.12		0.13	Pass
Rear	8	0.07	1	0.08	Pass
	10	0.05	1	0.06	Pass
	4	0.07		0.08	Pass
Rear	6	0.10		0.11	Pass
Real	8	0.05		0.06	Pass
	10	0.03		0.03	Pass
	4	0.14		0.16	Pass
Left	6	0.06		0.07	Pass
Leit	8	0.03		0.03	Pass
	10	0.01		0.01	Pass
	4	0.05		0.06	Pass
Right	6	0.03		0.03	Pass
Right	8	0.01		0.01	Pass
	10	0.01		0.01	Pass
	4	0.61		0.68	Pass
Тор	6	0.23		0.26	Pass
төр	8	0.12		0.13	Pass
	10	0.10		0.11	Pass
	4	0.68		0.76	Pass
Тор	6	0.31		0.34	Pass
	8	0.16		0.18	Pass
	10	0.20		0.22	Pass
	4	0.58		0.64	Pass
Тор	6	0.19		0.21	Pass
тор	8	0.13		0.14	Pass
	10	 0.22		0.24	Pass

Table 13: H-field measurement values

Test Side	Distance to DUT (cm)	Frequency (kHz)	E- Field (V/m)	Limit (V/m)	% Limit	Verdict
	4		2.36		2.84	Pass
Front 1	6		1.70		2.05	Pass
	8		1.30		1.57	Pass
	10	- - - - - -	1.17	83	1.41	Pass
	4		2.64		3.18	Pass
Eront 2	6		1.90		2.29	Pass
Front 2	8		1.60	03	1.93	Pass
	10		1.29		1.55	Pass
	4		2.37		2.86	Pass
Front 3	6		1.70		2.05	Pass
	8		1.40		1.69	Pass
	10		1.12		1.35	Pass

Rear 1 6 1.98 2.39 Pass 10 1.14 1.52 Pass 10 1.14 1.37 Pass Rear 2 6 2.03 2.45 Pass 10 1.20 1.45 Pass 10 1.20 1.45 Pass 10 1.20 1.45 Pass 6 1.69 2.04 Pass 6 1.69 2.04 Pass 10 1.10 1.33 Pass 110 1.10 1.33 Pass 110 1.10 1.33 Pass 110 1.10 1.33 Pass 110 0.73 0.88 Pass 110 0.73 0.88 Pass 110 0.73 0.88 Pass 110 0.84 1.01 Pass 110 0.84 1.01 Pass 100 2.58 3.01 3.61 </th <th> </th> <th>4</th> <th>2.53</th> <th>3.05</th> <th>Pass</th>		4	2.53	3.05	Pass
Rear 1 8 1.26 1.52 Pass 10 1.14 1.37 Pass Rear 2 6 2.03 2.45 Pass 8 1.56 1.88 Pass 10 1.20 1.45 Pass 10 1.20 1.45 Pass 10 1.20 1.45 Pass 6 1.69 2.04 Pass 6 1.69 2.04 Pass 10 1.10 1.33 Pass 10 1.10 1.33 Pass 10 1.01 1.22 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 10 0.84 1.01 Pass 10 0.84 1.01 Pass 10 2.50 3.01 Pass 10 2.58 3.11 Pass <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
10 1.14 1.37 Pass Rear 2 6 2.03 3.31 Pass 8 1.56 1.88 Pass 10 1.20 1.45 Pass 10 1.20 1.45 Pass 6 1.69 3.24 Pass 6 1.69 2.04 Pass 10 1.10 1.33 Pass 10 1.10 1.33 Pass 10 1.10 1.33 Pass 10 1.01 1.33 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 1.01 Pass 1.51 Pass 10 0.84 1.01 Pass 10 2.50 3.01 Pass 10 2.58 3.11 Pass 10 <td>Rear 1</td> <td></td> <td></td> <td></td> <td></td>	Rear 1				
4 2.75 3.31 Pass 8 2.03 2.45 Pass 10 1.20 1.45 Pass 10 1.20 3.24 Pass 66 1.69 3.24 Pass 10 1.10 1.45 Pass 10 1.10 1.159 Pass 10 1.10 1.33 Pass 10 1.10 1.33 Pass 10 1.10 1.33 Pass 1.0 1.12 1.35 Pass 10 0.73 0.84 1.01 Pass 10 0.73 0.88 Pass 1.01 Pass 10 0.73 0.88 Pass 1.51 Pass 10 0.84 1.01 Pass 1.24 Pass 10 2.58 3.01 Pass 3.01 Pass 10 2.58 3.91 4.71 Pass 3.86 Pass <					
Rear 2 6 2.03 2.45 Pass 10 1.56 1.88 Pass 10 1.20 3.24 Pass 6 1.69 3.24 Pass 8 1.69 3.24 Pass 10 1.10 1.33 Pass 10 1.10 1.33 Pass 10 1.12 1.35 Pass 10 1.12 1.35 Pass 10 0.73 1.22 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 10 0.73 1.51 Pass 10 0.84 1.01 Pass 10 0.84 1.01 Pass 10 2.50 3.01 Pass 10 2.58 3.11 Pass 3.91 4.71 Pass 3.86 10 <td></td> <td></td> <td></td> <td></td> <td></td>					
Rear 2 8 1.56 1.88 Pass 10 1.20 3.24 Pass 6 1.69 3.24 Pass 8 1.32 1.59 Pass 10 1.10 1.33 Pass 10 1.10 1.33 Pass 10 1.10 1.33 Pass 6 1.01 1.33 Pass 6 1.01 1.33 Pass 10 0.73 0.88 Pass 10 0.84 1.01 Pass 10 0.84 1.01 Pass 10 2.56 3.01 Pass 3.91 3.91 3.71 Pass 10 2.58 3.11 Pass 3.95 <td></td> <td></td> <td></td> <td></td> <td></td>					
10 1.20 1.45 Pass 6 1.69 3.24 Pass 8 1.32 1.59 Pass 10 1.10 1.33 Pass 10 1.10 1.33 Pass 10 1.10 1.33 Pass 6 1.01 1.33 Pass 6 1.01 1.35 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 110 0.73 0.88 Pass 10 0.73 0.88 Pass 10 0.84 1.01 Pass 10 2.50 3.01 Pass 3.01 Pass 3.01 Pass 3.01 2.58 3.11 Pass 3.01 2.58 3.11 Pass 3.02 3.9	Rear 2				
4 2.69 3.24 Pass 8 1.69 2.04 Pass 10 1.32 1.59 Pass 10 1.10 1.33 Pass 10 1.10 1.33 Pass 10 1.10 1.33 Pass 6 1.01 1.35 Pass 10 0.73 0.88 Pass 1.01 Pass 1.51 Pass 10 0.84 1.01 Pass 3.00 3.61 Pass 3.61 7op 1 6 2.50 3.01 Pass 3.91 1.0 2.58 3.11 Pass 3.95 4.76 Pass 3.49 Pass 10 2.62 3.49 <td< td=""><td></td><td>10</td><td></td><td></td><td>Pass</td></td<>		10			Pass
Rear 3 8 1.32 1.59 Pass 10 1.10 1.33 Pass 10 1.10 1.33 Pass 10 1.12 1.35 Pass 6 1.01 1.22 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 6 1.25 1.51 Pass 10 0.84 1.01 Pass 10 0.84 1.03 1.24 Pass 10 0.84 1.01 Pass 10 0.84 1.01 Pass 10 2.50 3.01 Pass 10 2.58 3.11 Pass 3.91 4.71 Pass 3.49 Pass 10 2.62 3.16 Pass 10 2.62 3.16 Pass 10 2.62 3.16 Pa		4			
8 1.32 1.59 Pass 10 1.10 1.33 Pass 4 1.12 1.35 Pass 6 1.01 1.35 Pass 6 1.01 1.35 Pass 6 1.01 1.22 Pass 10 0.73 0.84 1.01 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 1.01 Pass 1.01 Pass 10 0.73 1.24 Pass 10 0.84 1.01 Pass 10 0.84 1.01 Pass 3.01 Pass 3.01 Pass 10 2.50 3.01 Pass 3.01 2.58 3.11 Pass 10 2.62 3.16 Pass 10 2.62 3.16 Pass 10 <td></td> <td>6</td> <td>1.69</td> <td>2.04</td> <td>Pass</td>		6	1.69	2.04	Pass
4 1.12 1.35 Pass 6 1.01 1.22 Pass 8 0.84 1.01 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 6 1.25 1.51 Pass 1.00 0.84 1.01 Pass 1.01 0.84 1.01 Pass 1.01 0.84 1.01 Pass 1.01 0.84 1.01 Pass 1.02 0.84 1.01 Pass 1.01 0.84 1.01 Pass 3.00 3.61 Pass 3.01 Pass 3.01 Pass 3.01 2.58 3.11 Pass 3.11 Pass 3.49 Pass 10 2.62 3.16 Pass 10 2.62 3.16 Pass 10 2.62	Rear 3	8	1.32	1.59	Pass
Left 6 1.01 1.22 Pass 8 0.84 0.84 1.01 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 8 1.60 1.93 Pass 6 1.25 1.51 Pass 10 0.84 1.01 Pass 10 0.84 1.01 Pass 10 0.84 1.01 Pass 10 0.84 1.01 Pass 3.01 Pass 3.01 Pass 3.01 Pass 3.01 Pass 3.01 Pass 3.01 Pass 3.01 Pass 3.11 Pass 3.01 Pass 3.11 Pass 3.01 Pass 3.49 Pass 3.05 3.49 Pass 3.49 10 2.62 3.49 Pass 3.65 4.40 Pass 3.65		10	1.10	1.33	Pass
Left 8 0.84 1.01 Pass 10 0.73 0.88 Pass 10 0.73 0.88 Pass 10 1.60 1.93 Pass 6 1.25 1.51 Pass 10 0.84 1.01 Pass 3.00 3.61 Pass 3.61 7op 1 6 2.50 3.01 Pass 10 2.58 3.11 Pass 3.91 4.71 Pass 3.49 Pass 10 2.62 3.16 Pass 3.10 2.62 3.16 Pass 10 2.62 3.49 Pass 10 2.62 3.49 Pass 3.65 4.40 Pass		4	1.12	1.35	Pass
8 0.84 1.01 Pass 10 0.73 0.88 Pass 10 1.60 1.93 Pass 6 1.25 1.51 Pass 10 0.84 1.01 Pass 6 1.25 1.51 Pass 10 0.84 1.01 Pass 10 0.84 1.01 Pass 10 0.84 3.00 3.61 Pass 6 2.50 3.01 Pass 3.01 Pass 3.01 Pass 10 2.58 3.11 Pass 3.01 Pass 3.11 Pass 10 2.58 3.11 Pass 3.86 Pass 3.49 Pass 10 2.62 3.16 Pass 10 2.62 3.49 Pass 10 2.62 3.49 Pass 10 2.30 3.49 Pass 3.65		6	1.01	1.22	Pass
4 1.60 1.93 Pass 6 1.25 1.51 Pass 10 0.84 1.01 Pass 10 0.84 1.01 Pass 10 0.84 1.01 Pass 10 0.84 3.00 3.61 Pass 4 3.00 3.61 Pass 10 2.50 3.01 Pass 3.01 Pass 3.01 Pass 10 2.58 3.11 Pass 3.86 Pass 3.49 Pass 3.49 Pass 3.49 Pass 3.11 Pass 3.16 Pass 3.95 3.16 Pass 3.49 10 2.62 3.49 Pass 3.49 Pass 3.49 Pass 3.65 3.40 Pass 3.49 10 2.30 3.49 Pass 3.49 Pass 3.49 Pass	Left	8	0.84	1.01	Pass
Right 6 1.25 1.51 Pass 8 1.03 1.24 Pass 10 0.84 1.01 Pass 10 0.84 1.01 Pass 4 3.00 3.61 Pass 6 2.50 3.01 Pass 6 2.50 3.01 Pass 10 2.58 3.11 Pass 10 2.58 3.11 Pass 6 2.90 3.49 Pass 3.95 4.76 Pass 10 2.62 3.16 Pass 10 2.62 3.49 Pass 10 2.62 3.49 Pass 10 2.62 3.49 Pass 10 2.62 3.49 Pass 10 2.30 3.49 Pass 3.8 3.65 4.40 Pass		10	0.73	0.88	Pass
Right 8 1.03 1.24 Pass 10 0.84 1.01 Pass 10 0.84 3.00 3.61 Pass 6 2.50 3.01 Pass 6 2.50 3.01 Pass 10 2.58 3.11 Pass 10 2.58 3.11 Pass 10 2.58 3.11 Pass 6 2.90 3.49 Pass 10 2.62 3.16 Pass 10 2.62 3.16 Pass 10 2.62 3.49 Pass 10 2.62 3.16 Pass 10 2.62 3.49 Pass 10 2.30 3.49 Pass 3.49 Pass 3.49 Pass 100 2.30 3.49 Pass 3.49 Pass 3.49 Pass 100 2.30 3.49 Pass		4	1.60	1.93	Pass
8 1.03 1.24 Pass 10 0.84 1.01 Pass 4 3.00 3.61 Pass 6 2.50 3.01 Pass 10 2.50 3.01 Pass 10 2.50 3.01 Pass 10 2.58 3.11 Pass 10 2.58 3.11 Pass 10 2.58 3.11 Pass 6 2.90 3.49 Pass 10 2.62 3.16 Pass 10 2.62 3.16 Pass 10 2.62 3.49 Pass 10 2.62 3.49 Pass 10 2.62 3.49 Pass 10 2.30 2.77 Pass 3.8 3.65 4.40 Pass	Dist	6	1.25	1.51	Pass
4 3.00 3.61 Pass 6 2.50 3.01 Pass 3.91 3.61 Pass 3.91 4.71 Pass 10 2.58 3.11 Pass 4 3.20 3.86 Pass 5 6 2.90 3.49 Pass 10 2.62 3.16 Pass 10 2.62 3.16 Pass 10 2.62 3.49 Pass 10 2.30 2.77 Pass 3.8 3.65 4.40 Pass	Right	8	1.03	1.24	Pass
Top 1 6 2.50 3.01 Pass 10 3.91 4.71 Pass 10 2.58 3.11 Pass 4 3.20 3.86 Pass 6 2.90 3.49 Pass 10 2.62 3.16 Pass 10 2.62 3.16 Pass 10 2.90 3.49 Pass 10 2.62 3.16 Pass 10 2.90 3.49 Pass 10 2.62 3.16 Pass 10 2.30 3.49 Pass 3.49 Pass 3.49 Pass 3.49 Pass 3.49 Pass 3.49 Pass 3.49 Pass 3.49 Pass 3.49 Pass 3.86 3.65 4.40 Pass		10	0.84	1.01	Pass
Top 1 8 3.91 4.71 Pass 10 2.58 3.11 Pass 4 3.20 3.86 Pass 6 2.90 3.49 Pass 6 2.90 3.49 Pass 10 2.62 3.16 Pass 10 2.62 3.16 Pass 10 2.90 3.49 Pass 10 2.62 3.16 Pass 10 2.90 3.49 Pass 10 2.90 3.49 Pass 3.86 2.30 3.49 Pass 3.65 4.40 Pass		4	3.00	3.61	Pass
8 3.91 4.71 Pass 10 2.58 3.11 Pass 4 3.20 3.86 Pass 6 2.90 3.49 Pass 6 2.90 3.49 Pass 10 2.62 3.16 Pass 10 2.62 3.16 Pass 10 2.90 3.49 Pass 10 2.62 3.16 Pass 10 2.90 3.49 Pass 3.49 Pass 3.49 Pass 3.49 Pass 3.49 Pass 3.49 Pass 3.49 Pass 3.49 Pass 3.49 Pass 3.65 4.40 Pass 3.65	Top 1	6	2.50	3.01	Pass
4 3.20 3.86 Pass 6 2.90 3.49 Pass 3.95 3.49 Pass 10 2.62 3.16 Pass 4 2.90 3.49 Pass 10 2.62 3.16 Pass 4 2.90 3.49 Pass 5 2.30 2.77 Pass 8 3.65 4.40 Pass	торт	8	3.91	4.71	Pass
6 2.90 3.49 Pass 8 3.95 4.76 Pass 10 2.62 3.16 Pass 4 2.90 3.49 Pass 5 2.62 3.16 Pass 4 2.90 3.49 Pass 5 2.30 2.77 Pass 8 3.65 4.40 Pass		10	2.58	3.11	Pass
Top 2 8 3.95 4.76 Pass 10 2.62 3.16 Pass 4 2.90 3.49 Pass 6 2.30 2.77 Pass 8 3.65 4.40 Pass		4	3.20	3.86	Pass
8 3.95 4.76 Pass 10 2.62 3.16 Pass 4 2.90 3.49 Pass 6 2.30 2.77 Pass 8 3.65 4.40 Pass	Top 2	6	2.90	3.49	Pass
4 2.90 3.49 Pass 6 2.30 2.77 Pass 8 3.65 4.40 Pass		8	3.95	4.76	Pass
6 2.30 2.77 Pass 8 3.65 4.40 Pass		10	2.62	3.16	Pass
Top 3 8 3.65 4.40 Pass		4	2.90	3.49	Pass
8 <u>3.65</u> 4.40 Pass	Top 2	6	2.30	2.77	Pass
10 2.57 3.10 Pass	1 op 3	8	3.65	4.40	Pass
		10	 2.57	 3.10	Pass

 Table 14: E-field measurement values

All values are in compliance to 1999/519/EC Council Recommendation on the limitation of exposure of the general public to electromagnetic fields reference levels for the frequency range used by the device.

Appendix C : FCC RF Exposure information

FCC RF Exposure evaluation

When a device qualifies for the categorical exclusion provision of § 2.1091(c), the minimum test separation distance may be estimated, when applicable, by simple calculations according to plane-wave equivalent conditions, to ensure the transmitter and its antenna(s) can operate in manners that meet or exceed the estimated distance. The source-based time-averaged maximum radiated power, according to the maximum antenna gain, must be applied to calculate the field strength and power density required to establish the minimum test separation distance. When the estimated test separation distance becomes overly conservative and does not support compliance, MPE measurement or computational modeling may be used to determine the required minimum separation distance.

According to §1.1310 Radiofrequency radiation exposure limits, paragraph (e), the limits for Maximum Permissible Exposure (MPE) to radiofrequency electromagnetic fields are:

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Limits for Occup	ational/Controlle	d Exposure		
0.3–3.0	614 1842/f 61.4	1.63 4.89/f 0.163	* 100 *900/f ² 1.0 f/300 5	6 6 6 6
(B) Limits for General Po	pulation/Uncont	rolled Exposure		
0.3–1.34 1.34–30 30–300 300–1,500 1,500–100,000	614 824/1 27.5	1.63 2.19/1 0.073	* 100 * 180/12 0.2 1/1500 1.0	30 30 30 30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

f = frequency in MHz * = Plane-wave equivalent power density

FCC MPE Evaluation

Each supported transmission technology will be evaluated to determine if it is in compliance with limits for Maximum Permissible Exposure (MPE) to radiofrequency electromagnetic fields.

In order to perform the assessment, the following equations have been used for the calculations; these equations are accurate in the far-field of an antenna and will over-predict power density in the near field, where they could be used for making a "worst case" or conservative prediction:

Power density: $S[mW/cm^2] = \frac{P_{E.I.R.P.}[mW]}{4\Pi R[cm]^2}$

Where:

S = power density

 P_{EIRP} = Equivalent isotopically radiated power

R = distance to the center of radiation of the antenna (evaluation distance)

Simultaneous transmission assessment:

When multiple sources are introduced into an environment, it becomes necessary to address the sources interdependently, since each source will contribute some percentage of the maximum exposure toward the total exposure. The sum of the ratios of the exposure from each source to the corresponding maximum exposure for the frequency of each source must be evaluated.

The exposure complies with the maximum permissible exposure if the sum of the ratios is less than unity:

$$\sum_{i=1}^{n} \frac{Exp_i}{Limit_i} < 1$$

Where

Expi is the measured/calculated exposure value of each source; Limit_i is the applicable limit of each source.

Appendix D: ISED RF Exposure information

ISED RF Exposure evaluation for mobile devices

According to RSS-102 Issue 5, Paragraph "4. Exposure Limits", Industry of Canada has adopted the RF field strength limits established in Health Canada's RF exposure guideline, Safety code 6:

Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Frequency Range	Electric Field	Magnetic Field	Power Density	Reference Period			
(MHz)	(V/m rms)	(A/m rms)	(W/m²)	(minutes)			
0.003-10 ²¹	83	90	-	Instantaneous*			
0.1-10	-	0.73/ f	-	6**			
1.1-10	87/ f ^{0.5}	-	-	6**			
10-20	27.46	0.0728	2	6			
20-48	$58.07/f^{0.25}$	$0.1540/f^{0.25}$	8.944/ f ^{0.5}	6			
48-300	22.06	0.05852	1.291	6			
300-6000	$3.142 f^{0.3417}$	$0.008335 f^{0.3417}$	$0.02619 f^{0.6834}$	6			
6000-15000	61.4	0.163	10	6			
15000-150000	61.4	0.163	10	$616000/f^{1.2}$			
150000-300000 0.158 $f^{0.5}$ 4.21 x 10 ⁴ $f^{0.5}$ 6.67 x 10 ⁻⁵ f 616000/ $f^{1.2}$							
Note: f is frequency in MHz.							
*Based on nerve stimulation (NS).							
** Based on specific absorption rate (SAR).							

Table 6: RF Field Strength Limits for Controlled Use Devices (Controlled Environment)

Frequency Range	Electric Field	Magnetic Field	Power Density	Reference Period				
(MHz)	(V/m rms)	(A/m rms)	(W/m ²)	(minutes)				
0.003-10 ²³	170	180	-	Instantaneous*				
0.1-10	-	1.6/f	-	6**				
1.29-10	$193/f^{0.5}$	-	-	6**				
10-20	61.4	0.163	10	6				
20-48	$129.8/f^{0.25}$	$0.3444/f^{0.25}$	$44.72/f^{0.5}$	6				
48-100	49.33	0.1309	6.455	6				
100-6000	$15.60 f^{0.25}$	$0.04138 f^{0.25}$	$0.6455 f^{0.5}$	6				
6000-15000	137	0.364	50	6				
15000-150000	137	0.364	50	616000/ f ^{1.2}				
150000-300000	$0.354 f^{0.5}$	$9.40 \ge 10^{-4} f^{0.5}$	$3.33 \ge 10^{-4} f$	616000/ f ^{1.2}				
Note: f is frequency in MHz.								
*Based on nerve stimulation (NS).								
** Based on specific absorption rate (SAR).								

ISED MPE Evaluation

Each supported transmission technology will be evaluated to determine if it is in compliance with RSS-102 Issue 5, RF Field Strength Limits for devices used by the General Public.

In order to perform the assessment, the following equations have been used for the calculations; these equations are accurate in the far-field of an antenna and will over-predict power density in the near field, where they could be used for making a "worst case" or conservative prediction:

Power density: $S[W/m^2] = \frac{P_{E.I.R.P.}[W]}{4\Pi R[m]^2}$

Where:

S = power density

 P_{EIRP} = Equivalent isotopically radiated power

R = distance to the center of radiation of the antenna (evaluation distance)

Simultaneous transmission assessment:

When multiple sources are introduced into an environment, it becomes necessary to address the sources interdependently, since each source will contribute some percentage of the maximum exposure toward the total exposure. The sum of the ratios of the exposure from each source to the corresponding maximum exposure for the frequency of each source must be evaluated.

The exposure complies with the maximum permissible exposure if the sum of the ratios is less than unity:

$$\sum_{i=1}^{n} \frac{Exp_i}{Limit_i} < 1$$

Where

Expi is the measured/calculated exposure value of each source; Limit_i is the applicable limit of each source.

Appendix E: Photographs

Figure E1. DUT Top view

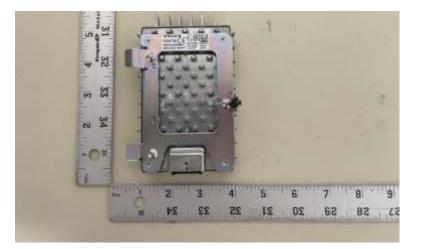


Figure E2. DUT rear view

Figure E3. DUT with Accessories

Figure E4. DUT Test setup 1

Figure E4. DUT Test setup 2

Figure E5. DUT Test setup 3

Figure E6. DUT Test setup 4

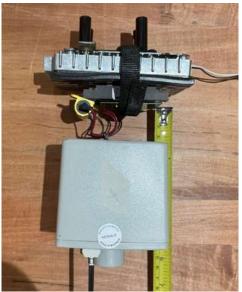


Figure E7. DUT Test setup 5

Figure E8. DUT Test setup 6

Figure E9. DUT Test setup 7