PHONE: 352.472.5500 EMAIL: <u>INFO@TIMCOENGR.COM</u> WEB: HTTP://WWW.TIMCOENGR.COM

An IIA Company

FCC CFR 47 Part 15 Test Report

APPLICANT	APTIV SERVICES US, LLC.				
	2151 E. LINCOLN ROAD				
ADDRESS	M/S C4W				
	KOKOMO INDIANA 46902 USA				
MODEL NUMBER	L2C0082R				
PRODUCT DESCRIPTION	Next Generation RTM.				
DATE SAMPLE RECEIVED	1/31/2020				
FINAL TEST DATE	1/31/2020				
PREPARED BY	Tim Royer				
TEST RESULTS					

Report Number	Report Version	Description	Issue Date
232UT20_TestReport		Initial Issue	02/26/2020

THE ATTACHED REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN APPROVAL OF TIMCO ENGINEERING, INC.

This report relates only to the Equipment Under Test (EUT) sample(s) tested.

TABLE OF CONTENTS

GENERAL REMARKS	2
GENERAL INFORMATION	3
EUT INFORMATION PERIPHERALS USED IN TESTING TEST RESULTS SUMMARY	3 3 3
RADIATED SPURIOUS EMISSIONS	4
EUT FINAL MEASUREMENT SETUP PHOTO 1 EUT FINAL MEASUREMENT SETUP PHOTO 2 EUT FINAL MEASUREMENT SETUP PHOTO 3	3 4 5
RADIATED EMISSIONS TEST DATA:	6
SCANNED 30 MHZ TO 200 MHZ	7
Test Data:Field Strength Plot, Horiz. PolarityTest Data:Field Strength Table, Horiz. PolarityTest Data:Field Strength Plot, Vert. PolarityTest Data:Field Strength Table, Vert. PolarityTest Data:Field Strength Table, Vert. Polarity	7 8 9 0
SCANNED 200 MHZ TO 1000 MHZ 1	1
Test Data:Field Strength Plot, Horiz. Polarity1Test Data:Field Strength Table, Horiz. Polarity1Test Data:Field Strength Plot, Vert. Polarity1Test Data:Field Strength Table, Vert. Polarity1Test Data:Field Strength Table, Vert. Polarity1	1 2 3 4
SCANNED 1 GHZ TO 12 GHZ 1	5
Test Data:Field Strength Plot, Horiz. Polarity1Test Data:Field Strength Table, Horiz. Polarity1Test Data:Field Strength Plot, Vert. Polarity1Test Data:Field Strength Table, Vert. Polarity1Test Data:Field Strength Table, Vert. Polarity1	5 6 7 8
POWER LINE CONDUCTED INTERFERENCE 1	9
TEST EQUIPMENT LIST	0

GENERAL REMARKS

Summary

The device under test does:

Fulfill the general approval requirements as identified in this test report and was selected by the customer.

Not fulfill the general approval requirements as identified in this test report

Attestations

This equipment has been tested in accordance with the standards identified in this test report. To the best of my knowledge and belief, these tests were performed using the measurement procedures described in this report.

All instrumentation and accessories used to test products for compliance to the indicated standards are calibrated regularly in accordance with ISO 17025 requirements.

I attest that the necessary measurements were made at:

Timco Engineering Inc. 849 NW State Road 45 Newberry, FL 32669 Designation #: US1070

Tested by:

Name and Title	Tim Royer, Project Manager / EMC Testing Engineer
Date	02/26/2020

GENERAL INFORMATION

EUT Information

EUT Description	Next Generation RTM.					
Model Number	L2C0082R					
EUT Power Source	Image: 110-120Vac, 50- 60HzImage: DC Power (12 V)Image: Battery OperatedOperated					
Test Item	Prototype	Pre- Production	Production			
Type of Equipment	Fixed	🛛 Mobile	Portable			
Test Frequencies	n/a					
Test Conditions	The temperature was 26°C Relative humidity of 50%.					
Modification to the EUT	No Modification to EUT.					
Applicable Standards	FCC CFR 47 Part 15.109, RSS-GEN, ICES-003 s. 6.2 & 6.1. Referring to ANSI C63.4-2014 for Test Procedures					
Test Facility	Timco Engineering Inc. at 849 NW State Road 45 Newberry, FL 32669 USA. Designation #: US1070					

Peripherals Used in Testing

Description	Туре	Length	
n/a	n/a	n/a	n/a

Test Results Summary

Standard	Test	Result
FCC Part 15.109	Radiated Emissions	Pass
FCC Part 15.107	AC Powerline Conducted Emissions	N/A

RULES PART NO.: FCC PART 15.109 & ICES-003 § 6.2

REQUIREMENTS:

Frequency MHz	Limits
30 - 88	40.0 dBµV/m measured @ 3 meters
88 - 216	43.5 dBµV/m measured @ 3 meters
216 - 960	46.0 dBµV/m measured @ 3 meters
Above 960	54.0 dBµV/m measured @ 3 meters

Method of Measurement for Radiated Emissions:

The test procedure used for radiated emissions is described ANSI C63.4 using a spectrum analyzer. The resolution bandwidth used was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. All cable loss and antenna factors were calibrated to provide plots with correction factors applied to results using the formula and example described below. The video bandwidth of the analyzer was always greater than or equal to the resolution bandwidth, and a peak detector with max hold was used

The unit under test was placed on a table 80 cm high and with dimensions of 1mby 1.5m. The table used for radiated measurements is capable of continuous rotation. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and verticals planes. The frequency was scanned from 30 MHz to 1.0 GHz... The EUT was measured in three parts of the tunable band of EUT and (3) orthogonal planes when necessary.

Radiated Emissions Test Setup:

EUT setup and arrangement was completed as described in ANSI C63.4. Exploratory measurements were taken following different peripheral placement and cable manipulations as described in ANSI C63.4. A photo is provided of the Test setup to record the exact peripheral equipment and cable manipulation arrangement found to produce the highest possible level of radiated emissions.

Formula of Conversion Factors:

The field strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dB μ V) to the antenna correction factor supplied by the antenna manufacturer plus the coax loss. The antenna correction factors are stated in terms of dB. The gain of the preselector was accounted for in the spectrum analyzer meter reading.

Field Strength Correction Factor Conversion Example:

Freq (MHz)	Meter Reading	+ ACF	+CL	= FS
33	20 dBµV	+ 10.36 dB/m	+0.40 dB	=30.76 dBµV/m @ 3m

RADIATED EMISSIONS

RADIATED EMISSIONS TEST DATA:

The following plots represent the maximum emissions found when taking final measurements following the procedure described in ANSI C63.4. The final measurements were preceded by taking exploratory measurements described in ANSI C63.4. The plots include the limit line for radiated emissions as required by FCC part 15.109 & ICES-003 § 6.2.

Scanned 30 MHz to 200 MHz

Test Data: Field Strength Plot, Horiz. Polarity

RO	HD	E8	łS	CHW/	ARZ										04.	Feb 20 12:57
Test S Polari Vertica	ipec ty al			с	ISPR 22	Radiat	ed Dis	sturbai	nces							
Scan Scan Scan Detect Trans	ped Start: Stop: tor: ducei	<u>S ca</u>	<mark>n (1</mark> 30 20 Tr TC	Range) I MHz IO MHz ace 1: MA DS_01	X PEAK											
Start Frequ	ency			Stop Frequenc	cy	Step Size	p e		R	es BW		Meas Time	RF Atten	1	Preamp	Input
30.(4807 // // // // // // //	Step -11- -11- -51- -51- -51- -51- -51- -51- -51- -11- -51- -51- -11- -51- -11- -51- -11-	<u>x</u> 00 <u>x</u> <u>x</u> <u>x</u> <u>x</u> <u>x</u> <u>x</u> <u>x</u> <u>x</u> <u>x</u> <u>x</u>	1Hz	200.000	ALL D		о сихо сихо сихо сихо сихо сихо сихо сих	k Hz REW MJ PREAM PREAM		20.00 кн. жил.	kHz Nieck	50 μs 4 1 [21] 14.57 20.160000 	Auto diyV/m 000 M/r=	VDS AC	20 dB	INPUT1
	30 86	Н×			L			1	I				200 XXX	J		

Page 1 of 2

Test Data: Field Strength Table, Horiz. Polarity

Test Spec Polarity Vertical	CISPR	22 Radiated Distur	bances	
Final Measu	urement			
Meas Time: Margin: Subranges:	1 s 25 dB 4			
Tuese	Freeseware		Detector	Delte Linsk(dD

Trace	Flequenc	У		Detector	Delta Liinibub
1	33.200000000	MHz	11.48	Quasi Peak	-28.52
1	42.240000000	MHz	10.80	Quasi Peak	-29.20
1	145.400000000	MHz	15.00	Quasi Peak	-28.50
1	198.84000000	MHz	19.47	Quasi Peak	-24.03

Page 2 of 2

Test Data: Field Strength Plot, Vert. Polarity

Test Spec Polarity Vertical CISPR 22 Radiated Disturbances

Stepped Scan (1 Range)

 Scan Start:
 30 MHz

 Scan Stop:
 200 MHz

 Detector:
 Trace 1: MAX PEAK

 Transducer:
 TDS_01

Frequency Frequency Size Res BW Imme Atten Preamp Input 30.000000 MHz 200.000000 MHz 40.00 kHz 120.00 kHz 50 µs Auto 20 dB INPI Imme Alter 20.000000 MHz 40.00 kHz 120.00 kHz 50 µs Auto 20 dB INPI Imme Alter 0.000000 MHz 40.00 kHz 120.00 kHz 50 µs Auto 20 dB INPI Imme Alter 0.0000000 MHz 100 kHz 120.20000000 MHz 100 kHz 120.20000000 MHz Imme Alter 0.000000 MHz 100 kHz 100 kHz 100 kHz 100.20000000 MHz Imme Imme Imme Imme Imme Imme Imme Imme Imme Imme Imme Imme Imme Imme Imme	tart			Stop			Step)		_			Meas	RF		-		
30.000000 MHz 200.000000 MHz 40.00 kHz 120.00 kHz 50 µs Auto 20 dB INPI	requ	ency		Frequen	су		Size	•		К	es BW		lime	Atten	1	Prea	mp	Input
AF 10 KH MERCH [1][MT 1 M 1.2.57 dBy0/m Step MT I MI I 10.2000000 MH III III IIIIII CHICE PAGE 10.2000000 MH IIII IIIIIII CHICE PAGE IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	30.0	000000	MHz	200.000	1 0000	IHz	: 40	.00	kHz	1	20.00	kHz	50 µs	Auto		20	dB	INPUT.
No. NI 1.0 NI 1.2.37 dbyWm Mawr NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI <td>è à</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>REW</td> <td>12</td> <td>0 k.H z</td> <td>Ma c</td> <td>kes 1 11 </td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	è à								REW	12	0 k.H z	Ma c	kes 1 11	1				
Step AUTO ALE 0.41 AUTO PATAMP ON 30.240000000 NH INT INT INT INT INT INT INT INT INT INT INT CHECS P.SS INT INT INT INT INT INT INT INT INT INT INT INT INT INT INT <td>Ø</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>26 T</td> <td>1</td> <td>a</td> <td></td> <td>12.57</td> <td>dBpV/m</td> <td></td> <td></td> <td></td> <td></td>	Ø								26 T	1	a		12.57	dBpV/m				
		Step	01 UA		Att	8 d	IB AUT	٥	PREAM	ь ол			30.240000	* H 26 0 0 0				
	P04									100	z Kóś							
							LIMII	сявс	¥ Р	ASS								
		- 21				+												
	88																	
	110					+												
		- 11				+									TOS			
si		- 61																
100 100 </td <td></td> <td>- ··</td> <td></td>		- ··																
200 MHz		FCC B							l r						SDB			
20 MA									-						· ·			
21 - 21 - 21 - 21 - 21 - 21 - 21 - 21 -																		
20 MA		- 21			<u> </u>	+												
200 MH																		
in we are a set of the		- 21		N		+				<u> </u>	+		Mar Miner	h				
200 MH 200 MH		1	الماريد ومادا	Aw.						Ι.	h.,	فقررت	What +	with the				
и сторудиј чог с зо мих 200 мих		dort +	hateAla	- Art	My My	_		Λ.	Jundell		1 MU	-14°						
1 20 MH 2 200 MH 2					"	-	Value 10	1 AUA										
30 мнт 200 мнт		•																
		30 MH x												200 XXX				

Page 1 of 2

Test Data: Field Strength Table, Vert. Polarity

Test Sp Polarity Vertical	ec ,	CISPR	22 Radiated Distur	bances	
Final I Meas T	Measurement	1 s			
Margin: Subranges:		25 dB 5	level (dBu)/(m)	Detector	Delta Limit/dB
1	33.12000000 42.1600000	0 MHz 0 MHz	11.50 16.10	Quasi Peak	-28.50 -23.90

 requercy
 Level (BBµv/m)
 Detector
 Deta Limit/dB

 1
 33.12000000 MHz
 11.50
 Quasi Peak
 -28.50

 1
 42.16000000 MHz
 16.10
 Quasi Peak
 -23.90

 1
 103.72000000 MHz
 19.38
 Quasi Peak
 -24.12

 1
 144.56000000 MHz
 14.82
 Quasi Peak
 -28.68

 1
 199.68000000 MHz
 16.31
 Quasi Peak
 -27.19

Page 2 of 2

Scanned 200 MHz to 1000 MHz

Test Data: Field Strength Plot, Horiz. Polarity

RO	HDE	& SC	HW/	ARZ										04.F	Feb 20 13:00
Test S	Spec		С	ISPR 2	2 Radi	ated Di	isturba	ances							
Polari Horizo	i ty ontal														
Time	e Domai	n Scal	n (1 Ra	angeì											
Scan Scan Detect Trans	Start: Stop: tor: :ducer:	200 1 GH Trac TDS	MHz Hz :e 1: MA :_01	X PEAI	<										
Start Frequ	ency	S Fi	top requen	су	Si	tep ize		Res I	3W	Meas Time	R	l F Itten	I	Preamp	Input
200.0	000000	MHz	1.00	0000 0	Hz	30.00	kHz	120.	00 kHz	50 µs	A A	uto		20 dB	INPUT1
%	Step I	O RURO	PULSE	Att	O de A	010	REW MI PREA:	120 к. 1 э мр ол	Hz Xəc	kec 1 3 22. 498.5300	1 58 dBy 100000	V∕m MH ≈			
48 64 /m					L 186	и сне	сĸ	e a s s			i (CH X			
L PX	- 21														
NITE															
	- 11												TOS		
	- 51														
	- 51														
	FCC_B											_	son AC		
							لى ا	and the second		with	and the second	+			
	Mari		والدنعصم	ماداستد يعالم	M.N.H.	A NORTH	-11/0/1				+				
	- 11										-+				
	• 200 kiH x										1	GHz			

Page 1 of 2

Test Data: Field Strength Table, Horiz. Polarity

Test S	pec	CISPR	22 Radiated Distur	rbances	
Polarit Horizor	y ntal				
Final	Measure	ement			
Meas T	Time:	1 s			
Margin:	:	20 dB			
Subran	iyes.	2			
Trace	F	requency	Level (dBµV/m)	Detector	Delta Limit/dB
1	761.000	000000 MHz	24.26	Quasi Peak	-21.74
1	958.700	000000 MHz	27.49	Quasi Peak	-18.51

Page 2 of 2

Test Data: Field Strength Plot, Vert. Polarity

Test Spec Polarity Horizontal

CISPR 22 Radiated Disturbances

Time Domain Scan (1 Range)

Scan Start: 200 M Hz Scan Stop: 1 GHz Trace 1: MAX PEAK Detector: TDS_01 Transducer.

rt quency	Stop Frequency	Step Size	Res BW	Meas Time	RF Atten	Preamp	Input
.000000 MHz	1.000000 GH	z 30.00 kHz	120.00 kHz	50 µs	Àuto	20 dB	INPUT1
Step ID AU	to PULSE Att O	REW MI de auto atua ad	120 kH± 86ac) 1 a sip oy 6	ces 1 (11) 24.15 d 199.55000000	ByV/m EyV/m		
- 91		LIMII CHECK			1 GH =		
.							
- 11					•	DS .	
- 51							
- 51					<u>ال</u>		
PCC_B					-	5	
- 31			Million Charles	4	+		
Munan	www. Waller Marker or and	the state of the s					
- 31							
200 MH x	I	1	· · ·		1 GHz		

Page 1 of 2

Test Data: Field Strength Table, Vert. Polarity

Test Sp Polarity Horizor	pec y ntal	CISPR 22	Radiated Distur	bances					
Final Measurement									
Meas T Margin: Subran	ime: ; ges:	1 s 20 dB 2							
Trace	Frequen	cy L	.evel (dBµV/m)	Detector	Delta Limit/dB				
1 1	752.18000000) MHz) MHz	24.24 26.64	Quasi Peak Quasi Peak	-21.76 -19.36				

Page 2 of 2

Scanned 1 GHz to 12 GHz

Test Data: Field Strength Plot, Horiz. Polarity

												26.F	eb 20 16:00
<u>Time</u> Scan Scan Detec	Domain S tart: Start: Stop: tor:	Scan (1 Ra 1 GHz 12.5 GHz Trace 1: MA	n ge) X PEAK Tr	ace 2: MAX	PEAK								
Trans	ducer:	TDS_05											
Start Frequ	iency	Stop Frequenc	зy	Step Size	R	les BW	,	Me Tim	as ne	RF Atten	ı	Preamp	Input
1.	000000 GH	lz 12.500	000 GHz	250.00 kH	Hz	1.00) MHz	10	0 µs	Auto)	35 dB	INPUT1
Ø	Step TD A	UTO PULSE	Att 0 dB	RB MT AUTO PR	W 1 50 BAMP LN	MHz Oms A							
dBµV ∕m	100		L I	MIT CHECK	PASS				10	GHZ			
1 PK	-90												
NAXH	-80												
HAXH	-70									-	TDS		
	- 6 0												
	N ⁵⁰ AH A A	×											
	<u>рсс_в</u>	WWWWWWW	mounder	innin	nume	naum	unado	u X		way	6 D B A C		
	+	+ +		+ +									
	-30							+					
	-20												
	-10							-					
	0								1	2 5 6 4 4			
	1 0112								-	2.5 GH2			

Page 1 of 2

Test Data: Field Strength Table, Horiz. Polarity

Final Measurement								
Meas Ti Margin: Subranç	ime: ges:	500 ms 40 dB 16						
Trace	Frequenc	зy	Level (dBµV/m)	Detector	Delta Limit/dB			
1	1.220500000	GHz	38.64	CISPR Averag	-15.36			
2	1.220500000	GHz	51.94	Max Peak				
1	1.407250000	GHz	37.48	CISPR Averag	-16.52			
2	1.407250000	GHz	50.24	Max Peak				
1	1.951000000	GHz	36.95	CISPR Averag	-17.05			
2	1.951000000	GHz	49.24	Max Peak				
1	2.820250000	GHz	33.38	CISPR Averag	-20.62			
2	2.820250000	GHz	46.60	Max Peak				
1	3.555750000	GHz	32.60	CISPR Averag	-21.40			
2	3.555750000	GHz	45.07	Max Peak				
1	5.123000000	GHz	30.05	CISPR Averag	-23.95			
2	5.123000000	GHz	42.45	Max Peak				
1	7.651500000	GHz	28.72	CISPR Averag	-25.28			
2	7.651500000	GHz	41.68	Max Peak				
1	11.716750000	GHz	30.31	CISPR Averag	-23.69			
2	11.716750000	GHz	43.05	Max Peak				

Page 2 of 2

Test Data: Field Strength Plot, Vert. Polarity

													26.F	eb 20 16:01
Time	Domai	n Scan (1 Ra	(nge)											
Scan	Start:	1 GHz												
Detec	siop. tor	Trace 1: MA	X PEAK Trace	e 2. MAX I	PFAK									
Trans	ducer:	TDS_05			2.03									
Start		Stop	Ste	p				Me	as		RF			
Frequ	iency	Frequence	cy Siz	e	R	es BW		Tir	ne		Atten		Preamp	Input
1.	000000	GHz 12.500)000 GHz 25	0.00 kH	Z	1.00	MHz	10	0 με	3	Auto		35 dB	INPUT1
8				RBW	1	MHz 0 ma								
Ň	Step T	D AUTO PULSE	Att 0 dB AU	TO PRE	AMP LN	A								
dBµV ∕m	100		LIMI	CHECK	PASS				1	0 GH	z			
	-90													
1 PK														
MAXH	-80													
2 РК НАХН	70											T D S		
	- 6 0													
	×							_						
	WW	Mann	Amaria											
	FCC_B			unger	where	minus	a thin	w.		L.	man	6 D B A C		
	+	+ +	ł						~					
	-30			r +	+		+	-		+				
	-20													
	_10													
	1 GHZ		I			I				12.5	GHZ			

Page 1 of 2

Test Data: Field Strength Table, Vert. Polarity

Final Measurement									
Meas Ti Margin: Subrang	me: jes:	500 ms 40 dB 16							
Trace	Frequenc	ey 🛛	Level (dBµV/m)	Detector	Delta Limit/dB				
1	1.225000000	GHz	38.42	CISPR Averag	-15.58				
2	1.225000000	GHz	51.30	Max Peak					
1	1.85100000	GHz	36.73	CISPR Averag	-17.27				
2	1.851000000	GHz	49.51	Max Peak					
1	1.961000000	GHz	36.91	CISPR Averag	-17.09				
2	1.961000000	GHz	49.43	Max Peak					
1	3.023000000	GHz	32.98	CISPR Averag	-21.02				
2	3.023000000	GHz	45.32	Max Peak					
1	3.578250000	GHz	32.48	CISPR Averag	-21.52				
2	3.578250000	GHz	44.99	Max Peak					
1	4.966000000	GHz	30.18	CISPR Averag	-23.82				
2	4.966000000	GHz	42.33	Max Peak					
1	6.690750000	GHz	29.40	CISPR Averag	-24.60				
2	6.690750000	GHz	41.84	Max Peak					
1	12.375750000	GHz	30.54	CISPR Averag	-23.46				
2	12.375750000	GHz	43.13	Max Peak					

26.Feb 20 16:01

Page 2 of 2

POWER LINE CONDUCTED INTERFERENCE

Rule Part No.: FCC Part 15.107

Requirements:

Frequency MHz	Quasi Peak Limits (dBµV)	Average Limits (dBµV)						
0.15 - 0.5	66 - 56 *	56 - 46 *						
0.5 - 5.0	56	46						
5.0 - 30	60	50						
* Limit decreases with logarithm of frequency								

Method of Measurement:

The procedure used was ANSI C63.4 using a 50uH LISN. Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed. The spectrum was scanned from 0.15 to 30 MHz.

The following plots represent the emissions for power line conducted. Both lines were observed.

Test Results: N/A

POWER LINE CONDUCTED INTERFERENCE

TEST EQUIPMENT LIST

Device	Manufacturer	Model	SN	Calibration Date	Cal Due Date
EMI Test Receiver R & S ESIB 40 firmware v 4.34.3 BIOS v3.3	Rohde & Schwarz	ESIB 40	100274	07/22/19	07/22/21
Software: Field Strength Program	Timco	N/A	Version 4.10.7.0	N/A	N/A
Coaxial Cable - Chamber 3 cable set (backup)	Micro-Coax	Chamber 3 cable set (backup)	KMKM-0244-02 KMKM-0670-01 KFKF-0197-00	02/27/19	02/27/21
CHAMBER	Panashield	3M	N/A	03/15/19	03/15/21
Antenna: Active Loop	ETS-Lindgren	6502	00062529	12/11/17	12/11/20
Antenna: Biconical 1096	Eaton	94455-1	1096	08/01/17	08/01/20
Antenna: Log-Periodic 1122	Electro-Metrics	LPA-25	1122	07/26/17	07/26/20
Ant: Double-Ridged Horn/ETS Horn 1	ETS-Lindgren	3117	00035923	01/30/17	01/30/20

*EMI RECEIVER SOFTWARE VERSION

The receiver firmware used was version 4.43 Service Pack 3

END OF REPORT

Applicant:APTIV SERVICES US, LLC.Report:232UT20_TestReport_